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Abstract

Chemical zoning of minerals, which is commonly caused by incomplete chemical reaction, is often utilized to study magma

cooling processes, and metamorphic rock reaction paths. Cr-Al chemical zoning of spinel has been reported as induced by

deformation (lattice diffusion). However, there are no studies that address the correlates of chemical distribution (intensity)

with deformation, and application methods of the Cr-Al chemical zoning. In this study, we observed differences for intensities

of the Cr-Al chemical zoning with various geometrical properties of spinel grains within a dunite sample in the Transition Zone

in the Horoman Peridotite Complex in Hokkaido, Japan. Using machine learning analysis, we present relationships between the

intensities of the Cr-Al zoning and geometrical properties of spinel grains. We examine connections between the relationships

and deformation mechanisms of spinel and estimate deformation temperature based on the results. As a consequence, the spinel

grains are clustered into three groups based on the chemical zoning intensity. The intensity is more importantly affected by

grain size than aspect ratio and is much greater with increasing grain size. These results suggest that lattice diffusion actively

contributes more to total diffusion creep of spinel than grain boundary diffusion with increasing grain size. The deformation

temperature of spinel is estimated as 1250°C–1100°C by comparing diffusion flux ratio (Rdiff) and the spinel grains.
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Abstract 10 

Chemical zoning of minerals, which is commonly caused by incomplete chemical reaction, is often 11 

utilized to study magma cooling processes, and metamorphic rock reaction paths. Cr-Al chemical 12 

zoning of spinel has been reported as induced by deformation (lattice diffusion). However, there are no 13 

studies that address the correlates of chemical distribution (intensity) with deformation, and application 14 

methods of the Cr-Al chemical zoning. In this study, we observed differences for intensities of the Cr-15 

Al chemical zoning with various geometrical properties of spinel grains within a dunite sample in the 16 

Transition Zone in the Horoman Peridotite Complex in Hokkaido, Japan. Using machine learning 17 

analysis, we present relationships between the intensities of the Cr-Al zoning and geometrical properties 18 

of spinel grains. We examine connections between the relationships and deformation mechanisms of 19 

spinel and estimate deformation temperature based on the results. As a consequence, the spinel grains 20 

are clustered into three groups based on the chemical zoning intensity. The intensity is more importantly 21 

affected by grain size than aspect ratio and is much greater with increasing grain size. These results 22 

suggest that lattice diffusion actively contributes more to total diffusion creep of spinel than grain 23 

boundary diffusion with increasing grain size. The deformation temperature of spinel is estimated as 24 

1250°C–1100 °C by comparing diffusion flux ratio (Rdiff) and the spinel grains. 25 

 26 



Plain Language Summary 27 

Chemical zoning is a feature characterized by optical changes in color or extinction from core to rim in 28 

many species of minerals. The features have been used to estimate magmatic or metamorphic conditions 29 

they are generated, because chemical zoning is commonly developed by chemical reactions during 30 

magma cooling process and metamorphism. Previous studies reported the Cr-Al chemical zoning within 31 

spinel is derived by not cooling process or metamorphism, but deformation. But there are no studies 32 

investigating characteristics and application methods of the Cr-Al chemical zoning. In this study, we 33 

observed that spinel grains show different characteristics of the Cr-Al chemical zoning according to 34 

their size and shape within a dunite in Hokkaido, Japan. Machine learning analysis is a good tool to 35 

help us understand hidden relationships between factors which we do not know. By using the utility of 36 

the tool, we analyzed the relationships between the characteristics of the Cr-Al chemical zoning and 37 

their size and shape. Given the analyzed results, we interpreted connections between the relationships 38 

and deformation mechanisms of spinel. And we estimated deformation temperature of the spinel grains 39 

by using the connections. 40 

Keywords: machine learning, Cr-Al chemical zoning, spinel, diffusion creep, lattice diffusion, grain 41 

boundary diffusion, deformation temperature. 42 

 43 

Key points 44 

1. Intensities of Cr-Al chemical zoning of spinel are different according to geometrical properties 45 

of each spinel. 46 

2. Using machine learning analysis, we present relationships between the intensity of chemical 47 

zoning and geometrical properties of spinel. 48 

3. The relationships are explained by diffusion flux ratio of the spinel with diffusion mechanisms, 49 

implying new application method of the Cr-Al chemical zoning.  50 



1. Introduction 51 

Chemical zoning is a chemical disequilibrium feature that is observed in igneous and 52 

metamorphic rocks from various mineral species (Hollister, 1970; Loomis, 1976; Tracy and McClellan, 53 

1985; Hickmott and Shimizu, 1990; Allaby, 2013). Chemical zoning is commonly caused by incomplete 54 

chemical reactions attempting to maintain chemical equilibrium with magma or slow diffusion kinetics 55 

of cation inhibiting chemical homogenization during metamorphism or change in the chemical reaction 56 

environment (Vance, 1965; Nakamura, 1973; Loomis, 1983; Hickmott et al., 1987; Chakraborty and 57 

Ganguly, 1991; Hoskin and Schaltegger, 2003). Given the characteristics of chemical zoning, chemical 58 

zoning is commonly used as evidence for interpreting the reaction history of metamorphic rocks and 59 

cooling processes of magma and so on (Vance, 1965; Nakamura, 1973; Loomis, 1983; Hickmott et al., 60 

1987; Chakraborty and Ganguly, 1991; Hoskin and Schaltegger, 2003). 61 

Ozawa (1989) firstly reported that the Cr-Al chemical zoning of elongated spinel grains in 62 

naturally deformed peridotites can be derived by deformation (lattice diffusion), suggesting a model in 63 

which the chemical zoning induced by diffusion creep is derived by a difference of diffusivity between 64 

Cr and Al during deformation. Suzuki et al. (2008) demonstrated that detailed lattice diffusion processes 65 

induced the Cr-Al chemical zoning of spinel grains by measuring Cr and Al self-diffusion coefficients 66 

from the Cr-Al interdiffusion experiment. Ozawa (1983, 1989) also reported that the chemical 67 

distributions of Cr from spinel grains showing the chemical zoning are different in accordance with 68 

each spinel grain, and the differences in element concentration in the spinel grains can be used as a tool 69 

to discriminate deformation conditions. However, no studies have been conducted to analyze and 70 

interpret the chemical properties of the Cr-Al chemical zoning and distinguished application methods 71 

for the chemical properties to estimate deformation conditions. 72 

In this study, we observed that each spinel grain showing the Cr-Al chemical zoning exhibits 73 

each different distributions of Cr and Al depending on their geometrical properties including grain size 74 

and aspect ratio from a dunite sample in Horoman Peridotite Complex. Grain size is well known for 75 

one of important factor controlling chemical distributions of chemical zoning in various minerals by 76 

providing information on growth rates of minerals during metamorphism, it has been broadly discussed 77 



as a tool estimating metamorphic grade (Jones and Galwey, 1966; Kretz, 1973; Cashman and Ferry, 78 

1988; Carlson, 1989; Carlson and Denison, 1992; Chernoff and Carlson, 1997; Denison and Carlson, 79 

1997; Gaidies et al., 2008; Prenzel et al., 2009). The model for Ozawa (1989) and Suzuki et al. (2008) 80 

is demonstrating that the Cr-Al chemical zoning of spinel is induced by deformation, and aspect ratio 81 

of elongated mineral is widely used to first order factor describing deformation (Bell, 1978; George, 82 

1978; Thayer, 1980; Misseri & Boudier, 1985; Platt and Behrmann, 1986; Goodge et al., 1993; Grujic 83 

and Mancktelow, 1995; Michibayashi et al., 2013). The observations in this study and the importance 84 

for the geometrical properties discussed from previous studies represent that there might be important 85 

relationships between the geometrical properties and the Cr-Al chemical zoning of spinel, but no study 86 

for the relationships has ever been attempted.  87 

Machine learning is an algorithm making a model presenting relationships between features 88 

of data from a data set, well known as training data. Due to this specialty of machine learning, machine 89 

learning is often utilized in various fields to perceive hidden patterns or connections between data that 90 

have relationships we do not know (Wang et al., 2009; Angra and Ahuja, 2017; Shinde and Shah, 2018; 91 

Dhall et al., 2020; Shaukat et al., 2020; Dahiya et al., 2022). Considering the usage of machine learning, 92 

we applied the machine learning to find out the relationships that have not been studied. 93 

Using EPMA analysis, we firstly investigate various chemical features of the Cr-Al chemical 94 

zoning observed from spinel grains. We then used machine learning algorithms to investigate the 95 

relationships between Cr-Al chemical zoning and geometrical properties of spinel grains. We 96 

distinguish the deformation temperature of the dunite sample based on the analyzed data and interpret 97 

connections between the analyzed relationships and diffusion mechanisms of spinel grains. 98 

  99 

2. Characteristics of Cr-Al chemical zoning in spinel grains 100 

2.1 Analytical Method 101 

 At Nagoya University in Nagoya, Japan, a scanning electron microscope (SEM) equipped with 102 

electron backscatter diffraction (EBSD) equipment (HITACHI S-3400N Type II with HKL Channel5) 103 

is used to analyze the thin section. The accelerating voltage is 20 kV, the working distance is 28 mm, 104 



the sample tilt is 70°, and the low-vacuum mode is 30 Pa. EBSD data are collected using large-area 105 

mapping with a step size of 10 µm which is approximately 10 times smaller than the average grain size. 106 

Line scan analysis with an accelerating voltage of 20 kV, a working distance of 28 mm, and a low-107 

vacuum mode of 30 Pa is used to collect energy dispersive X-ray spectroscopy (EDS) data. 108 

 The chemical distribution of Cr and Al in spinel grains is investigated using both area mapping 109 

and point analysis of an electron-probe microanalyzer (EPMA, JEOL JXA-8800R) at the Nagoya 110 

University with 100 nA and 12 nA of beam current and 20 kV and 15 kV of accelerating voltage, 111 

respectively. Area mapping is operated with a 1 µm of step size for spinel grains. 112 

Image analysis software ImageJ is used to analyze the geometrical properties (grain size and 113 

aspect ratio) of spinel grains. Grain boundaries of spinel grains are traced from optical 114 

photomicrographs. The geometrical properties are estimated from best-fit ellipses of the tracing grain 115 

boundaries computed using ImageJ software. 116 

 117 

2.2 Sample description 118 

 The analyzed spinel grains were collected from a dunite sample located in the dunite layer 119 

within the Transition Zone between the Upper and Lower Zone in the Horoman Peridotite Complex in 120 

Hokkaido, northern Japan (Niida, 1974; Ozawa and Takahashi, 1995; Takazawa et al., 1999; Ozawa, 121 

2004; Takahashi, 2004; Sawaguchi, 2004; Malaviarachchi et al., 2008; Malaviarachchi et al., 2010; 122 

Yoshikawa et al., 2019) (Fig. 1a-b). A lineation characterized by a linear arrangement of elongated 123 

spinel grains on a foliation defined by grain shape preferred orientation of olivine and diopside was 124 

observed in the dunite sample. Because the chemical zoning is expected to develop along with the 125 

elongated orientation of spinel grains, microstructures were analyzed from a thin section cut 126 

perpendicular to the foliation and parallel to the lineation. The sample consists mainly of olivine with 127 

minor spinel and diopside (Fig. 1c-d). The grain size of olivine is coarse in a range of about 100–2000 128 

μm. Grain boundaries are interlobate and locally straight. Olivine grains show grain shape preferred 129 

orientation with sweeping undulose extinction and deformation band. Spinel grains exhibit various 130 

grain sizes ranging from 20 to 2200 μm. Spinel grains are elongated parallel to the preferred orientation 131 



of olivine grains with various aspect ratios. Figure 2 presents the CPOs of olivine grains from the thin 132 

section. The lineation (X) and the foliation normal (Z) characterize the structural framework of CPOs. 133 

The CPOs are plotted by using one point per grain onto lower-hemisphere equal-area projection. The 134 

CPO patterns show that the [100] axes are parallel to the X, and the [010] axes are normal to the foliation, 135 

suggesting an A-type of olivine crystal fabric. These microstructures indicate that olivine grains were 136 

deformed by plastic deformation with spinel grain. 137 

 138 

2.3 Cr-Al chemical zoning 139 

Distributions of Cr are identified from area mapping of EPMA for spinel grains showing Cr-140 

Al chemical zoning by greatest concentration at both tip areas of the short axis and lowest concentration 141 

at both tip areas of the long axis of spinel (Fig. 3a). The distributions of Al are characterized by a reverse 142 

relationship with the distributions of Cr. Distributions of Cr and Al are distinguished as intermediate 143 

concentrations in the center area. These characteristics are identical to those reported by Ozawa (1989) 144 

for multipolar Cr-Al chemical zoning (Fig. 4). Although most of the spinel grains exhibit an ellipsoidal 145 

shape with a preferred orientation of long axes, each spinel grain has different concentrations of Cr and 146 

Al between at center area and both tip areas (Fig. 3). In this study, we defined the intensity of Cr-Al 147 

chemical zoning as the degree of difference between Cr and Al concentrations. Figure 3 displays three 148 

representative spinel samples exhibiting different intensities of Cr-Al chemical zoning. Table 1 exhibits 149 

chemical compositions measured by point analysis of EPMA for typical points (P1 to P9 in Figure 3) 150 

within the representative spinel samples. S1 is a spinel grain with strong intensity of Cr-Al zoning and 151 

the gaps of compositions between P1 and P2 are 4.038 wt% for Cr and 3.773 wt% for Al. S2 shows 152 

relatively weak intensity of Cr-Al zoning and the differences in compositions between P4 and P5 are 153 

smaller than the gaps of S1 as 1.16 wt% for Cr and 1.308 wt% for Al. Some spinel grains, such as S3, 154 

even have homogeneous chemical distribution. The differences in Cr and Al compositions between P7 155 

and P8 of S3 are 0.263 wt% and 0.064 wt%, respectively. Spinel grains showing the high intensity of 156 

Cr-Al zoning exhibit high differences of wt% for Cr and Al between the center area and both tip areas. 157 

There are no typical differences of wt% for those for other grains having homogenous chemical 158 



distribution. These chemical distributions of Cr and Al suggest that the gap of Cr and Al distributions 159 

between the center area and both tip areas reflect the intensity of Cr-Al chemical zoning, and there are 160 

differences in the intensity of Cr-Al chemical zoning for each spinel grain. 161 

 162 

2.4 Intensity of Cr-Al chemical zoning 163 

We estimated chemical distributions of Cr and Al for each spinel grain by using EDS line scan 164 

analysis to assess a quantification value for the intensity of Cr-Al chemical zoning. Given the inverse 165 

chemical distribution relationship between Cr and Al, we measured EDS data for only Cr to simplify 166 

data analysis. The line scan analysis is conducted along the long axis of each spinel grain from its 167 

margin to the other margin (Fig. 5). We analyzed 87 spinel grains showing various geometrical 168 

properties to determine the intensity of Cr-Al zoning as numerical values. The analyzed data are 169 

exported by files in CSV format for each spinel grain. Each data consists of 200 values that represent 170 

the chemical distribution of Cr. The values are listed in the order from the starting point to the endpoint 171 

of a line scan with outliers. To correct the values by sorting outliers, the statical outlier identification 172 

method is applied by using the Interquartile range (IQR) (Yang et al., 2019). IQR is defined by the 173 

difference between the values of 75% (Q3) and 25% (Q1) of data. 174 

𝐼𝑄𝑅 =  𝑄3 −  𝑄1 175 

Outliers are the values above 𝑄3 + 1.5 × 𝐼𝑄𝑅  (maximum) or under 𝑄1 − 1.5 × 𝐼𝑄𝑅  (minimum). 176 

The method is applied to the values of each spinel grain and the sorted outliers are replaced by the 177 

average for each spinel data. The corrected values are divided into five equal parts, A through E and 178 

average values are calculated for each part. The average values for A, E, and C parts represent average 179 

values of Cr at the margin (starting point) area, the other margin (endpoint) area, and the center area, 180 

respectively. The intensity of Cr-Al zoning is expressed by calculating differences in the average values 181 

between C and A (∆𝐶𝐴) , and C and E parts (∆𝐶𝐸 ) (Fig. 5). The intensity is much higher as the 182 

differences are higher. 183 

 184 

3. Machine learning analysis 185 



3.1 Machine learning framework 186 

Machine learning methods are classified into two types based on how they use data: 187 

unsupervised machine learning methods that learn patterns in feature data without label data, and 188 

supervised machine learning methods that learn functions or relationships between feature and label 189 

data considering examples of feature and label data (Bergen et al., 2019). Mean-shift Clustering, that is 190 

unsupervised machine learning method, and Decision Tree and Random Forest, which are supervised 191 

machine learning methods were used to estimate the relationship between the intensity of Cr-Al 192 

chemical zoning and geometrical properties of spinel grains. The intensity of Cr-Al zoning (∆𝐶𝐴, ∆𝐶𝐸) 193 

were converted to standardized values. The standardized values for each spinel grain are projected as 194 

data points in a scatterplot. The Mean-shift Clustering is used to define the clustering patterns of the 195 

data points. The data points are set as featuring data for applying to the machine learning method and 196 

the defined types of clusters are established as label data for the feature data. The Decision Tree and 197 

Random Forest are used to recognize the relationship based on the label and feature data. The following 198 

is the detailed workflow for running machine learning: data pre-processing → data clustering → data 199 

splitting → classification and node analysis → estimating feature importance → constructing 200 

probability map. 201 

The analysis was done in Python 3.7.0 and Jupyter Notebook 6.3.0 environment. The codes in 202 

this study are utilized to construct machine learning models and make diagrams by collaborating various 203 

libraries including scikit-learn, pandas, numpy, matplotlib, and seaborn.  204 

 205 

3.2 Pre-processing 206 

Data standardization is required as a stage of pre-processing before machine learning analysis 207 

to not only accelerate the calculation of machine learning but also improve model accuracy (Hsu et al., 208 

2003). The analyzed raw data show diversity in scale. The data standardization is used to transform the 209 

analyzed raw data into a format showing a particular scale by normalizing the raw data. In this study, 210 

the data standardization is applied by using a “StandardScaler” algorithm (from Scikit-learn in a Python 211 

library). The algorithm converts original data showing variable scales into normalized data showing 212 



that the mean value is zero and the standard deviation is one. Normalized data are obtained by removing 213 

the mean value from each original value and dividing by their standard deviation. 214 

𝑧 =  
𝑥 − 𝑢

𝑠
 215 

Where 𝑥 , 𝑢,  and 𝑠  are the value, the mean, and standard deviation of original data, and 𝑧  is the 216 

value of the normalized data. 217 

 218 

3.3 Mean-shift clustering 219 

The Mean-shift Clustering is a method that clusters data points considering locations of a 220 

maximum density of data points (Cheng, 1995; Tuzel, 2009; Zhang et al., 2018). The clustering method 221 

is built on the principle of kernel density estimation (KDE) which is a method to calculate the 222 

probability density function of data. The KDE can be written as 223 

𝑓(𝑥) =  
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 224 

where 𝑓(𝑥) is density function for a given point, 𝑥𝑖 is the point for input data, 𝐾 is Kernel function 225 

(Gaussian kernel), ℎ is bandwidth. Since ℎ is the only variable parameter in the equation, the density 226 

function significantly depends on ℎ. 227 

The Mean-shift Clustering works by shifting a point from a random location to a much denser 228 

point as a starting point to find out a center point of the densest cluster of data points upon the density 229 

function, repeatedly calculating the mean coordinate of data points. The data points are clustered based 230 

on the calculated center points. Because the clustering method works on the density function, the 231 

number of clusters for the data points can be changed with a predefined value of ℎ. The Mean-shift 232 

Clustering has the advantage of calculating the most optimal number of clusters by estimating the most 233 

suitable bandwidth for the data points, as opposed to other clustering algorithms that require a subjective 234 

decision by the user to cluster data points or set up the number of clusters. As a result, we used a 235 

“MeanShift” algorithm (from Scikit-learn in a Python library) to cluster points of the data and an 236 

“estimate bandwidth” to estimate the most optimal number of clusters.  237 

To purify the data from outliers that may damage clustering result, outlier data are detected 238 



and filtered by using three kinds of outlier detection methods utilizing Mean-shift, DBSCAN, and K-239 

means algorithms, respectively, as preprocessing step before the clustering (Hautamäki et al., 2005; 240 

Çelik et al., 2011; Thang and Kim, 2011; Gan and Ng, 2017; Yang et al., 2021). We considered data 241 

commonly detected from the three detecting methods as outliers. A value of ‘k’ in Mean-shift outlier 242 

detection is set up on the basis of logarithmic relationship between the value of ‘k’ and data size referred 243 

from Yang et al. (2021). In DBSCAN outlier detection, Epsilon is estimated from K-distance graph, and 244 

min sample is set as minimum for analyzing data. The number of clusters (k) in K-means outlier 245 

detection is specified from values of Within Cluster Sum of Squared Errors (WSS) and Silhouette scores.  246 

 247 

3.4 Data splitting 248 

Data splitting is one of the stages that randomly divides data into train data sets and test data 249 

sets to estimate the performance of the model. The train data sets are used to train a model and the 250 

performance of the model is estimated by the test data sets. By using a “train_test_split” algorithm (from 251 

Scikit-learn in a Python library), all of the data in this study are split into train data sets and test data 252 

sets as 90% and 10% of volume size, respectively. Proportions of the label data are maintained while 253 

splitting the data sets. 254 

 255 

3.5 Model assessment 256 

 To assess the performances of the models, we evaluated accuracy, recall, precision, 257 

f1 score, and ROC-AUC score for each model. The accuracy is the ratio of data sets correctly predicted 258 

from the trained model to test data sets. The accuracy is expressed by 259 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 260 

where 𝑇𝑃 and 𝐹𝑃 are cases predicted positive and it is true and false, respectively. 𝑇𝑁 and 𝐹𝑁 are 261 

cases predicted negative and it is true and false, respectively. The accuracy is maximum as 1.0 when 262 

several correctly predicted data sets are equal to the number of the test data sets. The recall and precision 263 

are defined by 264 



𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝐹𝑁 + 𝑇𝑃)
 265 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝐹𝑃 + 𝑇𝑃)
 266 

(𝐹𝑁 + 𝑇𝑃)  means numbers of actual positive cases, and (𝐹𝑃 + 𝑇𝑃)  means numbers of cases 267 

predicted positive regardless of both true and false. The recall and precision show a trade-off 268 

relationship. If the score of the recall increase, the score of the precision decrease. To define the trade-269 

off relationship, we also calculated 𝑓1 score. The 𝑓1 score, which indicates how much the recall and 270 

precision are skewed, is a harmonic mean combining the recall and precision and expressed by 271 

𝑓1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 272 

The 𝑓1 score has a relatively high value when the recall and precision are not biased to either side. 273 

Finally, the ROC-AUC score is calculated to estimate the prediction performance of models. The ROC 274 

curve depicts the trade-off relationships between true positive rate and false-positive rate with changing 275 

threshold. AUC stands for the area under the ROC curve. So, the ROC-AUC score represents the area 276 

under the ROC curve, and the closer to 1, the more reliable model is. 277 

 The recall, precision, 𝑓1 score, and ROC-AUC score are not appropriate for assessing the 278 

performances of multiclass models with more than two species of label data but are suitable for 279 

assessing those of the binary models with only two species of label data. Then, to assess the 280 

performances of the models in this study, we utilized the accuracy, recall, precision, 𝑓1 score, and 281 

ROC-AUC score in cases of binary models and utilized only the accuracy in cases of multiclass models. 282 

The assessments are evaluated using the “cross_val_score” algorithm (from Scikit-learn in a Python 283 

library), which calculates the average of each score from cross-validation (cv = 10), which means 284 

resampling 10 times and calculating the performances for each resample. 285 

 286 

3.6 Criteria analysis using Decision tree 287 

A Decision tree is a machine learning algorithm that constructs tree structures to find a model 288 

predicting the value of label data based on training features and label data (Myles et al., 2004; Cho and 289 



Kurup, 2011). The tree structures consist of nodes and branches (Fig. 6). The nodes are divided into the 290 

root node which is starting node, decision nodes that can be divided into nodes, and the terminal node 291 

that cannot be split anymore. Each node contains information about the node’s criterion, gini score 292 

(gini), the number of data contained in the node (samples), the number of data belonging to each label 293 

data (value), and the type of label data (class). The gini score is a score assessing the purity of the node. 294 

The gini score increases with increasing species of label data included in the node. The gini score is 295 

zero when the node only contains a single label data. As a result, the gini scores of all terminal nodes 296 

are zero. The nodes are classified by the branches. The branch on the left and right sides represents the 297 

true and false criterion of each node, respectively. The algorithm of the Decision tree works downward 298 

from the top (root node) to the bottom (decision node or terminal node) by partitioning off nodes based 299 

on the decision rules of each node. The classification is achieved by repeating this process and growing 300 

the tree structure. In this study, we used a “graphviz” algorithm (from Scikit-learn in a Python library) 301 

to visualize the tree structure as a figure and a “DecisionTreeClassifier” algorithm (from Scikit-learn in 302 

a Python library) to mathematically interpret the criteria of the classification for the data sets by 303 

analyzing the criterion of each node in the visualized tree structure. 304 

 305 

3.7 Importance assessment using Random Forest 306 

Importance assessment in machine learning is a method of calculating which feature data has 307 

the greatest influence on label data as scores for each feature by using a specific machine learning 308 

algorithm (Sung and Mukkamala, 2003; Hu et al., 2009; Park and Kim, 2019). The scores are assigned 309 

based on the importance of the features. We can interpret relationships between feature and label data 310 

using the method by referring to the feature importance. Although there are several ways to estimate 311 

the feature importance according to machine learning algorithms, we used a method based on gini 312 

importance and the Random Forest algorithm. Random Forest is an ensemble machine learning 313 

algorithm operated by assembling a great number of specific Decision trees. A prediction of Random 314 

Forest is achieved by a voting majority for the prediction results of each specific Decision tree. Gini 315 

importance, which is defined by a function describing homogeneity of label data (impurity function) in 316 



the Random Forest algorithm, is utilized to calculate node importance. Assuming a Decision tree with 317 

two terminal nodes split from one decision node, the node importance is expressed by 318 

𝑛𝑖𝑗 =  𝑤𝑗𝐶𝑗 − 𝑤𝑙𝑒𝑓𝑡(𝑗)𝐶𝑙𝑒𝑓𝑡(𝑗) − 𝑤𝑟𝑖𝑔ℎ𝑡(𝑗)𝐶𝑟𝑖𝑔ℎ𝑡(𝑗) 319 

where 𝑛𝑖𝑗 is the importance of node 𝑗, 𝑤𝑗 is the weighted number of samples on node 𝑗, and 𝐶𝑗 is 320 

Gini importance of node 𝑗 . 𝑙𝑒𝑓𝑡(𝑗)  and 𝑟𝑖𝑔ℎ𝑡(𝑗)  are left and right terminal nodes of node 𝑗 , 321 

respectively. The importance of node 𝑗 is increased with decreasing impurity of node 𝑗. The feature 322 

importance of feature 𝑖 (𝑓𝑖𝑖) is estimated by dividing the sum of the importance of nodes split by 323 

feature 𝑖 by the sum of the importance of all nodes. 324 

𝑓𝑖𝑖 =  
∑ 𝑛𝑖𝑗𝑗=𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡 𝑏𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝑛𝑖𝑘𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
 325 

To express 𝑓𝑖𝑖  as value suited to Random Forest level, the feature importance is transformed to 326 

normalized value by dividing 𝑓𝑖𝑖 by the sum of all importance of features and the normalized feature 327 

importance on each tree is divided by the number of all Decision trees. 328 

𝑛𝑜𝑟𝑚𝑓𝑖𝑖 =  
𝑓𝑖𝑖

∑ 𝑓𝑖𝑙𝑙∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 329 

𝑅𝐹𝑓𝑖𝑖 =  
∑ 𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑡𝑡∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠

𝑇
 330 

The 𝑛𝑜𝑟𝑚𝑓𝑖𝑖  and 𝑅𝐹𝑓𝑖𝑖  are normalized feature importance and final feature importance fitted to 331 

Random Forest for feature 𝑖, respectively. To estimate the importance of features classified from the 332 

Random Forest model, we used a “feature importances” algorithm with a “RandomForestClassifier” 333 

algorithm from Scikit-learn in a Python library. 334 

 335 

3.8 Probability map constructed by logistic regression 336 

 Logistic regression is another popular machine learning algorithm that conducts classification 337 

by calculating the probability for each event using a logistic or sigmoid function via a non-linear 338 

transformation of ordinary least squares for linear regression. The logistic function distinguishes 339 

between the logistic regression and linear regression models. The logistic function is expressed by 340 



𝑦 =  
1

1 + 𝑒−𝑥
 341 

𝑦 is the probability and 𝑥 is a weighted linear combination of feature data. The probability is assumed 342 

to limit between 0 and 1, as a binary system. 𝑥 is defined as 343 

𝑥 =  𝑏0 + 𝑏1𝑧1 + 𝑏2𝑧2 + ⋯ + 𝑏𝑛𝑧𝑛 344 

where 𝑏0 is the intercept, 𝑛 is the number of variables, 𝑏𝑖 (𝑖 =1, 2, 3, …, 𝑛) is the corresponding 345 

coefficients, and 𝑧𝑖 is the independent variable for feature data. Considering the model, we can identify 346 

the probability of each feature data for label data showing the binary system as a statistical value. 347 

Relationships between feature and label data can be expressed as a probability map by projecting the 348 

probabilities against feature parameters. In this study, we used a “LogisticRegression” algorithm (from 349 

Scikit-learn in a Python library) to find out appropriate models representing relationships between 350 

feature data and label data. The verified model is visualized by constructing a probability map for each 351 

feature data to interpret the importance of features classified from the Random Forest model. 352 

 353 

4. Result 354 

4. 1 Scatterplot for the intensity of Cr-Al chemical zoning 355 

Figure 7 shows a scatterplot for the ∆𝐶𝐴 and ∆𝐶𝐸, which represent the intensity of Cr-Al 356 

zoning. Each data point is standardized from the pre-processing stage. The closer the ∆𝐶𝐴 and ∆𝐶𝐸 357 

to 0, the more evenly distributed Cr is within the spinel grains. The intensity of Cr-Al zoning is intense 358 

with increasing the ∆𝐶𝐴 and ∆𝐶𝐸 to a positive value. The data points are distributed from −2 to 3 for 359 

the ∆𝐶𝐴 and from −3 to 3 from the ∆𝐶𝐸. Although the ∆𝐶𝐴 is diversely distributed with the ∆𝐶𝐸, 360 

the distribution of the data points indicates proportional relationship between the ∆𝐶𝐴 and ∆𝐶𝐸. Data 361 

points that ∆𝐶𝐴 is less than 0 present ∆𝐶𝐸 less than 1. Data points that ∆𝐶𝐸 is more than 1 show 362 

∆𝐶𝐸 more than 0. This relationship is originally derived by characteristics of Cr-Al chemical zoning. 363 

Considering the features of Cr-Al chemical zoning, Cr is symmetrically distributed along the long axis 364 

and minimally concentrated at both tip areas. The ∆𝐶𝐴 and ∆𝐶𝐸 proportionally change in accordance 365 

with the intensity of Cr-Al zoning. 366 



 367 

4.2 Criteria for clustering 368 

Fig. 8 displays results for outlier detection utilizing the three detecting methods as mentioned 369 

in section 3.3. We considered that final outliers are data commonly detected from each of the methods, 370 

and filtered the final outliers. The purified data points are clustered using the Mean-shift Clustering 371 

with 0.938 of bandwidth calculated by the ‘estimate bandwidth’ algorithm (Fig. 9). The data points are 372 

divided into 3 clusters as cluster 1 to cluster 3. The numbers of data points of the 1, 2, and 3 cluster are 373 

54, 17, and 11, respectively. To interpret clustering criteria, the ∆𝐶𝐴 and ∆𝐶𝐸 data (feature data) and 374 

types of the clusters (label data) for each spinel grain are split into train data set including 73 spinel data 375 

and test data set including 9 spinel data, and the data are classified using the Decision Tree algorithm. 376 

We estimated only accuracy to assess the performance of this model because this is a multiclass model 377 

as mentioned in section 3.5. The estimated average accuracy is 0.95. The visualized tree structure 378 

trained by the train data set is shown in Figure 10. There are 11 nodes containing a root node, 4 decision 379 

nodes, and 6 terminal nodes. Each cluster is classified by the 6 terminal nodes. Important nodes are root 380 

or decision nodes containing criterion that generates decision or terminal nodes consisting of a large 381 

number of samples and low gini score. Important nodes for cluster 1 are the root node 1 and decision 382 

node 2 deriving the terminal node 4. The root node 1 and decision nodes 3 and 6 are important nodes 383 

for cluster 2 characterized by the terminal node 11. Important nodes for cluster 3 are the root node 1 384 

and decision node 3 defining the terminal node 7. The criteria of the important nodes for each of the 385 

cluster are expressed by 386 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 1 = {∆𝐶𝐴 ≤ 0.176, ∆𝐶𝐸 ≤ 0.311} 387 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 2 = {∆𝐶𝐴 > 0.176,  − 0.527 < ∆𝐶𝐸 ≤ 0.826} 388 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 3 = {∆𝐶𝐴 > 0.176, ∆𝐶𝐸 > 0.826} 389 

Since both the ∆𝐶𝐴 and ∆𝐶𝐸 represent the difference of Cr and Al distributions between the tip and 390 

center area, the criteria can be simplified by considering the intersection of the criteria for each cluster. 391 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 1 = {∆≤ 0.176} 392 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 2 = {0.176 < ∆≤ 0.826} 393 



𝑐𝑙𝑢𝑠𝑡𝑒𝑟 3 = {∆> 0.826} 394 

∆ is the intersection of the criteria of the ∆𝐶𝐴 and ∆𝐶𝐸. The simplified criteria numerically explain 395 

that spinel grains are systemically clustered into three clusters based on the difference of Cr and Al 396 

distributions between the tip and center area and the difference are high in an order of cluster 3, cluster 397 

2, and cluster 1. Because the difference represents the intensity of the Cr-Al chemical zoning, each 398 

cluster can be interpreted as spinel grains having homogeneous chemical distribution for cluster 1, the 399 

weak intensity of Cr-Al chemical zoning for cluster 2, and the strong intensity of Cr-Al chemical zoning 400 

for cluster 3. 401 

 402 

4.3 Feature importance 403 

To determine which geometrical factor controls the intensity of Cr-Al zoning, more 404 

importantly, the feature importance is calculated using the feature data that includes information for the 405 

∆𝐶𝐴 and ∆𝐶𝐸, grain sizes (R), and aspect ratios (L) of spinel grains and label data composed by types 406 

of clusters. Figure 11 depicts the significance of each feature data. Because this model is also multiclass, 407 

we calculated only accuracy to assess the performance of this model. The calculated average accuracy 408 

is 0.9139. The ∆𝐶𝐴 and ∆𝐶𝐸 are the feature data displaying the first and second highest scores of 409 

feature importance, indicating that the ∆𝐶𝐴 and ∆𝐶𝐸 have the greatest impact on determining types 410 

of the clusters. Grain size is the third most important, and at the same time, the most important among 411 

the geometrical properties. The grain size score indicates that grain size is closely related to the types 412 

of clusters. Aspect ratio is the feature data showing the lowest score of feature importance. The score 413 

of aspect ratio reflects that there are relatively low relationships between aspect ratio and the intensity 414 

of Cr-Al chemical zoning. 415 

 416 

4.4 Probability map 417 

We inspect probability maps by using the logistic regression method to examine the relative 418 

relationships between each feature and the Cr-Al chemical zoning in greater detail. Figure 12 depicts 419 

the probability maps for features including the ∆𝐶𝐴 and ∆𝐶𝐸, grain size (R), and aspect ratio (L). To 420 



represent the ∆𝐶𝐴 and ∆𝐶𝐸 data as a unified value, the ∆𝐶𝐴 and ∆𝐶𝐸 is simplified by calculating 421 

average. The average of the ∆𝐶𝐴 and ∆𝐶𝐸 is 𝑎𝑣𝑒𝑟∆. The probability is expressed as values between 422 

1 to 0 and the closer it is to 1, the more likely it is to be included in clusters 2 and 3. In contrast, the 423 

closer the value is to 0, the higher the possibility of being included in cluster 1. Given the criteria for 424 

clusters 1, 2, and 3 in section 4.2, high values of the probability imply that possibility that the Cr-Al 425 

chemical zoning can be observed from the spinel grains is high. The probability maps are constructed 426 

by considering species of features as three cases; the 𝑎𝑣𝑒𝑟∆ and grain size, the 𝑎𝑣𝑒𝑟∆ and aspect 427 

ratio, and aspect ratio and grain size. The performances of these models are estimated by evaluating 428 

scores for accuracy, recall, precision, 𝑓1, and ROC-AUC, because this is binary model as mentioned 429 

in section 3.5. Scores representing performances for each probability map are described in Table 2 430 

The probability map for the 𝑎𝑣𝑒𝑟∆ and grain size shows that the probability increases with 431 

increasing 𝑎𝑣𝑒𝑟∆ and grain size. The variances in probability with changing grain size are less than 432 

those with changing the 𝑎𝑣𝑒𝑟∆. Intervals between each of contour line are relatively narrow, suggesting 433 

that the criteria for distinction are relatively clear. The scatter plot for the 𝑎𝑣𝑒𝑟∆ and grain size also 434 

represent the meaning of the narrow intervals of the contour lines. In the probability map for the 𝑎𝑣𝑒𝑟∆ 435 

and aspect ratio, although changes in the probability for the 𝑎𝑣𝑒𝑟∆ display a similar trend with those 436 

in the probability map for the 𝑎𝑣𝑒𝑟∆ and grain size, there are no relationship for aspect ratio. The gaps 437 

between the contour lines are also similar to those for the probability map for the 𝑎𝑣𝑒𝑟∆ and grain 438 

size. In the probability map for the aspect ratio and grain size, the probability is increase with increasing 439 

aspect ratio and grain size. Variances of the probability with changing grain size are bigger than those 440 

with changing aspect ratio. The intervals are much wider than the intervals of the probability maps for 441 

the 𝑎𝑣𝑒𝑟∆ and grain size, and the 𝑎𝑣𝑒𝑟∆ and aspect ratio. 442 

 443 

5. Discussion 444 

5.1 Interpretation for the analyzed data 445 

In sections 4.3 and 4.4, the machine learning analysis exhibits the feature importance 446 

representing many important factors for the intensity of Cr-Al zoning and the probability maps showing 447 



relative relationships between the factors and the intensity of Cr-Al zoning. We interpret the analyzed 448 

data and the relative relationships in this section. 449 

In Figure 11, the ∆𝐶𝐴  and ∆𝐶𝐸  show the first and second highest scores for feature 450 

importance representing the greatest influence on identifying the types of the clusters. Because the data 451 

points are originally clustered based on the ∆𝐶𝐴 and ∆𝐶𝐸 , it is obvious that they are the most 452 

important factors to the intensity of Cr-Al zoning. The connection is also represented by the probability 453 

maps for the ∆𝐶𝐴 and ∆𝐶𝐸 (Fig. 12a-b). Feature importance indicates grain size is the third most 454 

important factor to the intensity of Cr-Al zoning. The importance score of grain size is smaller than 455 

those of the ∆𝐶𝐴 and ∆𝐶𝐸 and greater than that of the aspect ratio. This importance of grain size can 456 

be also certified from the probability maps (Fig. 12a, c). Although the variances of the probability with 457 

varying grain sizes are much smaller than those with varying 𝑎𝑣𝑒𝑟∆ in the probability map for the 458 

𝑎𝑣𝑒𝑟∆ and grain size (Fig. 12a), the variances of the probability with altering grain size are much 459 

bigger that those with altering aspect ratio in the probability map for the aspect ratio and grain size (Fig. 460 

12c). Both probability maps for grain size show that the probability increases with increasing grain size, 461 

implying that the Cr-Al chemical zoning is more easily observed with increasing grain size. Figure 13a 462 

depicts the grain size distribution for each cluster type. The grain size trend in clusters 1, 2, and 3 reflects 463 

the relationships between grain size and the Cr-Al zoning. The aspect ratio has the lowest importance 464 

score, about 10 times lower than ∆𝐶𝐴 and ∆𝐶𝐸  and 5 times lower than that of grain size. The 465 

probability maps for aspect ratio also reflect the gaps of importance scores for aspect ratio (Fig. 12b-c). 466 

In the probability map for the 𝑎𝑣𝑒𝑟∆ and aspect ratio (Fig. 12b), even if variances of the probability 467 

is relatively large with changing the 𝑎𝑣𝑒𝑟∆, there are no variances for the probability with changing 468 

aspect ratio because the 𝑎𝑣𝑒𝑟∆ much affect to the Cr-Al zoning compared to aspect ratio as about 10 469 

times enormously. The probability map for aspect ratio and grain size, on the other hand, displays 470 

effects for aspect ratio due to relatively small differences in importance scores (Fig. 12c). The 471 

probability increases with increasing aspect ratio, implying that possibility of observing the Cr-Al 472 

chemical zoning increases with increasing aspect ratio. The intervals of contour lines are wider than 473 

those of the other maps because the criteria for aspect ratio constructing the probability map is relatively 474 



unclearness. These relationships are displayed in the scatter plot for aspect ratio and grain size, and box 475 

plots showing aspect ratios of spinel grains for each type of cluster (Figure 13b). Although the aspect 476 

ratio for each type of cluster exhibits variation and the aspect ratio for cluster 1 is the lowest, there is 477 

no critical difference in aspect ratio between clusters 1, 2, and 3. 478 

 479 

5.2 Interpretation for relationships between grain size and the Cr-Al chemical zoning 480 

As stated in section 5.1, grain size is proportional to the intensity of Cr-Al chemical zoning. 481 

Based on Ozawa’s model, we assumed that spinel grains with Cr-Al chemical zoning are deformed by 482 

lattice diffusion to interpret the relationship. Considering the assumption, the relationship between grain 483 

size and the intensity of Cr-Al chemical zoning can be interpreted as lattice diffusion becoming 484 

significant with increasing grain size of spinel. This interpretation can be explained by the ratio between 485 

grain boundary diffusion flux and lattice diffusion flux. The ratio (𝑟𝑑𝑖𝑓𝑓) is expressed by 486 

𝑟𝑑𝑖𝑓𝑓 =
𝐷𝑏𝛿𝑏

𝐷𝑙𝑅
 487 

𝐷𝑏 and 𝐷𝑙 is grain boundary diffusion coefficient and lattice diffusion coefficient, respectively. 𝛿𝑏 is 488 

grain boundary width and 𝑅 is grain size. The 𝑟𝑑𝑖𝑓𝑓, which is inverse proportional to grain size, and 489 

is related to dominant types of diffusion creep mechanisms. Lattice diffusion becomes important with 490 

decreasing the 𝑟𝑑𝑖𝑓𝑓 , and grain boundary diffusion become dominant with increasing the 𝑟𝑑𝑖𝑓𝑓 . 491 

Considering the ratio, 𝐷𝑏, 𝐷𝑙, and 𝛿𝑏 are relatively constant between minerals of the same species 492 

within the same rock sample and the only variable for the 𝑟𝑑𝑖𝑓𝑓 becomes 𝑅. Based on the relations, 493 

lattice diffusion is more active with increasing grain size. Considering the Ozawa’s model that the Cr-494 

Al chemical zoning in spinel grain is kinetic demixing caused by the difference of diffusivity between 495 

Cr and Al during cation transport through the lattice, lattice diffusion in spinel grain is associated with 496 

flux of Cr and Al. This means that the more lattice diffusion is active, the more cation is transported 497 

through the lattice and the high flux of cation derives the high intensity of Cr-Al zoning. Then, the 498 

relationship between grain size and the intensity of Cr-Al chemical zoning suggests that the intensity is 499 

increase with increasing grain size because lattice diffusion is much more active in coarser spinel grains. 500 



For types of clusters, lattice diffusion is most intensely activated in cluster 3, intermediately in cluster 501 

2, and relatively not activated in cluster1. 502 

 503 

5.3 The 𝑹𝒅𝒊𝒇𝒇 and deformation temperature 504 

The ratio for diffusion flux (𝑟𝑑𝑖𝑓𝑓) is controlled by grain boundary diffusion coefficient (𝐷𝑏) 505 

and lattice diffusion coefficient (𝐷𝑙), grain boundary width (𝛿𝑏), and grain size (𝑅). And the 𝐷𝑏 and 506 

𝐷𝑙 are changed with varying temperatures. Thus, we can calculate variations of the 𝑟𝑑𝑖𝑓𝑓 following 507 

changing of temperature and the 𝑅 . There were studies investigating specific values of the 𝑟𝑑𝑖𝑓𝑓 508 

representing the transition of diffusion creep mechanisms from grain boundary diffusion to lattice 509 

diffusion. Considering the specific values of the 𝑟𝑑𝑖𝑓𝑓 , critical grain size (𝑅𝑐 ), which is grain size 510 

deriving the transition of diffusion creep mechanisms, can be determined according to each temperature 511 

condition. By comparing the calculated 𝑅𝑐 and grain size distribution for each type of the clusters, we 512 

estimated the deformation temperature of spinel grain. 513 

The 𝐷𝑏 is grain boundary diffusion coefficient for the slowest atom on grain boundary of 514 

spinel grain and the 𝐷𝑙 is lattice diffusion coefficient for the slowest atom within the lattice of spinel 515 

grain, because the slowest atoms control diffusion creep of mineral. To calculate the 𝑟𝑑𝑖𝑓𝑓, we supposed 516 

that O and Cr are the slowest atom in grain boundary and lattice of spinel grain, respectively (Joesten, 517 

1991; Suzuki et al., 2008; Nakakoji and Hiraga, 2018). The 𝛿𝑏 is assumed as 1 nm. Because there has 518 

been no direct estimation of the O grain boundary diffusion coefficient for spinel grain, the O grain 519 

boundary diffusion coefficient is derived by referring to results of previous studies (Oishi and Ando, 520 

1975; Reddy and Cooper, 1981; Ando and Oishi, 1983), in which O self-diffusion coefficient of 521 

polycrystalline spinel is approximately 4 orders faster than that of single spinel crystal due to diffusion 522 

of O improved along grain boundaries. Given the result, we calculated the approximate O grain 523 

boundary diffusion coefficient by multiplying 4 orders by the O self-diffusion coefficient estimated by 524 

the result. According to Suzuki et al. (2008), the approximately calculated O grain boundary diffusion 525 

coefficient is about 5 orders greater than the O self-diffusion coefficient estimated by Reddy and Cooper 526 



(1981) and Ando and Oishi (1983). The Cr lattice diffusivity is computed by extrapolating Cr self-527 

diffusion coefficients data from Suzuki et al. (2008). We evaluated the 𝑟𝑑𝑖𝑓𝑓 for various temperatures 528 

and grain sizes by applying the calculated 𝐷𝑏 and 𝐷𝑙 to the 𝑟𝑑𝑖𝑓𝑓 (Table3). 529 

Swaroop et al. (2005) reported that the 𝑅𝑐 deriving a transition from grain boundary diffusion 530 

to lattice diffusion is determined by 531 

𝑅𝑐 ≈
1.2𝐷𝑏𝛿

𝐷𝑙
 532 

The specific value of the 𝑟𝑑𝑖𝑓𝑓 can be calculated by modifying the equation. 533 

0.83 ≈  
𝐷𝑏𝛿

𝐷𝑙𝑅
= 𝑟𝑑𝑖𝑓𝑓 534 

Shibutani et al. (1998) reviewed that there are three types of diffusion processes controlling cavity 535 

growth derived by diffusion, depending on the 𝑟𝑑𝑖𝑓𝑓 . The 𝑟𝑑𝑖𝑓𝑓  for the types of processes are 536 

introduced as 537 

(a) 𝑟𝑑𝑖𝑓𝑓 > 1: Grain boundary diffusion dominant 538 

(b) 0.1 < 𝑟𝑑𝑖𝑓𝑓 < 1: Grain boundary diffusion + Lattice diffusion 539 

(c) 𝑟𝑑𝑖𝑓𝑓 < 0.1: Lattice diffusion dominant 540 

Since this model indicates that the transition occurs from the (b) range of the 𝑟𝑑𝑖𝑓𝑓, the transition may 541 

have occurred from a grain size achieving 𝑟𝑑𝑖𝑓𝑓 = 1. 542 

We estimated the 𝑟𝑑𝑖𝑓𝑓 (Table 3) and the 𝑅𝑐 (Table 4) with various temperature and grain 543 

sizes based on the two models. Both the model represents that the 𝑟𝑑𝑖𝑓𝑓 is decrease with increasing 544 

grain size and temperature, and the 𝑅𝑐  decrease with increasing temperature, suggesting that the 545 

relative significance of lattice diffusion to total diffusion creep increases with increasing temperature 546 

(Fig. 14). 547 

The activity of lattice diffusion for types of the clusters discussed in section 4.3 show that 548 

lattice diffusion begins to be active from cluster 2. Deformation temperature can be estimated by 549 

comparing the grain sizes of Q1 (73.5 μm) and minimum (22 μm) of cluster 2, and the critical grain 550 

sizes in Table 4. By considering the difference between the Q1 and minimum grain sizes, deformation 551 



temperature is expressed as ranges. For the equation of Swaroop et al. (2005), the temperature 552 

representing the critical grain size closest to the grain size of Q1 is 1100°C and the temperature for the 553 

grain size of minimum is 1250°C. Then, the deformation temperature range is estimated as 1250°C–554 

1100°C. The estimated deformation temperature calculated by supposing the equations of Shibutani et 555 

al. (1998) is also 1250°C–1100°C. 556 

The CPO patterns of the olivine grains and the P-T trajectory of the Horoman Peridotite 557 

Complex based on chemical compositional zoning of pyroxenes and whole-rock compositions (Ozawa 558 

and Takahashi, 1995 Takahashi, 2004) support the proposal that the estimated deformation temperature 559 

range is 1250°C–1100°C. The A-type CPO of the olivine grains represents that the olivine grains are 560 

deformed in high-temperature conditions (approximately > 1100°C). Since we supposed the 561 

deformation of the olivine grains forming A-type CPO coincides with the deformation of the spinel 562 

grains in section 2.1 based on their microstructures, the range of the estimated temperature is consistent. 563 

Based on the P-T trajectory of the Horoman Peridotite Complex, the equilibrium temperature of spinel 564 

peridotite for the Transition Zone including the dunite sample is estimated to be the intermediate 565 

temperature between the equilibrium temperature of spinel peridotite of the Upper (1150°C–1100°C) 566 

and Lower Zone (950°C–900°C). According to Takahashi (2004), the temperature difference between 567 

the Upper and the Lower Zones is gradual. Given the sampling area that is located very near to the 568 

Upper Zone, the equilibrium temperature for the dunite sample may be closer to that of the Upper Zone 569 

than the Lower Zone, implying that the estimated temperature range is consistent. 570 

 571 

5.4 Interpretation for relationships between aspect ratio and the Cr-Al chemical zoning 572 

Although aspect ratio is less correlated with the intensity of Cr-Al chemical zoning than grain 573 

size, aspect ratio also represents a relationship with the intensity (Fig. 12c). The probability map and 574 

scatter plot in Fig. 12c describe two of characteristics for aspect ratio, which are that the probability 575 

decrease with decreasing aspect ratio and aspect ratio for spinel grains smaller than about 100 μm is 576 

relatively low, representing that spinel grains having homogeneous chemical distribution show 577 

relatively fine grain size and low aspect ratio. According to the characteristics, the relationship between 578 



aspect ratio and the chemical zoning is correlated with grain size. The effect of the rounding process 579 

introduced by Toriumi (1987), Okamoto and Michibayashi (2005), and Uhmb and Michibayashi (2022) 580 

was thought to be responsible for the relationship between chemical zoning, aspect ratio, and grain size. 581 

Isolated mineral inclusions tend to round out to a spherical shape to minimize their surface energy, 582 

which is referred to as the rounding process, during the post-deformational annealing stage, and the 583 

effects of the rounding process are related to grain size and temperature because the rounding process 584 

is controlled by diffusion creep. The rounding process has greater effects as grain size decreases, 585 

increasing deformation temperature, and increasing annealing time. Because the deformation 586 

temperature and annealing time are identical along with the dunite sample, the effect of the rounding 587 

process on the sample is only activated by the following variable of grain size. Given the effect of the 588 

rounding process, we thought that the fine spinel grains became more round in shape than coarse grains 589 

during the annealing stage and the trend of decreasing the probability with decreasing aspect ratio is 590 

derived from the relationship between grain size and the chemical zoning, that the chemical zoning is 591 

less observable in finer grains. 592 

 593 

6. Summary and conclusion 594 

We investigated the relationship between the intensity of Cr-Al chemical zoning (∆𝐶𝐴 and 595 

∆𝐶𝐸) and the geometrical properties of spinel grains collected from a dunite sample within the dunite 596 

layer in the Transition Zone of the Horoman Peridotite Complex, northern Japan using unsupervised 597 

(Mean-shift Clustering) and supervised (Decision tree, Random Forest, and Logistic regression) 598 

machine learning analyses. 599 

⚫ Using Mean-shift Clustering, the ∆𝐶𝐴 and ∆𝐶𝐸  data were clustered into three kinds of 600 

clusters (cluster 1, 2, and 3). 601 

⚫ The Decision tree classification revealed that the spinel grains are systematically clustered 602 

based on degree of the intensity of Cr-Al chemical zoning. 603 

⚫ The feature importance analyzed by Random Forest method feature importance analysis 604 

suggested that grain size is more important factor closely related to the intensity of Cr-Al 605 



chemical zoning than aspect ratio. 606 

⚫ The probability maps constructed by the Logistic regression displayed the relationships 607 

between the trends of the geometrical properties and the intensity of Cr-Al chemical zoning.  608 

The relationship is interpreted as lattice diffusion is most strongly activated in cluster 1, intermediately 609 

in cluster 2, and not activated in cluster 1, implying that lattice diffusion is much more active in coarser 610 

spinel grains and there is a critical grain size switching diffusion mechanism. Given the relationships, 611 

we estimated the critical grain size (𝑑𝑐) for the spinel grains with various temperature conditions (Fig. 612 

14). The comparison between the estimated 𝑑𝑐  and observed grain size from the dunite sample 613 

suggests that deformation temperature of the spinel grains within the sample is 1250°C–1100°C.  614 

Our newly suggested model in this study, which is constructed by machine learning analyses, 615 

describes the relationships between the intensity of the Cr-Al chemical zoning and the geometrical 616 

properties. The model allows us to understand motive of various intensities of the Cr-Al chemical 617 

zoning and diffusion mechanisms of spinel grains according to their geometrical properties, and further 618 

derive a new application method of the chemical zoning for estimating deformation temperature of 619 

spinel grains. It will be achievable to not only find out new model for the chemical zoning of spinel 620 

grains but improve the model, as more other data of spinel are applied to the machine learning analysis.  621 

 622 

Acknowledgments 623 

To compute all of data in this study, we utilized Python 3.7.0 and Jupyter Notebook 6.3.0 with 624 

libraries including pandas, numpy, sklearn, scikit, and matplotlib. This study was supported by a student 625 

grant awarded to T.U. by the Graduate School of Environmental Studies (Nagoya University), the Fujii 626 

International Scholarship, the THERS Interdisciplinary Frontier Next Generation Researcher fund, and 627 

a research grant awarded to K.M. by the Japan Society for the Promotion of Science (Kiban-S 628 

16H06347). 629 

 630 

Data Availability Statement 631 

 All data for machine learning analysis are available as the format using in this study from 632 



Figshare (https://doi.org/10.6084/m9.figshare.20131157.v1). The all data include not only modeling 633 

codes described by python languages, but also analyzing data for spinel grains.  634 

 635 

References 636 

Allaby, M. (Ed.). (2013). A dictionary of geology and earth sciences. Oxford University Press. 637 

Ando, K., & Oishi, Y. (1983). Effect of Ratio of Surface Area to Volume on Oxygen Self‐Diffusion 638 

Coefficients Determined for Crushed MgO‐Al2O3 Spinels. Journal of the American Ceramic 639 

Society, 66(8), C-131. 640 

Angra, S., & Ahuja, S. (2017, March). Machine learning and its applications: A review. In 2017 641 

international conference on big data analytics and computational intelligence (ICBDAC) (pp. 57-642 

60). IEEE. 643 

Bell, T. (1978). Progressive deformation and reorientation of fold axes in a ductile mylonite zone: the 644 

Woodroffe thrust. Tectonophysics, 44(1-4), 285-320. 645 

Bergen, K. J., Johnson, P. A., de Hoop, M. V., & Beroza, G. C. (2019). Machine learning for data-driven 646 

discovery in solid Earth geoscience. Science, 363(6433), eaau0323. 647 

Carlson, W. D. (1989). The significance of intergranular diffusion to the mechanisms and kinetics of 648 

porphyroblast crystallization. Contributions to Mineralogy and Petrology, 103(1), 1-24. 649 

Carlson, W. D., & Denison, C. (1992). Mechanisms of porphyroblast crystallization: results from high-650 

resolution computed X-ray tomography. Science, 257(5074), 1236-1239. 651 

Cashman, K. V., & Ferry, J. M. (1988). Crystal size distribution (CSD) in rocks and the kinetics and 652 

dynamics of crystallization. Contributions to Mineralogy and Petrology, 99(4), 401-415. 653 

Çelik, M., Dadaşer-Çelik, F., & Dokuz, A. Ş. (2011, June). Anomaly detection in temperature data using 654 

DBSCAN algorithm. In 2011 international symposium on innovations in intelligent systems and 655 

applications (pp. 91-95). IEEE. 656 

Chakraborty, S., & Ganguly, J. (1991). Compositional zoning and cation diffusion in garnets. In 657 

Diffusion, atomic ordering, and mass transport (pp. 120-175). Springer, New York, NY. 658 

Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE transactions on pattern analysis and 659 



machine intelligence, 17(8), 790-799. 660 

Chernoff, C. B., & Carlson, W. D. (1997). Disequilibrium for Ca during growth of pelitic garnet. Journal 661 

of metamorphic Geology, 15(4), 421-438. 662 

Cho, J. H., & Kurup, P. U. (2011). Decision tree approach for classification and dimensionality 663 

reduction of electronic nose data. Sensors and Actuators B: Chemical, 160(1), 542-548. 664 

Dahiya, N., Gupta, S., & Singh, S. (2022). A Review Paper on Machine Learning Applications, 665 

Advantages, and Techniques. ECS Transactions, 107(1), 6137. 666 

DENISON*, C., Carlson, W. D., & Ketcham, R. A. (1997). Three‐dimensional quantitative textural 667 

analysis of metamorphic rocks using high‐resolution computed X‐ray tomography: Part I. Methods 668 

and techniques. Journal of Metamorphic Geology, 15(1), 29-44. 669 

Dhall, D., Kaur, R., & Juneja, M. (2020). Machine learning: a review of the algorithms and its 670 

applications. Proceedings of ICRIC 2019, 47-63. 671 

Gaidies, F., De Capitani, C., & Abart, R. (2008). THERIA_G: a software program to numerically model 672 

prograde garnet growth. Contributions to Mineralogy and Petrology, 155(5), 657-671. 673 

Gan, G., & Ng, M. K. P. (2017). K-means clustering with outlier removal. Pattern Recognition 674 

Letters, 90, 8-14. 675 

GEORGE JR, R. P. (1978). Structural petrology of the Olympus ultramafic complex in the Troodos 676 

ophiolite, Cyprus. Geological Society of America Bulletin, 89(6), 845-865. 677 

Goodge, J. W., Hansen, V. L., Peacock, S. M., Smith, B. K., & Walker, N. W. (1993). Kinematic 678 

evolution of the Miller Range shear zone, central Transantarctic Mountains, Antarctica, and 679 

implications for Neoproterozoic to early Paleozoic tectonics of the East Antarctic margin of 680 

Gondwana. Tectonics, 12(6), 1460-1478. 681 

Grujic, D., & Mancktelow, N. S. (1995). Folds with axes parallel to the extension direction: an 682 

experimental study. Journal of Structural Geology, 17(2), 279-291. 683 

Hautamäki, V., Cherednichenko, S., Kärkkäinen, I., Kinnunen, T., & Fränti, P. (2005, June). Improving 684 

k-means by outlier removal. In Scandinavian conference on image analysis (pp. 978-987). Springer, 685 

Berlin, Heidelberg. 686 



Hickmott, D. D., Shimizu, N., Spear, F. S., & Selverstone, J. (1987). Trace-element zoning in a 687 

metamorphic garnet. Geology, 15(6), 573-576. 688 

Hickmott, D. D., & Shimizu, N. (1990). Trace element zoning in garnet from the Kwoiek Area, British 689 

Columbia: disequilibrium partitioning during garnet growth?. Contributions to Mineralogy and 690 

Petrology, 104(6), 619-630. 691 

Hollister, L. S. (1970). Origin, mechanism, and consequences of compositional sector-zoning in 692 

staurolite. American Mineralogist: Journal of Earth and Planetary Materials, 55(5-6), 742-766. 693 

Hoskin, P. W., & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic 694 

petrogenesis. Reviews in mineralogy and geochemistry, 53(1), 27-62. 695 

Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. 696 

Hu, H. Y., Lee, Y. C., Yen, T. M., & Tsai, C. H. (2009). Using BPNN and DEMATEL to modify 697 

importance–performance analysis model–A study of the computer industry. Expert systems with 698 

applications, 36(6), 9969-9979. 699 

Joesten, R. (1991). Grain-boundary diffusion kinetics in silicate and oxide minerals. In Diffusion, 700 

atomic ordering, and mass transport (pp. 345-395). Springer, New York, NY. 701 

JONES, K. A., & GALWEY, A. K. (1966). Size distribution, composition, and growth kinetics of garnet 702 

crystals in some metamorphic rocks from the west of Ireland. Quarterly Journal of the Geological 703 

Society, 122(1-4), 29-44. 704 

Kretz, R. (1974). Some models for the rate of crystallization of garnet in metamorphic 705 

rocks. Lithos, 7(3), 123-131. 706 

Loomis, T. P. (1976). Irreversible reactions in high-grade metapelitic rocks. Journal of Petrology, 17(4), 707 

559-588. 708 

Loomis, T. P. (1983). Compositional zoning of crystals: a record of growth and reaction history. In 709 

Kinetics and equilibrium in mineral reactions (pp. 1-60). Springer, New York, NY. 710 

Malaviarachchi, S. P., Makishima, A., & Nakamura, E. (2010). Melt–peridotite reactions and fluid 711 

metasomatism in the upper mantle, revealed from the geochemistry of peridotite and gabbro from 712 

the Horoman peridotite massif, Japan. Journal of Petrology, 51(7), 1417-1445. 713 



Malaviarachchi, S. P., Makishima, A., Tanimoto, M., Kuritani, T., & Nakamura, E. (2008). Highly 714 

unradiogenic lead isotope ratios from the Horoman peridotite in Japan. Nature Geoscience, 1(12), 715 

859-863. 716 

Michibayashi, K., Suzuki, M., & Komori, N. (2013). Progressive deformation partitioning and 717 

recrystallization of olivine in the lithospheric mantle. Tectonophysics, 587, 79-88. 718 

Misseri, M., & Boudier, F. (1985). Structures in the Canyon Mountain ophiolite indicate an island-arc 719 

intrusion. Tectonophysics, 120(3-4), 191-209. 720 

Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An introduction to decision 721 

tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(6), 275-285. 722 

Nakakoji, T., & Hiraga, T. (2018). Diffusion creep and grain growth in forsterite+ 20 vol% enstatite 723 

aggregates: 2. Their common diffusional mechanism and its consequence for weak‐temperature‐724 

dependent viscosity. Journal of Geophysical Research: Solid Earth, 123(11), 9513-9527. 725 

Nakamura, Y. (1973). Origin of sector-zoning of igneous clinopyroxenes. American Mineralogist: 726 

Journal of Earth and Planetary Materials, 58(11-12), 986-990. 727 

Niida, K. I. Y. O. A. K. I. (1974). Structure of the Horoman ultramafic massif of the Hidaka metamorphic 728 

belt in Hokkaido, Japan. J. Geol. Soc. Japan, 80, 31-44. 729 

Okamoto, A., & Michibayashi, K. (2005). Progressive shape evolution of a mineral inclusion under 730 

differential stress at high temperature: Example of garnet inclusions within a granulite‐facies 731 

quartzite from the Lützow‐Holm Complex, East Antarctica. Journal of Geophysical Research: 732 

Solid Earth, 110(B11). 733 

Ozawa, K. (1989). Stress-induced Al–Cr zoning of spinel in deformed peridotites. Nature, 338(6211), 734 

141-144. 735 

Ozawa, K., & Takahashi, N. (1995). PT history of a mantle diapir: the Horoman peridotite complex, 736 

Hokkaido, northern Japan. Contributions to Mineralogy and Petrology, 120(3), 223-248. 737 

Ozawa, K. (2004). Thermal history of the Horoman peridotite complex: a record of thermal perturbation 738 

in the lithospheric mantle. Journal of Petrology, 45(2), 253-273. 739 

Park, S., & Kim, J. (2019). Landslide susceptibility mapping based on random forest and boosted 740 



regression tree models, and a comparison of their performance. Applied Sciences, 9(5), 942. 741 

Platt, J. P., & Behrmann, J. H. (1986). Structures and fabrics in a crustal-scale shear zone, Betic 742 

Cordillera, SE Spain. Journal of Structural Geology, 8(1), 15-33. 743 

Prenzel, J., Abart, R., & Keller, L. (2009). Complex chemical zoning in eclogite facies garnet reaction 744 

rims: the role of grain boundary diffusion. Mineralogy and Petrology, 95(3), 303-313. 745 

Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., Chen, S., Liu, D., & Li, J. (2020). Performance 746 

comparison and current challenges of using machine learning techniques in 747 

cybersecurity. Energies, 13(10), 2509. 748 

Shibutani, T., Kitamura, T., & Ohtani, R. (1998). Creep cavity growth under interaction between lattice 749 

diffusion and grain-boundary diffusion. Metallurgical and Materials Transactions A, 29(10), 750 

2533-2542. 751 

Shinde, P. P., & Shah, S. (2018, August). A review of machine learning and deep learning applications. 752 

In 2018 Fourth international conference on computing communication control and automation 753 

(ICCUBEA) (pp. 1-6). IEEE. 754 

Sung, A. H., & Mukkamala, S. (2003). Identifying important features for intrusion detection using 755 

support vector machines and neural networks. In 2003 Symposium on Applications and the Internet, 756 

2003. Proceedings. (pp. 209-216). IEEE. 757 

Suzuki, A. M., Yasuda, A., & Ozawa, K. (2008). Cr and Al diffusion in chromite spinel: experimental 758 

determination and its implication for diffusion creep. Physics and Chemistry of Minerals, 35(8), 759 

433-445. 760 

Swaroop, S., Kilo, M., Argirusis, C., Borchardt, G., & Chokshi, A. H. (2005). Lattice and grain 761 

boundary diffusion of cations in 3YTZ analyzed using SIMS. Acta materialia, 53(19), 4975-4985. 762 

Sawaguchi, T. (2004). Deformation history and exhumation process of the Horoman Peridotite Complex, 763 

Hokkaido, Japan. Tectonophysics, 379(1-4), 109-126. 764 

Takazawa, E., Frey, F. A., Shimizu, N., Saal, A., & Obata, M. (1999). Polybaric petrogenesis of mafic 765 

layers in the Horoman peridotite complex, Japan. Journal of Petrology, 40(12), 1827-1851. 766 

Thang, T. M., & Kim, J. (2011, April). The anomaly detection by using dbscan clustering with multiple 767 



parameters. In 2011 International Conference on Information Science and Applications (pp. 1-5). 768 

IEEE. 769 

Thayer, T. P. (1963). Flow-layering in alpine peridotite-gabbro complexes. Spec Pap Mineral Soc Am, 1, 770 

55-62. 771 

Toriumi, M. (1987). Progressive deformation and annealing of quartz inclusion in porphyroblastic 772 

feldspar during synmetamorphic non-coaxial deformation. The Journal of the Japanese 773 

Association of Mineralogists, Petrologists and Economic Geologists, 82(4), 123-131. 774 

Tracy, R. J., & McLellan, E. L. (1985). A natural example of the kinetic controls of compositional and 775 

textural equilibration. In Metamorphic reactions (pp. 118-137). Springer, New York, NY. 776 

Tuzel, O., Porikli, F., & Meer, P. (2009). Kernel methods for weakly supervised mean shift clustering. 777 

In 2009 IEEE 12th International Conference on Computer Vision (pp. 48-55). IEEE. 778 

Uhmb, T. H., & Michibayashi, K. (2022). A shape-change model for isolated K-feldspar inclusions 779 

within a shear zone developed in the Teshima granite, Ryoke metamorphic belt, Japan: Estimation 780 

of the duration of deformation in a natural shear zone. Tectonophysics, 229229. 781 

Vance, J. A. (1965). Zoning in igneous plagioclase: patchy zoning. The Journal of Geology, 73(4), 636-782 

651. 783 

Wang, H., Ma, C., & Zhou, L. (2009, December). A brief review of machine learning and its application. 784 

In 2009 international conference on information engineering and computer science (pp. 1-4). IEEE. 785 

Yang, J., Rahardja, S., & Fränti, P. (2019). Outlier detection: how to threshold outlier scores?. 786 

In Proceedings of the international conference on artificial intelligence, information processing 787 

and cloud computing (pp. 1-6). 788 

Yang, J., Rahardja, S., & Fränti, P. (2021). Mean-shift outlier detection and filtering. Pattern 789 

Recognition, 115, 107874. 790 

Yoshikawa, M., Niida, K., & Green, D. H. (2019). Dunite channels within a harzburgite layer from the 791 

Horoman peridotite complex, Japan: Possible pathway for magmas. Island Arc, 28(1), e12279. 792 

Zhang, P., Du, K., Tannant, D. D., Zhu, H., & Zheng, W. (2018). Automated method for extracting and 793 

analysing the rock discontinuities from point clouds based on digital surface model of rock mass. 794 



Engineering Geology, 239, 109-118.  795 



Figure 1. (a) Modified Ozawa and Takahashi (1995) geological map of the Horoman Peridotite 796 

Complex in Hokkaido, Japan (1995). The sampling area is the dunite layer near the Upper Zone 797 

within the Transition Zone. (b) Photograph of the dunite sample outcrop. The foliation is marked by 798 

dash lines. (c) Representative phase maps for the dunite sample were obtained by SEM-EBSD. (d) 799 

Optical photomicrographs (PPL) of the spinel grains within the phase map of (c). The elongated 800 

spinel grains show various grain sizes and aspect ratios. 801 

 802 

Figure 2. CPOs of olivine grains in the dunite sample. Equal-area lower-hemisphere projection. Right 803 

projections are point plots for all olivine data onto each axis and left projections are contour plots for 804 

the same data. 805 

 806 

Figure 3. EPMA-WDS mapping data for three representative spinel samples showing each different 807 

intensity of Cr-Al chemical zoning. Spinel samples exhibited relatively (a) strong (S1), (b) 808 

intermediate (S2), and (c) weak (S3) intensity of Cr-Al chemical zoning. White circles nominated 809 

from P1 to P9 within each spinel sample are the location conducting point analysis. Detailed point 810 

analysis data are set out in Table 1. 811 

 812 

Figure 4. Schematic figure of multipolar Cr-Al chemical zoning in two dimensions reported by Ozawa 813 

(1989), modified from Suzuki et al. (2008). 814 

 815 

Figure 5. Representative EDS line scan data for Cr. The EDS data observed along the long axis of the 816 

elongated spinel from tip to opposite tip is divided into five equal parts from A to E. ∆𝑪𝑨 and ∆𝑪𝑬 817 

are differences between the average intensity of E part (Aver. C part) and the average intensity of 818 

each tip part (Aver. C part and Aver. E part). 819 

 820 

Figure 6. Schematic illustration explaining the tree structure of the Decision tree. 821 

 822 



Figure 7. Scatterplot of the ∆𝑪𝑨 versus the ∆𝑪𝑬 for the spinel samples. 823 

 824 

Figure 8. Results of outlier detection for the spinel data. Each of detection method is (a) Mean-shift, (b) 825 

DBSCAN, and (c) K-means, respectively. Final filtered data are outliers commonly detected from 826 

the each of detection mothods. 827 

 828 

Figure 9. Clustering result for the data points. The data points are divided into 3 clusters. The marks for 829 

each cluster are displayed. 830 

 831 

Figure 10. The visualized tree structure classifies the spinel data. Each node numbered from 1 to 11 832 

contains information including gini score (gini), number of data (sample), numbers of data for each 833 

label data (value), and type of label data (class). A scatterplot located on the upper left side shows the 834 

region of clusters classified by this tree structure. 835 

 836 

Figure 11. A bar chart describing the feature importance of the feature data. Values beside each bar are 837 

the scores for feature importance. 838 

 839 

Figure 12. Probability maps for (a) the aver∆ and grain size, (b) the aver∆ and aspect ratio, and (c) 840 

aspect ratio and grain size. The probability is expressed in brighter color as it increased, and in a 841 

darker color as it decreased. Red lines are contour lines for 0.8, 0.6, 0.4, 0.2 of probabilities. Clustered 842 

spinel data points are overlaid on the probability maps. 843 

 844 

Figure 13. Box plots for (a) grain size and (b) aspect ratio in different types of clusters. Values in each 845 

box plot are (a) grain size and (b) aspect ratio of maximum, Q3 (75 %), median, Q1 (25 %), and 846 

minimum. Bar charts within (a) show logarithmic grain size distributions for each cluster. 847 

 848 

Figure 14. The relative importance of the diffusion creeps mechanism to total diffusion creep of 849 



chromite spinel with various grain size and temperature conditions were calculated using Shibutani 850 

et al model. (1998). Grain boundary and lattice diffusion, are denoted by GB and L, respectively. The 851 

black dash lines represent boundaries changing dominant diffusion mechanisms for the model of 852 

Shibutani et al. (1998). A white dash line is a transition boundary of diffusion mechanisms from grain 853 

boundary diffusion to lattice diffusion based on the model of Swaroop et al. (2005). Characters 854 

colored red represent the intensity of Cr-Al chemical zoning.  855 
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aspect ratio and grain size. The probability is expressed in brighter color as it increased, and in a darker 906 
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 915 
Figure 14. The relative importance of the diffusion mechanisms to total diffusion creep of chromite 916 

spinel with various grain size and temperature conditions were calculated using Shibutani et al model. 917 

(1998). Grain boundary and lattice diffusion, are denoted by GB and L, respectively. The black dash 918 

lines represent boundaries changing dominant diffusion mechanisms for the model of Shibutani et al. 919 

(1998). A white dash line is a transition boundary of diffusion mechanisms from grain boundary 920 

diffusion to lattice diffusion based on the model of Swaroop et al. (2005). Characters colored red 921 

represent the intensity of Cr-Al chemical zoning. 922 

 923 

  924 



Table 1. Chemical compositions of each analysis point measured by EPMA for representative three 925 

spinel grains (S1, S2 and S3). 926 

Point No. Al2O3 FeO MnO MgO Cr2O3 NiO TiO2 
Total 

(wt%) 

P1 39.00 18.47 0.21 15.45 25.86 0.21 0.25 99.44 

P2 35.23 18.90 0.20 14.73 29.90 0.20 0.25 99.39 

P3 38.62 19.63 0.19 14.65 25.85 0.21 0.26 99.41 

P4 37.99 19.63 0.19 14.65 25.85 0.21 0.26 98.78 

P5 36.68 20.34 0.21 14.45 27.01 0.17 0.27 99.12 

P6 37.96 19.17 0.17 15.40 26.25 0.23 0.23 99.41 

P7 35.96 20.53 0.22 14.58 28.12 0.23 0.28 99.93 

P8 35.90 19.53 0.20 15.28 28.39 0.21 0.23 99.73 

P9 35.87 20.03 0.24 14.71 28.21 0.24 0.28 99.57 

  927 



Table 2. Performances for each probability map. Each score is average for cross-validation (cv=10). 928 

𝒂𝒗𝒆𝒓∆  is average of the ∆𝑪𝑨 and ∆𝑪𝑬. R is grain size. L is aspect ratio. 929 

  𝑎𝑣𝑒𝑟∆ and R 𝑎𝑣𝑒𝑟∆ and L L and R 

Accuracy 0.95 0.96 0.78 

Recall 0.90 0.90 0.53 

Precision 0.97 1.00 0.70 

f1 score 0.91 0.93 0.58 

ROC-AUC 0.98 1.00 0.86 

930 



Table 3. The ratio of diffusion flux (𝒓𝒅𝒊𝒇𝒇) for various grain size with changing temperature condition.  931 

 932 



 

 

Table 4. Critical grain sizes (𝑹𝒄) for various temperature conditions 933 

 934 

Considering the models of aSwaroop et al. (2005) and bShibutani et al. (1998) 935 


