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Abstract

Climate extremes such as droughts, floods, heatwaves, frosts, and windstorms add considerable variability to the global year-to-

year increase in atmospheric CO2 through their influence on terrestrial ecosystems. While the impact of droughts on terrestrial

ecosystems has received considerable attention, the response to flooding events of varying intensity is poorly understood. To

improve upon such understanding, the impact of the 2019 US flooding on regional CO2 vegetation fluxes is examined in the

context of 2017-2018 years when such precipitation anomalies are not observed. CO2 is simulated with NASA’s Global Earth

Observing System (GEOS) combined with the Low-order Flux Inversion (LoFI), where fluxes of CO2 are estimated using a suite

of remote sensing measurements including greenness, night lights, and fire radiative power and bias corrected based on in situ

observations. Net ecosystem exchange CO2 tracer is separated into the three regions covering the Midwest, South, and Eastern

Texas and adjusted to match CO2 observations from towers located in Iowa, Mississippi, and Texas. Results indicate that

for the Midwestern region consisting primarily of corn and soybeans crops, flooding contributes to a 15-25% reduction of net

carbon uptake in May-September of 2019 in comparison to 2017 and 2018. These results are supported by independent reports

of changes in agricultural activity. For the Southern region, comprised mainly of non-crop vegetation, net carbon uptake is

enhanced in May-September of 2019 by about 10-20% in comparison to 2017 and 2018. These outcomes show the heterogeneity

in effects that excess wetness can bring to diverse ecosystems.
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Abstract23

Climate extremes such as droughts, floods, heatwaves, frosts, and windstorms add con-24

siderable variability to the global year-to-year increase in atmospheric CO2 through their25

influence on terrestrial ecosystems. While the impact of droughts on terrestrial ecosys-26

tems has received considerable attention, the response to flooding events of varying in-27

tensity is poorly understood. To improve upon such understanding, the impact of the28

2019 US flooding on regional CO2 vegetation fluxes is examined in the context of 2017-29

2018 years when such precipitation anomalies are not observed. CO2 is simulated with30

NASA’s Global Earth Observing System (GEOS) combined with the Low-order Flux In-31

version (LoFI), where fluxes of CO2 are estimated using a suite of remote sensing mea-32

surements including greenness, night lights, and fire radiative power and bias corrected33

based on in situ observations. Net ecosystem exchange CO2 tracer is separated into the34

three regions covering the Midwest, South, and Eastern Texas and adjusted to match35

CO2 observations from towers located in Iowa, Mississippi, and Texas. Results indicate36

that for the Midwestern region consisting primarily of corn and soybeans crops, flood-37

ing contributes to a 15-25% reduction of net carbon uptake in May-September of 201938

in comparison to 2017 and 2018. These results are supported by independent reports of39

changes in agricultural activity. For the Southern region, comprised mainly of non-crop40

vegetation, net carbon uptake is enhanced in May-September of 2019 by about 10-20%41

in comparison to 2017 and 2018. These outcomes show the heterogeneity in effects that42

excess wetness can bring to diverse ecosystems.43

Plain Language Summary44

The primary driver of the climate change is the fossil fuel emissions of carbon diox-45

ide (CO2). However, only a fraction of emitted CO2 stays in the atmosphere as the rest46

is absorbed by the global ecosystem, which includes land and ocean. Recently, due to47

the growing concentration of CO2 in the atmosphere and the change in climate the land48

component of the ecosystem has been experiencing an increased variability in its abil-49

ity to uptake CO2. This variability is partially controlled by the extreme weather events50

such as droughts and floods. In this work a devastating flood of 2019 in the Midwest-51

ern and Southern US is examined with respect to its effects on the land ecosystem and52

its ability to absorb CO2. The analysis is performed with a model that simulates CO253

concentrations, which are improved using the CO2 observations from towers. The sim-54

ulation allows to compare absorbed CO2 over the years of 2017-2019 and the results in-55

dicate that at the affected region 2019 absorbed less CO2 than years 2017 and 2018. As56

humans are hurriedly developing strategies to sequester carbon from the atmosphere, ef-57

fects of floods on the carbon cycle at land ecosystems must be taken into the consider-58

ation.59

1 Introduction60

Understanding the future evolution of the carbon cycle is crucial to improve cli-61

mate change predictions (Frank et al., 2015). Studies show that climate extremes (i.e.,62

extreme weather events) have a noticeable effect on terrestrial ecosystems influencing the63

cycling of carbon and thereby affecting global atmospheric CO2 concentrations (Reichstein64

et al., 2013; Frank et al., 2015). These extremes are characterized by meteorological phe-65

nomena such as droughts, floods, heat waves, frosts, and windstorms (Reichstein et al.,66

2013). While general understanding regarding how these extremes affect the global car-67

bon cycle exists, each case presents a unique challenge that may deviate from expected68

behavior. To better understand the effects of climate extremes on carbon exchange be-69

tween terrestrial ecosystem and atmosphere, detailed analysis of relevant case studies is70

required.71
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Droughts are common extreme weather events that impact terrestrial ecosystem72

carbon processes and are relatively well studied (van der Molen et al., 2011). In the time73

of drought, the ability of an ecosystem to consume CO2 decreases (Frank et al., 2015;74

Schwalm et al., 2012). While the impact of droughts on terrestrial ecosystem has received75

considerable attention over the recent years, the response of an ecosystem to flooding76

events is intricate and ambiguous (Zaerr, 1983; Miyata et al., 2000; Knapp et al., 2008;77

Dušek et al., 2009; Zona et al., 2012; Dalmagro et al., 2019). As the climate changes, cli-78

mate models predict an increase in precipitation for midlatitude regions, thereby increas-79

ing the likelihood of flooding events affecting these ecosystems (Knapp et al., 2008; Zhang80

& Villarini, 2021). Therefore, it is imperative to better understand how the potential in-81

crease in flooding events may affect future carbon budget.82

The effects of flooding on carbon exchange in the terrestrial ecosystem depends on83

the type of vegetation affected. Wetlands tend toward storing less atmospheric carbon84

during flooding as photosynthesis weakens; however, annual Net Ecosystem Exchange85

(NEE) may not change much as ecosystem respiration (RE) also decreases (Han et al.,86

2015). Typically, during a growing season trees, shrubs, and grasses support a net up-87

take of atmospheric CO2 and continue to do so even during some flooding, but it is not88

exactly clear how an increase in the magnitude of that flooding may alter this process89

(Kramer et al., 2008; Bourtsoukidis et al., 2014; Detmers et al., 2015). Croplands, how-90

ever, are easily susceptible to waterlogging and tend to be a net source of atmospheric91

carbon when flooding occurs (Rosenzweig et al., 2002; Ahmed et al., 2013; Yin et al., 2020;92

Yildirim & Demir, 2022). Although the majority of CO2 that is initially absorbed by crop-93

lands is eventually released back into the atmosphere, the cropland soils have the capac-94

ity to sequester atmospheric CO2 and their ability to hold carbon is critically important95

for reducing global atmospheric CO2 levels (Paustian et al., 2000; Follett, 2001; Zomer96

et al., 2017). Also, extreme precipitation events may cause topsoil erosion leading to ad-97

ditional carbon emissions into the atmosphere (Hilton et al., 2008; Dinsmore et al., 2013;98

Lal, 2019). To further the knowledge of the effects of flooding on ecosystem carbon fluxes,99

the spring/early summer Midwestern and central Southern US flooding events of 2019100

are investigated.101

Heavy precipitation in the spring/early summer of 2019 resulted in widespread flood-102

ing of the Upper Mississippi River Basin and the surrounding regions causing damages103

in the range of 2-3 billion US dollars (Neri et al., 2020; Reed et al., 2020). The focus of104

this study is on the Midwest (M) and South (S and T, Figure 1), where the flood affected105

areas with different types of vegetation. In the Midwest vegetation primarily consists of106

croplands such as maize (corn) and soybeans, while in the South there are mainly forests107

transitioning to prairies in Eastern Texas (Figure 1). The main objective of this work108

is to examine the effects of the 2019 flood on the NEE of ecosystems in these regions in109

comparison to years with no anomalous precipitation (2017 and 2018).110

Previously, Yin et al. (2020) showed the ability to quantify Midwest atmospheric111

CO2 and Midwest croplands gross primary production (GPP) anomalies during the above-112

mentioned 2019 flood using XCO2 measurements from the Orbiting Carbon Observa-113

tory 2 (OCO-2) and solar-induced chlorophyll fluorescence (SIF) derived from the TRO-114

POspheric Monitoring Instrument (TROPOMI). Comparing 2019 to 2018, their results115

indicated reduction in the Midwest cropland GPP of −0.21 PgC in June and July and116

partial recovery of 0.14 PgC in August and September. They also noted a flood-forced117

3-week delay in the planting date of crops across much of the area. The present study118

builds upon Yin et al. (2020) by analyzing the NEE of the flood-affected region in 2019,119

expanding to different vegetation types, and extending the comparison by including the120

additional year of 2017. The focus is on better understanding of the 2019 flooding event121

and its impact on agricultural ecosystems. Also, the performance of near real time car-122

bon modeling tools is assessed and implications for carbon monitoring are discussed.123
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Figure 1. Land cover map of the Eastern Conterminous United States (CONUS) derived from
Moderate Resolution Imaging Spectroradiometer (MODIS). White squares indicate regions af-
fected by the anomalous precipitation and are the focus of this study. Capital letter M indicates
the Midwest region, while capital letters S (South) and T (Texas) represent regions of the South
(for more details see Data and Methods section).
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2 Data and Methods124

2.1 MERRA-2 and Evidence of Flooding125

To map out regions of the flooding in 2019, soil moisture and precipitation data126

from the Modern-Era Retrospective analysis for Research and Applications, Version 2127

(MERRA-2) are used (Gelaro et al., 2017). Soil moisture is described by the ground wet-128

ness variable for the 0-5 cm layer of soil. The variable is dimensionless in units of rel-129

ative saturation ranging from 0 to 1, where value of 1 indicates completely saturated soil.130

Bias corrected MERRA-2 precipitation (mm) comprised of background data products131

[such as Goddard Earth Observing System Model, version 5 (GEOS-5) or Forward Pro-132

cessing system for Instrument Teams (FP-IT)] and observations [i.e., Global Precipita-133

tion Climatology Project (GPCP)] is utilized (Reichle, Draper, et al., 2017; Reichle, Liu,134

et al., 2017). For both soil moisture and precipitation 2017-2019 anomalies with respect135

to 1981-2010 climatology are calculated over the region of interest.136

2.2 Crop Data137

Since croplands contribute significantly to the carbon cycle of the M region, 2017-138

2019 United States Department of Agriculture (USDA) crop planting data are analyzed139

for corn (maize) and soybeans - the two most common crops in the US Midwest. In this140

study, three attributes, which are crop planting progress, acres planted, and grain yield,141

of corn and soybeans from years 2017-2019 are compared. The following states are an-142

alyzed here: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska,143

Ohio, South Dakota, and Wisconsin. The data is taken from National Agriculture Statis-144

tics Service provided by USDA (https://quickstats.nass.usda.gov/).145

2.3 CO2 Data146

2.3.1 Optimization Data147

The optimization of the GEOS model (described later in section 2.6) takes place148

in two different areas, the Midwest (M) and the South (broken down into two regions:149

S and T, Figure 1). The process of optimization consists of adjusting GEOS NEE CO2150

tracers from the 3 regions (M, S, and T) over the 3 years (2017-2019) in an attempt to151

match 5-day running mean of daily observations [averaged over the afternoon hours of152

1500-1700 local standard time (LST)] from four in situ CO2 towers located in each re-153

gion of interest: West Branch, Iowa (WBI) in M, Magee, Mississippi (MS-01) in S, Grenada,154

Mississippi (MS-02) in S, and Moody, Texas (WKT) in T (see Figure 2).155

The WBI tower is in the agricultural ecosystem (corn belt) of eastern Iowa and is156

part of the National Oceanic and Atmospheric Administration (NOAA) Earth System157

Research Laboratories/Global Monitoring Laboratory (ESRL/GML) tall tower network158

that is tasked with the goal of long-term carbon-cycle gas monitoring in the atmospheric159

boundary layer (ABL) of continental areas (Andrews et al., 2014; Schuldt et al., 2021).160

The location of the tower is ideal for CO2 monitoring pertinent to the Midwestern crop-161

lands and hence is used here to analyze the effects of the 2019 flooding.162

MS-01 and MS-02 towers are in Mississippi and were instrumented initially for the163

Gulf Coast Intensive, designed to characterize CO2 in the southeastern region of the US164

and maintained through 2019 as part of the ACT-America project (Miles et al., 2018).165

The MS towers did not measure CO2 simultaneously, so to represent the CO2 of the re-166

gion S, MS-01 is used for 2017 and MS-02 is used for 2018-2019. These towers are well167

suited for this study as the state of Mississippi was noticeably affected by the 2019 pre-168

cipitation anomalies and consequential Mississippi river flooding (Price & Berkowitz, 2020).169
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Finally, WKT represents the T region of the South. Like WBI, the tower is part170

of the NOAA ESRL/GML tall tower network (Andrews et al., 2014). The location of171

the tower is optimal for capturing CO2 variability in eastern Texas and western Louisiana,172

where the flooding of 2019 was also present.173

2.3.2 Validation Data174

Validation process with tower-based, airborne, and shipboard measurements is aimed175

at determining how well the towers used for the optimization act as a proxy for the re-176

gions of interest. The M region is validated with the Indianapolis Flux Experiment (IN-177

FLUX) background tower 1 that is located on the southwestern part of Indianapolis, the178

direction least influenced by the CO2 emissions from the city (Davis et al., 2017). As in179

Iowa (where WBI is located), vegetation in Indiana mainly consists of crops, making it180

a good choice for the validation of the model optimizations at WBI. However, INFLUX181

tower 1 is immediately surrounded by forests, in contrast to WBI. The S and T regions182

are validated using towers in Millerville, Alabam (AL-01) and Monroe, Louisiana (LA-183

01). To be consistent with the optimization, 5-day running mean of daily observations184

(averaged over the afternoon hours of 1500-1700 LST) is utilized.185

The airborne Atmospheric Carbon and Transport - America (ACT-America) and186

the shipboard Satellite Coastal and Oceanic Atmospheric Pollution Experiment (SCOAPE)187

campaigns in 2019 are also used for validation. ACT-America is an airborne NASA Earth188

Venture mission dedicated to improving the accuracy, precision, and resolution of atmo-189

spheric inverse estimates of CO2 and CH4 sources and sinks on a regional scale (Davis190

et al., 2021). The mission conducted 5 seasonal campaigns (including 2 summer cam-191

paigns) over the 2016-2019 period. For each campaign two aircraft (C-130 and B-200)192

were used to survey three different regions in the United States: The South, the Mid-193

west, and the Mid-Atlantic. Data from the 2019 campaign covering the South and the194

Midwest is used, which occurred in June and July of 2019. Most of the flights took place195

in the period of 1100-1700 LST. For validation purposes the boundary layer [∼330 m above196

ground level (AGL)] CO2 was averaged for each of the selected flight days.197

SCOAPE was a brief shipboard campaign investigating nitrogen dioxide (NO2) emis-198

sions from oil and natural gas platforms in the Gulf from May 10-18 of 2019 (Thompson,199

2020). Auspiciously there was a CO2 instrument on board and the campaign was con-200

ducted at the same time as the flood of 2019. SCOAPE serves as a validation for the South201

region, specifically for the states of Louisiana, Mississippi, and Alabama. Averaged af-202

ternoon (1500-1700 LST) CO2 measurements are used.203

2.4 GEOS Model Configuration Including LoFI Flux Package204

NASA GEOS general circulation model, constrained by MERRA-2 meteorology fields,205

with resolution of 0.5 by 0.625 degrees and 72 vertical layers (Molod et al., 2015) is uti-206

lized to simulate CO2 over the region of interest (Weir et al., 2021). It includes the Low-207

order Flux Inversion (LoFI) package, which contains a compilation of carbon fluxes driven208

by remote-sensing land surface data (Ott et al., 2015; Weir et al., 2021) and a bias cor-209

rection process designed to reproduce CO2 mole fractions observed at NOAA’s in situ210

network. There are five components to the mentioned LoFI flux package: NEE, biomass211

burning, fossil fuel combustion, ocean exchange, and an empirical land sink (bias cor-212

rection of the fluxes).213

NEE is computed using the Carnegie-Ames-Stanford Approach – Global Fire Emis-214

sions Dataset version 3 (CASA-GFED 3; Randerson et al., 1996; van der Werf et al., 2010)215

that estimates carbon fluxes using satellite-derived vegetation products and MERRA-216

2 meteorology. Biomass burning CO2 emissions are derived with the Quick Fire Emis-217

sions Dataset (QFED; Koster et al., 2015), which is constructed using MODIS fire ra-218

–6–
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Figure 2. Observations that are used for the GEOS model optimization and validation.
Aircraft transect and ship track mole fractions are shown inside the ABL and are used for valida-
tion. Towers are labeled by circles.
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diative power (FRP) estimates in near real-time. Fossil fuel combustion is provided by219

the Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda & Maksyutov,220

2015; Oda et al., 2018) that is based on disaggregated country-level fossil fuel CO2 emis-221

sion inventories using a global power plant database and satellite observations of night-222

time lights. Ocean exchange of CO2 is estimated using the differences between the par-223

tial pressure of CO2 in seawater (pCOsw
2) derived from the Takahasi et al. (2009) cli-224

matology and the partial pressure in the atmosphere (pCOatm
2) taken from the NOAA225

marine boundary layer (MBL) reference (Masarie & Tans, 1995; Dlugokencky & Tans,226

2016). An empirical land sink is applied as a bias correction to the collection of fluxes227

to constrain the modeled atmospheric CO2 growth with the observed growth rates de-228

rived from the NOAA MBL reference (Weir et al., 2021).229

2.5 Definition of Tagged Tracer Regions230

Before the optimization an area that influences towers is designated using NOAA’s231

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward232

trajectories (Stein et al., 2015). The trajectories are released backwards for every 6 hours233

for May through September of 2019 at the three optimization towers WBI, MS-02 (it is234

assumed MS-02 is representative of MS-01), and WKT from the level of the correspond-235

ing sensor (121-379 m AGL) using the North American Regional Reanalysis (NARR)236

meteorology. The approximate area influencing each tower combined with the MODIS237

Land Cover Climate Modeling Grid Product (MCD12C1) allow for the generation of CO2238

mole fraction tracer masks applied to tag regional NEE within GEOS that can be then239

used in the optimization (Figure 3). MCD12C1 is the reprojection of the tiled MODIS240

Land Cover Type Product (MCD12Q1) with the sub-pixel proportions of each land cover241

class in each 0.05° pixel and the aggregated quality assessment information from the In-242

ternational Geosphere-Biosphere Programme (IGBP) scheme (Sulla-Menashe & Friedl,243

2018). MCD12C1 is regridded to the resolution of the LoFI of 0.5° by 0.625° to gener-244

ate the appropriate masks of vegetation areas of interest while removing any urban and245

coastal environments.246

2.6 Optimization Approach247

To quantify the effects of 2019 flooding on regional vegetation, NEE is compared248

to the years 2017 and 2018. Though NEE is available from the LoFI flux package, it is249

possible that these fluxes are inaccurate because of the use of a highly simplified diag-250

nostic vegetation model. To provide a better estimate, the NEE component of the LoFI251

collection, representative of the vegetation fluxes of a given area, is adjusted to minimize252

the model-observation CO2 mole fraction difference. The optimization is independently253

performed for the three different regions of M, S, and T (Figure 3), where each region254

is characterized by its individual NEE CO2 tracer based on the selected in situ towers.255

The observed CO2 mole fraction can be expressed in the following way:256

CO2obs = CO2model +∆CO2, (1)257

where CO2model represents CO2 from GEOS and ∆CO2 is the mole fraction of CO2 that258

needs to be added to the modeled mole fraction to arrive at the observed value. The CO2model259

term can be expanded as260

CO2obs = CO2ini + CO2ocn + CO2FF + CO2fire + CO2NEE , (2)261

where CO2ini is an initial condition that consists of all the accumulated CO2 at a par-262

ticular model grid cell in the model prior to a May 1st of a given year (either 2017, 2018,263

–8–
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Figure 3. Masks for the optimization based on the backward HYSPLIT trajectories, where
the blue region 0 shows areas not included as model CO2 NEE tracers (the rest of the globe
NEE), red region 1 influences WBI tower in Iowa and is labeled as M NEE CO2 tracer, the green
region 2 influences MS-01 and MS-02 towers in Mississippi and is labeled as S NEE CO2 tracer,
the purple region 3 influences both MS and WKT towers (part of both S and T NEE CO2 trac-
ers), and finally the yellow region 4 influences WKT tower in Texas and is labeled as T NEE
CO2 tracer. Yellow circles indicate towers used for optimization.
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or 2019) and the rest of the right-hand terms are additions from ocean (OCN), fossil fu-264

els (FF), fire, and NEE. In the current work it is hypothesized that NEE term is the most265

uncertain and that the ∆CO2 term in equation (1) is mainly driven by the CO2NEE term.266

Therefore, it is the only term adjusted to bring the modeled CO2 closer to the observed267

CO2. The CO2NEE tracer is tracked by the model from the selected regions and the rest268

of the globe as shown in Figure 3 and can be expressed as269

CO2NEE = CO2MNEE + CO2SNEE + CO2TNEE + CO2globalNEE , (3)270

with the right hand terms representing regional and the rest of the globe NEE CO2 trac-271

ers. Only the regional tracers are adjusted in this study.272

The optimization is performed at each of the three towers (M, S, and T) by solv-273

ing for the minimum value of the cost function (Rodgers, 2000):274

J(a) =
1

2
[(ŷ + αCO2regionNEE )− y]R−1[(ŷ + αCO2regionNEE )− y]T +

1

2
αB−1αT , (4)275

where α is a scaling factor by which NEE need to be changed, ŷ is modeled 5-day run-276

ning mean of daily afternoon (1500-1700 LST) averages of CO2, y is observed 5-day run-277

ning mean of daily afternoon (1500-1700 LST) averages of CO2, B is the scaling factor278

error covariance term, and R is the observation-model error covariance matrix. B can279

be a matrix if more than one tracer is optimized, but in the current case of optimizing280

just one tracer, B becomes equivalent to σ2
αp

= 0.5, which determines by how much the281

scaling factor α can be adjusted from the initial scaling factor αp = 0. R matrix rep-282

resents combined observation-model error as well as the covariances among the days in283

each segment. The adjustment is performed on a total of 9 segments consisting of 15 daily284

y and ŷ values to smooth out NEE daily variability over the time of about 2 weeks (Friend285

et al., 2007; Chevallier et al., 2012). Square matrix R is generated by first calculating286

observation-model daily error terms ε with the expression:287

ε = y − ŷ − y − ŷ. (5)288

Then ε terms are divided into 9 segments consisting of consecutive 15 daily values from289

the total of m daily values (in this case total is 135 days comprising the growing season290

of May-June-July-August-September or MJJAS). Variance is calculated for each segment291

as follows,292

σ2
i =

(
∑15

i=1 εi)
2

15− 1
. (6)293

This variance is unique to each segment and repeated for every day inside of an individ-294

ual segment. Afterwards, the variance is converted to standard deviation σ (by taking295

a square root) and the initial version of R is296

R =


σ2
1 r12σ1σ2 . . . r1mσ1σm

r21σ2σ1 σ2
2 . . . r2mσ2σm

...
...

. . .
...

rm1σmσ1 rm2σmσ2 . . . σ2
m

 , (7)297

where the covariance terms representing propagation of error in time are modified by co-298

efficient299
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rij = e−|i−j|/d, (8)300

with d being a time scale. After the completion of the initial optimization, R is adjusted301

using reduced χ2 statistic when initial term α becomes available for every segment with302

9 being the total number of optimized segments,303

χ2 =
1

9
[(ŷ + αCO2regionNEE )− y]R−1[(ŷ + αCO2regionNEE )− y]T . (9)304

For each segment, σ is modified until reduced χ2 approximately approaches a value of305

1 and final value of α is determined.306

The cost function shown in equation 3 can be solved by the expression307

α = G(y − ŷ), (10)308

where G is the gain matrix defined as309

G = B(CO2regionNEE )T [CO2regionNEE B(CO2regionNEE )T +R]−1. (11)310

Afterwards, the error covariance of α is estimated with311

R̂ = [(CO2regionNEE )TR−1CO2regionNEE +B−1]−1. (12)312

Once α is estimated, it is used to construct an optimized time series of CO2 mole frac-313

tions along with its variation based on the estimated vector R̂ (which provides 9 values314

of σoptimized) by randomly drawing 1000 times from the normal distribution in the fol-315

lowing fashion,316

α∗ = α+Normal(0, σoptimized). (13)317

Then α and α∗ are used to generate optimized CO2 time series with the corresponding318

noise:319

CO2optimized = CO2model + αCO2regionNEE , (14)320

CO2∗optimized = CO2model + α∗CO2regionNEE . (15)321

Afterwards, the adjusted NEE is estimated by summing the model NEE over all the pix-322

els of each region (M, S, and T) and in 15-day increments and then using323

NEEregion
optimized = NEEregion

model + αNEEregion
model . (16)324

The total MJJAS NEE is found by adding all the 9 increments of each year. The un-325

certainties of 15-day segments are represented by the corresponding variance values from326

the R̂ and uncertainties of the total MJJAS NEE are the sum of these variances.327
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Figure 4. Precipitation and soil moisture May anomalies with respect to 1981-2010 clima-
tology from MERRA-2 (Gelaro et al., 2017) in the eastern and central CONUS US for years
2017-2019, where panels (a), (c), and (e) correspond to precipitation anomalies over 2017-2019
and panels (b), (d), and (f) correspond to soil moisture anomalies over 2017-2019.

3 Results and Discussion328

3.1 Precipitation, Soil Moisture Anomalies, and Effects on Crops329

Figure 4 shows precipitation and soil moisture anomalies for the eastern and cen-330

tral CONUS over the years of 2017-2019 during the month of May when most of the flood-331

ing occurred. Comparing May precipitation totals over the years 2017-2019 indicates that332

2019 (Figure 4a) saw significant positive anomalies in the central US including the Mid-333

west and the South. The same regions in 2017 and 2018 (Figures 4e and 4c) generally334

saw negative anomalies except for southern Louisiana, Mississippi, and Alabama in 2017.335

Similarly, the soil moisture anomaly in May of 2019 (Figure 4b) is markedly positive in336

comparison to May of 2017 and 2018 (Figures 4f and 4d), although some positive anoma-337

lies can be seen in parts of the Midwest in 2017.338

The immediate effects of 2019 flooding on the two major US crops is evident from339

Figure 5, where in Figures 5a and 5b planned planting of corn and soybeans was delayed340

by almost a month. The delay was likely caused by the severe waterlogging that occurred341

in early May not allowing farmers to proceed with the planned crop planting timetables.342

Figures 5c and 5d indicate that the total planted annual acres of corn and soy were about343
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Figure 5. Corn and soybean statistics in the Midwestern states (listed in section 2.2)
showing progress (percent planted), acres planted, and yield for the years 2017-2019, where
(a), (c), and (e) indicate the mentioned statistics for corn and (b), (d), and (f) for soy
(https://quickstats.nass.usda.gov/).

3-15% lower in 2019 than in years 2017 and 2018. Figures 5e and 5f show both corn and344

soy yields were lower in 2019 in comparison to 2017 and 2018.345

The results described above suggest that the flooding event of 2019 was significant346

enough to cause noticeable reduction of crop yields in the Midwest compared to years347

2017 and 2018, which may imply that the amount of carbon assimilated by the crops was348

also lower in 2019 than in the two prior years. This hypothesis will be addressed in the349

next section as well as the possible effects of the flooding on the non-crop vegetation.350

3.2 NEE Optimization in the Midwest and the South351

The optimization process explained in section 2.6 using WBI, MS (1 and 2), and352

WKT towers corresponding to regions M, S, and T produced 9 time series of the scal-353

ing factors for GEOS NEE CO2 tracer mole fractions changing every 15 days over MJ-354

JAS time frame (total of 9 segments) for years 2017-2019 (Figure 6).355

Region M scaling factors share some similar features over the 3 study years, albeit356

with somewhat different magnitudes. Figures 6a-c indicate that in the first 50-60 days357

LoFI net carbon uptake should be decreased and subsequently, net uptake should be in-358

creased except for 2018, where shortly after 100 days uptake should be slightly decreased359

again. These results suggest that for this geographic area there may be a mostly con-360

sistent model NEE bias.361
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Figure 6. Scaling factors (shown in green) in percentages of GEOS NEE CO2 tracer mole
fractions as a function of 15-day period during MJJAS optimized using towers WBI, MS (1 and
2), and WKT located in M, S, and T regions, where (a) WBI in 2017, (b) WBI in 2018, (c) WBI
in 2019, (d) MS-01 in 2017, (e) MS-02 in 2018, (d) MS-02 in 2019, (g) WKT in 2017, (h) WKT
in 2018, (i) WKT in 2019. Black dashed lines indicate one sigma interval of an overall uncer-
tainty (shown by the grey lines) of the estimated scaling factor. The scaling factors are plotted in
such a way as to indicate a decrease in carbon uptake when the scaling factor is negative and to
indicate an increase in carbon uptake when the scaling factor is positive.
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Figure 7. CO2 in situ observations vs. GEOS model along with its optimization for towers
WBI, MS (1 and 2), and WKT located in M, S, and T regions, where (a) WBI in 2017, (b) WBI
in 2018, (c) WBI in 2019, (d) MS-01 in 2017, (e) MS-02 in 2018, (d) MS-02 in 2019, (g) WKT in
2017, (h) WKT in 2018, and (i) WKT in 2019. Grey lines indicate optimization uncertainty.

Moving on to the region S (Figures 6d-f), where the year 2017 is slightly different362

from the years 2018 and 2019, which can be explained by the fact that the 2017 opti-363

mization used a different MS tower. During 2017 the scaling factor is generally close to364

0 and any adjustment seems to be characterized by high uncertainty. Interestingly, the365

year 2018 resembles the pattern seen in the Figure 6b although any decrease in the net366

carbon uptake is highly uncertain, whereas the increase in uptake is around 100-200%367

for the months of summer JJA. In 2019, there is a hint of the general increase in uptake368

throughout the whole MJJAS period, but with lesser magnitude than in 2018. Overall,369

it may be concluded that in the region S, the model tends to underestimate the land sink;370

however, the magnitude and time when this happens is somewhat less clear.371

In the T region, the scaling factor tends to be noisy, varying up and down, except372

for June and July of 2019 where it is positive indicating the increase in net carbon up-373

take. The overall oscillatory nature of the scaling factor in the T region reflects the sa-374

vannah/grasslands vegetation of the T region corresponding to the smaller values of NEE375

tracer that are hard to adjust effectively in comparison to the M and S regions.376

The results of the optimization using the scaling factors shown in Figure 6 are demon-377

strated in the Figure 7, where the optimized GEOS CO2 time series are compared to the378

original non-optimized GEOS CO2 time series as well as to the tower observations. Like379

Figure 6, the time series are plotted over the days of MJJAS as 5-day running daily means380

for the regions M, S, and T and for the years 2017-2019.381

With respect to the M region, the pattern of the scaling factors (shown in Figures382

6a-c) applied to CO2 time series in Figures 7a-c is evident as the model (red line) is too383

low in the first 50-60 days and afterwards it is generally too high. The model and the384
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observations reveal a clear drawdown cycle of CO2 in the middle of the summer attributable385

to the maturity of crops in that timeframe. The model tends to be too high (lacking car-386

bon uptake) at those minima for all the examined years. An additional point of inter-387

est is the year 2018 with the model being 5-10 ppm low in the first 40 days - a signif-388

icant discrepancy. It is possible that this can be explained by the negative soil moisture389

anomalies in May of 2018 in Iowa (Figure 4d), which may have had local effects on crops390

reducing uptake of carbon in comparison to 2017 or 2019 and were poorly identified by391

the model prior to optimization.392

CO2 time series (Figures 7d-f) in the S region show that the model tends to be too393

high in the years 2018 and 2019, whereas 2017 does not have this bias. This can be due394

to the fact that for 2017 optimization the MS-01 station was used, located in the south-395

ern part of Mississippi, while for 2018-2019 years MS-02 station was used, located in the396

northern part of Mississippi. One possible reason for differences between the stations is397

that MS-01 is closer to the Gulf Coast and therefore gets more of the tropical influence398

enhancing CO2, while the MS-02 station is more influenced by the regional vegetation399

as there is more time for the tropical air to be depleted of CO2 before reaching the tower.400

It is likely that the LoFI sink is not strong enough in the vicinity of MS-02.401

Finally, the T region is characterized by generally flat CO2 time series with occa-402

sional sudden dips (Figure 7g-i), which are also sometimes present in the S region. These403

dips are associated with the passage of cold fronts that can capture some of the Midwest-404

ern CO2 depleted air during the summer and autumn months, but such fronts followed405

by the corresponding air mass do not occur often in the study period. As mentioned pre-406

viously, the NEE tracer does not exhibit a clear cycle in the T region and therefore does407

not allow for much optimization. Part of 2019 may be an exception to that rule, as the408

model tends to be too high during the summer months and the optimization suggests409

that carbon uptake needs to be increased.410

3.3 Optimization Validation411

In this study, the validation is meant to gauge the tower representativeness of each412

respective region considered by evaluating determined adjustments of the GEOS sim-413

ulation using independent-from-optimization observations. The optimization described414

in the previous section is validated with 3 towers INFLUX, LA-01, and AL-01, with data415

from the 2019 airborne ACT-America and 2019 shipboard SCOAPE campaigns. INFLUX416

tower results are demonstrated in the Figures 8a-c, where 5-day running daily averages417

of the observed, modeled, and model-adjusted CO2 are plotted over the MJJAS period.418

Comparing Figures 7a-c and Figures 8a-c indicates that the GEOS model bias is gen-419

erally similar for both WBI and INFLUX towers although with different magnitudes –420

too much uptake in the first 40 days of the growing season and too little uptake in the421

next 50-60 days. This result is reasonable as Indiana, like Iowa, is mainly an agriculture422

state (Figure 1). Therefore, the NEE optimization corrections (shown in green) adjust423

the model in the right direction. However, it is likely that the different vegetation in the424

proximity of INFLUX tower 1 (forests) and a somewhat different transport influence area425

affect the local CO2 mole fractions.426

Next, validation performed at LA-01 tower in years 2017 and 2018 is illustrated in427

Figures 8d and 8e. Validation at this tower serves to verify optimizations in both regions428

S and T. Unfortunately, a significant portion of the observed data is missing in 2017. It429

is possible to see that the correction of days 16-30 of MJJAS for 2017 (Figure 8d) result-430

ing from the T region optimization (Figure 6g) is inconsistent with the Louisiana data.431

This discrepancy may imply that weekly CO2 variability is not well captured by the op-432

timization process and may vary considerably between S and T regions. In 2018, the cor-433

rections from the S and T regions optimizations (Figures 6e and 6h) are mostly consis-434
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Figure 8. Validation of the optimization using various datasets throughout the years of in-
terest, where the INFLUX tower 1 is shown in (a-c) for years 2017-2019, LA-01 tower is shown
in (d-e) for years 2017-2018, AL-01 tower is shown in (f) for year 2018, southern ACT-2019 daily
averaged flights are shown in (g), Midwestern ACT-2019 daily averaged flights are shown in (h),
and shipboard campaign SCOAPE in 2019 is shown in (i).
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tent with LA-01 (Figure 8e), suggesting that the original fluxes indeed generally under-435

estimate regional carbon uptake in the given case.436

The only data that is available from the AL-01 tower is for 2018 and at that it is437

incomplete. The AL-01 tower can partially validate the S region optimization. Figure438

8f shows that in the first month the optimization is not helpful, but later in the period439

(starting at about day 90 of MJJAS) some improvement can be noted confirming higher440

carbon uptake. In this regard 2018 LA-01 and AL-01 towers are consistent and support441

the higher uptake values.442

Finally, the two campaigns, airborne ACT-America 2019 and shipboard SCOAPE443

2019, are used to validate the optimizations. ACT-America focused on all the regions444

of interest, first in the S and T regions during the second half of June and then in the445

M region during the first part of July. Figure 8g compares airborne CO2 averages to cor-446

responding original and adjusted model values. Noticeable improvement can be seen in447

the adjusted model, signaling that the S and T regions likely did experience higher car-448

bon uptake than the original GEOS calculation showed. Regarding ACT-America flights449

in the M region denoted in Figure 8h, the original and adjusted models do not differ by450

much and generally closely resemble the airborne measurements. This is not surprising451

as Figure 6c suggests that in early July 2019 the model accurately estimated CO2 mole452

fractions and did not require substantial adjustment. The SCOAPE 2019 shipboard mea-453

surements were of limited duration, taken in the middle of May 2019, and little could454

be learned from the comparisons as the optimization suggested only minor adjustment455

to the original fluxes used in this study. The SCOAPE observations suggest a massive456

carbon uptake during 14-17 days of MJJAS that did not extend to the location of the457

MS-02 tower in northern Mississippi. It is possible that some of the observed uptake was458

the result of the vegetation activity in parts of Florida, Georgia, Mississippi, and Alabama459

not well represented by the MS-02 tower. Additionally, this study did not consider any460

subtropical or tropical tracers, which may have played an important role in the CO2 mole461

fractions observed by the ship.462

Overall, the process of validating the optimizations showed that the derived scal-463

ing factors from the towers can be extended to the regions of interest albeit at times with464

a considerable error, which is difficult to quantify precisely. Established GEOS biases465

based on the WBI tower in the M region are partially observed at INFLUX tower 1. Re-466

gional ACT-America 2019 flights in the M region also indicate that the optimizations467

are reasonable. With regards to the S and T regions, towers LA-01 and AL-01 in 2018468

and corresponding ACT-America 2019 flights show improved agreements with adjusted469

model fields. On the other hand, the LA-01 tower in 2017 and SCOAPE shipboard cam-470

paign in 2019 do not suggest any improvement; however, those are limited fragments of471

the overall validation dataset.472

3.4 Growing Season NEE473

Once the optimization and validation procedures are accomplished it is possible to474

adjust GEOS NEE and compare the net impact over the growing season. Figure 9 com-475

pares original GEOS and adjusted GEOS NEE for the M region over 15-day segments476

of MJJAS and whole MJJAS period during years 2017-2019. Examining the NEE to-477

tals over the growing season (Figure 9d) indicate that 2019 has the smallest NEE com-478

pared to 2017 and 2018 supporting the assertion that the 2019 flood did reduce overall479

crop carbon uptake in the M region. The result is captured by both the original GEOS480

and the optimized GEOS indicating that NEE component of the LoFI package is already481

somewhat sensitive to flooding, likely due to the use of MODIS remote sensing informa-482

tion. As noted previously, GEOS NEE exhibits consistent bias throughout the years 2017-483

2019, where the model uptakes too much carbon at the beginning of the growing sea-484

son (May-June) and does not uptake enough later in the growing season specifically in485
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Figure 9. Original and adjusted GEOS NEE (in Pg of carbon) in the M region, where (a-c)
panels show 15-day segments of the flux for years 2017-2019 and (d) summarizes MJJAS NEE
flux for years 2017-2019. The uncertainty is one sigma.

July and August. This is specifically evident in Figure 9b where the optimization sug-486

gests a net carbon source in the first month of the growing season, which could be linked487

to the reduction in crop growth early in the growing season of 2018 due to a localized488

drought as evident from the Figures 5a and 4d (as was previously discussed in section489

3.2).490

The overall growing season magnitude of NEE in the S region (Figure 10) is ap-491

proximately four times lower than that of the M region. It is hypothesized here that this492

difference between M and S regions be explained by the switch of vegetation from mostly493

crops to mixed forests and savannahs (Figure 1). In 2017 the optimization did not sig-494

nificantly alter GEOS model fluxes, while noticeable changes were observed in 2018 and495

2019. It is important to note that the optimization for 2017 was carried out using tower496

MS-01 (southern Mississippi) and for years 2018 and 2019 tower MS-02 (northern Mis-497

sissippi) was utilized. In years 2018 and 2019 the optimization implies that on average498

carbon uptake in the S region should be noticeably higher than what the original GEOS499

simulation indicates. That is especially true of 2018, where the total MJJAS uptake in-500

creased by about 30% after the adjustment. Out of all the examined years, 2019 reveals501

the highest growing season carbon uptake in the S region as evident from the Figure 10d.502
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Figure 10. Original and adjusted GEOS NEE (in Pg of carbon) in the S region, where (a-c)
panels show 15-day segments of the flux for years 2017-2019 and (d) summarizes MJJAS NEE
flux for years 2017-2019. The uncertainty is one sigma.

This may indicate that the above-average rainfall of 2019 enhanced the regional plant503

growth, which is reflected by the higher than typical CO2 drawdown.504

The T region can be characterized by an even smaller NEE MJJAS variability in505

comparison to M and S regions reflecting the local vegetation consisting of grasslands506

and savannahs (Figure 1). Figure 11 shows generally little adjustments especially in years507

2017 and 2018. In 2018, optimization suggests a slight decrease in uptake, but it is marred508

by a noticeable uncertainty. The most interesting results come from the 2019 optimiza-509

tion, apparent in Figures 11c and 11e, where there is a clear signal in the increased up-510

take. This is consistent with the signal determined in the S region for 2019 (Figure 10d).511

Both outcomes support the possibility that in this case the anomalous precipitation event512

in the late spring/early summer of 2019 contributed to higher carbon uptake in compar-513

ison to years 2017 and 2018.514

4 Conclusions515

Generally prolonged excessive water conditions will negatively influence a plant sys-516

tem causing anoxia (Zhou et al., 2020); however, the effects of flooding on an ecosystem517

are not straightforward and largely depend on a particular vegetation type and degree518

of waterlogging (Detmers et al., 2015; Sun et al., 2022). Wet conditions can result in an519

increase of carbon net uptake, but too much wetness may lead to a net carbon release520

because in these conditions both productivity and respiration tend to decrease, and the521

overall NEE balance will be contingent on specific environmental conditions (Ahlström522

et al., 2015; Bloch & Bhattacharjee, 2020). The current study affirms the mentioned as-523
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Figure 11. Original and adjusted GEOS NEE (in Pg of carbon) in the T region, where (a-c)
panels show 15-day segments of the flux for years 2017-2019 and (d) summarizes MJJAS NEE
flux for years 2017-2019. The uncertainty is one sigma.

–21–



manuscript submitted to JGR: Atmospheres

sertions and implies that crops such as corn and soybeans seem to be more susceptible524

to waterlogging than non-crop vegetation such as savannahs, forests, and grasslands. This525

is expressed in the reduced carbon uptake in the first part of the growing season over526

the Midwestern region of the US (mainly crops) and overall increased carbon uptake in527

the Southern region of the US (mainly non-crop) during the flood of 2019 when compared528

to 2017 and 2018. The change in 2019 growing season NEE in the Midwest with respect529

to 2017 and 2018 of about 0.1 Pg C exceeded the total magnitude of NEE in region T530

(−0.05 Pg C) and equaled to the total magnitude of NEE in region S (−0.1 Pg C). For531

the perspective, an annual average NEE over the years 2010-2019 in North America is532

about −0.5 Pg C (Jiang et al., 2022). In addition, significant slowdown of the crop plant-533

ing progress occurred in the early growing season of 2019 as most of the corn and soy-534

beans in the US are in the Midwest. Flooding impacts in managed ecosystems dominated535

the net effect for the 2019 event. As humans are considering a variety of strategies to536

tackle climate change, sustainable crop management practice can accelerate carbon in-537

put into the soil (Meena et al., 2020). The exact effect of flooding on such practices is538

unclear but the delay in planting of crops explored in the current work raises questions539

that could influence future carbon balance and should be considered in strategies to re-540

duce net emissions.541

The impact of flooding on NEE and atmospheric CO2 is readily observed by satel-542

lites (Yin et al., 2020) and a variety of in situ observational approaches (this study). Like543

Yin et al., (2020), for the Midwestern region this study finds a decrease in net carbon544

uptake over June and July of 2019 of about 0.07-1.3 PgC [roughly 14-26% of an aver-545

age annual carbon net uptake in North America (Jiang et al., 2022)] when compared to546

both 2017 and 2018 and an increase in net carbon uptake in August and September of547

near 0.04 PgC (roughly 8% of an average annual carbon net uptake in North America)548

when compared to 2018 [Note that Yin et al. (2020) estimated Gross Primary Produc-549

tion (GPP), which does not account for RE, while this study estimated NEE]. However,550

the results from the current study suggest that comparing 2019 to 2018 may not be op-551

timal as 2018 may not be representative of an average growing season carbon activity552

(Jiang et al., 2022). For instance, assessment of 2019 NEE values with 2017 NEE val-553

ues does not seem to show a “recovery” in August-September time frame as stated in Yin554

et al. (2020) suggesting that additional inquiries are required into the detailed effects of555

flooding on the carbon uptake. Atmospheric CO2 observations can play an important556

role in helping to monitor the impact of agricultural systems but require sustained plan-557

ning and coordination (e.g., the discontinuity in towers made this study more difficult).558

Overall, the low latency flux estimation approach from LoFI is credible in discern-559

ing flooding and non-flooding events, which demonstrates the maturity of modeling tools560

that can be applied to carbon monitoring at the current stage. Further investigations561

in this direction are imperative as only a sparse amount of literature is available regard-562

ing carbon exchange between an ecosystem and the atmosphere in a variety of water-563

excess conditions.564
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Data Availability Statement574

CO2 data from MS-01, MS-02, AL-01, and LA-01 towers are available at https://575

sites.psu.edu/gulfcoast/data/; also see Miles et al. (2018). WBI and WKT tower576

data are available here: https://gml.noaa.gov/ccgg/obspack/index.html. All of the577

crop data used in this article can be found at https://quickstats.nass.usda.gov/.578

ACT airborne data are located at https://actamerica.ornl.gov/airborne_data.shtml.579

SCOAPE data are stored at https://www-air.larc.nasa.gov/missions/scoape/index580

.html. MERRA-2 data used for GEOS forcing, precipitation and soil moisture analyzes581

are available at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. Source code for582

the NASA GEOS model is available under the NASA Open-Source Agreement at http://583

opensource.gsfc.nasa.gov/projects/GEOS-5. The NEE fluxes used in GEOS are based584

on the CASA-GFED dataset provided at GES DISC (https://disc.gsfc.nasa.gov/585

datasets/GEOS_CASAGFED_3H_NEE_3/summary).586

More extensive descriptions of tower and airborne data can be found in Wei et al.587

(2021) and Masarie et al. (2014).588

References589

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., . . .590

Zeng, N. (2015). The dominant role of semi-arid ecosystems in the trend591

and variability of the land CO2 sink. Science, 348 (6237), 895-899. Retrieved592

from https://www.science.org/doi/abs/10.1126/science.aaa1668 doi:593

10.1126/science.aaa1668594

Ahmed, F., Rafii, M., Ismail, M. R., Juraimi, A. S., Rahim, H., Asfaliza, R., &595

Latif, M. A. (2013). Waterlogging tolerance of crops: breeding, mechanism596

of tolerance, molecular approaches, and future prospects. BioMed research597

international , 2013 .598

Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H.,599

Masarie, K. A., . . . Tans, P. P. (2014). CO2, CO, and CH4 measure-600

ments from tall towers in the noaa earth system research laboratory’s global601

greenhouse gas reference network: instrumentation, uncertainty analysis,602

and recommendations for future high-accuracy greenhouse gas monitor-603

ing efforts. Atmospheric Measurement Techniques, 7 (2), 647–687. Re-604

trieved from https://amt.copernicus.org/articles/7/647/2014/ doi:605

10.5194/amt-7-647-2014606

Bloch, M., & Bhattacharjee, J. (2020). Characterizing the carbon fluxes of a bot-607

tomland hardwood forest. In Agu fall meeting abstracts (Vol. 2020, pp. B065–608

0004).609

Bourtsoukidis, E., Kawaletz, H., Radacki, D., Schütz, S., Hakola, H., Hellén, H., . . .610

Bonn, B. (2014). Impact of flooding and drought conditions on the emission611

of volatile organic compounds of quercus robur and prunus serotina. Trees,612

28 (1), 193–204.613

Chevallier, F., Wang, T., Ciais, P., Maignan, F., Bocquet, M., Altaf Arain, M., . . .614

Moors, E. J. (2012). What eddy-covariance measurements tell us about prior615

land flux errors in CO2-flux inversion schemes. Global Biogeochemical Cycles,616

26 (1). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/617

abs/10.1029/2010GB003974 doi: https://doi.org/10.1029/2010GB003974618

Dalmagro, H. J., Zanella de Arruda, P. H., Vourlitis, G. L., Lathuillière, M. J.,619

de S. Nogueira, J., Couto, E. G., & Johnson, M. S. (2019). Radiative620

forcing of methane fluxes offsets net carbon dioxide uptake for a tropical621

flooded forest. Global Change Biology , 25 (6), 1967-1981. Retrieved from622

https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14615 doi:623

–23–



manuscript submitted to JGR: Atmospheres

https://doi.org/10.1111/gcb.14615624

Davis, K. J., Browell, E. V., Feng, S., Lauvaux, T., Obland, M. D., Pal, S., . . .625

Williams, C. A. (2021). The atmospheric carbon and transport (ACT)-america626

mission. Bulletin of the American Meteorological Society , 102 (9), E1714 -627

E1734. Retrieved from https://journals.ametsoc.org/view/journals/628

bams/102/9/BAMS-D-20-0300.1.xml doi: 10.1175/BAMS-D-20-0300.1629

Davis, K. J., Deng, A., Lauvaux, T., Miles, N. L., Richardson, S. J., Sarmiento,630

D. P., . . . Karion, A. (2017, 05). The Indianapolis Flux Experiment (IN-631

FLUX): A test-bed for developing urban greenhouse gas emission mea-632

surements. Elementa: Science of the Anthropocene, 5 . Retrieved from633

https://doi.org/10.1525/elementa.188 (21) doi: 10.1525/elementa.188634

Detmers, R. G., Hasekamp, O., Aben, I., Houweling, S., van Leeuwen, T. T., Butz,635

A., . . . Poulter, B. (2015). Anomalous carbon uptake in australia as seen636

by GOSAT. Geophysical Research Letters, 42 (19), 8177-8184. Retrieved637

from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/638

2015GL065161 doi: https://doi.org/10.1002/2015GL065161639

Dinsmore, K. J., Billett, M. F., & Dyson, K. E. (2013). Temperature and precip-640

itation drive temporal variability in aquatic carbon and ghg concentrations641

and fluxes in a peatland catchment. Global Change Biology , 19 (7), 2133-642

2148. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/643

gcb.12209 doi: https://doi.org/10.1111/gcb.12209644

Dlugokencky, E., & Tans, P. (2016). The marine boundary layer reference (down-645

loaded early 2016).646

Dušek, J., Čížková, H., Czerný, R., Taufarová, K., Šmídová, M., & Janouš, D.647

(2009). Influence of summer flood on the net ecosystem exchange of CO2648

in a temperate sedge-grass marsh. Agricultural and Forest Meteorology ,649

149 (9), 1524-1530. Retrieved from https://www.sciencedirect.com/650

science/article/pii/S0168192309000951 doi: https://doi.org/10.1016/651

j.agrformet.2009.04.007652

Follett, R. (2001). Soil management concepts and carbon sequestration in crop-653

land soils. Soil and Tillage Research, 61 (1), 77-92. Retrieved from https://654

www.sciencedirect.com/science/article/pii/S0167198701001805 (XVth655

ISTRO Conference on Tillage at the Threshold of the 21st Century: Looking656

Ahead) doi: https://doi.org/10.1016/S0167-1987(01)00180-5657

Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D., . . .658

Zscheischler, J. (2015). Effects of climate extremes on the terrestrial carbon659

cycle: concepts, processes and potential future impacts. Global Change Biol-660

ogy , 21 (8), 2861-2880. Retrieved from https://onlinelibrary.wiley.com/661

doi/abs/10.1111/gcb.12916 doi: https://doi.org/10.1111/gcb.12916662

Friend, A. D., ARNETH, A., KIANG, N. Y., LOMAS, M., OGÉE, J., RÖDEN-663

BECK, C., . . . ZAEHLE, S. (2007). Fluxnet and modelling the global carbon664

cycle. Global Change Biology , 13 (3), 610-633. Retrieved from https://665

onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2006.01223.x666

doi: https://doi.org/10.1111/j.1365-2486.2006.01223.x667

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., . . .668

Zhao, B. (2017). The modern-era retrospective analysis for research and ap-669

plications, version 2 (MERRA-2). Journal of Climate, 30 (14), 5419 - 5454.670

Retrieved from https://journals.ametsoc.org/view/journals/clim/30/671

14/jcli-d-16-0758.1.xml doi: 10.1175/JCLI-D-16-0758.1672

Han, G., Chu, X., Xing, Q., Li, D., Yu, J., Luo, Y., . . . Rafique, R. (2015).673

Effects of episodic flooding on the net ecosystem CO2 exchange of a674

supratidal wetland in the yellow river delta. Journal of Geophysical Re-675

search: Biogeosciences, 120 (8), 1506-1520. Retrieved from https://676

agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JG002923 doi:677

https://doi.org/10.1002/2015JG002923678

–24–



manuscript submitted to JGR: Atmospheres

Hilton, R. G., Galy, A., Hovius, N., Chen, M.-C., Horng, M.-J., & Chen, H. (2008).679

Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. na-680

ture Geoscience, 1 (11), 759–762.681

Jiang, F., Ju, W., He, W., Wu, M., Wang, H., Wang, J., . . . Chen, J. M. (2022). A682

10-year global monthly averaged terrestrial net ecosystem exchange dataset in-683

ferred from the ACOS GOSAT v9 XCO2 retrievals (GCAS2021). Earth System684

Science Data, 14 (7), 3013–3037. Retrieved from https://essd.copernicus685

.org/articles/14/3013/2022/ doi: 10.5194/essd-14-3013-2022686

Knapp, A. K., Beier, C., Briske, D. D., Classen, A. T., Luo, Y., Reichstein, M., . . .687

Weng, E. (2008, 10). Consequences of More Extreme Precipitation Regimes688

for Terrestrial Ecosystems. BioScience, 58 (9), 811-821. Retrieved from689

https://doi.org/10.1641/B580908 doi: 10.1641/B580908690

Koster, R. D., Darmenov, A. S., & da Silva, A. M. (2015). The quick fire emissions691

dataset (QFED): Documentation of versions 2.1, 2.2 and 2.4 (Tech. Rep.).692

Kramer, K., Vreugdenhil, S. J., & van der Werf, D. (2008). Effects of flooding on693

the recruitment, damage and mortality of riparian tree species: A field and694

simulation study on the rhine floodplain. Forest Ecology and Management ,695

255 (11), 3893-3903. Retrieved from https://www.sciencedirect.com/696

science/article/pii/S0378112708002922 doi: https://doi.org/10.1016/697

j.foreco.2008.03.044698

Lal, R. (2019). Accelerated soil erosion as a source of atmospheric CO2. Soil and699

Tillage Research, 188 , 35-40. Retrieved from https://www.sciencedirect700

.com/science/article/pii/S0167198718300345 (Soil Carbon and Cli-701

mate Change: the 4 per Mille Initiative) doi: https://doi.org/10.1016/702

j.still.2018.02.001703

Masarie, K. A., Peters, W., Jacobson, A. R., & Tans, P. P. (2014). Obspack:704

a framework for the preparation, delivery, and attribution of atmospheric705

greenhouse gas measurements. Earth System Science Data, 6 (2), 375–384.706

Retrieved from https://essd.copernicus.org/articles/6/375/2014/ doi:707

10.5194/essd-6-375-2014708

Masarie, K. A., & Tans, P. P. (1995). Extension and integration of atmospheric709

carbon dioxide data into a globally consistent measurement record. Journal710

of Geophysical Research: Atmospheres, 100 (D6), 11593-11610. Retrieved from711

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/95JD00859712

doi: https://doi.org/10.1029/95JD00859713

Meena, R. S., Kumar, S., & Yadav, G. S. (2020). Soil carbon sequestration in crop714

production. In R. S. Meena (Ed.), Nutrient dynamics for sustainable crop pro-715

duction (pp. 1–39). Singapore: Springer Singapore. Retrieved from https://716

doi.org/10.1007/978-981-13-8660-2_1 doi: 10.1007/978-981-13-8660-2_1717

Miles, N., Richardson, S., Martins, D., Davis, K., Lauvaux, T., Haupt, B., & Miller,718

S. (2018). Act-america: L2 in situ CO2, CO, and CH4 concentrations from719

towers, eastern USA. ornl daac, oak ridge, tennessee, usa.720

Miyata, A., Leuning, R., Denmead, O. T., Kim, J., & Harazono, Y. (2000). Carbon721

dioxide and methane fluxes from an intermittently flooded paddy field. Agri-722

cultural and Forest Meteorology , 102 (4), 287-303. Retrieved from https://723

www.sciencedirect.com/science/article/pii/S0168192300000927 doi:724

https://doi.org/10.1016/S0168-1923(00)00092-7725

Molod, A., Takacs, L., Suarez, M., & Bacmeister, J. (2015). Development of the726

GEOS-5 atmospheric general circulation model: evolution from MERRA727

to MERRA2. Geoscientific Model Development , 8 (5), 1339–1356. Re-728

trieved from https://gmd.copernicus.org/articles/8/1339/2015/ doi:729

10.5194/gmd-8-1339-2015730

Neri, A., Villarini, G., & Napolitano, F. (2020). Intraseasonal predictability of the731

duration of flooding above national weather service flood warning levels across732

the U.S. midwest. Hydrological Processes, 34 (23), 4505-4511. Retrieved from733

–25–



manuscript submitted to JGR: Atmospheres

https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.13902 doi:734

https://doi.org/10.1002/hyp.13902735

Oda, T., & Maksyutov, S. (2015). ODIAC fossil fuel CO2 emissions dataset (version736

name: ODIAC2016). Center for Global Environmental Research, National In-737

stitute for Environmental Studies, https://doi. org/10.17595/20170411.001 .738

Oda, T., Maksyutov, S., & Andres, R. J. (2018). The open-source data inven-739

tory for anthropogenic co2, version 2016 (odiac2016): a global monthly fossil740

fuel co2 gridded emissions data product for tracer transport simulations and741

surface flux inversions. Earth System Science Data, 10 (1), 87–107. Re-742

trieved from https://essd.copernicus.org/articles/10/87/2018/ doi:743

10.5194/essd-10-87-2018744

Ott, L. E., Pawson, S., Collatz, G. J., Gregg, W. W., Menemenlis, D., Brix, H., . . .745

Kawa, S. R. (2015). Assessing the magnitude of CO2 flux uncertainty in746

atmospheric CO2 records using products from nasa’s carbon monitoring flux747

pilot project. Journal of Geophysical Research: Atmospheres, 120 (2), 734-748

765. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/749

10.1002/2014JD022411 doi: https://doi.org/10.1002/2014JD022411750

Paustian, K., Six, J., Elliott, E., & Hunt, H. (2000). Management options for reduc-751

ing CO2 emissions from agricultural soils. Biogeochemistry , 48 (1), 147–163.752

Price, J. J., & Berkowitz, J. F. (2020). Wetland functional responses to prolonged753

inundation in the active mississippi river floodplain. Wetlands, 40 (6), 1949–754

1956.755

Randerson, J. T., Thompson, M. V., Malmstrom, C. M., Field, C. B., & Fung,756

I. Y. (1996). Substrate limitations for heterotrophs: Implications for models757

that estimate the seasonal cycle of atmospheric CO2. Global Biogeochemical758

Cycles, 10 (4), 585-602. Retrieved from https://agupubs.onlinelibrary759

.wiley.com/doi/abs/10.1029/96GB01981 doi: https://doi.org/10.1029/760

96GB01981761

Reed, T., Mason, L. R., & Ekenga, C. C. (2020). Adapting to climate change762

in the upper mississippi river basin: Exploring stakeholder perspectives on763

river system management and flood risk reduction. Environmental Health In-764

sights, 14 , 1178630220984153. Retrieved from https://doi.org/10.1177/765

1178630220984153 (PMID: 33447043) doi: 10.1177/1178630220984153766

Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P., Koster, R. D.,767

& De Lannoy, G. J. (2017). Assessment of MERRA-2 land surface hydrology768

estimates. Journal of Climate, 30 (8), 2937–2960.769

Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P., & Partyka,770

G. S. (2017). Land surface precipitation in MERRA-2. Journal of Climate,771

30 (5), 1643–1664.772

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I.,773

. . . others (2013). Climate extremes and the carbon cycle. Nature, 500 (7462),774

287–295.775

Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: theory and prac-776

tice (Vol. 2). World scientific.777

Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E., & Bloomfield, J. (2002). In-778

creased crop damage in the us from excess precipitation under climate change.779

Global Environmental Change, 12 (3), 197-202. Retrieved from https://780

www.sciencedirect.com/science/article/pii/S0959378002000080 doi:781

https://doi.org/10.1016/S0959-3780(02)00008-0782

Schuldt, K. N., Mund, M., Luijkx, I. T., Aalto, T., Abshire, J. B., Aikin, K., . . .783

others (2021). Multi-laboratory compilation of atmospheric carbon dioxide784

data for the period 1957–2019, obspack_co2_1_GLOBALVIEWplus_v6.785

1_2021-03-01, NOAA earth system research laboratory, global monitoring786

laboratory [data set]. NOAA Earth System Research Laboratory, Global Moni-787

toring Laboratory [data set] , 10 , 20210801.788

–26–



manuscript submitted to JGR: Atmospheres

Schwalm, C. R., Williams, C. A., Schaefer, K., Baldocchi, D., Black, T. A., Gold-789

stein, A. H., . . . Scott, R. L. (2012). Reduction in carbon uptake during turn790

of the century drought in western north america. Nature Geoscience, 5 (8),791

551–556.792

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan,793

F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling794

system. Bulletin of the American Meteorological Society , 96 (12), 2059 - 2077.795

Retrieved from https://journals.ametsoc.org/view/journals/bams/96/796

12/bams-d-14-00110.1.xml doi: 10.1175/BAMS-D-14-00110.1797

Sulla-Menashe, D., & Friedl, M. A. (2018). User guide to collection 6 MODIS land798

cover (MCD12q1 and MCD12C1) product. USGS: Reston, VA, USA, 1 , 18.799

Sun, B., Jiang, M., Han, G., Zhang, L., Zhou, J., Bian, C., . . . Xia, J. (2022).800

Experimental warming reduces ecosystem resistance and resilience to se-801

vere flooding in a wetland. Science Advances, 8 (4), eabl9526. Retrieved802

from https://www.science.org/doi/abs/10.1126/sciadv.abl9526 doi:803

10.1126/sciadv.abl9526804

Thompson, A. M. (2020). Evaluation of NASA’s remote-sensing capabilities in805

coastal environments (Tech. Rep.). Dept of Interior-Bureau of Ocean Energy806

Management (BOEM).807

van der Molen, M., Dolman, A., Ciais, P., Eglin, T., Gobron, N., Law, B., . . .808

Wang, G. (2011). Drought and ecosystem carbon cycling. Agricul-809

tural and Forest Meteorology , 151 (7), 765-773. Retrieved from https://810

www.sciencedirect.com/science/article/pii/S0168192311000517 doi:811

https://doi.org/10.1016/j.agrformet.2011.01.018812

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasib-813

hatla, P. S., . . . van Leeuwen, T. T. (2010). Global fire emissions and the814

contribution of deforestation, savanna, forest, agricultural, and peat fires815

(1997–2009). Atmospheric Chemistry and Physics, 10 (23), 11707–11735.816

Retrieved from https://acp.copernicus.org/articles/10/11707/2010/817

doi: 10.5194/acp-10-11707-2010818

Wei, Y., Shrestha, R., Pal, S., Gerken, T., Feng, S., McNelis, J., . . . Davis, K. J.819

(2021). Atmospheric carbon and transport – america (ACT-america) data820

sets: Description, management, and delivery. Earth and Space Science, 8 (7),821

e2020EA001634. Retrieved from https://agupubs.onlinelibrary.wiley822

.com/doi/abs/10.1029/2020EA001634 (e2020EA001634 2020EA001634) doi:823

https://doi.org/10.1029/2020EA001634824

Weir, B., Ott, L. E., Collatz, G. J., Kawa, S. R., Poulter, B., Chatterjee, A.,825

. . . Pawson, S. (2021). Bias-correcting carbon fluxes derived from land-826

surface satellite data for retrospective and near-real-time assimilation sys-827

tems. Atmospheric Chemistry and Physics, 21 (12), 9609–9628. Retrieved828

from https://acp.copernicus.org/articles/21/9609/2021/ doi:829

10.5194/acp-21-9609-2021830

Yildirim, E., & Demir, I. (2022). Agricultural flood vulnerability assessment and831

risk quantification in iowa. Science of The Total Environment , 826 , 154165.832

Retrieved from https://www.sciencedirect.com/science/article/pii/833

S0048969722012578 doi: https://doi.org/10.1016/j.scitotenv.2022.154165834

Yin, Y., Byrne, B., Liu, J., Wennberg, P. O., Davis, K. J., Magney, T., . . . Franken-835

berg, C. (2020). Cropland carbon uptake delayed and reduced by 2019 mid-836

west floods. AGU Advances, 1 (1), e2019AV000140. Retrieved from https://837

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019AV000140838

(e2019AV000140 2019AV000140) doi: https://doi.org/10.1029/2019AV000140839

Zaerr, J. B. (1983, 03). Short-Term Flooding and Net Photosynthesis in Seedlings840

of Three Conifers. Forest Science, 29 (1), 71-78. Retrieved from https://doi841

.org/10.1093/forestscience/29.1.71 doi: 10.1093/forestscience/29.1.71842

Zhang, W., & Villarini, G. (2021). Greenhouse gases drove the increasing trends in843

–27–



manuscript submitted to JGR: Atmospheres

spring precipitation across the central USA. Philosophical Transactions of the844

Royal Society A: Mathematical, Physical and Engineering Sciences, 379 (2195),845

20190553. Retrieved from https://royalsocietypublishing.org/doi/abs/846

10.1098/rsta.2019.0553 doi: 10.1098/rsta.2019.0553847

Zhou, W., Chen, F., Meng, Y., Chandrasekaran, U., Luo, X., Yang, W., & Shu,848

K. (2020). Plant waterlogging/flooding stress responses: From seed ger-849

mination to maturation. Plant Physiology and Biochemistry , 148 , 228-236.850

Retrieved from https://www.sciencedirect.com/science/article/pii/851

S0981942820300206 doi: https://doi.org/10.1016/j.plaphy.2020.01.020852

Zomer, R. J., Bossio, D. A., Sommer, R., & Verchot, L. V. (2017). Global sequestra-853

tion potential of increased organic carbon in cropland soils. Scientific Reports,854

7 (1), 1–8.855

Zona, D., Lipson, D. A., Paw U, K. T., Oberbauer, S. F., Olivas, P., Gioli, B., &856

Oechel, W. C. (2012). Increased CO2 loss from vegetated drained lake857

tundra ecosystems due to flooding. Global Biogeochemical Cycles, 26 (2).858

Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/859

10.1029/2011GB004037 doi: https://doi.org/10.1029/2011GB004037860

–28–


