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Abstract

Fine and ultrafine ambient particulate matter (PM) has major health and climate impacts. Chemical composition of PM is

required for better estimation of these impacts but is considerably expensive to measure as compared to the total PM mass

concentrations. We explore the indirect estimation of PM chemical composition by analysing the temporal variation of, relatively

inexpensively measured, total PM.
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Introduction

Ambient particulate matter (PM) or aerosols with diameter smaller than 2.5 microns

(PM2.5) and smaller than 1 micron (PM1) have deleterious effects on human health

including mortality and morbidity 1-6. Ambient PM levels consistently exceed daily and

yearly safe standards set by the World Health Organization (WHO) in various parts

of the world7,8. Health impacts are often estimated using response curves that relate

reduced mortality to total PM mass 9. However, better estimates of health effects

require chemical makeup of PM, in addition to its total mass 10,11. Additionally,

knowledge of PM chemical composition aids in understanding of cloud formation and

other climate effects 12,13. PM includes chemical components such as organic carbon

(ORG), black carbon (BC), ammonium (NH4), nitrate (NO3), sulphate (SO4), chloride

(CHL), mineral dust and other heavy metals 24.

While it is relatively inexpensive to measure total PM mass concentrations, it is much

more expensive and challenging to observe PM chemical composition. Offline

sampling techniques of estimating aerosol chemical composition involve

retrospective lab-based chemical analysis of filter papers from PM measuring



instruments 14-16. Besides requiring human intervention and expensive laboratory

analysis 17,18, they yield longer time-averaged (typically daily- or weekly-averaged)

chemical composition information and are thus better suited for limited time-span

field campaigns than for real-time data streaming service to citizens and

stakeholders, for instance. Online techniques involve direct measurement of aerosol

chemical components using mass spectrometers 19 such as the Aerosol Mass

Spectrometer (AMS) or Aerosol Chemical Speciation Monitor (ACSM) 20,21 which can

be prohibitively expensive (approximately, AMS: 500,000$, ACSM:

150,000-200,000$; personal communication), incur expensive maintenance, and

require trained personnel to operate. Due to these limitations, chemical composition

of aerosols remains unobserved over large parts of the globe including major

population centres such as the Indo Gangetic Plain29. On the contrary, total PM can

be measured using reference monitors that cost around (based on personal

communication) 20,000$-30,000$ or low cost sensors that cost between 200$-2000$

(e.g., Purple Air; https://www2.purpleair.com/). Unsurprisingly, observations of total

PM are more abundant than chemical compositions. Chemical composition

observations over time are available for multiple sites in United States30, Europe31

and China22,23, but with several gaps31, thereby hindering scientists from developing a

consistent global picture of aerosol chemical composition at a high temporal

resolution.

Total PM concentrations show distinct temporal variations at the diurnal as well as

seasonal scales 24,25. This temporal signature depends on a number of local and

regional factors such as meteorology (wind speed and direction, relative humidity,

boundary layer mixing), chemistry (chemical rates of formation and transformation of



aerosols) and emissions (their strength and temporal variations). Moreover, temporal

signature of total PM concentration can be viewed as the sum of the temporal

signatures of each of its chemical components. Hourly data from various AMS/ACSM

measurements, particularly for urban locations, indicate that all chemical

components do not exhibit identical temporal variations 24-27. We notice that,

generally, primary aerosols (BC and primary ORG) show a more spikey signal,

highlighting that they are freshly emitted and preserve some characteristics of the

temporal profiles of their emission sources. Secondary aerosols (NH4, NO3, SO4)

show a smoother temporal signal which is evidence of the timescales of chemical

conversion of precursor gases to aerosols. Concentrations of precursor gases (e.g.,

NO2 and SO2) might retain the temporal signal of emission sources but since they

are lost during chemical transformation, are not preserved in NO3 and SO4 aerosol

observations.

Superimposed upon the emissions/chemistry signal is the meteorological signal but

regional meteorology affects all chemical components simultaneously, rather than

individually. So, all chemical components will show a simultaneous decline if the

wind direction changes to one which brings clean air or if wind speed increases.

Turbulent mixing in the atmospheric boundary layer, however, has a somewhat

different effect on primary and secondary aerosols29. Primary aerosols have a

stronger vertical gradient than secondary aerosols because all primary emission

sources are situated at the surface while secondary aerosols have a weaker vertical

gradient within the boundary layer due to the spatial scales of chemical production.

Therefore a reduction in boundary layer height leads to much steeper increases in



primary aerosol concentrations as compared to relatively modest increases in

secondary aerosol concentrations, see, for example, Ansari et al., 2019 27.

Therefore, we posit that, under similar meteorological conditions, a highly spikey and

fluctuating temporal profile of the total PM indicates a dominant fraction of primary

aerosols while a smoother temporal signal of total PM suggests a larger proportion of

secondary aerosols. These distinct temporal responses of different chemical

components hold the key for their indirect estimation. This approach is valid,

especially for urban locations where aerosols are externally-mixed; freshly emitted

and contain strong temporal signals of their sources (e.g., traffic, industry,

households). However, observations made at remote locations with far-away

emission sources have weaker source-signals and the aerosols are often in an

internally-mixed state; different chemical components stick to each other into a single

particle, such that, the chemical composition of each particle is the same as the

overall composition of the aerosol mixture 24, which, in turn, will likely hinder the

ability to make good estimations of compositions based on the temporal profile of

total PM alone.

Apart from temporal variations, it is important to study the relationship between

chemical component fractions and total PM mass. It is crucial to understand if the

fractions persist over a given range of total PM mass concentrations or if they

change more randomly across the total PM range. Some chemical components are

formed at the expense of others. For example, SO4 is preferentially formed before

NO3 in presence of excess NH3
24. Such co-dependence must be analysed vis-a-vis

total PM concentration and aids in estimating chemical fractions in the absence of



their actual measurements. To illustrate this approach, we used the publicly available

PM1 chemical components data over Delhi from Gani et al., 2019 28.

Figure 1 shows the variation of six chemical fractions against 25 μg m-3 bins of total

PM1. The median fractions, across all bins, range from 0.42 to 0.65  for ORG, 0.05 to

0.13 for NH4, 0.03 to 0.22 for SO4, 0.04 to 0.11 for NO3, 0.01 to 0.28 for CHL and

0.05 to 0.13 for BC. The ORG fraction shows a general increase from bottom to top

suggesting that the higher PM1 episodes are caused by additional organic aerosol

contributions. However, this increase is not monotonic. ORG fraction remains

somewhat constant between 25-175 μg m-3 PM1 range, showing a slight reduction in

the 225-250 μg m-3 bin, followed by an increasing trend until 400 μg m-3. However,

the median ORG fraction shows an abrupt decrease between the 400-500 μg m-3

bins. Interestingly, the decline in ORG fraction across these bins is compensated by

a corresponding increase in the CHL fraction and, to a lesser extent, NH4 fraction.

Other fractions remain nearly unchanged across these bins.

NH4 and SO4 fractions show a decreasing trend from bottom (cleaner) to top (more

polluted conditions). NO3 shows an increasing trend until 225 μg m-3 after which it

declines. CHL shows an overall increasing trend beginning at 0.01 at the lowest bin

to 0.09 at the highest bin with an abrupt increase in the 425-500 μg m-3 range as

noted earlier. BC fraction shows a modest decreasing trend from 0.13 in the lowest

bin to 0.05 at 450 μg m-3 after which it steadily increases to 0.13 in the highest bin.

The interquartile range (IQR) for NH4, SO4, NO3 and BC were generally low (within

0.1), while those for ORG and CHL were the largest, up to 0.3, and generally

increased as we moved up the bins. For SO4, the IQR was largest for cleaner



periods (0-75 μg m-3) after which it diminished consistently. The consistent

decreasing trend in SO4 fraction shows the physical limit of SO4 formation in Delhi

given the regional precursor emissions.

We further investigated the competition effect between CHL and ORG fractions as

noted from Figure 1 and found a significant anticorrelation (r=-0.74) between the two,

for cases where CHL>0.1 (Figure 2). An even tighter anticorrelation was found

between NH4 and CHL fractions (r=-0.87) while CHL and NH4 fractions showed a

positive correlation (r=0.61). Such relationships between different chemical fractions,

especially if true across multiple sites, can potentially be exploited by machine

learning algorithms to establish more generalizable relationships among chemical

fractions and/or relate them to the total PM mass.

Conclusion:

In this study we have laid out the theoretical foundation for potentially retrieving

hourly aerosol chemical composition information without directly measuring them by

utilising merely the temporal variations of total PM mass concentrations. We have

discussed the peculiarities of temporal signals of different aerosol components

based on their physico-chemical properties and their differing response to

meteorology. We have also analysed a publicly available dataset of aerosol chemical

composition in a novel way to establish the relationships between total PM1 and

individual chemical fractions. We believe these distinct properties of aerosol

chemical components provide for an excellent use-case for machine learning

techniques to uncover valuable climate- and health-relevant information in a



cost-effective way. We will present our results from the ML model in a subsequent

manuscript.
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Figure captions:

Figure 1: Panelplot showing median values and interquartile ranges of each

chemical fraction against total PM1 bins of range 25 μg m-3. The first column shows

the frequency distribution of total PM1 for the entire period. Other columns show the

corresponding chemical fractions. Median values are shown as black dots while

lower and upper quartiles are shown in grey crossmarks.

Figure 2: Selected scatterplots between chemical component fractions with high

correlations.






