
P
os
te
d
on

14
S
ep

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
23
93
.1

—
T
h
is

is
a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Machine-learned climate model corrections from a global

storm-resolving model: Performance across the annual cycle

Anna Kwa1, Spencer Koncius Clark2, Brian Henn3, Noah D Brenowitz1, Jeremy
McGibbon1, Oliver Watt-Meyer1, W. Andre Perkins1, Lucas Harris4, and Christopher S.
Bretherton1

1Allen Institute for Artificial Intelligence
2Allen Institute for Artificial Intelligence / NOAA-GFDL
3Allen Institute for Artificial Intelligence (AI2)
4GFDL

September 14, 2022

Abstract

One approach to improving the accuracy of a coarse-grid global climate model is to add machine-learned state-dependent

corrections to the prognosed model tendencies, such that the climate model evolves more like a reference fine-grid global storm-

resolving model (GSRM). Our past work demonstrating this approach was trained with short (40-day) simulations of GFDL’s

X-SHiELD GSRM with 3 km global horizontal grid spacing. Here, we extend this approach to span the full annual cycle

by training and testing our machine learning (ML) using a new year-long GSRM simulation. Our corrective ML models are

trained by learning the state-dependent tendencies of temperature and humidity and surface radiative fluxes needed to nudge a

closely related 200˜km grid coarse model, FV3GFS, to the GSRM evolution. Coarse-grid simulations adding these learned ML

corrections run stably for multiple years. Compared to a no-ML baseline, the time-mean spatial pattern errors with respect

to the fine-grid target are reduced by 6-25% for land surface temperature and 9-25% for land surface precipitation. The ML-

corrected simulations develop other biases in climate and circulation that differ from, but have comparable amplitude to, the

no-ML baseline simulation.
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Key Points:9

• Machine-learned (ML) corrective tendencies and radiative fluxes for a coarse-grid10
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• The ML corrections nevertheless induce systematic biases in the simulated Hadley14

circulation.15
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Abstract16

One approach to improving the accuracy of a coarse-grid global climate model is to add17

machine-learned state-dependent corrections to the prognosed model tendencies, such18

that the climate model evolves more like a reference fine-grid global storm-resolving model19

(GSRM). Our past work demonstrating this approach was trained with short (40-day)20

simulations of GFDL’s X-SHiELD GSRM with 3 km global horizontal grid spacing. Here,21

we extend this approach to span the full annual cycle by training and testing our ma-22

chine learning (ML) using a new year-long GSRM simulation. Our corrective ML mod-23

els are trained by learning the state-dependent tendencies of temperature and humid-24

ity and surface radiative fluxes needed to nudge a closely related 200 km grid coarse model,25

FV3GFS, to the GSRM evolution. Coarse-grid simulations adding these learned ML cor-26

rections run stably for multiple years. Compared to a no-ML baseline, the time-mean27

spatial pattern errors with respect to the fine-grid target are reduced by 6-25% for land28

surface temperature and 9-25% for land surface precipitation. The ML-corrected sim-29

ulations develop other biases in climate and circulation that differ from, but have com-30

parable amplitude to, the no-ML baseline simulation.31

Plain Language Summary32

A recent vein of research uses machine learning to try and improve the predictive33

accuracy of climate models. Fine-resolution global storm-resolving simulations make more34

accurate rainfall and temperature predictions than climate models, but computers take35

too long to finish many-year simulations. We use data from a year-long high quality ref-36

erence simulation to train machine learning models, which are then used in a lower qual-37

ity but faster climate model. The machine learning applies corrections continually dur-38

ing the faster simulation to make it act more like the slow, high quality model. This im-39

proves the faster model’s predictions for rainfall and temperature over land but also has40

unintended side effects of drying out the atmosphere and changing its circulation and41

tropical rainfall patterns.42

1 Introduction43

Due to computational constraints, running global climate models (GCMs) for more44

than a few years requires a spatial grid (≳50 km) too coarse to resolve two key atmo-45

spheric physical processes: cumulonimbus convection and airflow over orography, coast-46
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lines and other land-surface heterogeneities. The subgrid variability of these processes47

are approximately represented in GCMs via expert-designed physical parameterizations.48

Subjective choices made within these parameterizations contribute significantly to un-49

certainty in GCM predictions of precipitation, cloud cover, etc (Woelfle et al., 2018; Zhao,50

2014; Chen et al., 2007).51

Global storm-resolving models (GSRMs), defined following Stevens et al. (2019)52

as global models with horizontal grid spacings <5 km and at least 50 vertical levels, are53

able to better resolve these processes, but are currently too computationally demand-54

ing to be run for periods of more than a year or two. One way to improve the accuracy55

of GCMs while still maintaining the computational speedup from running at lower res-56

olution is to train a machine learning (ML) model whose outputs can be applied to up-57

date the GCM state at each timestep, with the goal of making the GCM state evolve more58

like the coarsened state of an equivalent fine-grid GSRM model. Brenowitz & Brether-59

ton (2019) and Yuval & O’Gorman (2020) trained ML models to predict the coarsened60

fine-grid apparent sources (Yanai et al., 1973) and apply these within coarse-grid aqua-61

planet simulations. Bretherton et al. (2022) (hereafter B22) trained ML models to pre-62

dict corrections to the GCM subgrid parameterizations, which were then predicted and63

applied at runtime in a coarse-grid simulation with realistic topography.64

Prior work has used the nudging framework as a means of generating training data65

and applying corrective machine-learned tendencies within a free-running coarse-grid sim-66

ulation (Watt-Meyer et al., 2021; Bretherton et al., 2022; Clark et al., 2022). The nudg-67

ing target varies across these works depending on the goal: nudging to observational re-68

analysis allows for effective bias correction without costly fine-grid simulations (Watt-69

Meyer et al., 2021), nudging to a higher-resolution (∼25 km grid) model with param-70

eterized convection allows for longer nudged runs to explore model performance in a range71

of climates (Clark et al., 2022), and nudging to a fine-grid (∼3 km grid) GSRM allows72

the ML to benefit from a target dataset which directly resolves convection (B22).73

B22 found that corrective ML models trained with the nudge-to-fine approach im-74

proved the weather forecast skill and reduced errors in time-mean land precipitation and75

surface temperature and the diurnal cycle of land precipitation in coarse-grid simulations76

of the 40-day period of their GSRM reference data. In this paper, we extend B22’s study77

by using a year-long GSRM reference simulation for training the corrective ML and eval-78
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uating simulations with the resulting ML-corrected coarse model on seasonal and mul-79

tiyear timescales. In Section 2 we describe our coarse-grid and fine-grid models as well80

as the nudged coarse-grid simulation used as our training dataset. In Section 3 we de-81

scribe the training procedure for our corrective ML models. Section 4 presents the of-82

fline (or single timestep) skill of the trained ML models. Section 5 presents online re-83

sults and discusses the impact of the corrective ML when coupled to a free-running year-84

long coarse-grid FV3GFS simulation. Following B22, we use land precipitation and sur-85

face temperature as the primary metrics to gauge improvement over a free-running FV3GFS86

no-ML coarse simulation. We also discuss circulation changes in the ML-corrected sim-87

ulations.88

2 Simulations89

2.1 Coarse-grid model90

As in B22, the coarse-grid model is FV3GFS (Zhou et al., 2019) run at C48 (∼20091

km) resolution with the same 79 vertical model levels as the fine-grid model. Coarse sim-92

ulations are carried out using a python-wrapped version of FV3GFS, which allows for93

easy customization and setup of nudging and integration of ML models (McGibbon et94

al., 2021). The model (and physics) timestep is 15 minutes, with 6 dynamics substeps95

per physics timestep. Time-varying sea surface temperatures (SSTs) and sea ice frac-96

tion are prescribed to be identical to those used in the coarsened fine-grid reference.97

The following improvements were made to the coarse-model configuration in B22:98

1. Fast saturation adjustment of humidity is enabled during each dynamics substep99

to better simulate fast-evolving cloud formation and dissipation. This significantly100

improves the baseline simulation’s surface radiation and precipitation climatol-101

ogy with respect to the fine-grid reference. Over a 40 day free-running coarse-grid102

simulation, the time-mean global-averaged surface downward shortwave and long-103

wave radiative fluxes and precipitation root mean squared errors (RMSEs) are im-104

proved by 13, 12, and 30%, respectively.105

2. The background vertical diffusion coefficient for heat and moisture is set to 2 m2/s106

to match the X-SHiELD value of this parameter over land. Without this, the de-107

fault FV3GFS value of 1 m2/s led to crashes in the initial timestep.108
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We perform a free-running year-long simulation initialized from the coarsened fine-109

grid reference state on Jan. 19, 2020. This simulation has no ML corrections and is re-110

ferred to hereafter as the “baseline” run.111

2.2 Reference simulation112

Our reference GSRM simulation is similar but not identical to the configuration113

used by B22, which was run for a much shorter 40-day period. In both this work and114

B22, the GSRM simulation is made with the X-SHiELD model, a modified version of FV3GFS115

with a C3072 cubed-sphere grid (∼3 km spacing) and 79 vertical levels, run on NOAA’s116

Gaea computing system by collaborators at the Geophysical Fluid Dynamics Labora-117

tory. The FV3GFS deep cumulus parameterization is disabled, though the shallow cu-118

mulus convection scheme is left active. The convective gravity wave drag scheme is dis-119

abled.120

Cheng et al. (2022) describes the exact X-SHiELD configuration used here and some121

general features of the simulation. The free-running simulation is initialized on 2019-10-122

20. The first three months are excluded as spin-up, resulting in a year-long reference dataset123

spanning the remaining time from 2020-01-19 through 2021-01-17. The following are no-124

table configuration differences in the reference fine-grid model used here with respect to125

the configuration in B22:126

• There is no meteorological nudging of atmospheric fields to analysis.127

• It uses the newer, inline version of the GFDL microphysics (Zhou et al., 2022).128

• It uses a mixed-layer ocean between 45◦S - 45◦N, nudged with a 15-day time scale129

to ECMWF SSTs from analysis. SSTs outside of those latitudes are prescribed130

to ECMWF SSTs.131

• Orographic gravity wave drag and mountain blocking schemes are enabled.132

For use as the reference target in nudged training simulations, the X-SHiELD data133

is averaged from its native C3072 resolution down to the same C48 resolution as the coarse134

model, using the pressure-level coarsening procedure described in B22. All three-dimensional135

fields needed to restart the model, as well as numerous two-dimensional diagnostic fields,136

are coarsened inline and saved every 3 hours (B22 saved this output every 15 minutes,137

which is too expensive for our nine-fold longer training simulation).138
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(a)

Baseline 
 200 km FV3GFS 

 
 Global RMSE = 3.4 mm (b)

Fine-grid 
 3 km X-SHiELD 

 
 Global RMSE = 2.0 mm

(c) Global RMSE = 2.0 mm/day (d) Global RMSE = 1.1 mm/da1
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Figure 1: Top: Time-mean bias map of precipitable water over one simulated year in a

coarse-grid FV3GFS run at C48 (∼200 km) resolution (a) and storm-resolving X-SHiELD

run at C3072 (∼3 km) resolution (b). Bottom: Time-mean bias map of precipitation over

one year in the coarse-grid FV3GFS (c) and fine-grid X-SHiELD (d) runs. The root mean

squared error for each time-mean quantity is given in each subtitle.

Figure 1 compares coarse-grid FV3GFS and coarsened fine-grid X-SHiELD biases139

in 2020 annual-mean precipitable water with respect to ERA5 reanalysis (Hersbach et140

al., 2019) and precipitation biases with respect to GPCP observations (Adler et al., 2018).141

Both fields have a spatial RMSE with respect to the observations that is 40–45% lower142

in the 3 km X-SHiELD simulation than the coarser 200 km FV3GFS simulation. This143

supports using X-SHiELD as a reference target for improving the accuracy of our coarse-144

grid simulation.145

2.3 Nudged training simulation146

We follow the nudging framework of B22. We initialize a one-year coarse-grid FV3GFS147

simulation with the configuration described in Section 2.1 using the coarsened X-SHiELD148

state on 2020-01-19. Temperature, humidity, model layer pressure thickness, and hor-149

izontal wind fields are nudged at each model time step towards the fine-grid state with150
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a 3-hour nudging timescale and the interval-averaged nudging tendencies at all coarse151

grid points are saved every three hours. The reference state is interpolated for timesteps152

that lie between the 3-hour intervals of the fine-grid data. The nudging tendencies are153

calculated as follows in Equation 1:154

∆Qa = −an − ā

τ
(1)

where an is a prognostic field in the model, ā is the coarsened value of that field in the155

reference fine-resolution data, and τ is a constant nudging timescale. As in B22, we use156

a nudging timescale τ of 3 hours. We interpret the nudging tendencies as corrections that157

would make the coarse model follow the evolution of the coarsened fine grid model and158

machine-learn these corrective tendencies as functions of the column state.159

We use the following approach from B22 to correct for systematic biases in surface160

precipitation and downwelling radiative fluxes due to the coarse model physics produc-161

ing less cloud and land precipitation than the fine-grid model. During the nudged train-162

ing run we prescribe surface downwelling shortwave and longwave fluxes as well as pre-163

cipitation from the coarsened fine-grid output to the land model. This prevents biases164

in land surface properties from feeding back into the atmosphere and affecting the tem-165

perature and humidity nudging tendencies. We train a ML model to predict downward166

longwave and shortwave surface fluxes for application in prognostic simulations. The ra-167

diative flux model training scheme is modified from B22 to improve its accuracy, as de-168

scribed below.169

3 Machine-learned corrective models170

3.1 Training and test data171

The nudged run data is divided into interleaved blocks of two weeks of training data172

followed by one week of validation data. The first and last two timesteps of each two-173

week training data block are discarded to ensure that there are no consecutive timesteps174

in both the training and validation datasets.175

1367 timesteps are selected out of the available training data. We make the assump-176

tion that the corrections predicted by the neural networks are column-local and only de-177

pend on the state within a single grid column. At C48 grid resolution, each timestep con-178
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tains 13824 columns. Since nearby columns are strongly correlated, inclusion of all columns179

in a timestep does not provide significant benefit over using a reasonable subsample of180

the data. Initial experiments using a training dataset of 200 timesteps showed that sub-181

sampling down to about 10% of the global set of columns in each timestep did not neg-182

atively impact the validation loss compared to using all columns. We use a subsample183

fraction of 15% of the total number of columns in each timestep in order to reduce mem-184

ory usage and training time. Thus the training dataset consists of ∼2.8×106 samples.185

The test dataset used for offline evaluation is subsampled to 100 of the available test timesteps,186

with no column subsampling so as to allow for the creation of time-mean offline bias maps.187

3.2 Neural network training188

Following B22, we train two fully connected dense neural networks (NNs) to sep-189

arately predict i) vertical profiles of air temperature and specific humidity tendencies and190

ii) column shortwave transmissivity and downward longwave surface flux. We train four191

NNs for each set of outputs using different random seeds and also construct an ensem-192

ble model using all of the randomly seeded NNs which outputs the median prediction193

of the ensemble members for each field.194

Choices of width, depth and learning rate were guided by a hyperparameter sweep195

in a randomized grid search (Biewald, 2020). To speed the hyperparameter sweep, we196

used the hyperband algorithm (Li et al., 2018) for early stopping, where training was ter-197

minated after 10 epochs if validation loss was not improved relative to previously tested198

sets of hyperparameters. Validation loss was primarily affected by the choice of learn-199

ing rate; width and depth had much less impact on model skill. We first chose the value200

of learning rate that performed best in the sweep, and then set the network width and201

depth using the set of sweep parameters that performed best near that value of learn-202

ing rate.203

3.2.1 Air temperature and specific humidity tendencies NN204

The NN trained to predict corrective air temperature and specific humidity ten-205

dencies is a fully-connected dense network with 3 hidden layers with 419 neurons per layer.206

It is trained for 500 epochs with early stopping and a learning rate of 1.4 × 10−4. Its207

input features are the cosine of solar zenith angle, surface geopotential, latitude, and the208
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vertical profiles of air temperature and specific humidity. The surface geopotential im-209

plicitly provides information about the surface type (land or sea/sea ice). Latitude is in-210

cluded as a new feature not used by B22, because it improves offline model skill at high211

latitudes, where there are extreme conditions but relatively few columns contributing212

to the loss function.213

As in B22, inputs to the network are normalized via standard scaling each verti-214

cal level using the mean and standard deviation of the first 4 × 105 samples. Output215

profiles passed to the loss function are normalized by the standard deviation of each ver-216

tical level such that all vertical levels are equally weighted in the loss. We use the same217

mean absolute error loss and L2 regularization penalty of 10−4 as B22.218

The following new ML configuration options helped ensure online stability:219

• ML-predicted tendencies of heating and humidity are limited to magnitudes less220

than 0.002 K/s and 1.5×10−6 kg/kg/s, respectively. These limiters are applied221

as a layer within the dense NN such that the limited outputs are used during op-222

timization. These ranges comfortably extend beyond the nudging tendency min-223

ima and maxima in the training data by a factor of 3, but prevent the NNs from224

making extreme predictions when undesirable feedback between the coarse-grid225

model and ML corrections lead to atmospheric input states outside the envelope226

of the training data.227

• Following Clark et al. (2022), we exclude (‘clip’) the uppermost 25 vertical model228

levels (≲150 hPa) of specific humidity and air temperature state inputs from the229

feature set. Without doing this, the models’ Jacobian matrices showed that the230

output fields in the boundary layer were as sensitive to inputs from the uppermost231

25 model levels as they were to input levels in their immediate locality (Brenowitz232

& Bretherton, 2019).233

• The uppermost 3 vertical levels of temperature and humidity tendency outputs234

are excluded from the prediction. The ML model always applies a zero corrective235

tendency for these levels when used online. Differences in the sponge layer damp-236

ing between FV3GFS and the X-SHiELD reference model lead to large nudging237

tendencies in these few levels with magnitudes similar to those in the boundary238

layer, but we do not consider these differences to be part of the coarse model physics239

that we wish to correct. The output clipping here is less extensive than approach240
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taken in Clark et al. (2022), where the output tendencies were tapered to zero at241

the top of the model in the uppermost 25 levels. We found that clipping just the242

uppermost three levels provided similar benefits in terms of online stability and243

performance.244

3.2.2 Surface radiative flux NN245

We train a NN to predict surface downward longwave radiative flux and column246

shortwave transmissivity to correct for the effect of systematic cloud biases on the land247

surface in the coarse run (Section 2.3). Its input features are the cosine of solar zenith248

angle, surface geopotential, latitude, and the vertical profiles of air temperature and spe-249

cific humidity. Transmissivity is set to zero in the training data for nighttime columns250

with zero solar insolation. The predicted column transmissivity is multiplied by the top-251

of-atmosphere downward shortwave flux to infer the predicted downward shortwave flux252

at the surface. This approach, introduced by Clark et al. (2022), differs slightly from the253

radiative flux NN in B22, which directly predicted the downward and net surface short-254

wave radiative fluxes and did not include latitude as an input feature.255

Like the tendency model, the surface radiative flux NN is a fully-connected dense256

network with 3 hidden layers of width 419, trained for 500 epochs with early stopping257

and mean absolute error loss. It uses a learning rate of 4.9 × 10−5 and L2 regulariza-258

tion penalty of 10−4.259

Longwave flux outputs are enforced to be positive or zero, and transmissivity out-260

puts are limited to the range [0, 1]. As in the tendency NN, these limits are applied as261

a dense network layer such that the limited outputs used in the loss function.262

3.3 Sensitivity to data sampling and NN configuration263

We had to update our training methodology from B22 for the ML corrections to264

be stable and skillful over a yearlong simulation. Early NN versions using similar train-265

ing dataset size and hyperparameters as in B22 developed large drifts over a year-long266

simulation, with some random seed variants crashing before a full year completed. A lead-267

ing indicator of drift and instability was a steady warming of 200 hPa air temperature268

starting at the poles and growing to a ∼20 K warm bias that extended into the mid-latitudes269
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within 90 days. This online bias was linked to a positive offline bias ML heating tenden-270

cies near the poles in the upper troposphere.271

Several changes described in Section 3.2 improved our offline skill and subsequently272

reduced the online growth of stratospheric air temperature biases. In Table 1 we present273

the impact of those configuration choices on offline skill. The last column of Table 1 lists274

the polar regions’ mean offline bias in 150-400 hPa heating tendencies; though this met-275

ric is calculated offline we found it to be a useful proxy for online air temperature drifts276

in the first few months of the simulations.277

Updates are described relative to a starting “base” configuration, which used the278

same dataset size as B22 (130 timesteps randomly chosen from the year of data, with279

no downsampling of columns) as well learning rate (0.002) and number of training gra-280

dient descent steps (∼ 2.9× 107). The input clipping, limiters on output magnitudes,281

and the clipping of the uppermost 3 vertical tendency levels (described in Section 3.2.1)282

are present in all the configurations tested below. Table 1 compares the following con-283

figuration choices, applied sequentially:284

+ lat Latitude is included as an input feature.285

+ sampling The number of timesteps in the training dataset is increased >10× and286

subsample down to 15% of the grid columns in each timestep.287

+ lower LR The learning rate is lowered from the value used in B22 from 0.002 to 0.0014288

and the number of gradient descent steps is increased >30×.289

Training with a lower learning rate over more gradient descent steps is the main290

contributor to the increased global offline R2 of column-integrated tendencies.291

4 Offline performance292

Here we discuss the ML models’ “offline” skill in predicting their training data tar-293

gets over a single time step. Offline skill is a necessary but not sufficient condition for294

successful application of the corrective ML in the coarse model. However, we do not strictly295

aim to maximize offline skill, as we find that regularization (which slightly lowers offline296

skill) is required for online stability.297

As in Figure 4 of B22, the instantaneous nudging tendencies at any given time step298

are quite noisy, so the ML cannot be expected to have perfect skill. In Figure 2 we show299
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Configuration
⟨heating⟩ML

R2

⟨moistening⟩ML

R2

polar 150-400 hPa

ML heating bias [K/s]

Base 0.17 0.15 1.1E-06

Base + lat 0.18 0.16 8.1E-07

Base + lat + sampling 0.18 0.15 7.0E-07

Base + lat + lower LR 0.28 0.22 -1.8E-07

Base + lat + sampling + lower LR 0.29 0.23 2.2E-07

Table 1: Sensitivity of offline column-integrated ML-predicted heating ⟨heating⟩ML R2,

column-integrated ML-predicted moistening ⟨moistening⟩ML R2, and mean 150-400 hPa

ML heating bias at the poles (|lat|> 60◦) to various changes in the data sampling and NN

configuration.

the zonal and pressure-level mean coefficient of determination R2 on the offline testing300

data for the ML-predicted corrective tendency fields. Both temperature and humidity301

tendency predictions are most skillful in the boundary layer and in the tropics, with zonal-302

mean R2 values upwards of 0.8 in the tropical boundary layer and 0.5–0.8 in the trop-303

ical free troposphere and extratropical boundary layer. Model skill in the mid-to-upper304

troposphere degrades to 0.1–0.3 at higher latitudes. The global-mean vertical profiles of305

R2 (not shown) are much improved relative to Figure 5 of B22, increasing up to a fac-306

tor of two in the lower to mid-troposphere. This improvement in offline skill from B22307

results from the updates to our training methodology and configuration described above.308

As described in Sec. 3.2.2, the ML for downwelling surface radiation is slightly dif-309

ferent from B22. Time-mean offline biases for the downward radiative fluxes are shown310

in Table 2. Their global average biases are small, regardless of neural-net random seed311

choice: 1.2± 0.7 W/m
2
for downward shortwave and −0.3± 0.2 W/m

2
for downward312

longwave surface radiative flux. The RMSE of the time-averaged total downward flux313

prediction is significantly reduced from 11.6 W/m
2
in B22 to 3.4 W/m

2
here.314
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a) b)

Figure 2: R2 of offline predictions of air temperature and humidity tendencies, averaged

over latitude and pressure. Predictions are generated using the NN ensemble; results for

individual seeds are similar.

Surface radiative flux field RMSE [W/m2] Bias [W/m2] R2

Downward shortwave 3.8 1.2 0.99

Downward longwave 1.2 -0.3 0.99

Total downward 3.4 0.9 0.99

Table 2: Offline metrics for downward surface fluxes. Downward shortwave and longwave

fluxes are predicted by the radiative flux NN; total downward flux is the sum of shortwave

and longwave predictions.
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5 Online performance315

The true test of the corrective ML comes by applying it online in a prognostic sim-316

ulation of the coarse-grid FV3GFS model and measuring results over seasonal and year-317

long timescales. Here, we present results from a suite of five such ML-corrected simu-318

lations. Four use independent random seeds to initialize the tendency and radiative flux319

NNs. A fifth uses the median of the corrective tendencies and surface fluxes over this four-320

member NN ensemble. All ML-corrected simulations ran stably for the full simulation321

length of 360 days.322

For each one-year ML-corrected simulation we assess the global-mean biases and323

seasonal-mean spatial pattern errors of the precipitation and land surface temperature324

with respect to the X-SHiELD reference run. These are compared to the baseline coarse-325

grid FV3GFS simulation. All coarse-grid FV3GFS simulations use the same namelist326

configuration, initial conditions and prescribed sea ice and SSTs. Ideally, the biases and327

pattern errors of the ML-corrected simulations will be significantly smaller than those328

of the baseline simulation. We also examine the effects of including the ML correction329

on other measures of large scale circulation and climate drift in the coarse simulations.330

5.1 Improvements in precipitation and surface temperature331

Figure 3 displays the RMSE and bias of time-averaged surface precipitation over332

the simulation year. The ML corrections from the individual NNs and the NN ensem-333

ble all improve the coarse model’s time-mean precipitation skill over both land and ocean.334

As we only sample four randomly seeded models, we will cite the minimum and max-335

imum relative improvement in each metric across the seeds instead of a standard devi-336

ation. ML-corrected models improve upon the baseline precipitation RMSE by 13−21%337

globally, 9 − 25% over land, and 13 − 20% over ocean. The magnitude of the precipi-338

tation bias is strongly reduced by 63−89% globally, 43−88% over land, and 82−98%339

over ocean.340

The time-averaged precipitation error pattern is qualitatively similar across the var-341

ious NNs. For conciseness we only show the ML-corrected simulation using the NN en-342

semble in Figure 4a. The baseline coarse run tends to have a large negative bias in pre-343

cipitation over equatorial Africa and South America, and a large positive bias over the344

western Pacific warm pool. The ML-corrected model reduces the magnitude of these re-345
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Figure 3: Time-mean RMSE and bias (with respect to the fine-grid reference) of pre-

cipitation in the baseline and ML-corrected coarse runs, shown for global, land, and sea

domain averages.

gional biases. The baseline’s wet bias in the western Pacific is replaced with a dry bias346

of slightly smaller magnitude. The pattern error of precipitation in the ML runs in the347

tropics differs significantly from the baseline due to the changes in circulation brought348

about by the ML correction (see section 5.2).349

Figure 4b shows the seasonally averaged errors in precipitation over land in the base-350

line and ML-corrected runs. The improvement in land precipitation errors is robust across351

all seasons in all four NNs as well as the NN ensemble.352

The 10–20% relative improvement over the baseline in the RMSE of time-averaged353

surface precipitation is less than the ∼30% reduction found by B22. We discovered that354

enabling fast saturation adjustment on each of the six dynamics substeps within the dy-355

namical core reduced the baseline model precipitation RMSE from 3.7 mm/day over the356

40 day run in B22 down to 1.9 mm/day in annual average here. Thus, the absolute er-357

rors in the baseline as well as the ML-corrected runs are notably improved in this work358

over B22.359

Land surface temperature errors are also reduced by 6−26% in the ML-corrected360

runs. Figure 5a shows the annual-average land surface temperature pattern error in the361

baseline and NN ensemble runs. The ML-corrected runs reduce a warm bias across Africa362

and the western United States. Seasonal surface temperature RMSE is plotted in Fig-363

ure 5b. While ML-corrected runs consistently improve land surface temperature from364
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a) b)

Figure 4: Left: Time-mean error pattern map of surface precipitation relative to the fine-

grid model. The ML-corrected run uses the NN ensemble. Right: Seasonal RMSE of land

surface precipitation for the coarse model baseline and ML-corrected simulations.

April through September, their behavior in boreal winter is less consistent across seeds,365

with NNs generated from two seeds performing comparably or worse than the baseline366

in these months. Those simulations amplify a systematic cold bias during boreal win-367

ter at high northern latitudes (≳50◦ N) also present in the baseline, while ML-corrected368

runs with other seeds reduce this bias (not shown).369

Both land surface temperature and precipitation show the largest seasonal skill im-370

provements during April - September, with the best-performing model (seed 0) reduc-371

ing both land temperature and precipitation seasonal RMSEs by over 20% in these sea-372

sons.373

5.2 Other climate biases in ML-corrected simulations374

B22 found that 40-day coarse-grid simulations with and without corrective nudg-375

ing both developed mean-state biases in the latitudinal structure of upper-tropospheric376

(200 hPa) temperature which could be 5 K or more in parts of the extratropics (their377

Figure 13d). The full year of reference X-SHiELD simulation data allows us to test how378

these and other biases develop over longer timescales. We compare just the NN ensem-379

ble model to the baseline, as the biases discussed here are robust across across all ML-380

corrected simulations.381

Our ML-corrected simulations develop a warm bias in 200 hPa air temperature (Fig-382

ure 6a). This bias is no more than ∼5 K over most of the globe, but is substantially larger383
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a) b)

Figure 5: Left: Time-mean error pattern map of land surface temperature relative to the

fine-grid model. The ML-corrected run uses the NN ensemble. Surface temperature is

only shown over land and sea ice, as the sea surface temperature is prescribed from the

fine-grid reference. Right: Seasonal RMSE of land surface precipitation for the coarse

model baseline and ML-corrected simulations.

at high southern latitudes. In contrast to B22, all the NNs in this work drift similarly384

over the year-long run. The baseline run develops a smaller cold bias at most latitudes.385

The ML-corrected runs also develop robust bias patterns in precipitable water (Fig-386

ure 6b). A strong dry bias of up to -10 mm develops over the seasonally shifting GSRM-387

simulated tropical ocean ITCZs, as well as a northern summertime dry bias at high lat-388

itudes northwards of ∼50◦. The Northern Hemisphere dry bias is also evident in the base-389

line run, albeit to a lesser magnitude. The baseline model does not share the dry ITCZ390

bias, but is too moist in most other parts of the subtropics.391

A related bias of the ML-corrected runs is a weakened Hadley circulation that is392

also shifted southward during boreal spring and summer. Figures 6 c-d show the biases393

in precipitation and 500 hPa vertical wind in the baseline and ML-corrected runs with394

respect to the coarsened fine-grid reference. The baseline model has a northward shift395

of vertical wind and precipitation in the tropics relative to the fine-grid reference dur-396

ing Jun-Aug. In contrast, the ML-corrected run displays southward-displaced upward397

motion and precipitation during Jun-Aug.398

We do not yet have a remedy for these ML-induced climate biases. Like B22, we399

tried including a NN that learned corrective tendencies for the zonal and meridional winds.400

B22 found that including ML-corrected wind tendencies led to large time-mean 200 hPa401
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a) b)

c) d)

Figure 6: Zonal mean vs. time plots for biases (with respect to the fine-grid model) in

200 hPa temperature, precipitable water, precipitation, and 500 hPa vertical wind in the

baseline and ML-corrected prognostic runs.

air temperature biases developing over their 40-day run. In the present study, we sim-402

ilarly found that including corrective wind tendencies caused errors in 200 hPa temper-403

ature that grew quickly within the first 7 days of the run and ultimately led to numer-404

ical instability. We are currently exploring the use of additional online ML models to reg-405

ulate the application of ML corrections and prevent predictions on out-of-sample states406

from pushing the model farther outside of the training data envelope. This looks to be407

a promising direction for reducing climate biases by incorporating wind corrections with-408

out triggering instabilities.409

5.3 Tropical variability410

This section documents that the space-time variability of tropical precipitation is411

a weak point of our ML-corrected simulations, even though they improve aspects of the412

seasonal mean precipitation. We believe this is mainly caused by training using nudg-413

ing tendencies. Because the coarse-grid convective parameterization includes a trigger414

that is highly sensitive to the column thermodynamic state, the precipitation predicted415

by physical parameterizations of the nudged coarse simulation is intermittent and poorly416
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Figure 7: Distribution of tropical (15◦S − 15◦N) daily mean surface precipitation in the

fine-grid, baseline, and ML-corrected simulations.

synchronized with the more smoothly varying precipitation in the reference fine-grid model.417

The temperature and humidity nudging tendencies mediate this disagreement by damp-418

ing the temperature and humidity tendencies in the coarse-grid physics; this is learned419

by the ML correction. Hence, the ML correction tends to reduce the sensitivity of the420

physical parameterizations to column thermodynamic state, reducing extreme precip-421

itation and tropical variability of precipitation.422

Figure 7 shows the PDF of daily precipitation between 15◦S − 15◦N. The base-423

line run has excessive extreme precipitation but the ML-corrected simulation has too lit-424

tle extreme precipitation.425

Figure 8 plots tropical (15◦S−15◦N average) precipitation across longitude and426

time in the fine-grid and free-running coarse-grid simulations. Eastward-propagating Kelvin427

waves and hints of a Madden-Julian Oscillation stand out in the fine-grid reference but428

are largely absent in both coarse-grid simulations. The baseline run has overly-strong429

precipitation in the western Pacific (∼150◦−200◦ E) and too much power in westward-430

propagating waves; in contrast, the ML-corrected model largely damps out zonally prop-431

agating waves in both directions and underpredicts western Pacific precipitation.432
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Figure 8: Longitude-time plots of 6-hourly averaged precipitation rate between ±15◦ lati-

tude in the fine-grid, baseline, and ML-corrected simulations.
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a) b)

Figure 9: Globally-averaged time series of monthly-mean surface precipitation and pre-

cipitable water from the reference fine-grid, baseline coarse-grid, and ML-corrected coarse-

grid simulations. Unlike the yearlong baseline and ML runs, the 5 year ML run uses

climatological SSTs and is thus not limited to the time range of the reference run.

5.4 Stability over multiple years433

Would the climate in ML-corrected runs continue to drift, with larger biases de-434

veloping over multiple years of simulation, or are its biases largely repeatable in subse-435

quent annual cycles, as in the no-ML baseline? This interannual stability under constant436

SST forcing is a prerequisite for use in climate-length simulations.437

To address this question, we used the NN with the lowest surface temperature and438

precipitation errors (seed 0) for a 5-year coarse-grid run. All prognostic runs so far used439

the SSTs from the yearlong reference X-SHiELD simulation, which did not span the full440

length of the extended 5 year simulation and did not exactly repeat at the end of the441

annual cycle. To enable a smoothly-forced five-year simulation, we instead used a cli-442

matological annual cycle of SSTs.443

Figure 9 shows time series of precipitable water and precipitation in this extended444

ML-corrected run as well as the yearlong fine-grid reference, baseline, and ML-corrected445

runs with SSTs prescribed from reference data. As desired, the multiyear ML-corrected446

run maintains consistent seasonal bias patterns across years that match up well in its447

first year to the fine-grid X-SHiELD reference simulation.448
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6 Conclusions449

This study extends previous work done in B22 in which corrective ML models trained450

using fine-resolution data were applied within coarse-grid climate models. The novelty451

of this work lies in the training and evaluation of the corrective ML over the entire an-452

nual cycle. This advance was enabled by the use of the year-long X-SHiELD simulation453

reference dataset. The longer-term goal is to use GSRM simulations in multiple climates454

(Cheng et al., 2022) to train corrective ML that can be used in climate change simula-455

tions, following the template in Clark et al. (2022), who used 25-km grid reference sim-456

ulations in multiple climates to this end.457

We show results from multiple 360-day-long coarse-grid prognostic runs using four458

randomly seeded pairs of NN models for temperature and humidity tendencies and ra-459

diative surface fluxes as well as an ensemble of the four pairs of NNs. Bias and RMSE460

are reported with respect to the fine-grid X-SHiELD reference model. We observe ro-461

bust improvements across all NNs tested in time-mean land surface precipitation (9−462

25% lower RMSE) and land surface temperature (6−25% lower RMSE) with respect463

to a non-ML-corrected baseline simulation. Seasonally averaged land surface precipita-464

tion RMSE is also robustly improved across all seasons for all ML-corrected runs. Sea-465

sonally averaged land surface temperature RMSE is consistently improved during bo-466

real summer across ML models, and two of four also reduce the boreal winter cold bi-467

ases at high northern latitudes.468

All ML-corrected simulations ran to completion without any crashes or runaway469

drifts. We tested our best-performing model (seed 0) over a five year simulation. It main-470

tains a stable climate throughout the run, with consistent seasonal cycles year over year471

that closely repeat its first-year behavior.472

Like the baseline model, the ML-corrected prognostic simulations develop signif-473

icant seasonal biases in precipitable water, precipitation and vertical motion. The ML474

models somewhat overcorrect many of the tropical circulation biases of the baseline model.475

Tropical precipitation variability is significantly reduced in the ML-corrected runs.476

While the baseline run produces too much extreme precipitation, the ML-corrected runs477

produce too little. Both the baseline and ML-corrected runs have weaker MJO and Kelvin478
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wave propagation than the fine-grid reference, with the ML-corrected run having the weak-479

est wave propagation of the three.480

Our results are encouraging for the prospect that ML trained on GSRM simula-481

tions can improve coarser-grid climate models. To realize this prospect, future work is482

still needed to improve the climate drift, circulation biases, and precipitation variabil-483

ity of ML-corrected runs.484

7 Open Research485

The code and experiment configurations needed to reproduce this work are avail-486

able at the Github repository https://github.com/ai2cm/nudge-to-3km-PIRE-1yr-workflow487

which is archived at Zenodo (https://doi.org/10.5281/zenodo.7063087). The coars-488

ened fine-grid data used for initial conditions and in the nudged coarse-grid simulation489

is available upon request through a Google Cloud Storage ‘requester pays’ bucket. The490

ERA5 data was obtained at https://doi.org/10.24381/cds.f17050d7. The GPCP491

data was obtained at https://psl.noaa.gov/data/gridded/data.gpcp.html.492
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