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Abstract

We classify all sky images from 4 seasons, transform the classification results into time-series data to include information about

the evolution of images and combine these with information on the onset of geomagnetic substorms. We train a lightweight

classifier on this dataset to predict the onset of substorms within a 15 minute interval after being shown information of 30

minutes of aurora. The best classifier achieves a balanced accuracy of 59% with a recall rate of 39% and false positive rate of

20%. We show that the classifier is limited by the strong imbalance in the dataset of approximately 50:1 between negative and

positive events. All software and results are open source and freely available.

1



manuscript submitted to JGR: Space Physics

Substorm Onset Prediction using Machine Learning1

Classified Auroral Images2

P. Sado1, L. B. N. Clausen1, W. J. Miloch1, H. Nickisch2
3

1Department of Physics, University of Oslo, Oslo, Norway4
2Philips Research, Hamburg, Germany5

Key Points:6

• Aurora images are classified and a classifier is trained to predict the onset of sub-7

storms within 15 minutes of seeing 30 minutes of images8

• A leightweight classifier works reasonably well but is limited in the amount of in-9

formation that can be processed10

• The best classifier recalls 39% of substorms with 59% balanced accuracy and 20%11

false positive rate12
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Abstract13

We classify all sky images from 4 seasons, transform the classification results into time-14

series data to include information about the evolution of images and combine these with15

information on the onset of geomagnetic substorms. We train a lightweight classifier on16

this dataset to predict the onset of substorms within a 15 minute interval after being shown17

information of 30 minutes of aurora. The best classifier achieves a balanced accuracy of18

59% with a recall rate of 39% and false positive rate of 20%. We show that the classi-19

fier is limited by the strong imbalance in the dataset of approximately 50:1 between neg-20

ative and positive events. All software and results are open source and freely available.21

Plain Language Summary22

When charged particle originating from the sun travel into near Earth space, they23

interact with the Earth’s natural magnetic field. These interactions are what leads to24

the aurora, but can also cause problems with electric installations or satellite commu-25

nications. Knowing when and where these occur can be used to mitigate negative effects.26

Such forecasts are also beneficial for research, as rockets could be launched into regions27

of interest or paths of satellites can be adjusted to arrive at the same time as the occur-28

rence of such events. Our model takes images from ground based cameras to predict the29

onset of such strong space weather occurrences.30

1 Introduction31

The solar wind is the driving force of space weather on Earth. Energy can be stored32

in the Earth’s magnetosphere and will subsequently be released. These so called substorms33

are not only cause for the spectacle we know as the aurora, but have also the potential34

to cause serious harm to modern technology. Particularly in view of the reliance of to-35

day’s society on digital communication delivered by satellites has made this a major con-36

cern in the last few decades.37

Heating and expansion of the atmosphere by the aurora can lead to an increase in38

drag on satellites, possibly reducing lifespan, warranting course correction or at the very39

least cause observations of the changed course to avoid collisions (Marcos et al., 2010).40

Geomagnetically induced currents can affect man-made electrically conducting structures41

such as the power-grid, under-sea communication cables or pipelines, causing disruption42

in various services (Pirjola, 2000). GNSS systems can provide exact timing and location43

services, based on the distance to the satellite calculated from the known position and44

travel time of the signal to a ground based receiver. However, ionospheric disturbances45

can change the travel time by several nanoseconds or few microseconds, giving errors in46

the position by a few meters (Kintner et al., 2007).47

Although there is the potential for global events to occur, these are extremely rare48

and localised events are much more likely. In order to mitigate the risks, it is important49

to know when and where they will occur.50

Originally based on images (Akasofu, 1964 and Akasofu et al., 1965), the study of51

substorms has moved on to satellite-supported studies (McPherron et al., 1973), giving52

us the currently used model of substorms. The solar wind has long since been identified53

as the main driving force behind substorms (Caan et al., 1975). A rapid northward turn-54

ing of the Interplanetary Magnetic Field (IMF) Bz component was believed to be the55

main trigger behind substorms, however this has been disproven in recent years (Freeman56

& Morley, 2009 and P. T. Newell & Liou, 2011 and Johnson & Wing, 2014). During57

the growth phase of substorms, energy is stored in the Earth’s magnetosphere. This en-58

ergy is released during the expansion phase and the magnetosphere subsequently returns59

to its steady state in the recovery phase of a substorm.60
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Different phases during a substorm can trigger different mechanism of energy-release61

which will in turn have different outcomes on the visible aurora (P. T. Newell et al., 201062

and Akasofu, 2013 and Partamies et al., 2015).63

In its simplest form during quiet times, aurora are visible in the shape of a single64

east-west arc, become larger and brighter, expand poleward during a substorm and form65

rapidly westward travelling folds, before breaking up into smaller structures, becoming66

more chaotic and returning to their quiet state again towards the end of a substorm (Akasofu,67

1964).68

Irrespective the origin of substorms, their footprint on Earth stays the same and69

subsequent identification can be performed either visually through all sky or satellite im-70

ages of aurora or measurements of the Earth’s magnetic field. Visual identification as71

performed for example by Frey et al. (2004) and Liou (2010) is still based on the def-72

inition by Akasofu (1964) consisting of sudden brightening of the aurora followed by pole-73

ward motion and increase in intensity of the aurora. Forsyth et al. (2015) and P. T. Newell74

and Gjerloev (2011) and Ohtani and Gjerloev (2020) use instrument based identifica-75

tion of substorms, where they used the change in Earth’s magnetic field.76

The lists of substorms originating from this work have found widespread use in the77

community for prediction of various space weather effects (cf. https://supermag.jhuapl78

.edu/publications/), including the prediction of substorm onsets by Maimaiti et al.79

(2019) using deep neural networks. With their model, the authors also confirmed the im-80

portance of the Bz component of the interplanetary magnetic field (IMF) (P. T. Newell81

& Liou, 2011) and the solar wind speed (P. Newell et al., 2016) on the occurrence of sub-82

storms. Their work shows how well solar wind data can be used to forecast onsets of sub-83

storms on a global level. Furthermore, Sado et al. (2022) have shown that all sky im-84

ages contain sufficient information that can be extracted by a neural network and be used85

to model the behaviour of the Earth’s local magnetic field in vicinity to the imager.86

Taking the same approach, in this study we obtained approximately 4 million all87

sky imager data, classified the images and used a time series of images representing half88

an hour of data to predict the onset of substorms within the next 15 minutes after the89

time series.90

Our final classifier operates with a recall rate of 39%, a false positive rate of 20%91

and a balanced accuracy of 59%. We show that the classifier often correctly identifies92

to occurrence of an event, but fails to pinpoint the exact location in time and therefore93

either misses or overshoots the target prediction. The classifier itself is as lightweight as94

possible and makes it therefore necessary to reduce the input information for training95

to its bare essentials.96

In Section 2 we give an overview of which data we use and in Section 3 we detail97

our preprocessing steps for the images and substorm data. Finally in Section 4 we present98

our results and give a summary and outlook in Section 5.99

2 Description of Data Sources100

In this project, we use data from two different sources. Our images are taken from101

the THEMIS All Sky Imager array’s camera in Gillam, Manitoba located at N 56◦ 20.24′,102

W94◦ 42.36′ . The All Sky Camera takes images every 3 s at a resolution of 256 px by103

256 px. The images are taken in the 2009/2010 and 2010/2011 seasons corresponding to104

conditions of solar minimum and and in the 2014/2015 and 2015/2016 seasons for so-105

lar maximum. This gives us a total of approximately 3.7 million images taken over 4 years.106

The images were taken with a fisheye lense giving a full view of the sky from horizon to107

horizon. To remove artefacts like trees just above the horizon, a ring 20 px wide was re-108

moved. The images were then classified according to the method developed by Sado et109

al. (2022).110

The images are complemented with physical data in the form of substorm occur-111

rences based on the SuperMAG list of substorms. These were created by Forsyth et al.112

(2015) using the SOPHIE technique, where substorm expansion and growth phases are113
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Themis All Sky 
Images

Pretrained Auroral 
Image Classifier

5 Minute Bins of
Distribution

of Image Classes

5 Minute Bins of
"Substorm" / "No Substorm"

Train Classifier
and

Predict Substorms

SuperMAG List
of Substorms

Substorm Cloud/Moon Arc Diffuse Discrete Clear
0 1 0.00 0.00 0.00 1.00
0 1 0.00 0.00 0.00 1.00
0 1 0.00 0.00 0.00 1.00
0 0 0.00 0.00 0.00 1.00
0 0 0.46 0.00 0.00 0.54
0 0 0.77 0.00 0.23 0.00
0 0 1.00 0.00 0.00 0.00
0 0 0.21 0.00 0.79 0.00
0 0 0.00 0.00 1.00 0.00
0 0 0.00 0.00 0.31 0.69
0 0 0.00 0.00 0.01 0.99
0 0 0.00 0.00 1.00 0.00
0 0 0.52 0.00 0.48 0.00
0 0 0.13 0.00 0.87 0.00
1 0 0.62 0.00 0.38 0.00
0 0 1.00 0.00 0.00 0.00
0 0 0.00 0.53 0.47 0.00
0 0 0.00 0.15 0.85 0.00
0 0 0.00 0.14 0.86 0.00
0 0 0.00 0.33 0.67 0.00
0 0 0.00 0.00 1.00 0.00
0 0 0.00 1.00 0.00 0.00

Figure 1: Outline of the workflow. Auroral Images are classified with an established clas-
sifier. Based on the classification’s result images with clouds or the moon are removed.
The predicted images’ classes are summarised into 5 minute bins to remove noise and re-
duce the overall size of the dataset. To these bins, information about whether a substorm
has occurred during the interval is added from the SuperMAG list and finally a classifier
is trained to predict whether a substorm will occur after a given interval of images.

identified by finding extrema in the derivatives of the SML (Auroral Electrojet Index)114

and by Ohtani and Gjerloev (2020) who based their identification on the local develop-115

ment of the Earth’s magnetic field as it is influenced by a substorm. From these lists116

of substorms, we use 245 events that occur at a time of image coverage within 10◦ ge-117

ographical latitudinal and longitudinal distance to the camera.118

3 Methods119

3.1 Overview of Dataflow120

Figure 1 shows an overview of how the data flows through the system. The all sky121

images are preprocessed and classified according to the classifier by Sado et al. (2022).122

This process is detailed in Section 3.2. Those images not showing aurora or a clear night123

sky are removed. The classified images are condensed into bins where we average over124

the images’ probabilities in regular 5min intervals. During periods of full camera cov-125

erage, a 5-minute-bin will contain 100 images. However, since coverage is not perfect or126

images have been removed because they were not relevant, bins might contain less im-127

ages. Each bin is then assigned a binary value based on whether a substorm has occurred128

during this time or not according to the SuperMAG list.129

The processing of substorm data and details on the classifier can be found in sec-130

tions 3.3 and 3.4 respectively.131

3.2 Image Preprocessing132

Individual images are classified based on the classifier developed and demonstrated133

by Sado et al. (2022) and Clausen and Nickisch (2018). In this process, the images are134

analysed by a pretrained neural network and the image features as defined by this net-135

work are extracted. A classifier that has been trained on a labelled set of images that136
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have undergone the same process of feature-extraction is then used to classify the im-137

ages. This returns a probability for each image to be in either of the following six classes:138

arc The image shows mostly a single auroral arc spanning from east to west (left to139

right in the frame of the image)140

diffuse The image shows diffuse aurora without any clear structure141

discrete Discrete aurora show structure but not in the form of well-defined arcs. The struc-142

tures can be of any other shape.143

cloud The image shows clouds144

moon The image shows the moon145

clear The image shows a clear night sky146

The probabilities for ”cloudy” and ”moon” do not contain any physical information and147

could lead to unforeseen biases with the classifier. Images where the probability to show148

the moon is above 40% or the probability to show clouds is above 70% are therefore dis-149

carded These probabilities are then removed alltogether and we rescale the remaining150

four classes such that their distribution sums up to 100%.151

3.3 Substorms152

The list of substorms contains substorms measured and registered all over the world.153

Because we are only interested in substorms that we will be able to recognise visually154

based on our images, we remove all substorms outside of a 10◦ region in geographical155

coordinates around the location of the camera. We also remove any substorms registered156

at a time where there is no image data available. Doing this we obtain 245 individual157

substorms.158

3.4 Classification159

Our classifier is a simple Linear Ridge Model. As input we use 6 bins of 5 minutes160

of image data, giving us an input vector containing 6× 4 = 24 cells of input data. As161

output to be predicted we use a Boolean value whether there will be a substorm within162

the next 15 minutes after the end of the input interval.163

In Figure 2 we demonstrate how the input is prepared for the model. In the up-164

per row the predicted classes for each image up to sixty minutes before and after a sub-165

storm has been identified are plotted. In the middle row, the average distribution of classes166

for each of the 5 minute bins is calculated and shown. Binning the images is an essen-167

tial part of preprocessing for two reasons. Firstly, there were originally one hundred im-168

ages taken per interval, the information is therefore reduced by a factor of 100. Secondly,169

briefly interrupted coverage at for example about 30min after substorm onset and again170

about 55min after onset can be safely ignored. The bottom two panels show a visual-171

isation of the input for the classifier. Each contains a 30-minute-interval of data. The172

first interval ends more than 15 minutes before the substorm occurs and has therefore173

been given a negative label. The second interval ends less than 15 minutes before the174

substorm and has therefore been given a positive label. Of course there are many more175

times without substorm onset than there are with. In our method of binning the data176

into 5 minute intervals and looking 15 minutes ahead, 1.80% of our model’s input has177

a positive label. To account for this large imbalance, we adjust hyperparameters for the178

model’s class weight and regularisation strength to avoid overfitting.179

For evaluation of hyperparameters, we have used 5-fold crossvalidation with an 80:20180

split of train to test data. Our final selected model is the one that produces the high-181

est balanced accuracy which is also the model with the highest True Skill Score (True182

Positive Rate - False Positive Rate).183
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Figure 2: Predicted classes per image (top), binned distribution of classes (middle) and
input for ”substorm” (bottom left) or ”no substorm” (bottom right)

For the final model’s training and evaluation we have split train and test data se-184

quentially in such a way that the ratio of positive to negative events in both datasets is185

as similar as positive.186

4 Results187

4.1 Distribution of Image Classes around Substorms188

In Figure 3, we show the average distribution of predicted image classes up to an189

hour before and after a substorm has been observed. We can see that before substorm190

onset, the average probability for ”arcs” rises and shortly after onset ”discrete” sees a191

rise. ”Diffuse” is a dominant term throughout the whole time series, but strongly ris-192

ing after substorm onset. This is likely because the classifier tends to default to this value193

when it is unsure about the classification task. For clouds illuminated from the back, for194

example when the moon is shining behind cloud cover, or strong aurora that is blanketed195

by clouds, the classifier will also often classify these cases as diffuse aurora. ”Clear sky”196

is similarly dominant towards the beginning of observation, but decreases over time. There197

are some substorms that will occur without aurora observation in the field of view of the198

camera. These will add a baseline value of ”clear sky” to the average presented in this199

Figure.200

Overall, we see that the substorms on average follow a pattern that is similar to201

the observations one would expect when detecting substorms manually on images.202

4.2 Prediction203

For the prediction task, we prepare the classifier as described in Section 3.4.204

Table 1 shows the confusion matrix obtained for this classifier. It illustrates the im-205

balance in the dataset of approximately 50:1. We manage to correctly identify 41 of the206

106 test cases in our dataset, giving us a recall rate of 39%. The imbalance has a large207

effect on the precision of the prediction, the ratio of true positive predictions to all pos-208
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Figure 3: Distribution of predicted Image classes around substorms
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Figure 4: ROC curve for the final classifier.
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Prediction outcome
Substorm No Substorm total

Substorm 41 65 106

No Substorm 1161 4613 5774

total 1202 4678

Table 1: Confusion Matrix for the final classifier

itive predictions, which is 3.4% in our case. Accounting for the imbalance, and weight-209

ing the accuracy for both cases with their total amount of cases, we achieve a balanced210

accuracy of 59%.211

In Figure 4, we see a ROC-curve for the prediction. A ROC-curve is created by choos-212

ing different thresholds for the classifier’s output and subsequently plotting the True Pos-213

itive Rate (TPR) against the False Positive Rate (FPR). It shows how well in a binary214

classification system positive cases can be separated from negative ones and can be use-215

ful to choose a threshold based on the applications. In the two extreme cases, all sam-216

ples are rejected or all samples are accepted as positive. Between these, the TPR should217

increase faster than the FPR to make for a good classifier. This threshold is shown as218

the straight, orange line which would also show the outcome of a classifier than was purely219

based on chance.220

Except for the very extreme cases, our model performs better than guessing and221

overall, the are under the curve is 0.66. We identify two working regimes that could222

be useful in real world scenarios. The first at a balanced accuracy of 59% with a True223

Skill Score (TSS), calculated as the difference between TPR and FPR, of 0.19, a FPR224

of 20% and a TPR of 39%. The second has a higher balanced accuracy and TSS of 65%225

and 0.30 respectively, but the higher TPR of 77% comes at the cost of increasing the FPR226

to 47%. The first case is a more conservative approach and will create less false alarms227
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relative to true positive cases than the second approach. The second approach is more228

accurate overall but will also give more false alarms.229

Figure 5 displays the classification for a specific date. In the top panel we show ground230

based magnetometer measurements for the evening and the keogram for the timeframe231

in the panel below. The third panel shows the probabilities of individual images over232

time on which the substorm prediction has been based. The predicted probability for233

”substorm” vs ”no substorm” is shown in the fourth panel. The horizontal black line de-234

notes our threshold chosen for the final task. It corresponds to the first, more conser-235

vative, scenario laid out above. The binary output of this thresholded prediction is shown236

in panel five and the true result we tested against in the last panel. . The last panel237

shows the known true test data.238

We see that the substorm occurring at 08:56 has been identified correctly, albeit239

being 5 minutes delayed on the timing. From the keogram we see that at the time there240

was little to no supporting visual evidence of a substorm occurring in the field of view241

of the camera. Leading up to the substorm the classifier has increasingly classified im-242

ages as ”arcs” or ”discrete”, similarly to what we saw in Figure 3. The substorm clas-243

sifier itself does not have any information about the original images available for its task244

any more, however it seems that either the context of image class distributions has been245

enough to identify this substorm where a human would have likely not done so, or - given246

the low precision from the large imbalance in the dataset and the classifiers tendency to247

mark too many potential substorms - it has landed a lucky guess. Between 7:10 and 08:05248

another event has been identified. As we can see from the magnetometer measurements249

plotted alongside, another substorm happened earlier with its onset identified at 06:56250

by Ohtani and Gjerloev (2020). This substorm is not in our list of true positive data,251

because it occurred too early after onset of observations. Even if it was, it would not have252

been identified at the correct time, but the classifier has correctly identified that there253

was an ongoing event during the time. The substorm was also a longer lasting event, which254

was picked up by the classifier.255

Both of these events show the necessity of implementing a loss function that pri-256

oritise the correct identification of present events over the precise timings. This could257

lead to a significant improvement in the model’s forecasting abilities. (Guastavino et al.,258

2022) Both cases lead us to believe that the classifier prefers to identify ongoing sub-259

storms instead of the substorm onsets it was trained on. This is most likely due to the260

fact that the definition of a substorm onset is rather arbitrary with respect to image data261

and the effect on the images heavily depends on the duration and strength of the sub-262

storm.263

Nevertheless, the fact that the classifier managed to roughly identify the time both264

events occurred, is a huge success given the very limited model and training data. It has265

been trained on data only giving information about the onset of the substorm, result-266

ing in a large imbalance between true and false cases of about 1:50. This means that just267

by guessing ”false” all the time the classifier would achieve an accuracy of about 98%.268

This would correspond to the top-right corner of the ROC-curve.269

Using the correct threshold it is possible to obtain a working regime that is per-270

forming better than this trivial case. Given the fact that the original input for half an271

hour of data has been condensed down from 600 images at 256 px by 256 px giving ap-272

proximately 40M data points total to just 24 input values, this is a good achievement273

for a linear classifier.274

5 Conclusion & Outlook275

We have shown that a simple linear classifier based on the distribution of image276

classes of auroral images for up to half an hour can predict the onset of a substorm with277

respectable accuracy. The input data also only contained information directly obtained278

from images. Replacing the model with a neural network, supplementing the input data279

with for example solar wind data and implementing a loss function that prioritises the280
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Figure 5: A demonstration of Prediction of a time series. The rows show the following
information, from top to bottom: Magnetometer measurement, keogram, per-image classi-
fier output, Substorm prediction probability, thresholded substorm prediction, test data.
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forecast result’s value over its precision could lead to a more accurate prediction of the281

local onset and possibly duration of substorms.282

Because this method and underlying source code is made freely available, it can283

be used to forecast substorms live. While we have not undertaken such steps, the time-284

limiting factor in a project like this would be the image preprocessing. Since our meth-285

ods operate much faster on commercial hardware than the limit of one image every three286

seconds, an optimised implementation should be possible.287
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