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Abstract

Statistical and case studies, as well as data-mining reconstructions suggest that the magnetotail current in the substorm growth

phase has a multiscale structure with a thin ion-scale current sheet embedded into a much thicker sheet. This multiscale structure

may be critically important for the tail stability and onset conditions for magnetospheric substorms. The observed thin current

sheets are found to be too long to be explained by the models with isotropic plasmas. At the same time, plasma observations

reveal only weak field-aligned anisotropy of the ion species, whereas the anisotropic electron contribution is insufficient to

explain the force balance discrepancy. Here we elaborate a selfconsistent equilibrium theory of multiscale current sheets, which

differs from conventional isotropic models by weak ion anisotropy outside the sheet and agyrotropy caused by quasi-adiabatic

ion orbits inside the sheet. It is shown that, in spite of weak anisotropy, the current density perturbation may be quite strong

and localized on the scale of the figure-of-eight ion orbits. The magnetic field, current and plasma density in the limit of

weak field-aligned ion anisotropy and strong current sheet embedding, when the ion scale thin current sheet is nested in a

much thicker Harris-like current sheet, are investigated and presented in an analytical form making it possible to describe the

multiscale equilibrium in sharply stretched 2-D magnetic field configurations and to use it in kinetic simulations and stability

analysis.
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Abstract12

Statistical and case studies, as well as data-mining reconstructions suggest that the mag-13

netotail current in the substorm growth phase has a multiscale structure with a thin ion-14

scale current sheet embedded into a much thicker sheet. This multiscale structure may15

be critically important for the tail stability and onset conditions for magnetospheric sub-16

storms. The observed thin current sheets are found to be too long to be explained by17

the models with isotropic plasmas. At the same time, plasma observations reveal only18

weak field-aligned anisotropy of the ion species, whereas the anisotropic electron con-19

tribution is insufficient to explain the force balance discrepancy. Here we elaborate a self-20

consistent equilibrium theory of multiscale current sheets, which differs from conventional21

isotropic models by weak ion anisotropy outside the sheet and agyrotropy caused by quasi-22

adiabatic ion orbits inside the sheet. It is shown that, in spite of weak anisotropy, the23

current density perturbation may be quite strong and localized on the scale of the figure-24

of-eight ion orbits. The magnetic field, current and plasma density in the limit of weak25

field-aligned ion anisotropy and strong current sheet embedding, when the ion scale thin26

current sheet is nested in a much thicker Harris-like current sheet, are investigated and27

presented in an analytical form making it possible to describe the multiscale equilibrium28

in sharply stretched 2-D magnetic field configurations and to use it in kinetic simulations29

and stability analysis.30

Plain Language Summary31

Conventional kinetic equilibria with isotropic pressures for ions and electrons aimed32

to describe the current sheet in Earth’s magnetotail cannot reproduce its multiscale struc-33

ture with the proton gyroradius-scale current sheet being embedded into a much thicker34

sheet. They cannot explain either the formation of such thin current sheets sufficiently35

far from Earth. The embedding effect can be reproduced in case of anisotropic and agy-36

rotropic plasmas because orbits of weakly magnetized ions near the current sheet devi-37

ate from the Larmor circle and become more like a figure of eight. However, the corre-38

sponding multiscale current sheet models have been studied so far for substantial and39

strong plasma anisotropy, while observations suggest that the tail plasmas are weakly40

anisotropic. Here we perform an analysis of a weakly anisotropic current sheet model,41

which transforms in the isotropic limit into a classical Harris sheet model, and show that42

the key observed embedding features can be reproduced.43

1 Introduction44

Earth’s magnetotail is a key region of the magnetosphere, where the energy com-45

ing from its interaction with the solar wind is accumulated and then explosively released46

during substorms (Angelopoulos et al., 2013; M. Sitnov et al., 2019). The energy release47

involves processes on many scales from MHD to that of the electron gyroradius (Merkin48

et al., 2019; Stephens et al., 2019; Torbert et al., 2018). Therefore, first-principles inves-49

tigations require kinetic approaches, including stability analysis (Hesse & Schindler, 2001;50

Pritchett & Coroniti, 2010; M. I. Sitnov & Schindler, 2010) and full particle-in-cell (PIC)51

simulations of the tail current sheet (CS) (Hesse & Schindler, 2001; Pritchett & Coro-52

niti, 2010; Liu et al., 2014; M. I. Sitnov et al., 2013, 2014; Bessho & Bhattacharjee, 2014;53

Pritchett, 2015). A fundamental problem here is that the available selfconsistent CS equi-54

librium models, used to start the kinetic stability analysis or simulations, are often grossly55

inconsistent with observations. The most popular class of isotropic plasma models (Schindler,56

1972) represent 2-D generalizations of the 1-D Harris model (Harris, 1962). In these mod-57

els the magnetic field tension is balanced by the pressure gradient ∇p = j×B, where58

B is the magnetic field and j = ∇ × B is the electric current. However, the resulting59

relation between the CS aspect ratio Lx/Lz, where Lz is the CS half-thickness and Lx60

its inhomogeneity scale along the X-axis (the GSM coordinate system is used here), and61
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the magnetic field stretching factor B0/Bz ∼ Lx/Lz, where Bz and B0 are the normal62

magnetic field at z = 0 and the lobe magnetic field B0 ≈ Bx(|z| � Lz) (Cole & Schindler,63

1972; Rich et al., 1972) is strongly violated, especially in the substorm growth phase. Ob-64

servations show that CSs are too thin and elongated in terms of their current and (in-65

verse) pressure gradient, compared to their field line stretching: Lx/Lz � B0/Bz or66

|∇p| � |j×B| (Artemyev et al., 2015, 2016; M. I. Sitnov et al., 2019).67

The isotropic force balance violation is accompanied and likely related to the buildup68

of the multiscale CS structure in the substorm growth phase with the ion-scale thin CS69

(TCS) embedded into a much thicker current sheet (V. A. Sergeev et al., 1993; Runov70

et al., 2005; Runov et al., 2006; V. A. Sergeev et al., 2011). Most recently, the buildup71

and decay of a TCS inside a much thicker CS during substorms and its role in the vi-72

olation of the isotropic force balance have been shown in the data-mining analysis of the73

geomagnetic field (M. I. Sitnov et al., 2019)74

The multiscale structure of the tail CS and its deviation from classical Harris-type75

equilibria may therefore be critically important for the onset conditions for magnetospheric76

substorms and the underlying CS destabilization mechanisms. The main candidates for77

the destabilization are the electron (Coppi et al., 1966) and ion (Schindler, 1974; Galeev78

& Zelenyi, 1976) tearing modes providing the onset of magnetic reconnection. The main79

impediment is the almost universal tearing stability of the tail CS as long as electrons80

are magnetized by the equatorial magnetic field Bz (Lembege & Pellat, 1982; Pellat et81

al., 1991) and the latter is not increasing tailward (M. I. Sitnov & Schindler, 2010). It82

can be overcome in the class of 2D Harris-type isotropic equilibria (Schindler, 1972) by83

applying an external driving electric field to squeeze the CS down to electron scales and84

to reach the electron tearing instability threshold (Hesse & Schindler, 2001; Pritchett,85

2005, 2010; Liu et al., 2014). It can also be overcome for a class of thicker isotropic CS86

equilibria assuming the ion tearing destabilization if the tail has a region with an accu-87

mulated magnetic flux (M. I. Sitnov & Schindler, 2010; M. I. Sitnov et al., 2013, 2014;88

Bessho & Bhattacharjee, 2014; Pritchett, 2015; M. I. Sitnov et al., 2017). In both sce-89

narios the X-line forms close to the near-Earth boundary of the simulation box (∼ 15−90

20di, where di is the ion inertial length). Thus, these scenarios leave open the question91

how such thin CSs can be formed relatively far from the Earth, where the X-lines are92

usually observed (& 15RE , where RE is the Earth’s radius (e.g. Nagai et al., 2005)),93

in realistic, that is, weakly anisotropic plasmas.94

The tearing stability analysis using the self-consistent non-Harris TCS equilibria95

has been performed in (L. Zelenyi et al., 2008) using an ion distribution with counter-96

streaming field-aligned flows of warm plasma outside the CS. That study revealed re-97

gions of the ion tearing instability for substantial ion anisotropy, when the bulk flow ve-98

locity vD of the counter-streaming flows exceeds their thermal speed vTi. Whether such99

unstable regions exist in weakly anisotropic plasmas remained unclear, in particular, be-100

cause the corresponding equilibrium theory (M. I. Sitnov et al., 2000; L. M. Zelenyi et101

al., 2004) did not have the Harris limit (M. I. Sitnov et al., 2000). On the other hand,102

earlier studies (Burkhart et al., 1992a) revealed no new instability regions in the limit103

of strong ion anisotropy vD � vTi. This controversial picture points to the importance104

of formulating a tractable description of the multiscale TCS equilibria with weakly anisotropic105

plasmas assuming the Harris model in the limit of plasma isotropy.106

The multiscale CS structure could be explained by the plasma anisotropy (Cowley,107

1978; M. I. Sitnov et al., 2000; Schindler & Birn, 2002; M. I. Sitnov et al., 2003; Birn et108

al., 2004; L. M. Zelenyi et al., 2004), or agyrotropy (M. I. Sitnov et al., 2000, 2003) due109

to the quasiadiabatic ion motions (Speiser, 1965; Sonnerup, 1971; Büchner & Zelenyi,110

1989). However, the electron anisotropy can explain only 10-30% of the observed cur-111

rent density (Artemyev et al., 2016). The field-aligned ion anisotropy could explain the112

formation of multiscale CSs and their additional elongation due to balancing the mag-113

netic tension by the ion inertia (M. I. Sitnov et al., 2006, and refs. therein). The cor-114
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responding field-aligned anisotropy has indeed been reported in the tail (Walsh et al.,115

2011; Artemyev et al., 2019). However, it is relatively weak, so that it remains unclear116

if it could provide the localization of TCSs on the scale of the thermal ion gyroradius117

and a substantial current density increase in that region.118

In this paper we investigate the limit of weak anisotropy of the TCS model (M. I. Sit-119

nov et al., 2003, hereafter, SGS) whose distinctive feature is its transformation into the120

Harris model in the limit of zero anisotropy. We show that the weak plasma anisotropy121

outside TCSs together with plasma agyrotropy inside it can indeed explain many observed122

properties of embedded TCSs. In particular, 2D weakly anisotropic TCSs have aspect123

ratios consistent with observations and controlled by the embedding strength.124

2 Multiscale current sheet equilibrium125

In the kinetic theory, the solution of the system of Vlasov-Maxwell equations for126

CS equilibria usually starts from the selection of the particle distributions as functions127

of the corresponding integrals of motion, because it allows one to automatically solve the128

Vlasov equation. In the original Harris theory (Harris, 1962), the ion and electron dis-129

tributions were the exponential functions of the total energy Wα = mαv
2/2+qαφ and130

the y-component of the canonical momentum Pyα = mαvy + (qα/c)Ay, where α = i, e131

is the species index for ions and electrons, φ is the electrostatic potential and A = (0, Ay(z), 0)132

is the vector potential (initially we discuss a 1-D model, which is independent of x, with133

the 2-D generalization being addressed further in section 7). In addition, it was assumed134

that the drift velocities of ions and electrons satisfy the condition vDi/vDe = −Ti/Te135

to provide the exact neutrality of the resulting solutions with φ = 0.136

Two ways to generalize the Harris class of equilibrium CS models have been inves-137

tigated recently. In the first approach (Schindler & Birn, 2002; Birn et al., 2004) the au-138

thors abandoned the assumption of the exponential dependence for the canonical mo-139

mentum. They also waived the exact neutrality condition to consider electron-dominated140

TCS. However, with the original set of invariants Wα and Pyα, the pressure tensor re-141

mains isotropic in the plane (vx, vz). As a result, ∂pxx/∂x = (∂p/∂Ay)(∂Ay/∂x) =142

jyBz and therefore the original isotropic force balance condition is retained (even though143

the plasma is not isotropic anymore), making such TCSs relatively short.144

In another approach, which was first proposed in the SGS model, the set of inte-145

grals of motion was extended due to the use of the quasi-adiabatic or sheet invariant (Schindler,146

1965; Sonnerup, 1971; Büchner & Zelenyi, 1989)147

I(α)z =
1

2π

∮
mαvzdz (1)

Then the distribution function can be presented in the form148

f0α ∝ exp

(
qαvDα
cT||α

Ay −
qαφ

T||α

)
exp

{
− mα[v2x + (vy − vDα)2 + v2z ]

2T||α

}
× exp

[
(

1

T||α
− 1

T⊥α
)
ω0α

2
I(α)z

]
(2)

where T||α and T⊥α are the parallel and perpendicular temperature parameters, which149

become true temperatures outside the TCS where plasma is gyrotropic. The drift ve-150

locities vDα determine the shift of electron and ion distributions in the y-direction and151

they determine the CS current in the Harris limit T||α = T⊥α; ω0α is the particle gy-152

rofrequency in the lobe field B0 = |Bx(|z| → ∞)|. In this paper we investigate the SGS153

model based on the particle distribution (2) in the limit of weak ion anisotropy ((T||i−154

T⊥i)/T⊥i � 1) and isotropic electron species (T||e = T⊥e).155
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In the SGS approach, the CS magnetic field as a function of the electromagnetic156

potential is presented in the form:157

b(a) =
√

2β0(Pi(a) + Pe(a)) (3)

Here b = Bx/B0 is the dimensionless x-component of the magnetic field normalized by158

its asymptotic value B0 in the tail lobes. a = −Ay/(B0ρ⊥0i) is the dimensionless vector-159

potential and ρ⊥0i = vT⊥i/ω0i is the thermal ion gyroradius in the field B0 based on160

the perpendicular thermal velocity vT⊥i, the temperature parameter T⊥i. β0 = 8πn0T⊥i/B
2
0161

is the effective plasma beta parameter.162

The ion contribution on the right hand side of (3) is determined by the following163

formula:164

Pi =
e−w

2
Diηi(ηi−1)

π

∫ a

0

da′e(−2ηiwDia
′−ηiϕ)

∫
wydwydwzF (wy, wz, a

′) (4)

with the distribution (integrated over vx) taking the form165

F = exp
[
(ηi − 1)I(i) − ηi(wy − wDi)2 − ηiw2

z

]
, (5)

and the dimensionless invariant presented as166

I(i)(a′, wy, wz) =
2

π

∫ a1

a0

da′′

b(a′′)

√
w2
y + w2

z + [ϕ(a′)− ϕ(a′′)]− (wy + a′′ − a′)2 (6)

where a0,1 = a′−wy∓
√
w2
y + w2

z + [ϕ(a′)− ϕ(a0,1)] if a0 > 0 and a0 = 0 if the formal167

solution for a0 becomes negative. In these equations ηi = T⊥i/T||i is the ion anisotropy168

parameter, wDα = vDα/vT⊥α are the dimensionless drift velocities of the Harris com-169

ponent of the distribution (2) and ϕ = eφ/T⊥i is the dimensionless electrostatic poten-170

tial.171

The electron contribution to the right hand side of (3) has the original Harris form172

of the shifted Maxwellian (and hence isotropic) distribution173

Pe = −wDeτ
1/2

µ1/2

∫ a

0

da′e2wDeτ
−1/2µ−1/2a′+τ−1ϕ(a′) (7)

where τ = Te/T⊥i and µ = me/mi are electron-to-ion temperature and mass ratios.174

The dimensionless electrostatic potential is determined by the quasi-neutrality equation:175

ϕ(τ−1 + ηi) = log{π−1
∫
dwydwzF (wy, wz, a)}

−w2
Diηi(ηi − 1)− 2a(wDeτ

−1/2µ−1/2 + ηiwDi) (8)

The effective plasma beta parameter β0 in (3) is the eigenvalue of the system of equa-176

tions (3), (7) and (8) with the boundary condition b(∞) = 1. The main system of SGS177

equations is complemented by the condition178

wDe = −wDiηiτ1/2µ1/2 (9)

According to (8), this condition provides the neutrality outside the TCS and transforms179

into the well known relation vDe/vDi = −Te/Ti, which guarantees the neutrality in case180
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of the Harris solution (e.g. Lembege & Pellat, 1982). In our analysis, based on previous181

numerical solutions (M. I. Sitnov et al., 2003, 2004, 2006; M. I. Sitnov & Merkin, 2016)182

it will be used to neglect the charging effects. The latter have been studied in (Panov183

& Pritchett, 2018; M. I. Sitnov et al., 2021) for the isotropic plasma with shifted Maxwellian184

distributions and will be further investigated for the SGS model elsewhere.185

For completeness, we provide the expression for the plasma density186

ni =
n0
π
e−w

2
Diηi(ηi−1)e(−2ηiwDia−ηiϕ)

∫
dwydwzF (wy, wz, a) (10)

following from the distribution function adopted in SGS, which we rewrite here in di-187

mensionless variables188

fi(z,w) =
n0η

1/2
i

π3/2
e−w

2
Diηi(ηi−1)e−2ηiwDia−ηiϕ−ηiw

2
xF (wy, wz, a) (11)

The constant n0 in the last two equations is chosen in such a way to yield the Harris pro-189

file outside the Harris sheet where Ii ≈ (w2
y + w2

z)190

f
(H)
i (z,w) =

n0η
1/2
i

π3/2
e−w

2
Diηi(ηi−1)e−ηiw

2
x−(wy−wDi)

2−w2
z (12)

3 Limit of zero ion anisotropy191

In the limit of weak anisotropy |ηi − 1| � 1 we will solve (3), (7) and (8) by it-192

erations. In the zero approximation ηi = 1, according to (9) and (8), the TCS becomes193

neutral: ϕ = 0. Then (7) yields194

P (0)
e ≈ −τ1/2µ−1/2wDe

∫ a
0
da′ exp

(
2wDeτ

−1/2µ−1/2a′
)

= (τ/2)
(

1− e2wDeτ−1/2µ−1/2a
)
≈ (τ/2)

(
1− e−2wDia

)
(13)

while (3) can be reduced to the expression195

P
(0)
i ≈ wDi

∫ a

0

da′ exp (−2wDia
′) = (1/2)

(
1− e−2wDia

)
(14)

with the same spatial profile as (13) due to the CS neutrality. After substitution of (13)196

and (14) into (3) we reproduce the original Harris solution in the form197

b(0)(a) =

√
β
(0)
0 (1 + τ) (1− e−2wDia) (15)

and then, taking the limit a =∞, we obtain the corresponding eigenvalue (e.g. M. I. Sit-198

nov et al., 2003)199

β
(0)
0 (1 + τ) = 1 (16)

The corresponding eigenfunction, the solution of (15) can be found then by integrating200

the equation201

dζ =
da

b(0)(a)
=

da√
1− e−2wDia

(17)

–6–
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to yield the following formulae of the 1-D Harris model (Harris, 1962; Lembege & Pel-
lat, 1982) presented here in the dimensionless form:

ζ = log
(
ewDia +

√
e2wDia − 1

)
/wDi (18)

a(0)(ζ) = log (cosh(ζwDi))/wDi (19)

b(0)(ζ) = tanh (ζwDi) (20)

j(0)(ζ) = db(0)/dζ = wDi cosh−2 (ζwDi) (21)

n(0)(ζ) = n0 exp (−2awDi) = n0 cosh−2 (ζwDi) ∝ j(ζ), (22)

where ζ = z/ρ⊥0i and a =
∫ ζ
0
b(ζ ′)dζ ′, suggests that the CS thickness L = ρ0i/wDi202

(where we omit the index ⊥ because of the isotropic plasma limit).203

4 Approximation of weak plasma anisotropy and strong embedding204

To guide the subsequent analytic approximations, we first survey numerical solu-205

tions of the system of equilibrium equations (3)-(8) in the region of weak ion anisotropy206

characterized by the small parameter |δ1| � 1, where δ1 = 1 − ηi. We further focus207

on the subregion of the strong embedding characterized by another small parameter δ2 =208

wDi � 1 (note that in case of δ1 < 0 it may also be the limit of strong CS bifurca-209

tion, which is not studied below). We indeed expect strong TCS embedding/bifurcation210

in the limit δ2 � 1, because the Speiser orbit size in this limit is much smaller than211

the Harris CS half-thickness LH (20): LTCS ∼ ρ0i � ρ0i/δ2 = LH .212

The corresponding profiles of the magnetic field, plasma and current density, elec-213

trostatic potential and the local ion temperature anisotropy for δ2 = 0.125 and the anisotropy214

values δ1 = 0.05−0.4 as functions of the dimensionless potential a and the coordinate215

ζ are presented, respectively, in Figs. 1 and 2. These figures confirm our Speiser-orbit216

hypothesis: Figs. 1c and 2c show that the TCS current density is largely changing in217

the region a . 1 (or ζ . 1). The corresponding changes of the plasma density (Figs. 1b218

and 2b) as well as the dimensionless electrostatic potential (Figs. 1d and 2d) are rel-219

atively small. The resulting changes of the magnetic field profile (Figs. 1a and 2a) are220

largely limited to the Speiser-orbit area a ∼ 1.221

The first-order (in the anisotropy strength δ1) modification of the isotropic solu-222

tion (15) can be presented using (3) as follows223

b(0) + b(1) =

√
2
(
β
(0)
0 + β

(1)
0

)(
P

(0)
i + P

(1)
i + P

(0)
e + P

(1)
e

)
(23)

where, according to (15) with the distribution function F (5) expanded into a Tailor se-224

ries in δ1,225

P
(0)
i + P

(1)
i ≈ P (1)

iA + P
(1)
iS ≡

1

2

(
1− e−2δ2(1−δ1)a

)
−δ1
π

∫ a

0

da′e−2δ2(1−δ1)a
′
∫
wydwydwz

(
I(i) − w2

y − w2
z

)
e(−w

2
y−w

2
z) (24)

and according to (7), (9) and (13),226

P (0)
e + P (1)

e ≈ τ

2

(
1− e−2δ2(1−δ1)a

)
(25)

Note that neither in (24) nor in (25) the expression exp (−2δ2(1− δ1)a) can be expanded227

into a series in δ1 because its exponent scales as ∝ a and therefore it can be substan-228

tial even for small values of δ1 and δ2 outside of the TCS where a→∞. Note also that229
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Figure 1. The profiles of (a) the dimensionless magnetic field b, (b) plasma density n, (c) cur-

rent density j and (d) electrostatic potential ϕ as functions of the dimensionless vector-potential

a for different values of the ion anisotropy parameters 1 − ηi ≡ δ1 = 0.05, 0.1, 0.2, and 0.4

(dotted black lines show the zero anisotropy limit solutions). Other parameters in the system of

equilibrium equations (3)-(8) are as follows: ηe = 1, µ = 1/16, τ = 1/4, wDi ≡ δ2 = 0.125.

Figure 2. The profiles similar to those in Fig. 1 but now as functions of the dimensionless

coordinate ζ = z/ρ⊥0i. The additional panel (e) shows the profiles of the local ion temperature

anisotropy ηi = T⊥i/T||i.

–8–
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we split the corrected ion contribution to the pressure-type term P
(0)
i +P

(1)
i into two230

parts P
(1)
iA and P

(1)
iS to separate corrections due to the Harris velocity shift (as well as231

the ion anisotropy) and the contribution provided by quasi-adiabatic Speiser orbits (the232

ion agyrotropy). We also neglected the electrostatic potential ϕ in view of (9) and Fig-233

ure 1d.234

Since the last two terms in the penultimate bracket of P
(1)
iS in (24) disappear due235

to the factor wy in the integrand it can be re-written as follows:236

P
(1)
iS = −δ1π−1

∫ a

0

da′ exp (−2δ2(1− δ1)a′)

∫
wydwydwzI

(i) exp
(
−w2

)
(26)

where w2 = w2
y + w2

z and I(i) is determined by (6) with b(a) = b(0)(a) =
√

1− e−2δ2a237

and238

I(i)(a′, wy, wz) =
2

π

∫ a1

a0

da′′√
1− e−2δ2a′′

√
w2
y + w2

z − (wy + a′′ − a′)2 (27)

The latter formula can also be simplified, taking into account that the asymmetry of I(i)239

in the velocity space is limited by the TCS vicinity (a ∼ 1; see the details of the dis-240

tribution function below), where δ2a� 1 and therefore, according to (15), b(0) ≈
√

2δ2a.241

Hence the quasi-adiabatic invariant I(z) can be simplified as follows242

I(i)(a′, wy, wz) ≈
2

π
√

2δ2

∫ a1

a0

da′′√
a′′

√
w2 − (wy + a′′ − a′)2 (28)

The integral (28) describes the quasi-adiabatic invariant in the simplified magnetic field243

Bx ∝ x, which was investigated before in (Sonnerup, 1971; Büchner & Zelenyi, 1989;244

L. M. Zelenyi et al., 1990).245

It is important to note here that the main integral over a′ in (26) cannot be sim-246

plified similar to (28) because of a very slow convergence of the rest of the integrand as247

is shown below. Instead of that we present (26) in the form248

P
(1)
iS =

2δ1

π2
√

2δ2
b(tcs)(a, δ2(1− δ1)) (29)

where249

b(tcs)(a, δ) =

∫ a

0

da′j(tcs)(a′)e−2δa
′

(30)

and250

j(tcs)(a′) = −
∫
wye

−w2

dwydwz

∫ a1

a0

da′′√
a′′

√
w2 − (wy + a′′ − a′)2 (31)

Let us consider the limiting cases for function j(tcs)(a′). In the limit a′ → 0, the251

lower limit of the second integral in (31) a0 → 0 and hence after the substitution x =252

a′′ + wy − a′253

j(tcs)(a′ → 0) = −
∫
wye

−w2

dwydwz

∫ w

wy

dx
√
w2 − x2

√
x− wy

= j
(tcs)
(0) ≈ 1.77 (32)

In another limit a′ →∞,254
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Figure 3. (a) The profile of the dimensionless TCS current correction j(tcs)(a) to the isotropic

solution given by the formula (31) and (b) its comparison with the asymptotic approximation

(34) in the limit a → ∞. The latter is also shown in panel (a) by the dashed line. Dotted lines

show zero levels of j(tcs) = 0 and −4j(tcs)a3/2π−2, while the dashed line in panel (b) shows the

level −4j(tcs)a3/2π−2 = 1.

j(tcs)(a′) ≈ −
∫
wye

−w2

dwydwz
∫ w
−w

dx
√
w2−x2√

x+a′−w′y

≈ − 1
2(a′)3/2

∫
w2
ye
−w2

dwydwz
∫ w
−w dx

√
w2 − x2 (33)

To simplify the integral above, we expanded the expression 1/
√
x+ a′ − w′y ≈ 1/

√
a′+255

(wy − x)(a′)−3/2/2 and took into account that its first and last terms make zero con-256

tributions for symmetry considerations. Calculating the error integrals in (33), we ob-257

tain eventually258

j(tcs)(a)|a′→∞ ≈ −(π2/4)a−3/2 (34)

The full profile of the dimensionless TCS current-like parameter j(tcs)(a) as well259

as its comparison with the asymptotic formula (34) are provided in Figure 3.260

Now, the electric current with TCS corrections can be written as db2/da or261

j(0)(a) + j(1)(a) =
1

2

db2

da

=
(
β
(0)
0 + β

(1)
0

) d

da

(
Pe + P

(0)
i + P

(1)
i

)
=

(
1

1 + τ
+ β

(1)
0

)(
δ2(1− δ1)(1 + τ)e−2δ2(1−δ1)a +

dP
(1)
iS

da

)

= δ2e
−2δ2(1−δ1)a

(
1

1 + τ
+ β

(1)
0

)(
(1− δ1)(1 + τ) +

2δ1j
(tcs)(a)

π2δ2
√

2δ2

)
(35)

Here the corrections to the eigenvalue of the equilibrium solution from (24) β
(1)
0 is found262

from the equation263

(
β
(0)
0 + β

(1)
0

)(
1 + τ +

4δ1b
(tcs)(∞, δ2(1− δ1))

π2
√

2δ2

)
= 1 (36)
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Figure 4. (a) The comparison of the universal function j(tcs) (31) (black dotted line), which

is also shown in Figure 3, with similar j(tcs) derived from the numerical solutions for the current

density shown in Figure 1c using its presentation in the form (35) for δ2 = 0.125 and different

values of the anisotropy parameter δ1. The yellow dotted line shows the analytical approximation

(37)-(38) of the derived function j
(tcs)
δ1=0.2 (solid yellow line).

The presentation of the current density in the form (35) can be used to compare264

the universal function j(tcs) (31) with the numerical solutions shown in Figure 1c. The265

comparison results are presented in Figure 4. They show that while in the limits a→266

0 and a→∞ all exact numerical solutions are indeed close to the universal profile (31)267

this is not the case for a ∼ 2.5. Therefore, to avoid strong deviations from the range268

of the parameter δ1 considered here we generated a trade-off by using an analytical rep-269

resentation of j(tcs) based on its numerical analog for δ1 = 0.2 (yellow solid line in Fig-270

ure 4)271

j(tcs) ≈ (a[0] − a[1]a)e−a[2]a + h(a) (37)

where a = (1.88711, 1.75717, 0.646603) and the function272

h(a) = −(π2/4)(1− e−(a/ah)
7/2

)a−3/2 (38)

takes into account the non-exponential ”halo” decay of j(tcs) reflected by (34) and im-273

portant only for sufficiently large values of a, so that ah = 10. The approximation (37)-274

(38) is shown in Figure 4 by the yellow dotted line.275

The comparison of the numerical profiles of the current density similar to those in276

Figure 1c (but here not normalized by β0) with their approximations based on the pre-277

sentation (35) with the analytical approximation (37)-(38) for j(tcs) is shown in Figure 5.278

The presentation of the universal current density correction j(tcs) in the form (37)-279

(38) allows one to present the resulting magnetic field b(a) =
√

2
∫ a
0
j(a′)da′ (see also280

(23)) in the form281

b(0) + b(1) =

√(
β
(0)
0 + β

(1)
0

)(
(1 + τ)

(
1− e−2δ2(1−δ1)a

)
+ 2P

(1)
iS

)
(39)

with P
(1)
iS given by (29) and282
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Figure 5. The profiles of the current density j(nn) similar to those shown in Figure 1c but

here not normalized by β0 (solid lines), compared to similar profiles obtained from the approxi-

mation (35) for the current density and the analytical approximation (37)-(38) for the universal

function j(tcs) (31).

Figure 6. The magnetic field correction function b(tcs)(a, δ) for different values of the parame-

ter δ = 0.25, 0.125 and 0.0625.
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Figure 7. TCS correction to the magnetic field b(1)(a) (solid lines) and it approximations

corresponding to formulae (39) and (40) (dashed lines) for different values of the parameter

δ1 = 0.05− 0.4 and δ2 = 0.125.

b(tcs)(a, δ) ≈
[

a[0]

2δ + a[2]
−

a[1]

(2δ + a[2])2

] [
1− e−(2δ+a[2])a

]
+

a[1]a

2δ + a[2]
e−(2δ+a[2])a (40)

The latter approximate formula was obtained by the integration of (37) according to (30)283

and neglecting the halo term (38) whose contribution is reduced in (30) by the factor284

e−2δ2(1−δ1)a
′
. The function b(tcs)(a, δ) is presented for several different values of δ in Fig-285

ure 6.286

It is convenient to present the resulting magnetic field (39) in the form287

b(0) + b(1) ≈

√
1− e−2δ′2a +

4δ1b(tcs)(a, δ′2)

π2(1 + τ)
√

2δ2
/

√
1 +

4δ1b(tcs)(∞, δ′2)

π2(1 + τ)
√

2δ2
(41)

(with δ′2 = δ2(1 − δ1)), which helps one to compare the new expression for the mag-288

netic field in weakly anisotropic TCSs with the Harris formula (15). It is also useful for289

further analysis.290

The numerical solutions of the original SGS model (3)-(7) with the ion to electron291

drift velocity ratio (8) similar to the Harris model are compared in Figure 7 with the new292

analytical approximations (40)-(41) in the form of the difference b(1) from the correspond-293

ing Harris solutions b(0). This comparison confirms a reasonable accuracy of these an-294

alytical approximations in the double limit of weak anisotropy (δ1 � 1) and strong em-295

bedding (δ2 � 1). Note that the use of δ2 instead of δ′2 in (41) would result in miss-296

ing the characteristic valley in function b(1)(a) outside of the TCS (a & 3).297

Finally, according to (10), the correction to the plasma density can be presented
in the form similar to (24)

n(1) + n(0) ≈ n0e−2δ
′
2a + n

(1)
iS , (42)

where

n
(1)
iS = −δ1n0

π
e−2δ

′
2a

∫
dwydwz

(
I(i) − w2

y − w2
z

)
e−w

2
y−w

2
z (43)

and I(i) is given by (6).298
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Note that we cannot simplify here the magnetic field profile by b(0) ≈
√

2δ2a′′ as299

we did for current density in (28). However, since outside the neutral plane where b(a)300

changes slowly, I(i) can be approximated there as the magnetic moment for adiabatic301

motions I(i)(a,wy, wz) ≈ (w2
y + w2

z)/b(a) to yield302

n
(1)
iS ≈ δ1n0e

−2δ′2a
(

1− (b(0)(a))−1
)
≈ −(1/2)δ1n0e

−2(δ′2+δ2)a (44)

In another limit δ2a � 1 one can still use the approximation b(0) ≈
√

2δ2a′′ in303

(43) to get304

I(i)(a,wy, wz) =
2

π
√

2δ2

∫ a1

a0

da′′

a′′

√
w2
y + w2

z − (wy + a′′ − a)2 (45)

which can be simplified in the limit a → 0 similar to (32) by making the lower limit305

of the integral in (45) a0 → 0 and hence after the substitution x = a′′ + wy − a it306

transforms into307

I(i)(a,wy, wz) =
2

π
√

2δ2

∫ w

wy

dx
√
w2 − x2

√
x− wy

(46)

to yield eventually for the TCS density correction308

n
(1)
iS = −δ1n0

π
e−2δ2a

∫
dwydwz

(
2

π
√

2δ2

∫ w

wy

dx
√
w2 − x2

√
x− wy

− w2
y − w2

z

)
e−w

2
y−w

2
z

= −n(0)δ1
(
O

(
1√
δ2

)
+O(1)

)
(47)

One can refrain from a more detailed numerical evaluation of (47), because the estimates309

of the current density correction made in the next section show that the relative pertur-310

bation of the plasma density is smaller than the corresponding relative perturbation of311

the current density by the factor δ2 � 1. Thus, in the leading approximation, the plasma312

density perturbation is determined by the first term in right hand side of (42), which is313

consistent with the original numerical results provided in Figure 1b.314

5 TCS correction in real space315

The real-space solution with the TCS correction can now be obtained from the def-
inition of b(a)

dζ =
da

b(0)(a) + b(1)(a)
(48)

or with the expansion of (41) in a series of O(b(tcs)),316

dζ =
da√

1− e−2δ′2a

[
1− 2δ1

(1 + τ)π2
√

2δ2

(
b(tcs)(a, δ′2)

1− e−2δ′2a
− b(tcs)(∞, δ′2)

)]
(49)

Since we solve the problem by iterations, the solution of (49) can be presented in317

the form318

a(ζ) ≡ a1(ζ) = log (cosh(ζ1(ζ)δ′2))/δ′2 (50)
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Figure 8. The function ζ1(ζ) (solid lines) and its approximation (54)-(55) (dashed lines) for

δ2 = 0.125 and different values of the parameter δ1 = 0.05, 0.1, 0.2 and 0.4. The Inset shows the

corresponding ratio ζ1/ζ.

where319

ζ1(ζ) =
∫ ζ
0
dζ ′
[
1 + 2δ1

(1+τ)π2
√
2δ2

(
b(tcs)(a0(ζ

′),δ′2)

1−e−2δ′2a0(ζ′) − b(tcs)(∞, δ′2)
)]

= ζ
[
1 + 2δ1

(1+τ)π2
√
2δ2

∆ζ(ζ, δ′2)
]

(51)

and

∆ζ(ζ, δ′2) =
1

ζ

∫ ζ

0

dζ ′
(
b(tcs)(a0(ζ ′), δ′2)

1− e−2δ′2a0(ζ′)
− b(tcs)(∞, δ′2)

)
(52)

and a0(ζ) is determined by the same isotropic solution (19): a0(ζ) = log (cosh(ζδ2))/δ2.320

In the limit ζ → 0 the function ∆ζ(ζ, δ′2) can be evaluated as321

∆ζ(ζ, δ′2)|ζ→0 = j
(tcs)
(0) (2δ′2)−1 − b(tcs)(∞, δ′2) (53)

where j
(tcs)
(0) and b(tcs)(∞, δ2) are determined by (32) and (40).322

In the opposite limit ζ → ∞, since the integral in (52) converges to a constant323

value, the function ∆ζ can be estimated as O(1/ζ). This allows us to approximate the324

function ζ1(ζ)/ζ as follows:325

ζ1(ζ)

ζ
≈ 1 +

δ1(j
(tcs)
(0) − 2δ′2b

(tcs)(∞, δ′2))

(1 + τ)π2δ′2
√

2δ2
ζ(tcs)(ζ) (54)

where326

ζ(tcs)(ζ) = z[0] cosh−2 (z[1]ζ) + (1− z[0])(1 + z[2]ζ
2)−1/2 (55)

where z = (−0.123147, 0.033777, 0.0423979).327

Numerical profiles of the function ζ1/ζ are presented in Figures 8 and 9. Figure 8328

shows a reasonable consistency with the analytical approximation (54)-(55). It also con-329

firms the corresponding scaling of the parameter (ζ1 − ζ)/ζ ∝ δ1. According to Fig-330

ure 9, another analytical scaling suggested by (54), (ζ1 − ζ)/ζ ∝ δ2
−3/2, is more lim-331

ited (see, in particular, the blue lines in Figure 9 corresponding to δ2 = 0.0625). This332
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Figure 9. The function ζ1(ζ) (solid lines) and its approximation (54)-(55) (dashed lines) for

δ1 = 0.2 and different values of the parameter δ2 = 0.0625, 0.125 and 0.25. The Inset shows the

corresponding ratio ζ1/ζ.

is because the approximation of the strong embedding is singular and the resulting cor-333

rection rapidly increases with the decrease of the embedding parameter δ2, and it may334

become controversial even when δ1 � 1, especially when δ2 < δ1. Note that just like335

for j(tcs)(a) in (37), the fit of ζ(tcs)(ζ) in (55) was made using the numerical solution of336

the original SGS model with the parameters δ1 = 0.2 and δ2 = 0.125. There we ne-337

glected the possible dependence of δ2, which can be surmised from (52), because of its338

asymptotic ζ1(ζ)/ζ|ζ→∞ = O(1/ζ) and the limited region of ζ2 values when the com-339

bined approximation of small anisotropy and strong embedding is valid.340

In summary, according to (41) and (49), the expression for the magnetic field in341

the real space takes the form342

b(ζ, δ1, δ2) =

√
tanh2 (δ′2ζ1(ζ)) +

4δ1b(tcs)(a(0)(ζ), δ′2)

π2(1 + τ)
√

2δ2
/

√
1 +

4δ1b(tcs)(∞, δ′2)

π2(1 + τ)
√

2δ2
. (56)

where the functions ζ1, b(tcs) and a(0) are defined by (54)-(55), (40) and (19).343

Finally, the electric current with TCS corrections can be written as (1/2)db2/da344

and according to (36), we have345

j(0)(ζ) + j(1)(ζ) =

[
δ′2

cosh2 (ζ1δ′2)
+

2δ1j
(tcs)(a(0)(ζ))

(1 + τ)π2
√

2δ2 cosh2 (ζδ′2)

](
1 +

4δ1b
(tcs)(∞, δ′2)

(1 + τ)π2
√

2δ2

)−1
(57)

As one can see from this expression, the ratio j(1)/j(0) scales as δ1δ
−3/2
2 , which is346

by the factor 1/δ′2 larger compared to the corresponding relative value of the density cor-347

rection (42)-(47). Thus, consistent with Figures 1 and 2, the current density perturba-348

tion (57) is the main correction in the weakly anisotropic TCS theory within the frame-349

work of the SGS model.350
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6 Ion distribution function351

According to (2) and the new notations of the weakly anisotropic TCS theory, the352

ion distribution can be written in the form353

f0α(a,w) ∝ exp (−2iδ
′
2a− ηiϕ)

exp
{
− δ1I(i) − ηi[w2

x + (wy − δ2)2 + w2
z ]
}

(58)

Let us simplify now the expression for the sheet invariant Iz. Using the transformation354

x = a′′/w, the approximate expression for the quasiadiabatic invariant (28) can be re-355

written as356

I(i)(a,wy, wz) ≈
2w3/2

π
√

2δ2
IS

(
a− wy
w

)
(59)

where

IS (ξ) =

∫ x1

x0

dx√
x

√
1− (x− ξ)2 (60)

is the integral over quasi-adiabatic (Speiser) orbits, with the condition x0,1 = ξ ∓ 1 if357

ξ > 1 and x0 = 0 if ξ < 1, which describes orbits not crossing the neutral plane = 0358

and crossing it (figure-of-eight orbits), respectively. It was introduced by Schindler (1965)359

and further investigated by Sonnerup (1971).360

Since a > 0, the argument of IS in (59) is limited by the interval (−1,∞). There-361

fore, one can consider the function IS in two intervals:362

1) |ξ| < 1.363

IS (ξ) =
4
√

2

3

[
(1− k2)K (k) + (2k2 − 1)E (k)

]
≡ 4
√

2

3
fA(k) (61)

where k =
√

(1 + ξ)/2. The function fA(k) was introduced in (Büchner & Zelenyi, 1989)364

following (Sonnerup, 1971).365

2) ξ > 1366

IS (ξ) =
4
√

2

3

[
2k(1− k2)K (1/k) + k(2k2 − 1)E (1/k)

]
≡ 4
√

2

3
fB(k) (62)

where fB is another function introduced in (Büchner & Zelenyi, 1989)It is important to367

note here that the definitions of elliptic integrals in (61)-(62) are different from some text-368

books (e.g. Abramowitz & Stegun, 1964): K,E(m)S1971 = K,E(m2)AS1964. However,369

they are consistent with the most recent definitions provided by the Digital Library of370

Mathematical Functions (DLMF, n.d.).371

The profile (60) for IS(ξ) is also relatively easy to calculate numerically, as well as372

to obtain the corresponding asymptotics. In particular, for ξ → 1 + 0373

IS (ξ) ≈ π√
2

(1 + ξ), (63)

while in the limit ξ →∞.374

IS (ξ) ≈ π

2

1√
ξ
, (64)

The profile of the Schindler-Sonnerup invariant IS(ξ) given by (60), its asymptotics375

(63) and (64), as well as approximations by elliptic integrals K,E are presented in Fig-376

ure 10. The corresponding sample distributions showing paramagnetic and diamagnetic377
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Figure 10. The profile IS(ξ) given by (60) and drawn with a red line. Its asymptotics (63)

and (64) are drawn with dashed and dash-dotted lines, respectively, whereas its approximation

by complete elliptic integrals (shifted by 0.02) is drawn with a dotted line. Vertical blue dashed

lines on the left together with the ordinate axis mark the region −1 < ξ < 1, which describes

variability of the parameter ξ = (a − wy)/w at the TCS center (a = 0) and is discussed in the

text. Vertical green dashed lines on the right show similar regions of positive and negative wy

variations around another value of the vector-potential a = 5, sampled outside the TCS.

(a) (b)

‘ ‘

Figure 11. Sample ion distributions (a) at the TCS center (a = 0) and (b) at its edge (a = 5)

for the parameters δ1 = 0.2 and δ′2 = 0.125.

features of the TCS at its center (a = 0) and at the edges (a = 5) are presented in378

Figure 11. Two blue dashed vertical lines in Figure 10 together with the ordinate axis379

mark the region −1 < ξ < 1, which describes variability of the parameter ξ = (a −380

wy)/w at the TCS center (a = 0). Different values of the parameter IS within this re-381

gion for positive and negative values of wy explain the distribution asymmetry demon-382

strated in Figure 11a with its larger values for wy > 0. The opposite (diamagnetic) ef-383

fect outside the TCS is illustrated in Figure 11b with the set of three green dashed ver-384

tical lines in Figure 10, which predict a negative net current contribution with a smaller385

absolute value due to the negative gradient of the function IS(ξ) in that region.386

The difference between the distribution in Figures 11a and 11b reveal the bulk flow387

velocity shear, which is absent in conventional Harris distributions. This is a key effect388

providing the embedded structure of TCSs supported by quasi-adiabatic Speiser orbits.389

This velocity shear effect is also clearly seen from the comparison of the current and plasma390

density plots in Figures 1b and 1c (in the vector-potential a-space), 2b and 2c (in the391

real space ζ).392
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7 TCS model in 2D393

One of the main benefits of the developed analytical approximation of the SGS the-394

ory is the possibility of its immediate generalization to 2D. The corresponding TCS equi-395

libria can be found by solving the original SGS system of equations (3)-(9) combined with396

(48) (M. I. Sitnov et al., 2007; M. I. Sitnov & Merkin, 2016).However, such numerical397

solutions are computationally expensive and difficult to analyze. In particular, it is dif-398

ficult to investigate impacts of plasma anisotropy and current embedding on the TCS399

aspect ratio. Here we propose a simplified description of 2D TCS equilibria taking into400

account three small parameters of the problem, ε1 = Bz(x, 0)/B0, |δ1| and δ2, which401

reflect strong tail stretching, weak plasma anisotropy and strong embedding (LTCS �402

LH). We start from the 2D isotropic Harris solution with thickness LH � 1, that is403

the CS is much thicker than the thermal ion gyroradius. Its ion distribution will be Maxwellian404

with the anisotropic modification (58). Then we neglect the correction to the normal mag-405

netic field Bz, because it is already a small parameter. The correction of the field Bx in406

the form (56) includes rescaling its thickness parameter δ2(x) = δ2/β(x) and its asymp-407

totic value, the lobe magnetic field B0, which becomes now a function of x, following the408

the embedding Harris solution (e.g. M. I. Sitnov & Schindler, 2010): B0(x) = B0/β(x)409

where the function β is determined by the magnetic field stretching factor Lβ′/β = ε1.410

It is important here that, in contrast to the Harris thickness parameter LH , which411

grows as Lβ(x), and does it very rapidly if the initial half-thickness L is small (e.g., L ∼412

ρ0i), the TCS thickness LTCS ∼ ρ0i grows much slower in the case of strong embed-413

ding L � ρ0i. As follows from (M. I. Sitnov & Merkin, 2016, Eq. (24)), in the region414

of weak anisotropy its scaling ratio415

LTCS
LxTCS

∼ ρ0i
L

L

LxTCS
∼ ρ0i

L

LB′0
B0
∼ δ2ε1 (65)

This estimate shows that the TCS thickness scaling along the tail has an additional416

small parameter, compared to the Harris theory, the embedding factor δ2 � 1. At the417

same time, the estimate (65) suggests that the TCS aspect ratio in the region of weak418

anisotropy, being drastically different from its analog in the isotropic (Harris) limit Lz/Lx ∼419

ε1, does not depend on the anisotropy strength determined by the parameter δ1.420

These estimates are confirmed by Figures 12 and 13 obtained using a 2D gener-421

alization of (56). In Figure 12 we compare the 2D TCS model with the parameters δ1 =422

0.2 and δ2 = 0.125 (Figure 12a) with two 2D Harris-type models with δ2 = 0.25 and423

0.125.(Figures 12b and 12c). The comparison of Figures 12a and 12b with comparable424

current sheet thickness values at the left boundary of the box (note that, according to425

Figure 2c, the TCS thickness > ρ⊥0i) shows that the TCS models have indeed much larger426

aspect ratios compared to Harris solutions, even in case of a weak anisotropy. The com-427

parison of Figures 12a and 12c shows that the ion-scale TCS (Figure 12a) embedded into428

a thicker Harris sheet (Figure 12c) keeps the x-scale of the latter, even though the TCS429

is much thinner (δ2 = 0.125). The dotted field lines in Figure 12a, which are built based430

on the embedding thicker Harris sheet solution (Figure 12c) show that the TCS solution431

deviates from the corresponding Harris solution in the region |z| . ρ⊥0i. One more im-432

portant distinction of the 2D TCS solution seen in Figure 12a is that the field lines do433

not coincide with the iso-contours of the current density as is the case for Harris mod-434

els (Figures 12b and 12c).435

Figure 13 compares different 2D TCS models to reveal their dependence on the pa-436

rameters ε1, δ1 and δ2. In particular, Figures 13a and 13b confirm that, consistent with437

the estimate (65), the TCS aspect ratio weakly depends on the specific value of the plasma438

anisotropy δ1 as long as it is weak. According to these figures, a reduction of anisotropy439

rather reduces the TCS current density peak. At the same time, according to Figure 13c,440

a reduction of the embedding strength (due to an increase of the parameter δ2) reduces441
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Figure 12. Current density distributions and field lines (grey color) for three 2D current sheet

models with ε1 = 0.03: (a) Weakly anisotropic TCS model based on Eq.(56) with the anisotropy

and embedding parameters δ1 = 0.2 and δ2 = 0.125; (b)-(c) Harris-type models with δ2 = 0.25

and 0.125. Note that in case of Harris the parameter δ2 is just a ratio between the thermal ion

gyroradius ρ0i in the field B0 and the current sheet thickness L. Grey dotted lines in panel (a)

show the field lines similar to those shown in panel (c) but with a different constant for the corre-

sponding vector potential (to make them closer to case (a) at the near-Earth boundary). Spatial

coordinates are normalized by the ion gyroradius ρ⊥0i based on the field B0 at the left boundary

of the box.

the aspect ratio LTCS/LxTCS quite substantially, consistent with (65). As is seen from442

Figure 13d, a similar effect is provided by the increase of the parameter ε1, although it443

is expected from the corresponding 2D Harris theory (Schindler, 1972).444

The TCS solution in Figure 12a can also be compared with recent empirical recon-445

structions of the multiscale tail current sheet structure (M. I. Sitnov et al., 2019; Stephens446

et al., 2019, 2022), an example of which is provided in Figure 14. In these reconstruc-447

tions the multi-mission and multi-decade archives of the geomagnetic field data were mined448

to find kNN events neighboring the event of interest in the space of global geomagnetic449

activity parameters, such as for instance, the storm and substorm indices SMR and SML450

provided by the SuperMag project (Gjerloev, 2012), as well as the solar wind electric field451

parameter (vBIMF
z ; where v is the solar wind speed and BIMF

z is the north component452

of the Interplanetary Magnetic Field, IMF). The selection of the nearest neighbor sub-453

set, such that 1 � kNN � kDM , where kDM is the number of points in the archive454

(kDM ∼ 107, according to (Stephens et al., 2022)), provides both the strong selectiv-455

ity of the reconstruction, which captures the proper phases of storms and substorms, and456

the abundance of data points available for the reconstruction of the spatial distributions457

of the magnetic field in space for the event of interest (with the typical value kNN =458

32, 000). The latter feature allows one to use very flexible architectures of the magnetic459

field with arbitrary current distributions in the equatorial plane. Moreover, it becomes460
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Figure 13. Current density distributions and field lines (grey color) for different 2D TCS

models: (a)-(b) Weakly anisotropic TCS model based on Eq.(56) with ε1 = 0.03, the anisotropy

and embedding parameters δ2 = 0.125 and (a) δ1 = 0.1 and (b) δ1 = 0.2; (c) the analog of the

model (b) but now with δ2 = 0.25; (d) the analog of the model (b) but now with ε1 = 0.06.
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Figure 14. The current density distribution along the midnight meridian with overplotted

(black) sample field lines obtained for the growth phase of the July 6 2017 substorm (14:50 UT)

using the data mining method (M. I. Sitnov et al., 2019; Stephens et al., 2019, 2022) with the

parameters kNN = 32, 000, σ = 0.3 and the magnetic field model architecture (M,N) = (6, 8) and

NFAC = 16. The GSM coordinates are normalized by the Earth’s radius RE = 6374 km.

possible to resolve different equatorial distributions of the thick current sheet, whose thick-461

ness D is derived from fitting kNN data, and the TCS with DTCS < D.462

In the most recent version of the reconstruction algorithm (Stephens et al., 2022),463

which was used to generate Figure 14, the possibility of the TCS scaling DTCS ∼ B−1L ,464

where BL(ρ) is the lobe magnetic field depending on the distance ρ from the Earth (e.g.465

Wang et al., 2004), was provided by using the following approximation: DTCS(ρ) = [D−1∗ +466

α exp(−βρ)]−1 with free parameters α, β and D∗ to be inferred from data. The anal-467

ysis by Stephens et al. (2022) confirmed that the scaling DTCS ∝ B−1L ∝ ρSi does in-468

deed take place, which supports the theoretical mechanism of the TCS formation related469

to the Speiser orbits. Figure 14 shows the tail current sheet distribution, which is con-470

sistent with the present equilibrium theory: Similar to Figure 12a, it shows that the TCS471

(DTCS < 2.2RE) is embedded into a halo of the thicker current sheet (D > 3RE) and472

the field lines do not coincide with the iso-contours of the current density. All mutiscale473

current sheet reconstructions (M. I. Sitnov et al., 2019; Stephens et al., 2019, 2022) sug-474

gest that LTCS/LxTCS � Bz/BL, consistent with the present theory, and in partic-475

ular, the estimate (65), as well as Figures 12a and 13.476

8 Discussion477

The final formulas of the weakly-anisotropic embedded TCS theory (56), (57), (58),478

(59), (61) and (62) demonstrate for the first time why the current density increase due479

to quasi-adiabatic ion motions may be substantial in spite of weak plasma anisotropy480

and they quantify this increase. Moreover, they make it possible for the first time to ob-481

tain in an explicit form and to systematically investigate the corresponding 2D TCS equi-482

libria, and in particular, the impacts of plasma anisotropy, current sheet embedding and483

magnetic field line stretching on the aspect ratios of these equilibria.484

The rather cumbersome calculations, which were necessary to derive the final set485

(56), (57), (58), (59), (61) and (62) of the weakly anisotropic TCS equilibrium theory,486

and which constitute this paper, require some further justification. Indeed, non-Harris487

TCS models, including 2D equilibria, are far more elaborated for generalizations of the488
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Harris model with the same or similar sets of integrals of motion, i.e., without the quasi-489

adiabatic invariant (1) (Schindler & Birn, 2002; Birn et al., 2004; Camporeale & Lapenta,490

2005; Balikhin & Gedalin, 2008). However, as is argued in section 2 on the example of491

the analysis (Schindler & Birn, 2002; Birn et al., 2004), these classical sets of invariants,492

the total energy and the canonical momentum Py(Ay(x, z)), yield essentially the same493

isotropic force balance relationship Lx/Lz ∼ B0/Bz (see section 2 for more detail), which494

is not supported by recent observations (Artemyev et al., 2015, 2016) and empirical re-495

constructions (M. I. Sitnov et al., 2019; Stephens et al., 2022, see also Figure 14).496

The idea that special features of quasi-adiabatic Speiser orbits (Speiser, 1965) could497

explain the structure of thin ion-scale current sheets was formulated as long as fifty years498

ago (Eastwood, 1972; Hill, 1975; Francfort & Pellat, 1976). However, in spite of the deriva-499

tion of the corresponding approximate invariant of motion (Schindler, 1965; Sonnerup,500

1971; Büchner & Zelenyi, 1989), whose dependence on the vector potential was differ-501

ent from Py(Ay(x, z)) due to the integration along the the particle orbits, it was not im-502

plemented in the selfconsistent equilibrium theory for almost three decades, likely be-503

cause of the extreme complexity of the underlying quasi-adiabatic dynamics (e.g. Büchner504

& Zelenyi, 1989).505

The first self-consistent quasiadiabatic ion TCS theory was developed by Kropotkin506

et al. (1997) who used a simplified form of the invariant (1) suitable in the limit of strong507

plasma anisotropy outside TCS. Later M. I. Sitnov et al. (2000) generalized the TCS the-508

ory making it suitable for an arbitrary value of the ion temperature anisotropy by us-509

ing the general definition of the invariant (1). While that theory described the 2D equi-510

libria with the finite value of the northward magnetic field Bz, it did that for homoge-511

neous in x models with Lx →∞, because the quasiadiabatic invariant (1) replaced Py(Ay(x, z)).512

Note that the corresponding eigenvalue of the 2000 TCS theory coincided with the marginal513

firehose condition P||0−P⊥0 = B2
0/4π (Cowley, 1978; Burkhart et al., 1992a, P||0 and514

P⊥0 are the parallel and perpendicular ion pressures outside TCS) when the magnetic515

tension force is balanced by the ion inertia rather than by the pressure gradient. Yet,516

that 2000 TCS theory could not describe more realistic tail equilibria with weak plasma517

anisotropy, because it simply had no isotropic (Harris) limit in the absence of the orig-518

inal canonical momentum Py(Ay(x, z)) in the distribution functions.519

The transition to the Harris limit has only become possible in the SGS model (M. I. Sit-520

nov et al., 2003), whose ion distribution combined the quasiadiabatic invariant Iz and521

the canonical momentum Py. And even in that model the obtaining of a concise ana-522

lytical description in the limit of weak anisotropy turned out to be quite challenging. One523

of the reasons is the singular behavior of the small embedding parameter δ2 � 1, which524

enters the denominators of the corrections in (35), (56) and (57), and which required to525

verify the adopted assumptions, such as the small role of the electrostatic effects, numer-526

ically, using exact solutions of the original SGS system of equations. Another reason has527

become the necessity to retain terms O(δ1δ2) in (24) and (25) that play key roles in the528

proper description of the magnetic field correction in its depression region outside TCS529

(a & 3 in Figure 7). Finally, the presentation of the TCS distribution function required530

different descriptions of the distribution types for orbits crossing the neutral plane z =531

0 (61) and those not crossing it (62), consistent with the invariant description in (Schindler,532

1965; Sonnerup, 1971; Büchner & Zelenyi, 1989).533

9 Conclusion and Outlook534

The model described above is the first step on the way toward a new generation535

of thin current sheet models with multiscale structure and moderate plasma anisotropy.536

It is an analytical approximation of the SGS model (M. I. Sitnov et al., 2003) taking ex-537

plicitly into account the unusual features of the ion Speiser motions, which were qual-538

itatively described before (see, for instance, (L. M. Zelenyi et al., 1990) or (Zeleny̌i et539
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al., 2003, Fig. 3)): The parts of the Speiser orbits that cross the neutral plane Bx = 0540

may create a substantial paramagnetic current contribution on the scales of these orbits,541

in contrast to conventional Larmor circles of their non-crossing parts whose contribu-542

tion is diamagnetic. Here we show that the corresponding current enhancement on the543

scale of the ion gyroradius (Figures 1c, 2c and 3) may be substantial even in the case544

of small plasma anisotropy outside the TCS. This is seen in particular from the compar-545

ison of the relative perturbations of the plasma and current densities (47) and (35).546

The main equation (56) in our new theory is a direct generalization of the hyper-547

bolic tangent magnetic field formula in the classical Harris theory (Harris, 1962, Eq.(20)),548

now with an important capability to take into account weak anisotropy of the ion species549

and the possible agyrotropic effects of quasi-adiabatic (Speiser) orbits of ions. Note that,550

while the main formula (56) of our theory has been elaborated with applications to em-551

bedded TCSs, it can also be applied to describe bifurcated TCSs (e.g. Nakamura et al.,552

2002; Runov et al., 2003; V. Sergeev et al., 2003; Runov et al., 2005; Asano et al., 2005)553

in case of the negative values of the anisotropy parameter δ1 = 1−T⊥i/T||i < 0 (M. I. Sit-554

nov et al., 2003, 2004).555

The impact of the quasi-adiabatic orbits is seen from the analysis in section 6, where556

their features are explicitly translated into the corresponding features of the ion distri-557

bution function, including the bulk flow velocity shear, diamagnetic and paramagnetic558

contributions to the electric current provided by the different regions of the ion orbits559

(Figure 10). The resulting description of the ion distribution function in terms of the el-560

liptic integrals makes possible its efficient loading to modern particle codes such as P3D (Zeiler561

et al., 2002) using the rejection technique (e.g. Press et al., 1996).562

Further investigations are necessary to clarify the mechanism of the pressure bal-563

ance along the tail. Previous studies (Burkhart et al., 1992b) suggest that its descrip-564

tion requires a further generalization of the quasi-adiabatic theory taking into account565

the finite value of the parameter Bz/B0 and the corresponding bending of the Speiser566

orbits. Its details can also be clarified in PIC simulations starting from the 2D TCS equi-567

librium described in the previous section.568

Another important next step should be taking into account the negative charging569

of TCSs and domination of electrons as current carriers. These features are suggested570

by observations (Asano et al., 2003; Artemyev et al., 2009). (Note that, as is seen from571

Figures 1d and 2d, the present model still reveals some CS charging effects. However,572

they are relatively small and they don not affect relative contributions of electron and573

ion currents.) They can be taken into account by changing the equation (9), which is574

an ad hoc assumption in the SGS theory to make it similar to the corresponding Har-575

ris theory assuming neutral current sheets. As was shown by (Yoon & Lui, 2004), in the576

case of isotropic models, the electron current domination can be provided by modifying577

(9) and using a small background plasma to eliminate the resulting electrostatic field at578

the current sheet boundary. The corresponding 2D models have recently been used in579

PIC simulations (M. I. Sitnov et al., 2021). The present investigation was limited by the580

Harris-like ion current dominated solutions to focus on the limit of the original 1962 Har-581

ris theory. We plan to investigate the effects of the TCS negative charging and electron582

domination in future studies.583
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