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Abstract

We classify all sky images from 4 seasons, transform the classified information into time-series data to include information about

the evolution of images and combine these with information on the onset of geomagnetic substorms. We train a lightweight

classifier on this dataset to predict the onset of substorms within a 15 minute interval after being shown information of 30

minutes of aurora. The best classifier achieves a balanced accuracy of 61% with a recall rate of 47% and false positive rate of

24%. We show that the classifier is limited by the strong imbalance in the dataset of approximately 50:1 between negative and

positive events. All software and results are open source and made freely available.
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Key Points:6

• Auroral images are classified, then time series information is introduced and noise7

removed by means of a Hidden Markov Model8

• A linear classifier predicts the onset of substorms within 15 minutes of seeing 309

minutes of images10

• The best classifier recalls 47% of substorms with 61% balanced accuracy and 24%11

false positive rate12
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Abstract13

We classify all sky images from 4 seasons, transform the classified information into time-14

series data to include information about the evolution of images and combine these with15

information on the onset of geomagnetic substorms. We train a lightweight classifier on16

this dataset to predict the onset of substorms within a 15 minute interval after being shown17

information of 30 minutes of aurora. The best classifier achieves a balanced accuracy of18

61% with a recall rate of 47% and false positive rate of 24%. We show that the classi-19

fier is limited by the strong imbalance in the dataset of approximately 50:1 between neg-20

ative and positive events. All software and results are open source and made freely avail-21

able.22

Plain Language Summary23

When charged particle originating from the sun travel into near earth space, they24

interact with the Earth’s natural magnetic field. These interactions are what leads to25

the aurora, but can also cause problems with electric installations or satellite commu-26

nications. Knowing when and where these can occur can be used to mitigate effects. Such27

forecasts are also beneficial for research, as rockets could be launched into regions of in-28

terest or paths of satellites can be adjusted to arrive at the same time as the occurrence29

of such events. Our model takes images from ground based cameras to predict the on-30

set of strong space weather occurrences.31

1 Introduction32

Solar wind is the driving force of space weather on earth. Energy can be stored in33

the Earth’s magnetosphere and will subsequently be released. These so called substorms34

are not only cause for the spectacle we know as the aurora, but have also the potential35

to cause serious harm to modern technology. Especially nowadays society reliance on dig-36

ital communication delivered by satellites has made this a major concern in the last few37

decades.38

Heating and expansion of the atmosphere by the aurora can lead to an increase in39

drag on satellites, possibly reducing lifespan, warranting course correction or at the very40

least cause observations of the changed course to avoid collisions (Marcos et al., 2010).41

Geomagnetically induced currents can affect man-made electrically conducting structures42

such as the power-grid, under-sea communication cables or pipelines, causing disruption43

in various services (Pirjola, 2000). GNSS systems can provide exact timing and location44

services, based on the distance to the satellite calculated from the known position and45

travel time of the signal to a ground based receiver. However, ionospheric disturbances46

can change the travel time by several nanoseconds or few microseconds, giving errors in47

the position by a few meters (Kintner et al., 2007).48

Although there is the potential for global events to occur, these are extremely rare49

and localised events are much more likely. In order to mitigate the risks, it is important50

to know when and where they will occur.51

Originally based on images (Akasofu, 1964; Akasofu et al., 1965) the study of sub-52

storms has moved on to satellite-supported studies (McPherron et al., 1973), giving us53

the currently used model of substorms. The solar wind has long since been identified as54

the main driving force behind substorms and substorm triggers (Caan et al., 1975). Dur-55

ing the growth phase of substorms, energy is stored in the Earth’s magnetosphere. This56

energy is released during the expansion phase and the magnetosphere subsequently re-57

turns to its quiet state in the recovery phase of a substorm.58

Different phases during a substorm can trigger different mechanism of energy-release59

which will in turn have different outcomes on the visible aurora (P. T. Newell et al., 2010;60

Akasofu, 2013; Partamies et al., 2015).61
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In its simplest form during quiet times, aurora are visible in the shape of a single62

east-west arc, become larger and brighter, expand poleward during a substorm and form63

rapidly westward travelling folds, before breaking up into smaller structures, becoming64

more chaotic and returning to their quiet state again towards the end of a substorm(Akasofu,65

1964).66

No matter the origin of substorms, their footprint on earth stays the same and sub-67

sequent identification can be performed either visually through all sky or satellite im-68

ages of aurora or measurements of the earth’s magnetic field. Visual identification as per-69

formed for example by Frey et al. (2004) and Liou (2010) is still based on the definition70

by Akasofu (1964) consisting of sudden brightening of the aurora followed by poleward71

motion and increase in intensity of the aurora. Forsyth et al. (2015); P. T. Newell and72

Gjerloev (2011); Ohtani and Gjerloev (2020) use instrument based identification of sub-73

storms, where they used the change in Earth’s magnetic field.74

The lists of substorms originating from this work have found widespread use in the75

community for prediction of all kinds of space weather(cf. https://supermag.jhuapl76

.edu/publications/), including the prediction of substorm onsets by Maimaiti et al.77

(2019) using deep neural networks. With their model the authors also confirmed the im-78

portance of the Bz component of the interplanetary magnetic field (IMF) (P. T. Newell79

& Liou, 2011) and the solar wind speed (P. Newell et al., 2016) on the occurrence of sub-80

storms. Their work shows how well solar wind data can be used to forecast onsets of sub-81

storms on a global level. Furthermore, Sado et al. (2022) have shown that all sky im-82

ages contain sufficient information that can be extracted by a neural network and be used83

to model the behaviour of the Earth’s local magnetic field in vicinity to the imager.84

Taking the same approach, in this study we obtained approximately 4 million all85

sky imager data, classified the images and used a time series of images representing half86

an hour of data to predict the onset of substorms within the next 15 minutes after the87

time series.88

We manage to achieve a balanced accuracy of 61% at a recall rate of 46% and false89

positive rate of 24%. We show that the classifier often correctly identifies to occurrence90

of an event, but fails to pinpoint the exact location in time and therefore either misses91

or overshoots the target prediction. The classifier itself was as lightweight as possible and92

made it therefore necessary to reduce the input information for training to it’s bare es-93

sentials. Given its success we estimate that training a more sophisticate model on the94

raw input data will lead to drastic improvements of this method.95

In section 2 we give an overview of which data we use and in section 3 we detail96

our preprocessing steps for the images and substorm data. Finally in section 4 we present97

our results and give a summary and outlook in section 5.98

2 Description of Data Sources99

In this project, we use data from two different sources. Our Images are taken from100

the THEMIS All Sky Imager array’s camera in Gillam, Manitoba. The All Sky Cam-101

era takes images every 3 s at a resolution of 256 px by 256 px. The images are taken in102

the 2009/2010 and 2010/2011 seasons corresponding to conditions of solar minimum and103

and in the 2014/2015 and 2015/2016 seasons for solar maximum. This gives us a total104

of approximately 3.7 million images taken over 4 years. The images were taken with a105

fisheye lense giving a full view of the sky from horizon to horizon. To remove artefacts106

like trees just above the horizon, a ring 20 px wide was removed. The images were then107

preprocessed before being classified according to the method developed by Sado et al.108

(2022).109

The images are complemented with physical data in the form of substorm occur-110

rences based on the SuperMAG list of substorms. These were created by Forsyth et al.111

(2015) using the SOPHIE technique, where substorm expansion and growth phases are112

identified by finding extrema in the derivatives of the SML (Auroral Electrojet Index)113

and by Ohtani and Gjerloev (2020) who based their identification on the local develop-114
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Substorm Cloud/Moon State 0 State 1 State 2 State 3
0 1 1.00 0.00 0.00 0.00
0 1 1.00 0.00 0.00 0.00
0 1 1.00 0.00 0.00 0.00
0 0 1.00 0.00 0.00 0.00
0 0 1.00 0.00 0.00 0.00
0 0 0.00 0.23 0.00 0.77
0 0 0.00 0.00 0.00 1.00
0 0 0.00 0.79 0.00 0.21
0 0 0.00 1.00 0.00 0.00
0 0 0.00 0.31 0.00 0.69
0 0 0.00 0.01 0.00 0.99
0 0 0.00 1.00 0.00 0.00
0 0 0.00 0.48 0.00 0.52
0 0 0.00 0.87 0.00 0.13
1 0 0.00 0.38 0.00 0.62
0 0 0.00 0.00 0.00 1.00
0 0 0.00 0.53 0.47 0.00
0 0 0.00 0.15 0.85 0.00
0 0 0.00 0.14 0.86 0.00
0 0 0.00 0.33 0.67 0.00
0 0 0.00 0.00 1.00 0.00
0 0 0.00 1.00 0.00 0.00

Themis All Sky 
Images

Pretrained Auroral 
Image Classifier

5 Minute Bins of
Distribution

of Image Classes

5 Minute Bins of
"Substorm" / "No Substorm"

Train Classifier
and

Predict Substorms

SuperMAG List
of Substorms

Figure 1: Outline of the workflow. Auroral Images are classified with an established clas-
sifier, time information is added by smoothing with a Hidden Markov Model and images
are binned into 5 minute intervals with their respective predicted states. Based on the
classification’s result images with clouds or the moon are removed. To these bins, infor-
mation about whether a substorm has occurred during the interval is added from the
SuperMAG list and finally a classifier is trained to predict whether a substorm will occur
after a given interval of images.

ment of the Earth’s magnetic field as it is influenced by a substorm. These occurrences115

are listed by date and time with their respective location. Only substorms occurring within116

a latitudinal and longitudinal distance of 10◦ to the camera were used, resulting in ap-117

proximately 2000 events. Out of these, 245 have been recorded at a time with image cov-118

erage.119

3 Methods120

3.1 Overview of Dataflow121

Figure 1 shows an overview of how the data flows through the process. The all sky122

Images are preprocessed and classified according to the classifier by Sado et al. (2022).123

This process is detailed in section 3.2. Those images not showing aurora or a clear night124

sky are removed. Furthermore, we use a Hidden Markov Model for smoothing the time125

series of images. We show this in detail in section 3.3. The classified images are condensed126

into bins containing 5min of distribution of image classes. During periods of full cam-127

era coverage, a 5-minute-bin will contain 100 images. However, since coverage is not per-128

fect or images have been removed because they were not relevant, bins might contain less129

images. Each bin is then assigned a Boolean value based on whether a substorm has oc-130

curred during this time or not according to the SuperMAG list.131

The processing of substorm data and details on the classifier can be found in sec-132

tions 3.4 and 3.5 respectively.133
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3.2 Image Preprocessing134

Individual images are classified based on the classifier developed and demonstrated135

by (Sado et al., 2022; Clausen & Nickisch, 2018). In this process, the images are anal-136

ysed by a pretrained neural network and the image features as defined by this network137

are extracted. A classifier that has been trained on a labelled set of images that have138

undergone the same process of feature-extraction is then used to classify the images. This139

returns a probability for each image to be in either of the following six classes:140

arc The image shows mostly a single auroral arc spanning from east to west (left to141

right in the frame of the image)142

diffuse The image shows diffuse aurora without any clear structure143

discrete Discrete aurora show structure but not in the form of well-defined arcs. The struc-144

tures can be of any other shape.145

cloud The image shows clouds146

moon The image shows the moon147

clear The image shows a clear night sky148

Images where the probability to show the moon is above 40% or the probability to show149

clouds is above 70% are discarded and will not be used from now on. These probabil-150

ities are removed from the distribution of classes for the remaining images and the prob-151

abilities rescaled to 100%.152

3.3 Hidden Markov Model for Time Series Information153

Individual images can contain false information and noise within the data. A per-154

son walking by the imager holding a flashlight and illuminating the dome of the cam-155

era can cause misclassification for individual images. The images however belong to a156

time series of images where images are taken 3 s apart. The change from one individual157

image to another should therefore be small as should be the probability assigned to two158

consecutive images. This can be used to smooth the distribution of probabilities and classes159

for individual images along a longer time series of images.160

To do this, we have employed a Hidden Markov Model (HMM) a widely used smooth-161

ing model that can be adapted to data. The observable state of a HMM is based on the162

state of a hidden variable. The transition of the hidden variable from one state to an-163

other is based on a Markov process, giving the model its name Rabiner (1989).164

For our purposes we assume that our observed probabilities for each image are based165

on a set number of hidden states. For each image, the hidden state can transition from166

one to another giving different probabilities for the output of each image.167

We tested various amounts of hidden states between 2 and 100 and judged these168

by two metrics:169

• Transition Matrix Sparsity170

• State Distribution Entropy171

The transition matrix sparsity measures how the transition of states are distributed. The172

higher this value, the more non-zero elements are present in the transition matrix. The173

more possible transitions between different states there are, the higher this value will be.174

If the model only transitions between selected states or does not populate some states175

at all, this metric will be smaller. The Sparsity is calculated as Count of non-zero Elements in the Matrix
Total Elements in the Matrix .176

State distribution entropy measures how evenly the states are populated. The Entropy177

is defined as S(P ) = − 1
N

∑N
i=0 pilog(pi) where N is the total amount of states, P the178

distribution and pi the probability for the i-th state. This value is lowest with S(P ) =179

0 if a single state holds all values or highest with S(P ) = log(N) if the states are evenly180

distributed. We demonstrate these values in Figure 2, where we have split the data ran-181
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Figure 2: Sparsity of the transition matrix adjusted for expected values (a) and Entropy
of state distribution adjusted by maximum entropy for each possible distribution (b)

domly into 60% training and 40% for testing. Because this is only the model-selection182

process and it takes a considerable amount of time to train models with a high number183

of hidden states, we did not employ cross-validation but opted for this rather large split184

of test data. The sparsity (Figure 2a) has been normalised on the expected value if only185

the main and first off-diagonal were to be populated, because if transitions happen only186

between neighbouring states, the numerator will grow linearly and the denominator quadrat-187

ically The entropy (Figure 2b) has been normalised to the maximum value for the re-188

spective distribution because it increases naturally with an increasing amount of states.189

We can see that for up to four hidden components, the matrix is only populated along190

the main diagonal and its first off-diagonal. This means that transitions only happen be-191

tween neighbouring states and that the HMM does not skip states when transitioning192

from one state to another. This behaviour is lost when using more hidden states. In terms193

of entropy we are looking for a model that does not neglect some states. This would be194

reflected in a low value for entropy as seen for three hidden components. Based on the195

entropy, we deem all models between four and twenty hidden components to be valid choices.196

On the principle of selecting the simplest possible model that is able to perform197

the task, we have settled for a HMM with 4 hidden layers. This way the model does not198

have to infer too much information from the given probabilities or too much informa-199

tion is lost. The importance of its property to not skip states will also become appar-200

ent later.201

The output of the final model with four hidden layers for a selected time frame is202

demonstrated in Figure 3. This Figure shows the probabilities for images taken by the203

camera on 2009-12-14 as determined by our classifier in the top panel. The bottom panel204

shows the states determined by the HMM. We see that although the states are not mapped205

back onto the predicted classes in a 1-to-1 fashion, the HMM has learned to interpret206

the transition of images in a physical sense. An event of auroral images beginning at ap-207

proximately 04:00 starts with images classified in the zeroth state at first, then transi-208

tions to the first, further to the second and later to the third state, before going back-209

wards through the same cycle. It is interesting to note that the HMM always transitions210

in this order and never skips any of the output states, i.e. transitioning from state zero211

to state two immediately, without going through state one.212

Furthermore, we show the transition matrix of the model in Figure 4. We see that213

the model prefers to stay in its current state and then follows the logical progression trough214
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Figure 3: The original images’ probabilities are transformed into 4 states using a Hideen
Markov Model. This ensures time information between images and their transition from
one to another is encoded into the information given to the classifier and removes noise
between the images. The original images’ class probabilities are shown in the top panel
and their respective states assigned by the HMM are shown below.

← State 0 State 1 State 2 State 3
State 0 997.9 2.2 0 0
State 1 2.1 995.9 1.9 0
State 2 0 1.9 996.2 3.9
State 3 0 0 1.9 996.1

(a)

State 0

State 1

State 2

State 3

2.1

2.2

1.9

1.9

1.9

3.9

(b)

Figure 4: Transition matrix of the Hidden Markov Model in per mille (a) and visualisa-
tion (b). The arrows corresponding to the off-diagonal values have been scaled by a factor
of 100.
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Table 1: (a) Mapping between labels assigned by the classifier and by the HMM. (b) The
same as (a), but instead of the assigned classes, their probabilities have been used. This
means, instead of adding 1 or 0 for ”hit” or ”miss”, for each image, its probabilities are
added to the row for the state it has been assigned by the HMM.

(a)

Arc Diffuse Discrete Clear Total

State 0 0 0 0 1 057 963 1 057 963
State 1 0 0 0 1 046 727 1 046 727
State 2 190 952 543 830 150 155 172 092 1 057 029
State 3 0 552 354 0 0 552 354

Total 190 952 1 096 184 150 155 2 276 782 3 714 073

(b)

Arc Diffuse Discrete Clear Total

State 0 16 150 26 258 3 588 1 011 967 1 057 963
State 1 112 841 127 480 20 968 785 438 1 046 727
State 2 225 749 425 709 198 075 207 496 1 057 029
State 3 9 761 519 496 17 748 5 349 552 354

Total 364 501 1 098 943 240 379 2 010 250 3 714 073

the different states, from a clear sky to diffuse aurora. For all states, the probability to215

transition into a different state is approximately 0.4%, at one image per 3 seconds, this216

gives an expected lifetime of a state of 750 sec = 12.5min. In our interpretation, the217

states can be roughly described such that the zeroth state describes a clear sky, the first218

state the beginning of aurora, the second state structured aurora and the third state dif-219

fuse aurora.220

This is further supported by observing the mapping between the classes assigned221

by the original classifier and the hidden states assigned by the HMM as shown in Ta-222

ble 1a. Clearly, the HMM puts a lot of emphasis on the images labelled as ”clear”, as-223

signing these exclusively to the zeroth and first state. The auroral classes have to share224

the second state and the third state is left for use by about half of the images labelled225

diffuse. One would assume, that based on this, the HMM would not be a good descrip-226

tor of the states. However, the HMM also has information about the probability of the227

classes, not just the actual class value available.228

Modifying the same Table with the probabilities assigned by the classifier to each229

class, we obtain a distribution as shown in Table 1b. Previously we looked up each im-230

ages state and label and counted the overlap. Now, instead of counting ”1” for ”hit” and231

”0” for ”miss”, we add the probabilities that have been assigned by the classifier for ev-232

ery image assigned to each state. This gives less of a hard count and more of an expected233

value of the mapping if a finer thresholding was possible. This gives us a broader pic-234

ture for analysis while the overall result stays unchanged.235

With this modification we can see how much of a role the probabilities for the arc236

and diffuse classes of images have already played in the first state of the HMM. Although237

none of the images were labelled as such, the expected accuracy of these images is high238

and increasing towards the next state, whereas the expected accuracy for the clear class239

is decreasing. The discrete class becomes most important during the second state and240

the diffuse class most for and during the third state. Interestingly however, the diffuse241
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class plays a dominant role compared to the other auroral classes throughout all the states.242

This is because it is the overall dominant class, maybe because cloud-removal has not243

been working optimally and the original classifier does not manage to discern properly244

between a cloudy sky and diffuse aurora. Overall however, this supports our first inter-245

pretation of the models progression from clear skies to diffuse aurora through its four246

hidden states.247

At one image every 3 s, we expect a total of 100 images per 5 minutes. However,248

since we have removed some images because they are not interesting or the camera may249

have had problems, not all bins contain the full 100 images. This problem is solved by250

binning the time series into 5 minute intervals. This also reduces the amount of total data251

as input for the classifier. Each bin will only contain the distribution of hidden states252

for each of the bins, which gives us a very condensed view of how the observed aurora253

evolves over time.254

3.4 Substorms255

The list of substorms contains substorms measured and registered all over the world.256

Because we are only interested in substorms that we will be able to recognise visually257

based on our images, we remove all substorms outside of a 10◦ region around the loca-258

tion of the classifier. We also remove any substorms registered at a time where there is259

no image data available. Doing this we obtain 245 individual substorms.260

3.5 Classification261

Our classifier is a simple Linear Ridge Model. As input we use 6 bins of 5 minutes262

of image data, giving us an input vector containing 6× 4 = 24 cells of input data. As263

output to be predicted we use a Boolean value whether there will be a substorm within264

the next 15 minutes after the end of the input interval.265

In Figure 5 we demonstrate how the input is prepared for the model. In the up-266

per row the states for each image up to sixty minutes before and after a substorm has267

been identified are plotted. In the middle row, the distribution of states for each of the268

5 minute bins is calculated and shown. For every 5-minute-Interval the occurrence of each269

state has been counted and divided by the total amount of images per interval. This re-270

moves the problem if less than the maximum possible amount of images have been taken271

in a given interval. The bottom two panels show a visualisation of the input for the clas-272

sifier. Each contains a 30-minute-interval of data. The first interval ends less than 15 min-273

utes before the substorm occurs and has therefore been given a positive label. The sec-274

ond interval ends more than 15 minutes before the substorm and has therefore been given275

a negative label.276

4 Results277

4.1 Distribution of Hidden States278

In Figure 6 we show the distribution of hidden states up to an hour before and af-279

ter a substorm has been observed. A total of 261 substorms have been observed within280

an hour before or after images have been taken. In the upper panel each individual event281

is plotted, the bottom panel shows the average distribution of hidden states. About 20%282

of substorms are accompanied by images in the zeroth state. We interpreted this state283

to be equal to images showing a clear sky. The remaining images start with structures284

identified as the first or second state an hour before the substorm. Towards the onset285

of the substorm, the first state becomes less prevalent compared to the second and at286

half an hour after the substorm the third state is the dominant one.287
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Figure 5: HMM-predicted states per image (top), binned distribution of classes (middle)
and input for ”no substorm” (bottom left) or ”substorm” (bottom right)
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Figure 6: Distribution of Image states around substorms
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4.2 Classification288

For the classification task we prepare the classifier as described in section 3.5.289

In Figure 7a, we see a ROC-curve for the classifier, which we obtain by choosing290

different thresholds. The area under the curve is 0.67. Overall precision is at only 3.5%291

because of the imbalance in data between negative and positive events of approximately292

50:1. Still we are able to choose a working regime with a balanced accuracy of 61%, a293

false positive rate of 24% and a true positive rate of 47%.294

Figure 7b displays the classification for a specific date. In the top panel we show295

ground based magnetometer measurements for the evening and the keogram for the time-296

frame in the panel below. The third panel shows the probabilities of individual images297

over time, the fourth panel the states assigned by the Hidden Markov Model. These states298

are prepared as displayed in Figure 5 and the probabilities for a substorm to occur based299

on our model are shown in the fifth panel. A threshold is chosen accordingly, giving a300

binary classification for ”substorm” and ”no substorm” as displayed in the sixth panel.301

Notably, there are periods where ”substorm” and ”no substorm” are switching back and302

forth, these have been filled in manually. The last panel shows the known true test data.303

We see that the substorm occurring at 08:56 has been identified correctly, while304

overshooting slightly with the duration. Between 7:10 and 08:05 another event has been305

identified. As we can see from the magnetometer measurements plotted alongside, an-306

other substorm happened earlier with its onset identified at 06:56 by Ohtani and Gjer-307

loev (2020). This substorm is not in our list of true positive data, because it occurred308

too early after onset of observations. Even if it was, it would not have been identified309

at the correct time, but the classifier has correctly identified that there was an ongoing310

event during the time. The substorm was also a longer lasting event, which was picked311

up by the classifier.312

Both cases lead us to believe that the classifier prefers to identify ongoing substorms313

instead of the substorm onsets, it was trained on. This is most likely due to the fact that314

the definition of a substorm onset is rather arbitrary with respect to image data and the315

effect on the images heavily depends on the duration and strength of the substorm.316

Nevertheless, the fact that the classifier managed to roughly identify the time both317

events occurred, is a huge success given the very limited model and training data. It has318

been trained on data only giving information about the onset of the substorm, result-319

ing in a large imbalance between true and false cases of about 1:50. This means that just320

by guessing ”false” all the time the classifier would achieve an accuracy of about 98%.321

This would correspond to the top-right corner of the ROC-curve.322

Using the correct threshold it is possible to obtain a working regime that is per-323

forming better than this trivial case. Given the fact that the original input for half an324

hour of data has been condensed down from 600 images at 256 px by 256 px giving ap-325

proximately 40M data points total to just 24 input values, this is a good achievement326

for a linear classifier.327

To show that the preprocessing step with the HMM is an improvement over the328

raw input data, we have added two test cases, one without HMM-preprocessing and one329

with more hidden states. In the first, we use the classes as obtained by the original clas-330

sifier’s probabilities, with a Gaussian filter smoothing the transitions between images and331

filtering out some of the noise. Figure 7c shows the ROC-curve. The overall curve re-332

sembles that obtained by the HMM-preprocessed model, however the best case performs333

considerably worse and it is more difficult to choose a working regime for this classifier.334

Two regions between a false positive rate of approximately 0.2-0.4 and approximately335

0.5-0.95 show a straight line because thresholding cannot resolve these regimes better.336

Finetuning a classifier to be within this region is therefore not possible, making this clas-337

sifier not feasible.338

Increasing the number of hidden states to 10 (see Figure 7d) does not yield an im-339

provement either. The thresholding is a bit more stable, but overall worse and comes at340

the cost of increased training time.341
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The classifier based on 4 hidden states (cf. Figure 7a) shows these unstable regions342

as well, but here they are smaller and overall less problematic than for the classifier trained343

without the usage of a HMM for preprocessing.344

5 Conclusion & Outlook345

We have shown that a simple linear classifier based on the distribution of image346

classes of auroral images for up to half an hour can predict the onset of a substorm with347

respectable accuracy. Given the limitations of a linear model and how much informa-348

tion was discarded in the preprocessing stages to allow for quick training and evaluation,349

this raises the assumption that a more complex model utilising more information can350

achieve a much better result. The input data also only contained information directly351

obtained from images. Replacing the model with a neural network and supplementing352

the input data with for example solar wind data could lead to an accurate prediction of353

the local onset and possibly duration of substorms.354

Because this method and underlying source code is made freely available, it could355

be used to forecast substorms live. While we have not undertaken such steps, the time-356

limiting factor in a project like this would be preprocessing of images. Since our meth-357

ods operate much faster on commercial hardware than the limit of one image every three358

seconds, a proper implementation should be possible.359
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