
P
os
te
d
on

23
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
23
45
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Moist Potential Vorticity Diagnosis of the Tropical Cyclone

Boundary Layer: Influence of Roll Vortices

Ipshita Dey1 and Morgan O’neill1

1Stanford University

November 23, 2022

Abstract

Physical processes determining the dynamic and thermodynamic structure of a tropical cyclone boundary layer (TCBL) are

quite different from anywhere else in the atmospheric boundary layer due to the substantial contribution of latent heating and

frictional convergence. These processes regulate the radial and vertical distributions of momentum and enthalpy fluxes that

are closely related to storm development and intensification. Our current understanding of TCBL is limited by the number of

observations in this region, and a majority of the observational studies assume an axisymmetric structure. Three-dimensional

observations and numerical studies show that substantial asymmetric structure exists in the TCBL. This study investigates

the link between the asymmetric structure and small-scale processes using a Moist Potential Vorticity (MPV) framework. The

simulated TCBL is uniquely characterized as a region of negative MPV with a robust and coherent layer of high-magnitude

negative MPV embedded within, referred to as the Potential Vorticity Minimum Layer (PVML). The PVML can interact with

the local flow anomalies such as those associated with roll vortices provided they are vertically collocated. The small-scale

dynamical processes set the thermodynamic structure inside the TCBL and this interplay modulates the height of the PVML.

Since the height of the PVML combines information about the local wind and thermal structures using a materially conserved

variable, it is a valuable proxy to study the evolving ‘topography’ of a simulated TCBL.
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ABSTRACT: Physical processes determining the dynamic and thermodynamic structure of a

tropical cyclone boundary layer (TCBL) are quite different from anywhere else in the atmospheric

boundary layer due to the substantial contribution of latent heating and frictional convergence.

These processes regulate the radial and vertical distributions of momentum and enthalpy fluxes

that are closely related to storm development and intensification. Our current understanding of

TCBL is limited by the number of observations in this region, and a majority of the observational

studies assume axisymmetric structure. Three-dimensional observations and numerical studies

show that substantial asymmetric structure exists in the TCBL. This study investigates the link

between the asymmetric structure and small-scale processes using a Moist Potential Vorticity

(MPV) framework. The simulated TCBL is uniquely characterized as a region of negative MPV

with a robust and coherent layer of high-magnitude negative MPV embedded within, referred

to as the Potential Vorticity Minimum Layer (PVML). The PVML can interact with the local

flow anomalies such as those associated with roll vortices provided they are vertically collocated.

The small-scale dynamical processes set the thermodynamic structure inside the TCBL and this

interplay modulates the height of the PVML. Since the height of the PVML combines information

about the local wind and thermal structures using a materially conserved variable, it is a valuable

proxy to study the evolving ‘topography’ of a simulated TCBL.
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1. Introduction23

The application of potential vorticity (PV) diagnostics to understand synoptic-scale processes has24

greatly benefited tropical cyclone (TC) forecasting, particularly in predicting TC motion (Thorpe25

1985; Davis and Emanuel 1991; Wu and Emanuel 1993; Shapiro and Franklin 1995; Schubert26

et al. 1999; Wang and Zhang 2003). Studies have also linked the evolution of upper-level PV27

anomalies to TC genesis and intensification (Montgomery and Farrell 1993; Molinari et al. 1995).28

This is possible due to the utility of PV as a materially conserved tracer in the absence of frictional29

and diabatic forces. Positive diabatic heating on synoptic scales results in the “dilution” of PV30

substance in the isentropic layers above the heating maximum, and a “concentration” below since31

there can be no flux of PV across isentropic surfaces, but there can be a flux of mass (Haynes and32

McIntyre 1987). However, the usefulness of PV in understanding mesoscale processes has been33

limited, owing largely to the difficulty in characterizing unbalanced motions. At these scales,34

velocity perturbations are comparable to the balanced velocity field, which introduces strong35

non-linearities in the equations and makes it impractical to perform PV inversion. Nevertheless,36

PV still retains its utility in tracking the diabatic and frictional forces (Haynes and McIntyre 1987)37

as they directly impact the mass and wind field respectively and adjust them locally to a new PV.38

Recent studies have highlighted the significance of using PV in the study of mesoscale processes39

(Chagnon and Gray 2009; Shutts 2017; Clarke et al. 2019; Sessions et al. 2019; Harvey et al.40

2020). For instance, convective heating in a strongly vertically sheared environment has been41

shown to create quasi-horizontal PV dipoles that last longer than the convection that initiated them42

and can initiate new convection (Chagnon and Gray 2009; Weijenborg et al. 2017; Oertel et al.43

2019).44

45

Mesoscale processes inside the tropical cyclone boundary layer (TCBL) can regulate the radial46

and vertical distributions of momentum and enthalpy fluxes that in turn set the necessary boundary47

conditions for the inversion of a quasi-balanced, zero-PV TC interior, including the eyewall48

(Emanuel 1986). This has an important implication that the TCBL plays an important role in49

controlling the TC structure and intensity, as suggested by several studies (Smith et al. 2009; Smith50

and Montgomery 2015; Persing et al. 2013; Gopalakrishnan et al. 2013) and needs to be accurately51

represented in numerical models (Emanuel 1995; Braun et al. 2011; Nolan et al. 2009b; Smith and52
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Thomsen 2010; Kepert 2011; Bryan 2011; Cione et al. 2013; Kilroy et al. 2016; Bu et al. 2017).53

This includes improved representation of kilometer-scale coherent eddies that are aligned in the54

mean tangential wind direction known as roll vortices (Wurman andWinslow 1998; Morrison et al.55

2005; Lorsolo et al. 2008; Ellis and Businger 2010; Foster 2013). Roll vortices in the TCBL are56

generally formed as a consequence of inflection point instability (Foster 2005; Nolan 2005; Gao and57

Ginis 2018) and can assist the intensification process via vertical transport of tangential momentum58

(Zhang et al. 2008; Gao et al. 2017). Furthermore, the up-gradient transfer of surface heat and59

momentum fluxes associated with roll vortices can energize the large-scale motions, possibly re-60

sulting in increased convective activity (Sukhanovskii and Popova 2020; Sroka andGuimond 2021).61

62

The main purpose of this paper is to characterize the local TCBL dynamics using the relevant63

PV framework and demonstrate that an accurate analysis of coherent PV structures can provide64

additional insight into the source, evolution, and maintenance of TCBL processes. The application65

of traditional dry PV (hereafter referred to as 𝑃𝑉) in the TCBL is complicated by moist convection.66

Latent heating associated with moist convection is itself a source of PV anomalies (Chagnon and67

Gray 2009). Latent heating/cooling can be incorporated as a source/sink in the thermodynamic68

equation (𝜃 tendency) but the resulting sources/sinks in PV are small in magnitude and difficult69

to track (Marquet 2014). In addition, the TCBL is non-uniformly saturated, which points to a70

horizontal discontinuity in the latent heat term of the thermodynamic equation in the transition71

regions between saturated air (where latent heat can be released) and unsaturated air (where72

latent heat cannot be released). Furthermore, there can be latent cooling in unsaturated air due73

to re-evaporation of falling hydrometeors which may appear as an additional sink term. To74

address this problem, several formulations of Moist Potential Vorticity (MPV) have been used75

by replacing potential temperature (𝜃) with the virtual potential temperature (𝜃𝑣), generalized76

potential temperature (𝜃∗) or equivalent potential temperature (𝜃𝑒) (Bennetts and Hoskins 1979;77

Emanuel 1979; Schubert et al. 2001; Gao et al. 2004; Marquet 2014).78

79

𝑃𝑉𝑒 =
1
𝜌
𝜁𝑎 · ∇𝜃𝑒 (1)
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80

𝜃𝑒 = 𝑇

( 𝑝𝑑
𝑝𝑜

) −𝑅𝑑
𝐶𝑝𝑑+𝐶𝑙 .𝑞𝑡 (𝐻)

−𝑞𝑣𝑅𝑣
𝐶𝑝𝑑+𝐶𝑙 .𝑞𝑡 𝑒𝑥𝑝

( 𝐿𝑣𝑞𝑣

(𝐶𝑝𝑑 +𝐶𝑙 .𝑞𝑡)𝑇

)
(2)

In this study, we use the formulation (Eq. 1) for MPV that uses the equivalent potential temperature81

(𝜃𝑒). Here, 𝜁𝑎 is the three-dimensional absolute vorticity and 𝜌 is the total density of moist air. 𝜃𝑒 is82

defined in Eq. 2 where 𝑇 is the temperature, 𝑝𝑑 is the partial pressure of dry air, 𝑝𝑜 is the reference83

pressure (1000 mb), 𝑅𝑑 and 𝑅𝑣 are the gas constants for dry air and water vapor respectively, 𝐶𝑝𝑑84

and 𝐶𝑙 are the specific heats of dry air at constant pressure and liquid water respectively, 𝑞𝑣 is the85

water vapor mixing ratio, 𝑞𝑡 is the total liquid water content per unit mass of dry air and 𝐿𝑣 is86

the latent heat of vaporization. The resultant MPV, hereafter referred to as 𝑃𝑉𝑒 and measured in87

Potential Vorticity Units (PVU), includes the relative humidity (𝐻) to account for both saturated88

and unsaturated conditions whilst also conserving the total entropy in the absence of external89

sensible or latent heating (Emanuel 1994). Several other studies have used similar definitions of90

MPV to investigate frontal rain bands (Bennetts and Hoskins 1979; Emanuel 1979; Cao and Cho91

1995; Liang et al. 2010). Schubert et al. (2001) demonstrated that the solenoidal (baroclinic)92

production of MPV is non-zero for the choice of 𝜃𝑒 (i.e. 𝑃𝑉𝑒 is non-invertible) and recommended93

the use of 𝜃𝑣 instead. However, Wetzel et al. (2020) recently showed that 𝑃𝑉𝑒 is, in fact, more94

suitable to recover the balanced composition of the flow if used with additional balanced moist95

variables. Since PV inversion in TCBL is neither feasible nor the goal of this study and because the96

solenoidal production of 𝑃𝑉𝑒 can be neglected when compared to frictional and diabatic sources97

(small magnitudes of pressure and density gradients), 𝑃𝑉𝑒 is the more appropriate choice for MPV98

than 𝑃𝑉𝑣. The choice of 𝑃𝑉𝑒 is also supported by the fact that 𝜃𝑒 is linked to the total entropy of the99

moist system and is conserved for reversible adiabatic motions (no condensate fallout) of saturated100

air, thereby allowing for meaningful interpretation of diabatic tendencies of 𝑃𝑉𝑒.101

2. Model Description102

Direct measurements of 𝑃𝑉𝑒 in the TCBL are strongly limited due to the lack of observations,103

particularly high-resolution measurements of winds and thermodynamic properties (Marks et al.104

2008; Cione et al. 2020). We instead study the TCBL simulated using an idealized numerical105

model. Numerical models rely heavily on boundary layer parameterizations developed for106

moderate wind conditions. The simulated TC intensity is highly sensitive to the choice of107
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the parameterization scheme (Braun and Tao 2000; Nolan et al. 2009a,b; Smith and Thomsen108

2010; Kepert 2011; Green and Zhang 2015; Ming and Zhang 2016). This study employs the109

non-hydrostatic Bryan Cloud Model 1 version 19.8 (Bryan and Rotunno 2009; Bryan and Fritsch110

2002) to simulate two idealized TCs on an f-plane, one with a parameterized boundary layer111

(referred to as “TC-Param”) and the other without (referred to as “TC-NonParam”). TC-Param112

uses the Yonsei University (YSU) scheme (Hong et al. 2006) to parameterize all turbulence113

whereas TC-NonParam uses the TKE scheme (Deardorff 1980) to treat only the sub-grid turbulent114

processes. The horizontal resolution needed by mesoscale models to produce realistic TC intensity115

whilst adequately representing mesoscale features is approximately 5 km (Fierro et al. 2009;116

Baldauf et al. 2011; Gentry and Lackmann 2010). Both TCs are configured for a doubly periodic117

domain of 480 km x 480 km with a uniform horizontal grid spacing of 500 m. The vertical118

domain is split into three layers: (i) bottom layer extending up to 3 km above sea level with a119

uniform grid spacing of 50 m, (ii) middle layer extending from 3 km to 8.5 km with stretched grid120

spacing ranging from 50 m to 500 m, and (iii) top layer extending up to 25 km with a uniform121

grid spacing of 500 m. A vertical sponge layer in the topmost 5 km is used to minimize the122

reflection and buildup of gravity waves. Both simulations are initiated using a finite-amplitude123

vortex in an atmosphere that is neutrally stable to moist convection (Rotunno and Emanuel 1987)124

and an ocean surface with constant sea surface temperature (SST) set to 28◦𝐶 (or 301 K). A moist125

tropical sounding (Dunion 2011) is used to prescribe an atmosphere unstable to moist convection126

and a Newtonian cooling scheme is used to relax the temperature profile towards the initial state127

over 12 hrs. The initial vortex has an analytic form given by Rotunno and Emanuel (1987)128

with maximum tangential winds (𝑈𝑡,𝑚𝑎𝑥) of 15 m/s and a radius of maximum winds (RMW) of129

82.5 km. The two-moment scheme based on Morrison and Gettelman (2008) has been used to130

parameterize cloud microphysics and precipitation in both TCs. The Coriolis parameter is set to131

0.0002 𝑠−1, which is four times higher than the typical tropical values. This unusually high value132

was chosen to produce a TC with a relatively smaller wind field as the TC size (D) is bounded133

by the Coriolis parameter, i.e. 𝐷 =
𝑉𝑝

𝑓
(Emanuel 1986). This allows for a smaller computational134

domain to encompass the entire TC, thereby reducing the high computational cost (Khairoutdinov135

and Emanuel 2013).136

137
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Large-eddy simulations (LES) of TCBL are becoming an increasingly viable alternative to138

mesoscale modeling, in which both the radial and vertical turbulent mixing are explicitly sim-139

ulated without relying on traditional boundary layer approximations (Zhu 2008; Rotunno et al.140

2009; Green and Zhang 2015; Ito et al. 2017; Wu et al. 2019). Since LES models parameterize141

only the small-scale non-energy containing isotropic turbulent eddies, they are often used to exam-142

ine the performance of mesoscale models. We use output from an LES of the TCBL (referred to143

as “TC-LES”) using the Japan Meteorological Agency’s operational regional weather prediction144

model (JMA-NHM), which is provided by and described in Ito et al. (2017), to compare with the145

results of our more coarsely resolved CM1 simulations. LES requires a sufficiently small grid146

resolution (∼ 100 m) to represent the largest and most energetic features in a turbulent flow. The147

JMA-NHM is a fully compressible, non-hydrostatic model and was integrated on a f-plane at 10◦N148

over a horizontal domain size of 2000 km x 2000 km with doubly periodic boundary conditions.149

Like TC-Param/NonParam, TC-LES was also initiated with an analytic vortex (𝑈𝑡,𝑚𝑎𝑥 = 15 m/s;150

RMW = 50 km) in a conditionally unstable atmosphere prescribed by a mean tropical sounding151

(Jordan 1958) and a constant SST set to 27◦𝐶 (300 K) ocean surface. An important distinction152

between TC-Param/NonParam and TC-LES is that the latter used two consecutive configurations153

to integrate the model equations: (1) P (mesoscale model for turbulence) run for 120 hrs with a154

horizontal grid spacing of 2 km, followed by (2) LES run for 10 hrs with a horizontal grid spacing155

of 100m. The TKE scheme (Deardorff 1980) was used for sub-grid scale parameterization for156

both P and LES modes and the three-ice single-moment bulk scheme (Lin et al. 1983) was used157

to parameterize cloud microphysics. Ito et al. (2017) found that the very close to the surface,158

the simulated TCBL contained strong coherent features that were more or less aligned with the159

mean tangential flow and identified them as roll vortices (their Figure 4). It will be shown that160

both TC-Param and TC-NonParam are able to marginally resolve the coherent roll vortices despite161

a coarser resolution of 500 m; however their characteristics are significantly different than those162

observed by Ito et al. (2017). From a PV standpoint, further increasing the grid resolution may not163

necessarily be useful as it is known to contaminate PV by virtue of aliasing and subgrid effects164

(Bodner and Fox-Kemper 2020).165
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3. Results and Discussions166

a. TC Evolution and Mean Flow Characteristics167

The two CM1-simulated TCs exhibit similar intensification rates until Day 8 as shown in Figure168

1. Thereafter, TC-Param intensifies more rapidly than TC-NonParam and attains a minimum169

sea-level pressure (MSLP) and maximum tangential wind speed (𝑈𝑡,𝑚𝑎𝑥) of 967 hPa and 61 m/s170

respectively at the end of Day 10. At the same time, TC-NonParam has an MSLP and 𝑈𝑡,𝑚𝑎𝑥 of171

about 985 hPa and 48 m/s respectively. Furthermore, TC-Param is a larger storm with an RMW of172

16 km and an outer size (𝑅𝑜) of about 195 km whereas TC-NonParam has an RMW and 𝑅𝑜 of 13.5173

km and 180 km respectively. Here, 𝑅𝑜 is identified as the radius where the azimuthally averaged174

tangential winds fall to 10% of 𝑈𝑡,𝑚𝑎𝑥 . The results are consistent with Chavas et al. (2017) in that175

the central pressure deficit (Δ𝑃) increases with both𝑈𝑡,𝑚𝑎𝑥 and 𝑅𝑜, i.e. Δ𝑃 ≈ 𝐹 (𝑈𝑡,𝑚𝑎𝑥 ,
1
2 𝑓 𝑅𝑜). For176

further analysis, we focus on the 12 hr period starting at T = 199 hrs due to diverging intensification177

rates of TC-Param and TC-NonParam during this time. Additionally, we have analyzed ∼1 hr178

of TC-LES model outputs for further comparison. Note that TC-LES may be considered in a179

quasi-steady state with both its MSLP and𝑈𝑡,𝑚𝑎𝑥 only slightly changing during this time (Figure 1).180

181

The normalized mean wind profiles for three TCs at different radial locations (𝑅∗ = 1,2,3 where185

𝑅∗ = 𝑅/𝑅𝑀𝑊) are shown in Figure 2. TC-NonParam and TC-LES exhibit strong inflection points186

in both the mean radial (𝑈𝑟) and tangential (𝑈𝑡) winds. The inflection point is the location of187

maximum vertical shear in the mean wind. It is interesting to note the similarities between TC-188

NonParam and TC-LES normalized profiles given the Coriolis parameters differ by an order of189

magnitude. The magnitude of the vertical wind shear is indicative of the strength of the instability190

that drives the generation of roll vortices. In particular, the primary energy source for roll vortices191

is the shear production by radial winds (𝑢𝑟𝑤𝜕𝑈𝑟/𝜕𝑧) where 𝑢𝑟 and 𝑤 are the perturbation radial192

and vertical winds respectively (Gao and Ginis 2014). The largest radial wind shear for 𝑅∗ = 1 is193

found in TC-NonParam at a height of 125m. Similar values are found in TC-LES at 195 m whereas194

TC-Param has a very weak radial wind shear at a height of 325 m. In addition, TC-LES has the195

deepest shear layer (i.e. height where vertical shear becomes zero), which favors the formation of196

large roll vortices (Gao and Ginis 2018). One may therefore expect largest and/or most energetic197

8



Fig. 1. Time evolution of TC intensity using MSLP (a,c) and 𝑈𝑚𝑎𝑥 (b,d) for TC-NonParam and TC-Param

(a,b) and TC-LES (c,d) respectively. The shaded region indicates 12 hrs starting at T=199 hr during which

TC-Param and TC-NonParam exhibit different rates of intensification.

182

183

184

roll vortices in TC-LES since they can extract kinetic energy from the instability. However, it will198

be shown in the next few sections that the roll vortices occur more frequently in TC-NonParam and199

their spatial scales are largest in TC-Param in spite of the weaker vertical shear.200

b. Axisymmetric PV structure205

The radius-height distribution of the azimuthally averaged dry (𝜃), virtual (𝜃𝑣) and equivalent206

potential (𝜃𝑒) temperatures and the corresponding potential vorticities (𝑃𝑉 , 𝑃𝑉𝑣 and 𝑃𝑉𝑒) in207

TC-Param is shown in Figure 3. The PVs are computed at each point using the full 3D fields208

and are then averaged azimuthally. The axisymmetric structure of PV remains largely unchanged209

even if computed using azimuthally averaged fields. In all three TCs, the moisture-laden TCBL210

is characterized by a positive stratification in 𝜃 and 𝜃𝑣 and negative stratification in 𝜃𝑒 (Jordan211

1958; Dunion 2011) indicating conditional instability to vertical displacements. This instability is212

fueled by the latent heat fluxes from the surface (Drennan et al. 2007). In addition, unlike its dry213

counterpart, the total entropy depicted by 𝜃𝑒 has a mid-tropospheric minimum (∼4 km) caused214

9



Fig. 2. Vertical profiles of mean radial (x = r; red) and mean tangential (x = t; blue) winds normalized by

maximum tangential wind at different radii for (a) TC-Param and (b) TC-NonParam at T=200 hr and (c) TC-LES

at T = 120.5 hr. The red squares indicate the inflection points in the radial wind profile. The tangential inflection

points lie very close to the surface [lowest model level] and are not shown here.

201

202

203

204

by competing effects of increasing liquid water entropy and decreasing water content with height215

(Mrowiec et al. 2011). Consequently, 𝑃𝑉 and 𝑃𝑉𝑣 are positive almost everywhere whereas 𝑃𝑉𝑒 is216

characterized by large negative values inside the TCBL. High magnitudes (10-50 PVU) of 𝑃𝑉 and217

𝑃𝑉𝑣 observed inside the eye can be attributed to the large values of vertical vorticity combined218

with the strong (positive) stratification. However, 𝜃𝑒 is weakly stratified in the eye indicating that219

the total entropy here is well mixed. 𝑃𝑉𝑒 in the eye is an order of magnitude less than 𝑃𝑉 and220

𝑃𝑉𝑣. It should be noted that 𝑃𝑉 and 𝑃𝑉𝑣 are qualitatively and quantitatively very similar largely221

due to the small effect of moist variables on 𝜃𝑣 computation. 𝜃𝑒, on the other hand, includes222

an exponential function of the total water mixing ratio, which amplifies the effect of moist variables.223

224

The axisymmetric 𝑃𝑉𝑒 distribution inside the TCBL (0-1 km) reveals several key features. Figures229

4 and 5 show the formation and radially outward propagation of a narrow layer of high magnitude230

negative 𝑃𝑉𝑒 [O (10 PVU)], hereafter referred to as the "Potential Vorticity Minimum Layer" or the231

"PVML". The PVML is a product of high (negative) vertical stratification in 𝜃𝑒 and high (positive)232

planetary vorticity ( 𝑓 ) and is unique to 𝑃𝑉𝑒 distribution. Both TC-Param and TC-NonParam exhibit233

the PVML in the TCBL, implying its robustness to the parameterization scheme used. However, the234

parameterization scheme affects the local dynamic and thermodynamic profiles, which can locally235

10



Fig. 3. Azimuthally averaged radial-vertical distribution of 𝜃, 𝜃𝑣 and 𝜃𝑒 (in K) in black dashed contours and

the corresponding potential vorticities 𝑃𝑉 , 𝑃𝑉𝑣 and 𝑃𝑉𝑒 (in PVU) in shading for TC-Param at t = 200 hr.

225

226

impact the intensity and location of the PVML and will be discussed in further sections. Following236

Haynes and McIntyre (1987), 𝑃𝑉𝑒 cannot be transported across isentropic surfaces, hence the only237

source for the PVML is the region where the isentropes meet the surface, i.e. inside the eye as well238

as outer radii (R* < 4). Near the surface, 𝑃𝑉𝑒 has been shown to be modified by frictional and239

diabatic processes (Thomas 2005). For both TC-Param and TC-NonParam, the surface processes240

generate highly negative 𝑃𝑉𝑒, which is then either mixed inside the eye, giving it its strongly241

negative character, or is advected radially outward along the isentropes as shown in Figures 4 and 5.242

243
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Fig. 4. Azimuthally averaged radial-vertical distribution of 𝑃𝑉𝑒 in TC-Param TCBL at (a) t = 100 hr, (b) t =

200 hr and (c) t = 240 hr.

227

228

Figure 6 illustrates the radial-vertical structure of the PVML in all three simulated TCs. The248

axisymmetric PVML height (ℎ̃𝑃𝑉𝑀𝐿) is computed as the height where the radially averaged 𝑃𝑉𝑒,249

defined in Eq. 3, attains its minimum value.250

𝑃𝑉𝑒 =

∫ 𝑟𝑜

𝑟𝑖
𝑃𝑉𝑒𝑟𝑑𝑟𝑑𝜃∫ 𝑟𝑜

𝑟𝑖
𝑟𝑑𝑟𝑑𝜃

(3)

𝑃𝑉𝑒 is averaged between inner radius (𝑟𝑖) of 50 km and outer radius (𝑟𝑜) of 100 km since the PVML251

is coherent at these spatial (radial) scales in both TC-Param and TC-NonParam. ℎ̃𝑃𝑉𝑀𝐿 is found252

to be ∼675 m and ∼375 m in TC-Param and TC-NonParam respectively. TC-LES also exhibits a253

broad PVML located at ∼300 m. Its magnitude is smaller compared to the others, in part owing to254

12



Fig. 5. Same as Figure 4 but for TC-NonParam.

the smaller Coriolis parameter (see supplementary information). The height and magnitude of the255

PVML decreases with decreasing level of boundary layer parameterization (Param > NonParam256

> LES). As discussed above, the height of the PVML is closely associated with the height of257

radial outflow, which is determined by the choice of the parameterization scheme. In TC-LES, the258

surface processes provide a source of positive 𝑃𝑉𝑒 near the broader eye-eyewall region. This is259

in contrast with the highly negative 𝑃𝑉𝑒 found in TC-Param; however TC-NonParam does exhibit260

similar positive values very close to the eyewall. The positive 𝑃𝑉𝑒 in the TC-LES eye is due to the261

strong stability in this region as indicated by the increasing 𝜃𝑒 with height.262
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Fig. 6. Azimuthally averaged radial-vertical distribution of 𝑃𝑉𝑒 for (a) TC-Param (t=200 hr), (c) TC-NonParam

(t=200 hr) and (e) TC-LES (t=120.5 hr). The black dashed and red dotted contours indicate𝑈𝑟 and 𝜃𝑒 respectively.

The corresponding vertical profile of 𝑃𝑉𝑒 in radial ranges of 20-50 km (red) and 50-100 km (green) are plotted

in b,d,f. The green dashed line indicates ℎ̃𝑃𝑉𝑀𝐿 .

244

245

246

247

c. Asymmetric PV structure263

Azimuthally averaged 𝑃𝑉𝑒 is primarily dominated by the vertical stratification in 𝜃𝑒 and vertical264

vorticity. This is supported by the fact that the PVML is observed in both the azimuthally265

averaged 𝑃𝑉𝑒 as well as 𝑃𝑉𝑒 computed from azimuthally averaged quantities (see supplementary266

information). However, the local 𝑃𝑉𝑒 inside the TCBL is modulated by both vertical and horizontal267

gradients. The three-dimensional formulation of 𝑃𝑉𝑒 allows us to account for the contributions by268

local features such as roll vortices that introduce strong radial gradients.269

270
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To quantify the effect of roll vortices, the TC domains have been divided into several smaller271

sub-domains of size 10 km x 10 km x 1 km (see supplementary information) and each sub-domain272

has been rotated to a local Cartesian coordinate system (x, y, z) such that the y axis is parallel to273

the direction in which rolls are aligned (typically the mean winds). TC-Param, TC-NonParam and274

TC-LES are subdivided into 38, 36 and 27 domains respectively. Assuming that roll vortices are275

quasi-2D features and that the along-roll (y-axis) variations are negligible (Nolan 2005; Gao and276

Ginis 2014), velocity and other fields are averaged along the y-direction. Eddy velocity fields (𝑢′,277

𝑣′, 𝑤′) are computed by subtracting the velocity components averaged at each height (𝑢, 𝑣,𝑤). A278

two-dimensional𝑄-criterion, also known as the Okubo-Weiss criterion (Okubo 1970; Weiss 1991)279

is used to identify domains with roll vortices. This criterion defines a vortex as a spatial region280

where:281

𝑄2𝐷 ≡ 4Det(∇u|2D) − [Tr(∇u|2D)]2 > 0 (4)

where ∇u|2𝐷 = 𝜕𝑖𝑢 𝑗 (𝑖, 𝑗 ∈ {𝑥, 𝑧}) is the two-dimensional velocity gradient tensor defined in the282

across-roll plane. However,𝑄2𝐷 = 0 contours have highly irregular shapes owing to the discretiza-283

tion errors introduced while computing velocity gradients. Hence, a positive threshold (5% of284

𝑄2𝐷,𝑚𝑎𝑥) is used for each domain to produce smoother vortices that are more aligned with the285

vortex shape as inferred from the streamlines (Figures 9-11). The 2D-averaged fields in each286

sub-domain are evaluated every 10 mins for TC-Param/NonParam and every 1 min for TC-LES.287

An individual time snapshot, referred to as a “scene” (total 72 scenes for each sub-domain over the288

12-hr period), that contains at least one vortex with width greater than a threshold (𝜆𝑎𝑐𝑟𝑜𝑠𝑠 ≥ 2.5289

km) is classified as a scene with roll vortices. A threshold of 2.5 km is consistent with observations290

of coherent eddies in TCBL observations (Guimond et al. 2018; Sroka and Guimond 2021). The291

local PVML for each scene is identified as the height of the minimum value in the domain-averaged292

𝑃𝑉𝑒 profile computed in Cartesian coordinates as follows:293

PVe(z) =
∫ 5km
−5km

∫ 5km
−5kmPVe(x,y,z)dxdy∫ 5km
−5km

∫ 5km
−5km dxdy

. (5)

All three simulations exhibited active roll vortices in at least some scenes (Table 1). TC-NonParam294

and TC-LES exhibit more roll-rich scenes. However, the roll vortices in TC-Param were found to295
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be larger in size with an average width of 3 km. The average widths of rolls in TC-NonParam and296

TC-LES were found to be 2.8 km and 0.7 km respectively. In fact, all roll vortices in TC-LES297

were found to be less than 1.5 km in size. Therefore, the criterion to identify roll-rich scenes in298

TC-LES was modified to 𝜆𝑎𝑐𝑟𝑜𝑠𝑠 ≥ 1.0 km. The absence of typical sized roll vortices in TC-LES299

suggests that the radial wind shear or the depth of the shear layer may not have the control on the300

simulated roll-sizes as suggested by Gao and Ginis (2018). Factors such as horizontal resolution301

as well as the Coriolis parameter may be important in determining the horizontal and vertical302

scales of roll vortices and will be examined in further studies.303

304

Roll vortices can interact with the local PVML and subsequently impact its height (ℎ𝑃𝑉𝑀𝐿)305

as shown in Figure 7a. This interaction is possible due to the collocation of the roll-centers306

and the PVML and is only seen in TC-Param. It is also evident that in the absence of roll307

vortices, the local PVML can attain heights greater than that of the axisymmetric PVML (Figure308

7b). This indicates that the roll vortices modulate the height of the PVML in TC-Param. In309

TC-NonParam and TC-LES, the roll vortices and the PVML are not collocated and the roll-centers310

are farther away from the surface than the PVML (Figures 7c,e). As previously noted, the311

roll vortices in TC-NonParam and TC-LES are smaller in size in addition to being located312

higher than the PVML. This may explain why the roll vortices in these simulations do not313

seem to interact with the PVML or modulate the ℎ𝑃𝑉𝑀𝐿 . This is further shown in Figure 8,314

where the PVML in TC-NonParam and TC-LES is located at similar heights regardless of the315

presence or absence of roll vortices. On the contrary, the roll-dominated regions in TC-Param316

exhibit a lower PVML (625 m) than the roll-deficient regions (675 m). Since the PVML is317

dominated by the high vertical stratification in 𝜃𝑒, the difference in ℎ𝑃𝑉𝑀𝐿 in TC-Param appears318

entirely due to the difference in 𝜃𝑒 structure (Figure 8c,d). The roll vortices change the thermody-319

namic structure in the TCBL, through their action on the isentropes, therebymodulating the PVML.320

321

The modulation of ℎ𝑃𝑉𝑀𝐿 by the roll vortices in TC-Param is further demonstrated in Figure 9a.322

Since 𝑃𝑉𝑒 is a dynamical tracer, changes in its value indicate changes in the nearby flow. As323

the roll vortices propagate through the domain, the periodic eddy motions around them cause324

ℎ𝑃𝑉𝑀𝐿 to fluctuate about an average height of ∼400 m. In addition, the roll vortices tend to make325
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Table 1. Number of scenes in each category for different TCs.

With Rolls (𝜆𝑎𝑐𝑟𝑜𝑠𝑠 ≥ 𝜆𝑜) Without Rolls

Param (𝜆𝑜 = 2.5 km) 332 2404

NonParam (𝜆𝑜 = 2.5 km) 706 1886

LES (𝜆𝑜 = 1.0 km) 566 1351

the isentropes more widely spaced causing 𝑃𝑉𝑒 dilution. This results in a PVML with a lower326

magnitude than that in a roll-deficient domain (Figure 9b,d). Without the action of roll vortices,327

the PVML is considerably stable (less variability) at an average height of ∼600 m (Figure 9c). As328

previously discussed, this mechanism is not significant for TC-NonParam and TC-LES. This is329

evident in Figure 10 where the roll vortices are either too small or located too far (vertically) to330

impact ℎ𝑃𝑉𝑀𝐿 in a meaningful way. It should be noted that several scenes in TC-LES (for example331

Figure 11a) do exhibit some roll-induced lowering of the local ℎ𝑃𝑉𝑀𝐿 , however, their impact on the332

overall ℎ𝑃𝑉𝑀𝐿 is very small. It is also very challenging to quantify this effect in TC-LES because333

the large uncertainties in the values of 𝑃𝑉𝑒 make it hard to locate the PVML.334

d. Comparison with TCBL height scales352

Roll characteristics such as the wavelength, height and the growth rate are intricately tied to the353

dynamical topography (ℎ𝑇𝐶𝐵𝐿) of the TCBL (Nolan 2005; Gao and Ginis 2014). Gao and Ginis354

(2018) showed that regions with higher ℎ𝑇𝐶𝐵𝐿 favor rolls with larger vertical and horizontal extents355

due to their ability to extract more kinetic energy from the shear layer. Several characteristic356

height scales have been used to represent ℎ𝑇𝐶𝐵𝐿 in models, including determining the mixed layer357

depth based on potential temperatures (Anthes 1978; Zeng et al. 2004) and dynamic definitions358

that include the height of maximum winds (Bryan and Rotunno 2009), inflow layer (Smith et al.359

2009) and more recently, helicity (Ma and Bao 2016). Both numerical and observational studies360

have shown considerable separation between these definitions (Zhang et al. 2011; Nolan et al.361

2009b). Since small-scale dynamical processes in the TCBL, such as roll vortices, can modulate362

ℎ𝑃𝑉𝑀𝐿 via their effects on local thermodynamic structure, we suggest that the diagnosed ℎ𝑃𝑉𝑀𝐿363

can be a useful proxy of the local ℎ𝑇𝐶𝐵𝐿 , and it has the desirable property of dependence on a364

materially conserved variable.365

366
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Fig. 7. Time-height variation of 𝑃𝑉𝑒 in a (a,b) TC-NonParam, (c,d) TC-Param and (e,f) TC-LES domain with

the highest number of roll-rich scenes (a,c,e) and with the lowest number of roll-rich scenes (b,d,f). The red

dots indicate the average height of rolls (i.e. vortices with 𝜆𝑎𝑐𝑟𝑜𝑠𝑠 > 2.5 km in TC-Param/NonParam and 𝜆𝑎𝑐𝑟𝑜𝑠𝑠

> 1.0 km in TC-LES), if present. The black dashed lines indicate the height of the axisymmetric PVML (see

text). Note that the range for y-axis (time-axis) for TC-Param/NonParam is 0-700 mins while it is 0-70 mins for

TC-LES.

335

336

337

338

339

340

Figure 12-14 illustrate the different ℎ𝑇𝐶𝐵𝐿 representations including ℎ𝑃𝑉𝑀𝐿 for TC-Param,367

TC-NonParam and TC-LES respectively. The elevated values of different ℎ𝑇𝐶𝐵𝐿 near the spiral368

bands in all the simulations indicate that the TCBL is deeper for highly convective regions369

where the boundary layer air is erupting into the flow above (Smith and Thomsen 2010). As370

expected, the regions between the spiral bands have low values of ℎ𝑇𝐶𝐵𝐿 , due to the entrainment371

of dry and cool air into the TCBL by convective downdrafts. In TC-Param, ℎ𝑃𝑉𝑀𝐿 is closer372

to the thermodynamical definitions: ℎ𝑀𝐿1 [𝜃𝑣 − 𝜃𝑣,𝑠 > 0.5 K/km; Anthes (1978) and ℎ𝑀𝐿2 [373

𝜕𝜃
𝜕𝑧
> 3 K/km; Zeng et al. (2004)] while in TC-LES it closely tracks the dynamical definition:374

ℎ𝑅𝑖 [height at which the Richardson number attains its critical value (𝑅𝑖𝑐); Hong et al. (2006)].375

The PVML in TC-NonParam lies in between the thermodynamical and dynamical ℎ𝑇𝐶𝐵𝐿 . This376

18



Fig. 8. Vertical profile of (a,b) 𝑃𝑉𝑒 and (c,d) 𝜃𝑒 averaged over all domains (a,c) with rolls and (b,d) without rolls

over 12 hr (1 hr) period for TC-Param/NonParam (TC-LES). The shaded region indicates 1 standard deviation

from the domain-average. The dotted lines indicate the corresponding ℎ𝑃𝑉𝑀𝐿 and the squares indicate the height

of maximum gradient in 𝜃𝑒. The location of maximum 𝜃𝑒 gradient for TC-LES is very close to the surface and

is therefore not shown here.

341

342

343

344

345

suggests that both thermodynamic and dynamic processes can control ℎ𝑃𝑉𝑀𝐿 and their interplay377

in the different simulations is further discussed. In addition, the PVML lies above the inflow378

layer (ℎ𝑃𝑉𝑀𝐿 > ℎ𝐼𝑁𝐹) in TC-Param and TC-NonParam whereas it lies inside the inflow layer379

(ℎ𝑃𝑉𝑀𝐿 < ℎ𝐼𝑁𝐹) in TC-LES. Here, ℎ𝐼𝑁𝐹 is identified as the height where inflow reaches 10% of380

its peak value in the TCBL (Smith et al. 2009; Zhang et al. 2011). This emphasizes the fact that381

the choice of parameterization, along with additional factors such as different Coriolis parameter382
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Fig. 9. Radial-vertical cross-section of 𝑃𝑉𝑒 (shaded) across the roll axis (x) for TC-Param in a single scene

(a) with roll and (c) without roll. The black lines indicate the streamlines computed using eddy-winds (u’,w’)

and the red dotted lines indicate the 𝜃𝑒 contours. Contours of the 𝑄2𝐷 threshold value (domain dependent) are

marked in maroon dashed lines indicating all vortices. All fields are averaged in the y-direction (i.e. along roll

axis). The corresponding vertical profile of domain-averaged 𝑃𝑉𝑒 is shown in panels b and d with horizontal

purple line indicating the local ℎ𝑃𝑉𝑀𝐿 .

346

347

348

349

350

351

Fig. 10. Same as Figure 9 but for TC-NonParam.
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Fig. 11. Same as Figure 9 but for TC-LES.

and horizontal resolution may also play a role in determining the location of PVML.383

384

TC-Param shows little separation between the different definitions of ℎ𝑇𝐶𝐵𝐿 (Figure 12, 15a)385

except ℎ𝑅𝑖. The turbulence model in all three simulations caps the turbulence at ℎ𝑅𝑖, i.e. the height386

at which the Richardson number attains its critical value (𝑅𝑖𝑐) (Hong et al. 2006). Since ℎ𝑅𝑖 starts387

to notably diverge from other definitions at larger radii, the Richardson number method may not388

adequately represent ℎ𝑇𝐶𝐵𝐿 in TC-Param. The PVML is dominated by the vertical stratification389

in 𝜃𝑒 (Figure 8) and therefore ℎ𝑃𝑉𝑀𝐿 may be viewed as a purely thermodynamic definition. This390

would be consistent with the fact that ℎ𝑃𝑉𝑀𝐿 is very similar to the mixed layer depths (ℎ𝑀𝐿1, ℎ𝑀𝐿2)391

in TC-Param. However, it has also been shown for the same simulation that dynamical processes392

such as roll vortices can change the vertical stratification (in 𝜃𝑒) inside the TCBL and consequently393

impact the ℎ𝑃𝑉𝑀𝐿 .394

395

In TC-NonParam and TC-LES, the mixed layer depths are much higher than ℎ𝑃𝑉𝑀𝐿 (Figure 13-396

14, 15b-c) indicating that there is a greater dynamical control on ℎ𝑃𝑉𝑀𝐿 . In TC-NonParam and397

TC-LES, the pathway for roll vortices to control ℎ𝑃𝑉𝑀𝐿 is non-existent due to the large separation398

between the roll centers and the PVML.This, however, does not preclude other dynamical influences399

on ℎ𝑃𝑉𝑀𝐿 . This is clearly evident in the close matching of ℎ𝑃𝑉𝑀𝐿 with the dynamical definitions400
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(Figure 13-14, 15b-c). The high correlation between ℎ𝑃𝑉𝑀𝐿 and ℎ𝑅𝑖 suggests that ℎ𝑃𝑉𝑀𝐿 in a non-401

parameterized TCBL is strongly correlated to the height where small-scale turbulence is active. It402

remains to be seen which of the two dynamical pathways, either through coherent processes such as403

roll vortices or via small-scale turbulence, controls the thermodynamic structure and therefore the404

PVML in real TCs. To this end, the foregoing analysis will be extended to simulations of typical405

TCBLs that can realistically capture small-scale processes (including roll vortices) and compared406

with dropsonde observations in future work.407

Fig. 12. Characteristic TCBL height scales (ℎ𝑇𝐶𝐵𝐿) for TC-Param at t=199 hr: (a) ℎ𝑀𝐿1, (b) ℎ𝑀𝐿2, (c) ℎ𝐼𝑁𝐹 ,

(d) ℎ𝑅𝑖 and (e) ℎ𝑃𝑉𝑀𝐿 .

408

409

4. Conclusions412

Our current understanding of the TCBL is limited by the number of observations in this region,413

and a majority of the ℎ𝑇𝐶𝐵𝐿 observational studies assume an axisymmetric structure (Abarca et al.414

2015). Three-dimensional observations and numerical studies show that substantial asymmetric415

structure exists in the TCBL (Kepert 2006a,b; Shapiro 1983; Zhang et al. 2013). We have416
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Fig. 13. Same as Figure 12 but for TC-NonParam at t=199 hr.

presented results from two 3D compressible non-hydrostatic simulations of the tropical cyclone417

boundary layer and investigated the asymmetric structure and small-scale coherent features using418

the MPV (𝑃𝑉𝑒) framework. While TC-Param was simulated using a mesoscale model that419

parameterizes all turbulence, only the sub-grid turbulence was parameterized in TC-NonParam.420

Using results from a similar LES of the TCBL at a higher resolution (Ito et al. 2017), we showed421

that a coarser horizontal grid spacing (500 m) for TC-Param/NonParam may be sufficient to422

marginally represent the small-scale structures likely to correspond to roll vortices.423

424

The TCBL in all three TCs is uniquely characterized as a region of negative 𝑃𝑉𝑒 (𝑂(10 PVU)425

for TC-Param/NonParam and 𝑂(1 PVU) for TC-LES) since 𝜃𝑒 is negatively stratified outside the426

eyewall, indicating moist conditional instability fueled by the latent enthalpy fluxes from the ocean427

surface. The axisymmetric distribution of 𝑃𝑉𝑒 indicates a distinct thin layer of high magnitude428

𝑃𝑉𝑒 (negative, 𝑂(10 PVU)) embedded in the TCBL. The PVML was found to exist in all three429

simulations, but with varying heights and magnitude. ℎ𝑃𝑉𝑀𝐿 is shown to be a better proxy for430

TCBL height compared to other definitions because it combines information about the local wind431
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Fig. 14. Same as Figure 12 but for TC-LES at t=120.5 hr.

and thermal structures using a materially conserved variable. Another important property that sets432

ℎ𝑃𝑉𝑀𝐿 apart is that it can respond to local flow anomalies such as those created by roll vortices.433

We find that roll vortices are ubiquitous in the simulated TCBL, regardless of the presence of434

a boundary layer scheme. However, the characteristics of the roll vortices differ across model435

schemes and the differing characteristics determine whether or not they interact with the PVML436

and regulate ℎ𝑃𝑉𝑀𝐿 . Lastly, we find that an azimuthally averaged field of locally calculated 3D437

𝑃𝑉𝑒 can be closely estimated by using azimuthally averaged wind and thermodynamic components438

to define 𝑃𝑉𝑒, except very close to the eyewall. This has an interesting implication for observing439

the azimuthally averaged 𝑃𝑉𝑒 structure of real tropical cyclones: a field of dropsondes that440

are spatially distributed while close in time could potentially yield a meaningful estimate of441

the instantaneous azimuthally averaged 𝑃𝑉𝑒 structure of a TC. This will be attempted in future work.442

443

Prediction of intense winds in the TCBL still remains one of the major limitations of the current444

numerical models, partly due to the over-simplification of TCBL contribution via turbulent param-445

eterizations. The parameterization schemes that are developed for moderate wind conditions often446
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Fig. 15. Radial distribution of azimuthally averaged ℎ𝑇𝐶𝐵𝐿 represented by different height scales averaged

over 12 hrs for (a) TC-Param and (b) TC-NonParam and over 1 hr for (c) TC-LES.

410

411

cannot accurately account for the fluxes induced by small-scale processes such as roll vortices447

(Foster 2005; Gao and Ginis 2014, 2016). The PVML can provide a useful link between the small-448

scale processes and the large-scale dynamics in highly-resolved models. An important caveat of449

this study is that we are not able to separate the impacts of the order-of-magnitude-higher Coriolis450

parameter in TC-Param and Non-Param compared to TC-LES from their differing grid spacings,451

due to computational expense. However, the finding of a PVML (albeit one of lower magnitude452
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in TC-LES) gives us confidence that this feature should be robust to model differences. The sen-453

sitivity of the results to the different subgrid turbulence schemes remains. In particular, subgrid454

turbulence schemes that can accurately capture the roll characteristics including the associated455

counter-gradient fluxes will be examined in future studies.456
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Supplementary Information 
 

S1. The three-dimensional PVe is largely dominated by the vertical components due 
to the large value of absolute vertical vorticity. This is indicated by little to no 
differences between azimuthally averaged 3D-PVe and PVe computed from 
azimuthally averaged fields as shown in Figures 1(a-c). However, 3D-PVe may 
exhibit significant differences from the vertical component over smaller spatial 
scales. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Radial-vertical distribution of PVe in (a-b) TC-Param at t=199 h, 
(c-d) TC-NonParam at t=199 hr and (e-f) TC-LES at t=120.5 hr.  
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S2. The high magnitude of the Coriolis parameter results in the high magnitude 
PVML in TC-Param and TC-NonParam. As shown in Figure 2, incorporating a 
lower value of f (equal to what is used in TC-LES), results in a low magnitude PVML 
in TC-NonParam, similar to that observed in TC-LES. For instance, the PVML 
magnitude in TC-Param is about -10 PVU, if we use the same flow field but 
substitute the high Coriolis parameter with a typical low value (2.5 x 10-5 s-1): 
 

 
 
 
 
 
Since the PVe distribution outside of the eyewall is largely dominated by the 
planetary vorticity, we can divide the PVML magnitude by the original f and 

Figure 2. Radial-vertical distribution of PVe in TC-Param when computed with (a) original value of f (high) and (c) f 
used in TC-LES (low). The same has been plotted for (e) TC-LES to allow comparison of PVe magnitudes. The 
corresponding vertical profile of radially averaged in radial ranges of 20-50 km (red) and 50-100 km (green) are plotted 
in b,d,f. The green dashed line indicates the $h_{PVML}$ in R=50-100 km. 



multiply with low f to get: !"#	%&'
#.###)

x 0.000025 = -1.25 PVU, which is approximately 
the order of TC-LES PVML magnitude. 
 
 
S3. In order to isolate regions with/without roll vortices, the TC-domains have 
been divided into several smaller sub-domains of size 10 km x 10 km x 1 km as 
shown in Figure 3.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 3. Horizontal wind speeds at the lowest model height for (a) TC-Param at t=199 h, (b) TC-
NonParam at t=199 hr and (c) TC-LES at t=120.5 hr. The numbered boxes indicate the 10km x 
10km sub-domains used for roll-identification. 
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(c) 


