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Abstract

In this second part of the two paper series, we detail an algorithmic procedure for systematically implementing the generalized

closure form strategy presented in Part 1. After encoding the algorithm into Symbolica, an automated upscaling framework,

we upscale two reactive mass transport problems and numerically validate the resulting nonlinear homogenized models. In

both problems, nontrivial closure forms and closure problems are automatically formulated using the encoded strategy with no

human interaction, nor prior knowledge regarding the closure required for the systems. We hope these demonstrations spark

further interest in automated analytical frameworks for multi-scale modeling, as such capabilities are invaluable for generating

rigorous multiscale models of complex phenomena in geological porous media.
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• An algorithmic procedure for applying the homogenization strategy from Part 1 is encoded into6
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validated.11
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Abstract12

In this second part of the two paper series, we detail an algorithmic procedure for systematically imple-13

menting the generalized closure form strategy presented in Part 1. After encoding the algorithm into Sym-14

bolica, an automated upscaling framework, we upscale two reactive mass transport problems and numer-15

ically validate the resulting nonlinear homogenized models. In both problems, nontrivial closure forms16

and closure problems are automatically formulated using the encoded strategy with no human interac-17

tion, nor prior knowledge regarding the closure required for the systems. We hope these demonstrations18

spark further interest in automated analytical frameworks for multi-scale modeling, as such capabilities19

are invaluable for generating rigorous multiscale models of complex phenomena in geological porous me-20

dia.21

1 Introduction22

In Part 1 of this series, we presented a general analytical upscaling strategy for extending model23

applicability with respect to classical homogenization theory. This strategy involved generalizing the as-24

sumed form of ordered solutions to enable valid closure problem formulation. In short, assumed solution25

forms were constructed as linear combinations of closure terms, which were chosen based on the equa-26

tions for which closure was sought. The implementation of this strategy was detailed in two reactive mass27

transport systems: the first considered a single solute undergoing a linear heterogeneous reaction, and28

the second considered two solutes undergoing linear heterogeneous reactions. Homogenized models were29

derived for both systems in moderately reactive regimes, where classical homogenization theory fails due30

to similar magnitudes of diffusive and reactive terms. Nontrivial terms and effective parameters that cou-31

pled reactive, diffusive, and advective physics were found and discussed in detail. Then, numerical val-32

idation of the models was provided to justify the proposed upscaling strategy. In light of the results, we33

found agreement with previous works (Auriault & Adler, 1995; Battiato & Tartakovsky, 2011; Boso &34

Battiato, 2013; Bloch & Auriault, 2019; Iliev et al., 2020) advising caution against assuming the forms35

of macroscopic equations from the forms of their microscopic counterparts, as they may vastly differ de-36

pending on the physical regime due to nontrivial couplings and emergent terms.37

Now, in Part 2, we detail an algorithmic procedure for generally applying our strategy and encode38

it into Symbolica, our automated upscaling framework (Pietrzyk et al., 2021). Symbolica generates up-39

scaled models for multi-physical systems involving porous media by automating rigorous upscaling pro-40

cedures using symbolic computation. Using our encoded algorithm, we employ Symbolica to homogenize41

two reactive mass transport systems: the first considers a single solute undergoing a nonlinear hetero-42

geneous reaction, and the second considers a multi-component system undergoing linear and nonlinear,43

homogeneous and heterogeneous reactions. We emphasize that the encoded strategy enables Symbolica44

to automatically define appropriate closure forms and valid closure problems for these systems without45

human interaction. Considering moderately reactive regimes, nonlinear homogenized models with concentration-46

dependent effective parameters and emergent terms are derived. Upon numerically validating the mod-47

els, we verify our encoded strategy and demonstrate the high implementation efficiency of the general-48

ized closure form strategy, as its encoding generalizes to a broad range of multi-physical systems involv-49

ing geological porous media.50

The manuscript is organized as follows. In Section 2, an algorithmic procedure is detailed for the51

systematic execution of the generalized closure form strategy presented in Part 1. After encoding Sym-52

bolica with this procedure, we use the automated strategy to homogenize a single-species system under-53

going a nonlinear heterogeneous reaction in Section 3, where the homogenized results and numerical val-54

idation are provided in Subsections 3.1 and 3.2, respectively. We then homogenize a multi-species sys-55

tem undergoing multiple linear and nonlinear, homogeneous and heterogeneous reactions in Section 4,56

where the homogenized results and numerical validation are provided in Subsections 4.1 and 4.2, respec-57

tively. Finally, a summary of Part 2 is presented in Section 5.58

2 The Generalized Closure Form Strategy Procedure59

Here, we introduce an algorithmic procedure for broadly implementing the generalized closure form60

strategy outlined in Part 1 of this series. This procedure will serve as a roadmap for encoding the strat-61

egy into automated upscaling frameworks like Symbolica. While further details regarding Symbolica and62

its homogenization procedure can be found in our previous work (Pietrzyk et al., 2021), we focus on de-63

scribing the procedure for executing the strategy in a systematic fashion.64
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Figure 1. The step-by-step, algorithmic procedure Symbolica executes to implement the generalized closure

form strategy for automatic closure form and closure problem formulation. The example problem considered gener-

alizes the first order system from the first problem of Part 1 (equations (A8*) and (A6b*)).

In Figure 1, the generalized closure form strategy is implemented on an example problem in a step-65

by-step, algorithmic procedure. The problem considered is a generalization of the first order system from66

the first problem of Part 1 (equations (A8*) and (A6b*))1. Here, A(ξ) is a general vector that depends67

on ξ, F(t,x) is a general vector that depends on t and x, B is a general vector with no dependencies, a(t,x)68

is a general scalar that depends on t and x, and n is the normal vector to the interface Γ. For simplic-69

ity, we assume F [·] and G [·] are linear, homogeneous differential operators that only operate with fast70

variables and allow for the separation of fast and slow variables (e.g., the operators from the first order71

system in the first problem of Part 1). However, the algorithmic procedure can be generalized to other72

operators and systems involving multiple equations and boundary conditions through various extensions.73

Similarly, the procedure generalizes to more complex inhomogeneous terms than those shown in Step 174

of Figure 1 (e.g., inhomogeneous terms involving tensor products, double-dot products, cross products,75

etc.).76

To begin the procedure, inhomogeneous terms in the equations and boundary conditions are iden-77

tified. As shown in Step 1 of Figure 1, the NIH (= 6) inhomogeneous terms in the system are differen-78

tiated by color. Then, the solution c1 is represented as the sum of partial-solutions c
{k}
1 , where k ∈ {m ∈79

Z+ : m ≤ NIH}, and the linearity of the system is used to create subsystems such that each partial-80

solution accommodates a single inhomogeneous term (Step 2). With the system partitioned in this man-81

ner, valid closure forms are generated for each partial-solution based on the paired inhomogeneous term82

(Step 3). While various methods can be used to generate the forms, valid closure forms allow for sub-83

1 Equation, system, table, and figure numbers followed by the superscript “*” refer to entities from Part 1.

–3–
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systems to become independent of the slow variables (i.e., t and x) upon substitution and simplification.84

We note that multiple valid closure forms may exist for a single partial-solution (e.g., c
{2}
1 in Step 3). While85

only one valid closure form is required for each partial-solution, identifying multiple valid forms is ad-86

vantageous in the remaining steps of the procedure. In Step 4, subsystems that emit partial-solutions of87

similar forms are added together to reduce the total number of subsystems (e.g., the subsystems corre-88

sponding to c
{1}
1 , c

{2}
1 , c

{4}
1 , and c

{5}
1 are added together to create a new subsystem whose solution is c

[1]
1 ).89

Since the closure problems of the homogenized model are derived from the subsystems in Step 5, min-90

imizing the number of subsystems ultimately reduces the overall computational expense of the homog-91

enized model. We note that multiple ways in which subsystems can be added together may exist, and92

therefore, Step 4 offers an opportunity to develop methods for combining subsystems and obtaining the93

least number of closure problems. In Symbolica, subsystems are added together beginning with those that94

emit partial-solutions containing closure variables of the highest tensor order. Finally, in Step 5, the partial-95

solution forms are substituted into their respective subsystem and simplified to obtain valid closure prob-96

lems.97

As demonstrated in Part 1, formulating homogenized models in moderately reactive regimes may98

require nontrivial closure forms to be assumed and multiple closure problems to be defined. This further99

complicates the already intractable procedures necessary for homogenizing complex geological systems100

with the task of assuming valid solution forms for partial differential equations, which is traditionally han-101

dled by analytical “trial-and-error”. Yet, in combination with Symbolica, our proposed algorithm surpasses102

this obstacle and enables fully automated symbolic homogenization in moderately reactive regimes. With-103

out any human interaction, our algorithmic procedure enables Symbolica to (i) define valid closure forms104

based on the inhomogeneous terms in an equation and (ii) formulate a reduced number of valid closure105

problems for homogenization. Beyond the analysis of subsurface engineering applications with realistic106

complexities, this ability is invaluable for advancing automated symbolic computational methods as a whole,107

as problem solving techniques that utilize assumed solution forms are ubiquitous in applied mathemat-108

ics.109

3 Nonlinear Heterogeneous Reaction: One Species110

We now homogenize the mass transport of a single species undergoing a nonlinear heterogeneous111

reaction using our algorithm encoded in Symbolica and verify the result. The equations governing the re-112

active transport are written as113

∂ĉϵ

∂t̂
+ ∇̂ ·

(
ûϵĉϵ − D̂∇̂ĉϵ

)
= 0 in B̂ϵ, (1a)

subject to114

−n · D̂∇̂ĉϵ = K̂
(
ĉ2ϵ − Ĉ2

)
on Γ̂ϵ. (1b)

With respect to the notation defined in Part 1, system (1) can be obtained from system (4*) by letting115

N = 1, NΓ = 1, i ∈ {1}, j ∈ {1}, R̂(i)
ϵ = 0, p

(i,j,k,l)
SNL = 0, and K̂(i,j,k)

SL = 0, and simplifying the notation116

of the remaining variables to {ĉ(1)ϵ , Ĉ(1), D̂(1), Γ̂
(1)
ϵ , n(1), K̂(1,1,1,1)

SNL , Ĉ
(1,1,1,1)
SNL } = {ĉϵ, Ĉ, D̂, Γ̂ϵ, n, K̂, Ĉ}.117

To scale the system, Symbolica uses the relevant nondimensionalizations from equation (5*) to obtain118

∂cϵ
∂t

+∇ · (Peuϵcϵ −D∇cϵ) = 0 in Bϵ, (2a)

subject to119

−n ·D∇cϵ = Da
(
c2ϵ − θ

)
on Γϵ, (2b)

where the Péclet number Pe, Damköhler number Da, and concentration ratio θ are defined as120

Pe =
Û L̂
D̂

, Da =
K̂L̂Ĉ
D̂

, θ =
Ĉ2

Ĉ2
. (3)

–4–
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In addition to the previous syntactic simplifications, we note that Da = Da
(1,1,1,1)
SNL and θ = θ

(1,1,1,1)
SNL121

with respect to the notation used in system (7*) and equation (8*).122

We homogenize the system for a moderately reactive scenario, where diffusive and reactive terms
are of similar order, i.e.,

Pe ∼ O(ϵ−1), Da ∼ O(ϵ0), θ ∼ O(ϵ0). (4)

In doing so, we trigger our encoded algorithm in Symbolica and are able to verify its implementation.123

3.1 Homogenized Results124

The total execution time for Symbolica to homogenize system (2) for ⟨c⟩Y = ⟨c0⟩Y +ϵ⟨c1⟩Y +O(ϵ2)125

with O(ϵ) error is 18 seconds. The closure form Symbolica generated for homogenization is written as126

c1 = χ[1] ·∇xc0 +
(
c20 − θ

)
χ[2] + c1, (5)

where c1 ≡ c1(t,x, τ (t)) = ϕ−1⟨c1⟩Y , and χ[1] and χ[2] are closure variables. The resulting homoge-127

nized equation is written as128

ϕ
∂⟨c⟩Y
∂t

+U (⟨c⟩Y ) ·∇x⟨c⟩Y −∇x · (D ·∇x⟨c⟩Y ) + R (⟨c⟩Y )
(
⟨c⟩2Y − ϕ2θ

)
= O (ϵ) for x ∈ Ω, (6a)

where the effective parameters are defined as129

U (⟨c⟩Y ) = Pe⟨u⟩Y + 2ϕ−1⟨c⟩Y
[
ϕDa

|Γ|
|B|

⟨χ[1]⟩Γ −D⟨∇ξχ
[2]⟩Y + Peϵ⟨uχ[2]⟩Y

]
, (6b)

D = ϕDI+D⟨∇ξχ
[1]⟩Y − Peϵ⟨u⊗ χ[1]⟩Y , (6c)

R (⟨c⟩Y ) = Da
|Γ|
|B|

[
ϵ−1 + 2ϕ−1⟨c⟩Y ⟨χ[2]⟩Γ

]
. (6d)

To calculate the closure variables found in system (6), Symbolica provides the closure problems130

Peϵ (u0 − ⟨u0⟩B) + Peϵu0 ·∇ξχ
[1] −D∇ξ ·

(
I+∇ξχ

[1]
)
= 0 for ξ ∈ B, (7a)

subject to131

−n ·D
(
I+∇ξχ

[1]
)
= 0 for ξ ∈ Γ, (7b)

and132

−Da
|Γ|
|B|

+ Peϵu0 ·∇ξχ
[2] −D∇2

ξχ
[2] = 0 for ξ ∈ B, (8a)

subject to133

−n ·D∇ξχ
[2] = Da for ξ ∈ Γ, (8b)

where ⟨χ[1]⟩B = 0 and ⟨χ[2]⟩B = 0.134

As demonstrated, Symbolica quickly homogenized the system by following the algorithmic proce-135

dure for implementing the generalized closure form strategy. We note that the resulting homogenized equa-136

tion and effective parameters are similar to those obtained in the first problem of Part 1 (i.e., system (19*))137

–5–
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Table 1. The simulation and mesh parameters used to solve the various models and problems defined on the

pore-scale, unit-cell, and continuum domains for the single species system undergoing a nonlinear heterogeneous

reaction. Here, ex and eξ are the unit vectors in the x-direction and ξ-direction, respectively.

Simulation and Mesh Parameters

General Parameters

ϵ = 0.1, D = 1, Pe = ϵ−1, Da = ϵ0, θ = ϵ0

Pore-scale Fluid Flow and Mass Transport

rϵ = 0.02, Aϵ = ϵ2, Φϵ = 8ex, Nelem = 38351, max(∆x) = 0.0036, ∆t = 10−7

Homogenized Mass Transport

ϕ = 0.8744, Nelem = 4006, max(∆x) = 0.0113, ∆t = 10−6

Unit-cell Fluid Flow and Closure Problems

r = 0.2, A = 1, Φ = 8eξ, Nelem = 44413, max(∆ξ) = 0.0099

due to the similar microscopic system considered; however, the nonlinear heterogeneous reaction of the138

current system adds additional complexity to the homogenized results. The form of the current homog-139

enized equation (equation (6a)) differs from that of the first problem in Part 1 by the effective reaction140

term R(⟨c⟩Y )(⟨c⟩2Y − ϕ2θ), which emulates the nonlinear heterogeneous reaction. Additionally, the ef-141

fective velocity U(⟨c⟩Y ) and effective reaction rate R(⟨c⟩Y ) have become dependent on the averaged con-142

centration, ⟨c⟩Y (equations (6b) and (6d)). More specifically, the contributions in U(⟨c⟩Y ) and R(⟨c⟩Y )143

due to the moderate reaction rate, which were discussed in the first problem of Part 1, are multiplied by144

2ϕ−1⟨c⟩Y . This creates a cubic nonlinearity in the effective reaction term and causes the effective advec-145

tion term U(⟨c⟩Y )·∇x⟨c⟩Y , which does not vanish for Pe = 0, to be nonlinear. This further illustrates146

how the forms of homogenized systems can be nontrivial, especially when nonlinearities are involved.147

Finally, we note that the upscaled advection term can also be written as148

U (⟨c⟩Y ) ·∇x⟨c⟩Y = Pe⟨u⟩Y ·∇x⟨c⟩Y + ϕ−1U∗ ·∇x

(
⟨c⟩2Y

)
, (9a)

where149

U∗ = ϕDa
|Γ|
|B|

⟨χ[1]⟩Γ −D⟨∇ξχ
[2]⟩Y + Peϵ⟨uχ[2]⟩Y . (9b)

Here, U∗ is identical to the contribution from the moderate reaction rate to the effective velocity discussed150

in the first problem of Part 1. As shown in equation (9a), the effective advection term has two contri-151

butions: (i) the common effective advection term Pe⟨u⟩Y ·∇x⟨c⟩Y and (ii) the contribution from the mod-152

erate reaction rate ϕ−1U∗·∇x(⟨c⟩2Y ). The second contribution has a similar form to an advection term,153

but the gradient is applied to ⟨c⟩2Y , which has its origins in the nonlinear heterogeneous reaction term.154

This provides insight on how different forms of heterogeneous reactions might affect homogenized sys-155

tems in moderately reactive regimes.156

3.2 Numerical Validation157

3.2.1 Problem Setup158

We now validate the homogenized model (systems (6), (7), and (8)) by numerically resolving and159

comparing its solution to the averaged solution from the pore-scale model (system (2)). Similar to Part160

1, we use FEniCS (Logg et al., 2012; Alnaes et al., 2015) to resolve the models on the pore-scale, unit-161

cell, and continuum domains found in Figure 1*, which consider a 2D array of cylinders geometry. The162

geometric specifications for each domain are outlined in Table 1*, and details regarding the spatial and163

temporal discretizations are found in Table 1 with other simulation parameters.164

–6–



manuscript submitted to Water Resources Research

Figure 2. The numerical results for the system involving a single species undergoing a nonlinear heterogeneous

reaction. (a) The Wϵ(x)-averaged and Y -averaged concentration profiles from the pore-scale (symbols) and ho-

mogenized (lines) models, respectively, at various times along the x-direction. (b) The absolute error between the

averaged concentration profiles of ⟨cϵ⟩Wϵ(x) and ⟨c⟩Y at various times along the x-direction. The upper error limit

predicted by the homogenized model is displayed by the red dotted line. (c) Contour plots of the pore-scale con-

centration field cϵ at various times. Here, t0 = 0, t1 = 0.25× 10−2, t2 = 1.25× 10−2, and t3 = 3.75× 10−2.

Regarding the initial conditions, we consider the same discontinuous concentration profile in the pore-165

scale simulation as assumed in the first problem of Part 1. Again, we note that the corresponding ini-166

tial condition for the homogenized model is obtained by averaging the pore-scale initial condition using167

equation (22a*). We refer to Table 3* in Part 1 for further details regarding the initial conditions and168

boundary conditions used in the current problem.169

Due to the identical geometric specifications, simulation parameters, initial conditions, boundary170

conditions, and closure problems between the first problem of Part 1 and the current problem, we reuse171

the flow field and closure problem solutions obtained from the previous problem. Therefore, we note that172

the flow velocity field, pressure field, and closure variable contours in the unit-cell domain can be found173

in Figure 2*.174

3.2.2 Pore-scale and Homogenized Model Results175

Upon solving the pore-scale (system (2)) and homogenized (systems (6), (7), and (8)) models, the176

pore-scale solution cϵ is averaged using the operator in equation (22a*) to obtain the averaged pore-scale177

solution ⟨cϵ⟩Wϵ(x). The absolute error between the averaged pore-scale solution and the respective ho-178

mogenized solution ⟨c⟩Y is then calculated using equation (24*).179

Similar to before, the pore-scale, averaged pore-scale, and homogenized model results are presented180

in Figure 2. The qualitative comparison in Figure 2(a) shows matching profiles of ⟨cϵ⟩Wϵ(x) and ⟨c⟩Y along181

the x-direction at the recorded times. As previously discussed, we note that the profiles in Figure 2(a)182

–7–
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are independent of y, and the initial condition of the homogenized model (displayed at t = t0) shows183

a sharp slope around x = 0 due to the averaging of the discontinuous pore-scale initial condition.184

To support the qualitative comparison, Figure 2(b) shows the absolute error between ⟨cϵ⟩Wϵ(x) and185

⟨c⟩Y along the x-direction calculated using equation (24*). As shown, the error remains below the up-186

per error limit denoted by the red dotted line for all times. This provides confidence in both the valid-187

ity of the generalized closure form strategy for handling nonlinear problems and in the algorithmic pro-188

cedure encoded in Symbolica.189

Finally, contours of the pore-scale solution at various times are found in Figure 2(c). Similar to the190

contours from the first problem in Part 1, the initial discontinuous concentration profile seen at t = t0191

is quickly eliminated due to diffusive effects by t = t1. In the contour at t = t2, advective effects are192

observed to translate the diffused concentration profile downstream. As the system evolves further, the193

concentration profile advances towards a spatially-uniform steady-state at t = t3.194

With the qualitative and quantitative agreement between ⟨cϵ⟩Wϵ(x) and ⟨c⟩Y in Figure 2, we build195

confidence in Symbolica’s encoding of the generalized closure form strategy. As previously discussed, our196

algorithm enables Symbolica to define valid, nontrivial closure forms and closure problems based on the197

considered system with no human interaction. Evidence of this is provided in equation (5), where the clo-198

sure form generated by Symbolica includes the nonlinearity c20. In subsurface engineering applications,199

geological systems with realistic complexities may experience a variety of reaction networks and phys-200

ical regimes. Considering the diverse set of possible scenarios, where closure forms are likely to be un-201

known a priori, we find our algorithm invaluable for saving time and effort during the upscaling of such202

systems. In the next example problem, we use Symbolica to homogenize a complex, multi-component sys-203

tem undergoing multiple linear and nonlinear, homogeneous and heterogeneous reactions in the moder-204

ately reactive regime. We demonstrate that our framework can handle such complexities and automat-205

ically formulate the nontrivial closure forms and closure problems required for homogenization.206

4 Nonlinear Homogeneous and Heterogeneous Reactions: Multiple Species207

We now use Symbolica to homogenize a multi-species system undergoing linear and nonlinear, ho-208

mogeneous and heterogeneous reactions with multiple reactive interfaces to demonstrate a complex im-209

plementation of the generalized closure form strategy via automated upscaling. The model reactive sys-210

tem we consider is written as211

A+B ⇌ C in B̂ϵ, (10a)

B +M → A+ C in B̂ϵ, (10b)

C ⇌ G on Γ̂(1)
ϵ ∪ Γ̂(2)

ϵ , (10c)

A+ C ⇌ F on Γ̂(1)
ϵ , (10d)

M ⇌ H on Γ̂(1)
ϵ ∪ Γ̂(3)

ϵ ∪ Γ̂(4)
ϵ , (10e)

B +M ⇌ J on Γ̂(2)
ϵ ∪ Γ̂(3)

ϵ ∪ Γ̂(4)
ϵ , (10f)

A ⇌ L on Γ̂(1)
ϵ ∪ Γ̂(2)

ϵ ∪ Γ̂(4)
ϵ , (10g)

where each letter represents a unique species. To write the partial differential equations for the reaction212

network from system (4*), we let N = 4 and NΓ = 4, such that213

∂ĉ
(i)
ϵ

∂t̂
+ ∇̂ ·

(
ûϵĉ

(i)
ϵ − D̂(i)∇̂ĉ(i)ϵ

)
= R̂(i)

ϵ in B̂ϵ, (11a)

–8–
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subject to214

−n(j) · D̂(i)∇̂ĉ(i)ϵ = T̂ (i,j)
ϵ on Γ̂(j)

ϵ , (11b)

where i ∈ M = {m ∈ Z+ : m ≤ 4}, j ∈ M, and superscripts “(1)”, “(2)”, “(3)”, and “(4)” correspond to215

species A, B, C, and M , respectively. The other letters correspond to species that exist on the reactive216

interfaces. Here, we define R̂
(i)
ϵ as217

R̂(1)
ϵ = −K̂(1,2)

NL ĉ(1)ϵ ĉ(2)ϵ + K̂(3)
L ĉ(3)ϵ + K̂(2,4)

NL ĉ(2)ϵ ĉ(4)ϵ , (11c)

R̂(2)
ϵ = −K̂(1,2)

NL ĉ(1)ϵ ĉ(2)ϵ + K̂(3)
L ĉ(3)ϵ − K̂(2,4)

NL ĉ(2)ϵ ĉ(4)ϵ , (11d)

R̂(3)
ϵ = K̂(1,2)

NL ĉ(1)ϵ ĉ(2)ϵ − K̂(3)
L ĉ(3)ϵ + K̂(2,4)

NL ĉ(2)ϵ ĉ(4)ϵ , (11e)

R̂(4)
ϵ = −K̂(2,4)

NL ĉ(2)ϵ ĉ(4)ϵ , (11f)

where, considering equation (4b*), p
(i,j)
L and p

(i,j,k)
NL have been chosen accordingly and we have used the218

simplified notations K̂(n,2,4)
NL = K̂(2,4)

NL for n ∈ {1, 2, 3, 4} and K̂(n,1,2)
NL = K̂(1,2)

NL for n ∈ {1, 2, 3}. We also219

define T̂
(i,j)
ϵ as220

T̂ (1,1)
ϵ = K̂(1,S)

SL

(
ĉ(1)ϵ − Ĉ

(1,S)
SL

)
+ K̂(1,3,S)

SNL

(
ĉ(1)ϵ ĉ(3)ϵ − Ĉ

(1,3,S)2

SNL

)
, (11g)

T̂ (1,n)
ϵ = K̂(1,S)

SL

(
ĉ(1)ϵ − Ĉ

(1,S)
SL

)
for n ∈ {2, 4} , (11h)

T̂ (2,n)
ϵ = K̂(2,4,S)

SNL

(
ĉ(2)ϵ ĉ(4)ϵ − Ĉ

(2,4,S)2

SNL

)
for n ∈ {2, 3, 4} , (11i)

T̂ (3,1)
ϵ = K̂(3,S)

SL

(
ĉ(3)ϵ − Ĉ

(3,S)
SL

)
+ K̂(1,3,S)

SNL

(
ĉ(1)ϵ ĉ(3)ϵ − Ĉ

(1,3,S)2

SNL

)
, (11j)

T̂ (3,2)
ϵ = K̂(3,S)

SL

(
ĉ(3)ϵ − Ĉ

(3,S)
SL

)
, (11k)

T̂ (4,1)
ϵ = K̂(4,S)

SL

(
ĉ(4)ϵ − Ĉ

(4,S)
SL

)
, (11l)

T̂ (4,2)
ϵ = K̂(2,4,S)

SNL

(
ĉ(2)ϵ ĉ(4)ϵ − Ĉ

(2,4,S)2

SNL

)
, (11m)

T̂ (4,n)
ϵ = K̂(4,S)

SL

(
ĉ(4)ϵ − Ĉ

(4,S)
SL

)
+ K̂(2,4,S)

SNL

(
ĉ(2)ϵ ĉ(4)ϵ − Ĉ

(2,4,S)2

SNL

)
for n ∈ {3, 4} , (11n)

T̂ (m,n)
ϵ = 0 for (m,n) ∈ {(1, 3) , (2, 1) , (3, 3) , (3, 4)} , (11o)

where again, p
(i,j,k)
SL and p

(i,j,k,l)
SNL from equation (4d*) have been chosen accordingly and the following sim-221

plified notations have been made: {K̂(1,n,1)
SL , Ĉ

(1,n,1)
SL } = {K̂(1,S)

SL , Ĉ
(1,S)
SL } for n ∈ {1, 2, 4}, {K̂(m,1,1,3)

SNL , Ĉ
(m,1,1,3)
SNL } =222

{K̂(1,3,S)
SNL , Ĉ

(1,3,S)
SNL } for m ∈ {1, 3}, {K̂(m,n,2,4)

SNL , Ĉ
(m,n,2,4)
SNL } = {K̂(2,4,S)

SNL , Ĉ
(2,4,S)
SNL } for m ∈ {2, 4} and n ∈223

{2, 3, 4}, {K̂(3,n,3)
SL , Ĉ

(3,n,3)
SL } = {K̂(3,S)

SL , Ĉ
(3,S)
SL } for n ∈ {1, 2}, {K̂(4,n,4)

SL , Ĉ
(4,n,4)
SL } = {K̂(4,S)

SL , Ĉ
(4,S)
SL } for224

n ∈ {1, 3, 4}.225
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Using the scales defined in equation (5*) while letting Ĉ(i) = Ĉ(∗), Symbolica obtains the dimen-226

sionless system227

∂c
(i)
ϵ

∂t
+∇ ·

(
Peuϵc

(i)
ϵ −D(i)∇c(i)ϵ

)
= R(i)

ϵ in Bϵ, (12a)

subject to228

−n(j) ·D(i)∇c(i)ϵ = T (i,j)
ϵ on Γ(j)

ϵ , (12b)

where R̂
(i)
ϵ is defined as229

R(1)
ϵ = −Da1c

(1)
ϵ c(2)ϵ +Da2c

(3)
ϵ +Da3c

(2)
ϵ c(4)ϵ , (12c)

R(2)
ϵ = −Da1c

(1)
ϵ c(2)ϵ +Da2c

(3)
ϵ −Da3c

(2)
ϵ c(4)ϵ , (12d)

R(3)
ϵ = Da1c

(1)
ϵ c(2)ϵ −Da2c

(3)
ϵ +Da3c

(2)
ϵ c(4)ϵ , (12e)

R(4)
ϵ = −Da3c

(2)
ϵ c(4)ϵ , (12f)

and T
(i,j)
ϵ is defined as230

T (1,1)
ϵ = Da4

(
c(1)ϵ − θ1

)
+Da5

(
c(1)ϵ c(3)ϵ − θ2

)
, (12g)

T (1,n)
ϵ = Da4

(
c(1)ϵ − θ1

)
for n ∈ {2, 4} , (12h)

T (2,n)
ϵ = Da8

(
c(2)ϵ c(4)ϵ − θ5

)
for n ∈ {2, 3, 4} , (12i)

T (3,1)
ϵ = Da6

(
c(3)ϵ − θ3

)
+Da5

(
c(1)ϵ c(3)ϵ − θ2

)
, (12j)

T (3,2)
ϵ = Da6

(
c(3)ϵ − θ3

)
, (12k)

T (4,1)
ϵ = Da7

(
c(4)ϵ − θ4

)
, (12l)

T (4,2)
ϵ = Da8

(
c(2)ϵ c(4)ϵ − θ5

)
, (12m)

T (4,n)
ϵ = Da7

(
c(4)ϵ − θ4

)
+Da8

(
c(2)ϵ c(4)ϵ − θ5

)
for n ∈ {3, 4} , (12n)

T (m,n)
ϵ = 0 for (m,n) ∈ {(1, 3) , (2, 1) , (3, 3) , (3, 4)} . (12o)

Here, Symbolica defines the Péclet number, 8 Damköhler numbers, and 5 concentration ratios as231
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Pe =
Û L̂
D̂

, Da1 =
K̂(1,2)

NL L̂2Ĉ(∗)

D̂
, Da2 =

K̂(3)
L L̂2

D̂
, Da3 =

K̂(2,4)
NL L̂2Ĉ(∗)

D̂
, Da4 =

K̂(1,S)
SL L̂
D̂

,

Da5 =
K̂(1,3,S)

SNL L̂Ĉ(∗)

D̂
, Da6 =

K̂(3,S)
SL L̂
D̂

, Da7 =
K̂(4,S)

SL L̂
D̂

, Da8 =
K̂(2,4,S)

SNL L̂Ĉ(∗)

D̂
,

θ1 =
Ĉ

(1,S)
SL

Ĉ(∗)
, θ2 =

Ĉ
(1,3,S)2

SNL

Ĉ(∗)2
, θ3 =

Ĉ
(3,S)
SL

Ĉ(∗)
, θ4 =

Ĉ
(4,S)
SL

Ĉ(∗)
, θ5 =

Ĉ
(2,4,S)2

SNL

Ĉ(∗)2
.

(13)

To trigger the implementation of the generalized closure form strategy in Symbolica, we study a mod-232

erately reactive scenario where diffusive and heterogeneous reactive terms are of similar order. We also233

consider high advection and fast homogeneous reactions by letting Pe, Da1, Da2, and Da3 be of order O(ϵ−1),234

and all other dimensionless numbers (i.e., Dan for n > 3 and all concentration ratios) be of order O(ϵ0).235

4.1 Homogenized Results236

The total execution time for Symbolica to homogenize system (12) for ⟨c(i)⟩Y = ⟨c(i)0 ⟩Y +ϵ⟨c(i)1 ⟩Y +237

O(ϵ2), where i ∈ {1, 2, 3, 4}, with O(ϵ) error was 11 minutes. As compared with the previous problem,238

the increase in homogenization time is due to the increase in system complexity. The closure forms Sym-239

bolica generated are written as240

c
(1)
1 = χ(1)[1] + χ(1)[2]c

(1)
0 + χ(1)[3]c

(1)
0 c

(3)
0 + χ(1)[4] ·∇xc

(1)
0 + c

(1)
1 , (14a)

c
(2)
1 = χ(2)[1]

(
c
(2)
0 c

(4)
0 − θ5

)
+ χ(2)[2] ·∇xc

(2)
0 + c

(2)
1 , (14b)

c
(3)
1 = χ(3)[1] + χ(3)[2]c

(3)
0 + χ(3)[3]c

(1)
0 c

(3)
0 + χ(3)[4] ·∇xc

(3)
0 + c

(3)
1 , (14c)

c
(4)
1 = χ(4)[1] + χ(4)[2]c

(4)
0 + χ(4)[3]c

(2)
0 c

(4)
0 + χ(4)[4] ·∇xc

(4)
0 + c

(4)
1 , (14d)

where c
(i)
1 ≡ c

(i)
1 (t,x, τ (t)) = ϕ−1⟨c(i)1 ⟩Y , and χ(i)[k1] and χ(i)[k2] are closure variables to ⟨c(i)⟩Y where241

⟨χ(i)[k1]⟩B = 0 and ⟨χ(i)[k2]⟩B = 0. Here, k1 ∈ {4} and k2 ∈ {1, 2, 3} for i ∈ {1, 3, 4}, and k1 ∈ {2} and242

k2 ∈ {1} for i ∈ {2}. The resulting homogenized system is written as243

ϕ2 ∂⟨c(1)⟩Y
∂t

+U(1)
(
⟨c(3)⟩Y

)
·∇x⟨c(1)⟩Y +V(1)

(
⟨c(1)⟩Y

)
·∇x⟨c(3)⟩Y − ϕ∇x ·

(
D(1) ·∇x⟨c(1)⟩Y

)
+R(1)

(
⟨c(1)⟩Y , ⟨c(3)⟩Y

)
= −ϕDa1⟨c(1)⟩Y ⟨c(2)⟩Y + ϕ2Da2⟨c(3)⟩Y + ϕDa3⟨c(2)⟩Y ⟨c(4)⟩Y for x ∈ Ω,

(15a)

ϕ2 ∂⟨c(2)⟩Y
∂t

+U(2)
(
⟨c(4)⟩Y

)
·∇x⟨c(2)⟩Y +V(2)

(
⟨c(2)⟩Y

)
·∇x⟨c(4)⟩Y − ϕ∇x ·

(
D(2) ·∇x⟨c(2)⟩Y

)
+R(2)

(
⟨c(2)⟩Y , ⟨c(4)⟩Y

)
= −ϕDa1⟨c(1)⟩Y ⟨c(2)⟩Y + ϕ2Da2⟨c(3)⟩Y − ϕDa3⟨c(2)⟩Y ⟨c(4)⟩Y for x ∈ Ω,

(15b)

ϕ2 ∂⟨c(3)⟩Y
∂t

+U(3)
(
⟨c(1)⟩Y

)
·∇x⟨c(3)⟩Y +V(3)

(
⟨c(3)⟩Y

)
·∇x⟨c(1)⟩Y − ϕ∇x ·

(
D(3) ·∇x⟨c(3)⟩Y

)
+R(3)

(
⟨c(1)⟩Y , ⟨c(3)⟩Y

)
= ϕDa1⟨c(1)⟩Y ⟨c(2)⟩Y − ϕ2Da2⟨c(3)⟩Y + ϕDa3⟨c(2)⟩Y ⟨c(4)⟩Y for x ∈ Ω,

(15c)

ϕ2 ∂⟨c(4)⟩Y
∂t

+U(4)
(
⟨c(2)⟩Y

)
·∇x⟨c(4)⟩Y +V(4)

(
⟨c(4)⟩Y

)
·∇x⟨c(2)⟩Y − ϕ∇x ·

(
D(4) ·∇x⟨c(4)⟩Y

)
+R(4)

(
⟨c(2)⟩Y , ⟨c(4)⟩Y

)
= −ϕDa3⟨c(2)⟩Y ⟨c(4)⟩Y for x ∈ Ω,

(15d)
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where U(1)(⟨c(3)⟩Y ), U(2)(⟨c(4)⟩Y ), U(3)(⟨c(1)⟩Y ), and U(4)(⟨c(2)⟩Y ) are the effective velocities, V(1)(⟨c(1)⟩Y ),244

V(2)(⟨c(2)⟩Y ), V(3)(⟨c(3)⟩Y ), and V(4)(⟨c(4)⟩Y ) are the effective parameters corresponding to the emer-245

gent terms, D(i) are the dispersion tensors for i ∈ {1, 2, 3, 4}, and R(1)(⟨c(1)⟩Y , ⟨c(3)⟩Y ), R(2)(⟨c(2)⟩Y , ⟨c(4)⟩Y ),246

R(3)(⟨c(1)⟩Y , ⟨c(3)⟩Y ), and R(4)(⟨c(2)⟩Y , ⟨c(4)⟩Y ) are effective reaction rates. While the effective param-247

eter definitions for system (15) are recorded in Appendix A, the parameters for equation (15a) are reprinted248

here for discussion:249

U(1)
(
⟨c(3)⟩Y

)
= ϕPe⟨u⟩Y + ϕ2Da4

|B|

[
|Γ(1)|⟨χ(1)[4]⟩Γ(1) + |Γ(2)|⟨χ(1)[4]⟩Γ(2) + |Γ(4)|⟨χ(1)[4]⟩Γ(4)

]
−ϕD(1)⟨∇ξχ

(1)[2]⟩Y + ϕPeϵ⟨uχ(1)[2]⟩Y

+⟨c(3)⟩Y
[
ϕ
Da5
|B|

|Γ(1)|⟨χ(1)[4]⟩Γ(1) −D(1)⟨∇ξχ
(1)[3]⟩Y + Peϵ⟨uχ(1)[3]⟩Y

]
,

(16a)

V(1)
(
⟨c(1)⟩Y

)
= ⟨c(1)⟩Y

[
ϕ
Da5
|B|

|Γ(1)|⟨χ(3)[4]⟩Γ(1) −D(1)⟨∇ξχ
(1)[3]⟩Y + Peϵ⟨uχ(1)[3]⟩Y

]
, (16b)

D(1) = ϕD(1)I+D(1)⟨∇ξχ
(1)[4]⟩Y − Peϵ⟨u⊗ χ(1)[4]⟩Y , (16c)

R(1)
(
⟨c(1)⟩Y , ⟨c(3)⟩Y

)
= R

(1)
1

[
ϕ2⟨c(1)⟩Y − ϕ3θ1

]
+ R

(1)
2

[
ϕ⟨c(1)⟩Y ⟨c(3)⟩Y − ϕ3θ2

]
+ϕ3R

(1)
3 + ϕ2R

(1)
4 ⟨c(1)⟩Y + ϕ2R

(1)
5 ⟨c(3)⟩Y + ϕR

(1)
6 ⟨c(1)⟩Y ⟨c(3)⟩Y

+R
(1)
7

[
⟨c(1)⟩Y

]2
⟨c(3)⟩Y + R

(1)
8 ⟨c(1)⟩Y

[
⟨c(3)⟩Y

]2
,

(16d)

where R
(1)
k are the coefficients of the effective reaction rate R(1)(⟨c(1)⟩Y , ⟨c(3)⟩Y ) for k ∈ {1, 2, 3, 4, 5, 6, 7, 8},250

which are defined in Appendix B. We note that the effective parameters of the other equations are of sim-251

ilar forms. In total, Symbolica defined 14 different closure problems, recorded in Appendix C, to solve for252

the 14 closure variables.253

As shown in system (14), the closure forms defined by Symbolica are nontrivial. Their generation254

and utilization to derive the 14 closure problems would create an arduous task if completed by hand. How-255

ever, with our encoded algorithm, Symbolica formulated these entities in a reasonable amount of time with256

no human interaction, nor prior knowledge about the closure of the system.257

While the equation forms in system (15) are similar to those found in the previous problems, with258

additional terms accounting for the homogeneous reactions, the effective parameters differ. As shown in259

system (16), the effective velocity U(1)(⟨c(3)⟩Y ) adds a new coupling in the upscaled system due to its260

dependency on ⟨c(3)⟩Y , and the effective parameter of the emergent term V(1)(⟨c(1)⟩Y ) induces a coupling261

due to its dependency on ⟨c(1)⟩Y . Similar couplings are induced by the other effective parameters recorded262

in Appendix A, and originate from the moderately-strong bimolecular heterogeneous reactions. Lastly,263

we note that within the complexities of the effective reaction rates, resemblances of the heterogeneous264

reactions can be found (e.g., equation (16d)).265

4.2 Numerical Validation266

4.2.1 Problem Setup267

We again provide numerical validation by resolving and comparing the averaged solutions from the268

pore-scale (system (12)) and homogenized (system (15)) models. To conduct the validation, we consider269

a 2D array of cylinders with four different sizes in a Cartesian plane to accommodate the four considered270

interfaces of the problem. Schematics of the pore-scale, unit-cell, and continuum domains considered are271

shown in Figure 3 with relevant geometric labels, which are detailed in Table 2. The spatial and tempo-272

ral discretizations to resolve the models in these domains are refined to show converged solutions to plot-273

ting accuracy, and further details regarding the discretizations of each mesh are presented with other sim-274

ulation parameters in Table 3. Regarding the initial conditions, discontinuous concentration profiles, where275

the concentration is alternatively equal to 0 or 1 in different sections of the domain, are assumed in the276
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Figure 3. A schematic of the 2D pore-scale, unit-cell, and continuum domains considered for the four-cylinders

geometry. Details of the labeled geometric aspects are found in Table 2.

pore-scale simulation, while the averaging operator in equation (22a*) is applied to the profiles to obtain277

the corresponding initial conditions for the homogenized model. Further details regarding simulation ini-278

tial conditions and boundary conditions are provided in Table 4.279

Similar to the first problem of Part 1, the fluid velocity and pressure fields for the pore-scale model280

are obtained by resolving system (6*) for Aϵ = ϵ2. Again, the flow is driven by representing the pres-281

sure gradient as ∇pϵ = Φϵ + ∇p̃ϵ, where Φϵ is a known, large-scale pressure gradient across the pore-282

scale domain and ∇p̃ϵ is the gradient of an unknown local pressure field. With an appropriate value for283

Φϵ, the flow fields uϵ and p̃ϵ are resolved such that |uϵ| ∼ O(1), which verifies consistency between Û284

calculated using the definition of the Péclet number in equation (13) and the magnitude of the driven285

flow |uϵ|.286

In the homogenized model, we again solve system (23*) for the flow field in the unit-cell domain287

using the values for A and Φ provided in Table 3. We note that the flow in the unit-cell domain should288

be reflective of that in the pore-scale domain, i.e. Φ = Φϵ. With the unit-cell flow fields, the average289

of the velocity field u over the unit-cell can be calculated and used as needed in the effective parameters290

and closure problems.291

4.2.2 Flow and Closure Problem Results292

Following the previous procedure, the fluid velocity and pressure fields are resolved in the pore-scale293

domain using system (6*), and in the unit-cell domain using system (23*). The resulting flow velocity294

magnitude |u| and local pressure p̃ contours in the unit-cell domain are plotted in Figures 4(a) and 4(b),295

respectively. We note that compared with the first problem of Part 1, larger values of Φϵ and Φ were used296

to generate flow fields such that |uϵ| ∼ |u| ∼ O(1), as the current geometry is more resistant to the297

fluid flow than the previous geometry. We also note that the flow fields in the pore-scale domain do not298

provide information beyond the flow fields in the unit-cell domain due to the periodic nature of the prob-299

lem. Therefore, only the unit-cell flow fields are presented.300

With the solution to the fluid flow problem, the 14 closure problems defined by Symbolica (Appendix301

C) are solved in the unit-cell domain. Contour plots of the closure solutions can be found in Appendix302

D.303
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Table 2. Specifications for the geometric aspects in the pore-scale, unit-cell, and continuum domains considering

the 2D array of cylinders geometry with cylinders of four different sizes. Note that X ϵ, Yϵ, X , and Y are only

used to consolidate the tabulated entries.

Variable Definition for the 2D Array of Cylinders Geometry

Dimensional Parameters

ℓ̂ Unit-cell domain length

L̂ Pore-scale domain length

r̂
(j)
ϵ Cylinder radius for interface j

Pore-scale Domain

r
(j)
ϵ r̂

(j)
ϵ /L̂ for j ∈ {1, 2, 3, 4}

Ωϵ {(x, y) : −0.5 < x < 0.5, −0.5ϵ < y < 0.5ϵ}
X ϵ [0.75, 0.75, 0.25, 0.25]
Yϵ [0.25, −0.25, 0.25, −0.25]

Gϵ

⋃4
j=1{(x, y) : (x+ 0.5 + [X ϵ]j ϵ−mϵ)2 + (y − [Yϵ]j ϵ)

2 < r
(j)2

ϵ , m ∈ Z+, m ≤ ϵ−1}
Γ
(j)
ϵ {(x, y) : (x+ 0.5 + [X ϵ]j ϵ−mϵ)2 + (y − [Yϵ]j ϵ)

2 = r
(j)2

ϵ , m ∈ Z+, m ≤ ϵ−1}
Γϵ

⋃4
j=1 Γ

(j)
ϵ

Bϵ Ωϵ \ (Gϵ ∪ Γϵ)
∂Bw

ϵ {(x, y) : x = −0.5, −0.5ϵ < y < 0.5ϵ}
∂Be

ϵ {(x, y) : x = 0.5, −0.5ϵ < y < 0.5ϵ}
∂Bs

ϵ {(x, y) : −0.5 < x < 0.5, y = −0.5ϵ}
∂Bn

ϵ {(x, y) : −0.5 < x < 0.5, y = 0.5ϵ}
Unit-cell Domain

r(j) r̂
(j)
ϵ /ℓ̂ for j ∈ {1, 2, 3, 4}

Y {(ξ, η) : −0.5 < ξ < 0.5, −0.5 < η < 0.5}
X [0.25, 0.25, −0.25, −0.25]
Y [0.25, −0.25, 0.25, −0.25]

G
⋃4

j=1{(ξ, η) : (ξ − [X ]j)
2 + (η − [Y ]j)

2 < r(j)
2}

Γ(j) {(ξ, η) : (ξ − [X ]j)
2 + (η − [Y ]j)

2 = r(j)
2}

Γ
⋃4

j=1 Γ
(j)

B Ω \ (G ∪ Γ)
∂Bw {(ξ, η) : ξ = −0.5, −0.5 < η < 0.5}
∂Be {(ξ, η) : ξ = 0.5, −0.5 < η < 0.5}
∂Bs {(ξ, η) : −0.5 < ξ < 0.5, η = −0.5}
∂Bn {(ξ, η) : −0.5 < ξ < 0.5, η = 0.5}
|Y | 1

|G|
∑4

j=1 πr
(j)2∣∣Γ(j)

∣∣ 2πr(j)

|Γ|
∑4

j=1 Γ
(j)

|B| |Y | − |G|
ϕ |B| / |Y |

“ℓ̂-averaged” Continuum Domain

Ω {(x, y) : −0.5 < x < 0.5, −0.5ϵ < y < 0.5ϵ}
∂Ωw {(x, y) : x = −0.5, −0.5ϵ < y < 0.5ϵ}
∂Ωe {(x, y) : x = 0.5, −0.5ϵ < y < 0.5ϵ}
∂Ωs {(x, y) : −0.5 < x < 0.5, y = −0.5ϵ}
∂Ωn {(x, y) : −0.5 < x < 0.5, y = 0.5ϵ}
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Table 3. The simulation and mesh parameters used to solve the various models and problems defined on the

pore-scale, unit-cell, and continuum domains for the multi-species system undergoing linear and nonlinear, ho-

mogeneous and heterogeneous reactions. Here, ex and eξ are the unit vectors in the x-direction and ξ-direction,

respectively, i ∈ {1, 2, 3, 4}, k1 ∈ {1, 2, 3}, k2 ∈ {4, 5, 6, 7, 8}, and k3 ∈ {1, 2, 3, 4, 5}.

Simulation and Mesh Parameters

General Parameters

ϵ = 0.1, D(i) = 1, Pe = ϵ−1, Dak1
= ϵ−1,

Dak2
= ϵ0, θk3

= ϵ0

Pore-scale Fluid Flow and Mass Transport

r
(1)
ϵ = 0.0175, r

(2)
ϵ = 0.0125, r

(3)
ϵ = 0.0100, r

(4)
ϵ = 0.0150,

Aϵ = ϵ2, Φϵ = 8ex, Nelem = 38554, max(∆x) = 0.0036, ∆t = 10−5

Homogenized Mass Transport

ϕ = 0.7554, Nelem = 4006, max(∆x) = 0.0113, ∆t = 10−6

Unit-cell Fluid Flow and Closure Problems

r(1) = 0.175, r(2) = 0.125, r(3) = 0.100, r(4) = 0.150,
A = 1, Φ = 8eξ, Nelem = 50856, max(∆ξ) = 0.0099

Figure 4. (a) The magnitude of the resulting flow velocity in the unit-cell. (b) The local pressure of the result-

ing flow in the unit-cell.

4.2.3 Pore-scale and Homogenized Model Results304

With solutions to the flow and closure problems, the pore-scale (system (12)) and homogenized (sys-305

tem (15)) models are solved. Similar to before, the pore-scale solutions c
(i)
ϵ , for i ∈ {1, 2, 3, 4}, are av-306

eraged using the averaging operator in equation (22a*) to obtain the averaged pore-scale solutions ⟨c(i)ϵ ⟩Wϵ(x).307

The absolute errors between ⟨c(i)ϵ ⟩Wϵ(x) and the respective homogenized solutions ⟨c(i)⟩Y are then cal-308

culated using equation (24*).309

As shown in Figure 5, the averaged pore-scale and homogenized concentration profiles are plotted310

with their absolute errors. The qualitative comparisons in Figures 5(a), 5(c), 5(e), and 5(g) show match-311

ing profiles between the averaged pore-scale and homogenized solutions along the x-direction at all con-312

sidered times. As time progresses, the initially discontinuous profiles become more uniform due to the313

diffusive and reactive dynamics of the system. Similar to before, the results are independent of y due to314

the periodicity of the problem.315
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Table 4. The simulation boundary conditions and initial conditions used to solve the various problems on the

pore-scale, unit-cell, and continuum domains for the multi-species system undergoing linear and nonlinear, homo-

geneous and heterogeneous reactions. Here, H(x) is the Heaviside function and i ∈ {1, 2, 3, 4}. Also, k1 ∈ {4} and

k2 ∈ {1, 2, 3} for i ∈ {1, 3, 4}, and k1 ∈ {2} and k2 ∈ {1} for i ∈ {2}.

Simulation Boundary Conditions

Pore-scale Mass Transport

c
(i)
ϵ

∣∣∣
∂Bw

ϵ

= c
(i)
ϵ

∣∣∣
∂Be

ϵ

n ·∇c
(i)
ϵ

∣∣∣
∂Bw

ϵ

= −n ·∇c
(i)
ϵ

∣∣∣
∂Be

ϵ

c
(i)
ϵ

∣∣∣
∂Bs

ϵ

= c
(i)
ϵ

∣∣∣
∂Bn

ϵ

n ·∇c
(i)
ϵ

∣∣∣
∂Bs

ϵ

= −n ·∇c
(i)
ϵ

∣∣∣
∂Bn

ϵ

Pore-scale Fluid Flow

uϵ|∂Bw
ϵ
= uϵ|∂Be

ϵ
n ·∇uϵ|∂Bw

ϵ
= −n ·∇uϵ|∂Be

ϵ

uϵ|∂Bs
ϵ
= uϵ|∂Bn

ϵ
n ·∇uϵ|∂Bs

ϵ
= −n ·∇uϵ|∂Bn

ϵ

p̃ϵ|∂Bw
ϵ
= p̃ϵ|∂Be

ϵ
n ·∇p̃ϵ|∂Bw

ϵ
= −n ·∇p̃ϵ|∂Be

ϵ

p̃ϵ|∂Bs
ϵ
= p̃ϵ|∂Bn

ϵ
n ·∇p̃ϵ|∂Bs

ϵ
= −n ·∇p̃ϵ|∂Bn

ϵ

Homogenized Mass Transport

⟨c(i)⟩Y
∣∣
∂Ωw = ⟨c(i)⟩Y

∣∣
∂Ωe n ·∇x⟨c(i)⟩Y

∣∣
∂Ωw = −n ·∇x⟨c(i)⟩Y

∣∣
∂Ωe

⟨c(i)⟩Y
∣∣
∂Ωs = ⟨c(i)⟩Y

∣∣
∂Ωn n ·∇x⟨c(i)⟩Y

∣∣
∂Ωs = −n ·∇x⟨c(i)⟩Y

∣∣
∂Ωn

Closure Problems

χ(i)[k1]
∣∣
∂Bw = χ(i)[k1]

∣∣
∂Be n ·∇ξχ

(i)[k1]
∣∣
∂Bw = −n ·∇ξχ

(i)[k1]
∣∣
∂Be

χ(i)[k1]
∣∣
∂Bs = χ(i)[k1]

∣∣
∂Bn n ·∇ξχ

(i)[k1]
∣∣
∂Bs = −n ·∇ξχ

(i)[k1]
∣∣
∂Bn

χ(i)[k2]
∣∣
∂Bw = χ(i)[k2]

∣∣
∂Be n ·∇ξχ

(i)[k2]
∣∣
∂Bw = −n ·∇ξχ

(i)[k2]
∣∣
∂Be

χ(i)[k2]
∣∣
∂Bs = χ(i)[k2]

∣∣
∂Bn n ·∇ξχ

(i)[k2]
∣∣
∂Bs = −n ·∇ξχ

(i)[k2]
∣∣
∂Bn

Unit-cell Fluid Flow

u|∂Bw = u|∂Be n ·∇ξu|∂Bw = −n ·∇ξu|∂Be

u|∂Bs = u|∂Bn n ·∇ξu|∂Bs = −n ·∇ξu|∂Bn

p̃|∂Bw = p̃|∂Be n ·∇ξp̃|∂Bw = −n ·∇ξp̃|∂Be

p̃|∂Bs = p̃|∂Bn n ·∇ξp̃|∂Bs = −n ·∇ξp̃|∂Bn

Simulation Initial Conditions

Pore-scale Mass Transport Homogenized Mass Transport

c
(1)
ϵ = 0.3H (−x) for (x, y) ∈ Bϵ, t = 0 ⟨c(i)⟩Y = ⟨c(i)ϵ ⟩Wϵ(x) for (x, y) ∈ Ω, t = 0

c
(2)
ϵ = H (−x− 0.25) for (x, y) ∈ Bϵ, t = 0

c
(3)
ϵ = 0.8H (x− 0.15) for (x, y) ∈ Bϵ, t = 0

c
(4)
ϵ = 0.1H (x− 0.25) for (x, y) ∈ Bϵ, t = 0
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In the quantitative comparisons shown in Figures 5(b), 5(d), 5(f), and 5(h), equation (24*) is used316

to calculate the absolute errors between the averaged pore-scale and homogenized concentration profiles317

along the x-direction at the considered times. As shown, the absolute errors remain below the error limit318

denoted by the red dotted lines for all considered times. Therefore, we deem the models valid and gain319

further confidence in the generalized closure form strategy encoded in Symbolica.320

With the homogenized model validated, we reemphasize that Symbolica carried out the analytically321

intractable upscaling procedure required to homogenize the complex reaction network defined in system322

(10) in only 11 minutes with no human interaction. During this process, Symbolica defined nontrivial clo-323

sure forms (system (14)) and formulated 14 unique closure problems using the encoded algorithm for the324

generalized closure form strategy with no prior knowledge about the closure of the system. We believe325

these abilities are invaluable for deploying Symbolica in subsurface engineering applications with realis-326

tic complexities.327

5 Conclusion328

In Part 2 of this series, we detailed an algorithmic procedure for applying the generalized closure329

form strategy and encoded it into our automated upscaling framework, Symbolica. We then validated its330

implementation by upscaling two reactive transport systems exhibiting moderately reactive physics, where331

diffusion and reaction terms are of the same order. In the first system, a solute undergoing a nonlinear332

heterogeneous reaction was considered. Using the encoded algorithm, Symbolica assumed an appropri-333

ate closure form at the first order, formulated valid closure problems, and ultimately derived a nonlin-334

ear homogenized model for the system, where the effective velocity and the effective reaction rate depended335

on the averaged concentration. Upon numerically validating this model, we emphasized the value of our336

encoded algorithm for upscaling realistic subsurface systems, where a broad range of complexities require337

nontrivial closure forms and closure problems to be defined.338

In the second problem, we considered a complex multi-component system undergoing linear and non-339

linear, homogeneous and heterogeneous reactions. Nontrivial closure forms and multiple closure prob-340

lems were derived by Symbolica with no previous knowledge about the closure of the system. Similar to341

the previous problem, nonlinear effective parameters were found, including those of the emergent terms342

that appeared due to the bimolecular heterogeneous reactions. Upon numerically validating the models,343

our encoding of the generalized closure form strategy in Symbolica was further justified, and the bene-344

fits of automated closure form and closure problem definition for complex systems were again emphasized.345

In summary, the work from this series 1) proposed and validated a strategy for extending the ap-346

plicability of classical homogenization theory by generalizing closure forms, 2) developed an algorithm347

for implementing the strategy through automated upscaling frameworks like Symbolica, and 3) demon-348

strated the benefits of the encoded strategy. By demonstrating the capabilities and level of generaliza-349

tion automated upscaling frameworks can achieve, we hope to spark further interest in utilizing automated350

analytical frameworks for multi-scale modeling. Ultimately, this will facilitate a broader adoption and351

democratization of rigorous modeling techniques for geochemical reactive systems of realistic complex-352

ities (e.g., in CO2 sequestration and H2 storage), and create opportunities for method advancement us-353

ing the paradigm of symbolic computation.354
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Figure 5. The numerical results for the system involving multiple species undergoing linear and nonlinear,

homogeneous and heterogeneous reactions. The Wϵ(x)-averaged and Y -averaged concentration profiles from the

pore-scale (symbols) and homogenized (lines) models, respectively, are plotted for (a) i = 1, (c) i = 2, (e) i = 3,

and (g) i = 4 at various times along the x-direction. The absolute errors between the averaged concentration pro-

files of ⟨c(i)ϵ ⟩Wϵ(x) and ⟨c(i)⟩Y are also plotted for (b) i = 1, (d) i = 2, (f) i = 3, and (h) i = 4 at various times

along the x-direction. The upper error limit predicted by the homogenized model is displayed by the red dotted

line. Here, t0 = 0, t1 = 0.25× 10−2, t2 = 1.25× 10−2, and t3 = 3.75× 10−2.
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Appendix A The Effective Parameters for the Nonlinear Homogeneous and Heteroge-359

neous Reactions: Multiple Species360

In this Appendix, we provide the effective parameters for system (15) derived by Symbolica in the361

problem considering a multi-species system undergoing linear and nonlinear, homogeneous and hetero-362

geneous reactions with multiple reactive interfaces.363

A1 Effective Parameters for Equation (15a)364

U(1)
(
⟨c(3)⟩Y

)
= ϕPe⟨u⟩Y + ϕ2Da4

|B|

[
|Γ(1)|⟨χ(1)[4]⟩Γ(1) + |Γ(2)|⟨χ(1)[4]⟩Γ(2) + |Γ(4)|⟨χ(1)[4]⟩Γ(4)

]
−ϕD(1)⟨∇ξχ

(1)[2]⟩Y + ϕPeϵ⟨uχ(1)[2]⟩Y

+⟨c(3)⟩Y
[
ϕ
Da5
|B|

|Γ(1)|⟨χ(1)[4]⟩Γ(1) −D(1)⟨∇ξχ
(1)[3]⟩Y + Peϵ⟨uχ(1)[3]⟩Y

]
,

(A1a)

V(1)
(
⟨c(1)⟩Y

)
= ⟨c(1)⟩Y

[
ϕ
Da5
|B|

|Γ(1)|⟨χ(3)[4]⟩Γ(1) −D(1)⟨∇ξχ
(1)[3]⟩Y + Peϵ⟨uχ(1)[3]⟩Y

]
, (A1b)

D(1) = ϕD(1)I+D(1)⟨∇ξχ
(1)[4]⟩Y − Peϵ⟨u⊗ χ(1)[4]⟩Y , (A1c)

R(1)
(
⟨c(1)⟩Y , ⟨c(3)⟩Y

)
= R

(1)
1

[
ϕ2⟨c(1)⟩Y − ϕ3θ1

]
+ R

(1)
2

[
ϕ⟨c(1)⟩Y ⟨c(3)⟩Y − ϕ3θ2

]
+ϕ3R

(1)
3 + ϕ2R

(1)
4 ⟨c(1)⟩Y + ϕ2R

(1)
5 ⟨c(3)⟩Y + ϕR

(1)
6 ⟨c(1)⟩Y ⟨c(3)⟩Y

+R
(1)
7

[
⟨c(1)⟩Y

]2
⟨c(3)⟩Y + R

(1)
8 ⟨c(1)⟩Y

[
⟨c(3)⟩Y

]2
,

(A1d)

A2 Effective Parameters for Equation (15b)365

U(2)
(
⟨c(4)⟩Y

)
= ϕPe⟨u⟩Y + ⟨c(4)⟩Y

[
ϕ
Da8
|B|

(
|Γ(2)|⟨χ(2)[2]⟩Γ(2) + |Γ(3)|⟨χ(2)[2]⟩Γ(3)

+|Γ(4)|⟨χ(2)[2]⟩Γ(4)

)
−D(2)⟨∇ξχ

(2)[1]⟩Y + Peϵ⟨uχ(2)[1]⟩Y
]
,

(A2a)

V(2)
(
⟨c(2)⟩Y

)
= ⟨c(2)⟩Y

[
ϕ
Da8
|B|

(
|Γ(2)|⟨χ(4)[4]⟩Γ(2) + |Γ(3)|⟨χ(4)[4]⟩Γ(3) + |Γ(4)|⟨χ(4)[4]⟩Γ(4)

)
−D(2)⟨∇ξχ

(2)[1]⟩Y + Peϵ⟨uχ(2)[1]⟩Y
]
,

(A2b)

D(2) = ϕD(2)I+D(2)⟨∇ξχ
(2)[2]⟩Y − Peϵ⟨u⊗ χ(2)[2]⟩Y , (A2c)

R(2)
(
⟨c(2)⟩Y , ⟨c(4)⟩Y

)
= R

(2)
1

(
⟨c(4)⟩Y

) [
⟨c(2)⟩Y ⟨c(4)⟩Y − ϕ2θ5

]
+ ϕ2R

(2)
2 ⟨c(2)⟩Y

+ϕR
(2)
3 ⟨c(2)⟩Y ⟨c(4)⟩Y + R

(2)
4

[
⟨c(2)⟩Y

]2
⟨c(4)⟩Y .

(A2d)

A3 Effective Parameters for Equation (15c)366

U(3)
(
⟨c(1)⟩Y

)
= ϕPe⟨u⟩Y + ϕ2Da6

|B|

[
|Γ(1)|⟨χ(3)[4]⟩Γ(1) + |Γ(2)|⟨χ(3)[4]⟩Γ(2)

]
−ϕD(3)⟨∇ξχ

(3)[2]⟩Y + ϕPeϵ⟨uχ(3)[2]⟩Y

+⟨c(1)⟩Y
[
ϕ
Da5
|B|

|Γ(1)|⟨χ(3)[4]⟩Γ(1) −D(3)⟨∇ξχ
(3)[3]⟩Y + Peϵ⟨uχ(3)[3]⟩Y

]
,

(A3a)
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V(3)
(
⟨c(3)⟩Y

)
= ⟨c(3)⟩Y

[
ϕ
Da5
|B|

|Γ(1)|⟨χ(1)[4]⟩Γ(1) −D(3)⟨∇ξχ
(3)[3]⟩Y + Peϵ⟨uχ(3)[3]⟩Y

]
, (A3b)

D(3) = ϕD(3)I+D(3)⟨∇ξχ
(3)[4]⟩Y − Peϵ⟨u⊗ χ(3)[4]⟩Y , (A3c)

R(3)
(
⟨c(1)⟩Y , ⟨c(3)⟩Y

)
= R

(3)
1

[
ϕ2⟨c(3)⟩Y − ϕ3θ3

]
+ R

(3)
2

[
ϕ⟨c(1)⟩Y ⟨c(3)⟩Y − ϕ3θ2

]
+ϕ3R

(3)
3 + ϕ2R

(3)
4 ⟨c(1)⟩Y + ϕ2R

(3)
5 ⟨c(3)⟩Y + ϕR

(3)
6 ⟨c(1)⟩Y ⟨c(3)⟩Y + R

(3)
7

[
⟨c(1)⟩Y

]2
⟨c(3)⟩Y

+R
(3)
8 ⟨c(1)⟩Y

[
⟨c(3)⟩Y

]2
.

(A3d)

A4 Effective Parameters for Equation (15d)367

U(4)
(
⟨c(2)⟩Y

)
= ϕPe⟨u⟩Y + ϕ2Da7

|B|

[
|Γ(1)|⟨χ(4)[4]⟩Γ(1) + |Γ(3)|⟨χ(4)[4]⟩Γ(3) + |Γ(4)|⟨χ(4)[4]⟩Γ(4)

]
−ϕD(4)⟨∇ξχ

(4)[2]⟩Y + ϕPeϵ⟨uχ(4)[2]⟩Y

+⟨c(2)⟩Y
[
ϕ
Da8
|B|

(
|Γ(2)|⟨χ(4)[4]⟩Γ(2) + |Γ(3)|⟨χ(4)[4]⟩Γ(3)

+|Γ(4)|⟨χ(4)[4]⟩Γ(4)

)
−D(4)⟨∇ξχ

(4)[3]⟩Y + Peϵ⟨uχ(4)[3]⟩Y
]
,

(A4a)

V(4)
(
⟨c(4)⟩Y

)
= ⟨c(4)⟩Y

[
ϕ
Da8
|B|

(
|Γ(2)|⟨χ(2)[2]⟩Γ(2) + |Γ(3)|⟨χ(2)[2]⟩Γ(3) + |Γ(4)|⟨χ(2)[2]⟩Γ(4)

)
−D(4)⟨∇ξχ

(4)[3]⟩Y + Peϵ⟨uχ(4)[3]⟩Y
]
,

(A4b)

D(4) = ϕD(4)I+D(4)⟨∇ξχ
(4)[4]⟩Y − Peϵ⟨u⊗ χ(4)[4]⟩Y , (A4c)

R(4)
(
⟨c(2)⟩Y , ⟨c(4)⟩Y

)
= R

(4)
1

[
ϕ2⟨c(4)⟩Y − ϕ3θ4

]
+ R

(4)
2

(
⟨c(4)⟩Y

) [
⟨c(2)⟩Y ⟨c(4)⟩Y − ϕ2θ5

]
+ϕ3R

(4)
3 + ϕ2R

(4)
4 ⟨c(2)⟩Y + ϕ2R

(4)
5 ⟨c(4)⟩Y + ϕR

(4)
6 ⟨c(2)⟩Y ⟨c(4)⟩Y + R

(4)
7

[
⟨c(2)⟩Y

]2
⟨c(4)⟩Y .

(A4d)
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Appendix B The Effective Reaction Sub-parameters for the Nonlinear Homogeneous368

and Heterogeneous Reactions: Multiple Species369

In this Appendix, we provide the sub-parameters for the effective reaction rates derived by Sym-370

bolica in the problem considering a multi-species system undergoing linear and nonlinear, homogeneous371

and heterogeneous reactions with multiple reactive interfaces.372

B1 Effective Reaction Sub-parameters for R(1)
(
⟨c(1)⟩Y , ⟨c(3)⟩Y

)
373

R
(1)
1 =

Da4
|B| ϵ

(
|Γ(1)|+ |Γ(2)|+ |Γ(4)|

)
, (B1a)

R
(1)
2 =

Da5
|B| ϵ

|Γ(1)|, (B1b)

R
(1)
3 =

Da4
|B|

(
|Γ(1)|⟨χ(1)[1]⟩Γ(1) + |Γ(2)|⟨χ(1)[1]⟩Γ(2) + |Γ(4)|⟨χ(1)[1]⟩Γ(4)

)
, (B1c)

R
(1)
4 =

Da4
|B|

(
|Γ(1)|⟨χ(1)[2]⟩Γ(1) + |Γ(2)|⟨χ(1)[2]⟩Γ(2) + |Γ(4)|⟨χ(1)[2]⟩Γ(4)

)
+
Da5
|B|

|Γ(1)|⟨χ(3)[1]⟩Γ(1) ,

(B1d)

R
(1)
5 =

Da5
|B|

|Γ(1)|⟨χ(1)[1]⟩Γ(1) , (B1e)

R
(1)
6 =

Da4
|B|

(
|Γ(1)|⟨χ(1)[3]⟩Γ(1) + |Γ(2)|⟨χ(1)[3]⟩Γ(2) + |Γ(4)|⟨χ(1)[3]⟩Γ(4)

)
+
Da5
|B|

(
|Γ(1)|⟨χ(3)[2]⟩Γ(1) + |Γ(1)|⟨χ(1)[2]⟩Γ(1)

)
,

(B1f)

R
(1)
7 =

Da5
|B|

|Γ(1)|⟨χ(3)[3]⟩Γ(1) , (B1g)

R
(1)
8 =

Da5
|B|

|Γ(1)|⟨χ(1)[3]⟩Γ(1) . (B1h)

B2 Effective Reaction Sub-parameters for R(2)
(
⟨c(2)⟩Y , ⟨c(4)⟩Y

)
374

R
(2)
1

(
⟨c(4)⟩Y

)
=

Da8
|B|

[
ϕϵ−1

(
|Γ(2)|+ |Γ(3)|+ |Γ(4)|

)
+⟨c(4)⟩Y

(
|Γ(2)|⟨χ(2)[1]⟩Γ(2) + |Γ(3)|⟨χ(2)[1]⟩Γ(3) + |Γ(4)|⟨χ(2)[1]⟩Γ(4)

)]
,

(B2a)

R
(2)
2 =

Da8
|B|

(
|Γ(2)|⟨χ(4)[1]⟩Γ(2) + |Γ(3)|⟨χ(4)[1]⟩Γ(3) + |Γ(4)|⟨χ(4)[1]⟩Γ(4)

)
, (B2b)

R
(2)
3 =

Da8
|B|

(
|Γ(2)|⟨χ(4)[2]⟩Γ(2) + |Γ(3)|⟨χ(4)[2]⟩Γ(3) + |Γ(4)|⟨χ(4)[2]⟩Γ(4)

)
, (B2c)

R
(2)
4 =

Da8
|B|

(
|Γ(2)|⟨χ(4)[3]⟩Γ(2) + |Γ(3)|⟨χ(4)[3]⟩Γ(3) + |Γ(4)|⟨χ(4)[3]⟩Γ(4)

)
. (B2d)

–21–



manuscript submitted to Water Resources Research

B3 Effective Reaction Sub-parameters for R(3)
(
⟨c(1)⟩Y , ⟨c(3)⟩Y

)
375

R
(3)
1 =

Da6
|B| ϵ

(
|Γ(1)|+ |Γ(2)|

)
, (B3a)

R
(3)
2 =

Da5
|B| ϵ

|Γ(1)|, (B3b)

R
(3)
3 =

Da6
|B|

(
|Γ(1)|⟨χ(3)[1]⟩Γ(1) + |Γ(2)|⟨χ(3)[1]⟩Γ(2)

)
, (B3c)

R
(3)
4 =

Da5
|B|

|Γ(1)|⟨χ(3)[1]⟩Γ(1) , (B3d)

R
(3)
5 =

Da5
|B|

|Γ(1)|⟨χ(1)[1]⟩Γ(1) +
Da6
|B|

(
|Γ(1)|⟨χ(3)[2]⟩Γ(1) + |Γ(2)|⟨χ(3)[2]⟩Γ(2)

)
, (B3e)

R
(3)
6 =

Da5
|B|

(
|Γ(1)|⟨χ(1)[2]⟩Γ(1) + |Γ(1)|⟨χ(3)[2]⟩Γ(1)

)
+
Da6
|B|

(
|Γ(1)|⟨χ(3)[3]⟩Γ(1) + |Γ(2)|⟨χ(3)[3]⟩Γ(2)

)
,

(B3f)

R
(3)
7 =

Da5
|B|

|Γ(1)|⟨χ(3)[3]⟩Γ(1) , (B3g)

R
(3)
8 =

Da5
|B|

|Γ(1)|⟨χ(1)[3]⟩Γ(1) . (B3h)

B4 Effective Reaction Sub-parameters for R(4)
(
⟨c(2)⟩Y , ⟨c(4)⟩Y

)
376

R
(4)
1 =

Da7
|B| ϵ

(
|Γ(1)|+ |Γ(3)|+ |Γ(4)|

)
, (B4a)

R
(4)
2

(
⟨c(4)⟩Y

)
=

Da8
|B|

[
ϕϵ−1

(
|Γ(2)|+ |Γ(3)|+ |Γ(4)|

)
+⟨c(4)⟩Y

(
|Γ(2)|⟨χ(2)[1]⟩Γ(2) + |Γ(3)|⟨χ(2)[1]⟩Γ(3) + |Γ(4)|⟨χ(2)[1]⟩Γ(4)

)]
,

(B4b)

R
(4)
3 =

Da7
|B|

(
|Γ(1)|⟨χ(4)[1]⟩Γ(1) + |Γ(3)|⟨χ(4)[1]⟩Γ(3) + |Γ(4)|⟨χ(4)[1]⟩Γ(4)

)
, (B4c)

R
(4)
4 =

Da8
|B|

(
|Γ(2)|⟨χ(4)[1]⟩Γ(2) + |Γ(3)|⟨χ(4)[1]⟩Γ(3) + |Γ(4)|⟨χ(4)[1]⟩Γ(4)

)
, (B4d)

R
(4)
5 =

Da7
|B|

(
|Γ(1)|⟨χ(4)[2]⟩Γ(1) + |Γ(3)|⟨χ(4)[2]⟩Γ(3) + |Γ(4)|⟨χ(4)[2]⟩Γ(4)

)
, (B4e)

R
(4)
6 =

Da7
|B|

(
|Γ(1)|⟨χ(4)[3]⟩Γ(1) + |Γ(3)|⟨χ(4)[3]⟩Γ(3) + |Γ(4)|⟨χ(4)[3]⟩Γ(4)

)
+
Da8
|B|

(
|Γ(2)|⟨χ(4)[2]⟩Γ(2) + |Γ(3)|⟨χ(4)[2]⟩Γ(3) + |Γ(4)|⟨χ(4)[2]⟩Γ(4)

)
,

(B4f)

R
(4)
7 =

Da8
|B|

(
|Γ(2)|⟨χ(4)[3]⟩Γ(2) + |Γ(3)|⟨χ(4)[3]⟩Γ(3) + |Γ(4)|⟨χ(4)[3]⟩Γ(4)

)
. (B4g)
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Appendix C The Closure Problems for the Nonlinear Homogeneous and Heterogeneous377

Reactions: Multiple Species378

In this Appendix, we provide the closure problems derived by Symbolica for the problem consider-379

ing a multi-species system undergoing linear and nonlinear, homogeneous and heterogeneous reactions380

with multiple reactive interfaces.381

C1 Closure Problems for c
(1)
1 :382

C11 Closure Problem for χ(1)[1]
383

Da4θ1
|B|

(
|Γ(1)|+ |Γ(2)|+ |Γ(4)|

)
+

Da5θ2
|B|

|Γ(1)|

+Peϵu0 ·∇ξχ
(1)[1] −D(1)∇2

ξχ
(1)[1] = 0 for ξ ∈ B,

(C1a)

−n(1) ·D(1)∇ξχ
(1)[1] = −Da4θ1 −Da5θ2 for ξ ∈ Γ(1), (C1b)

−n(2) ·D(1)∇ξχ
(1)[1] = −Da4θ1 for ξ ∈ Γ(2), (C1c)

−n(3) ·D(1)∇ξχ
(1)[1] = 0 for ξ ∈ Γ(3), (C1d)

−n(4) ·D(1)∇ξχ
(1)[1] = −Da4θ1 for ξ ∈ Γ(4). (C1e)

C12 Closure Problem for χ(1)[2]
384

−Da4
|B|

(
|Γ(1)|+ |Γ(2)|+ |Γ(4)|

)
+ Peϵu0 ·∇ξχ

(1)[2] −D(1)∇2
ξχ

(1)[2] = 0 for ξ ∈ B, (C2a)

−n(1) ·D(1)∇ξχ
(1)[2] = Da4 for ξ ∈ Γ(1), (C2b)

−n(2) ·D(1)∇ξχ
(1)[2] = Da4 for ξ ∈ Γ(2), (C2c)

−n(3) ·D(1)∇ξχ
(1)[2] = 0 for ξ ∈ Γ(3), (C2d)

−n(4) ·D(1)∇ξχ
(1)[2] = Da4 for ξ ∈ Γ(4). (C2e)

C13 Closure Problem for χ(1)[3]
385

−Da5
|B|

|Γ(1)|+ Peϵu0 ·∇ξχ
(1)[3] −D(1)∇2

ξχ
(1)[3] = 0 for ξ ∈ B, (C3a)

−n(1) ·D(1)∇ξχ
(1)[3] = Da5 for ξ ∈ Γ(1), (C3b)

−n(2) ·D(1)∇ξχ
(1)[3] = 0 for ξ ∈ Γ(2), (C3c)

−n(3) ·D(1)∇ξχ
(1)[3] = 0 for ξ ∈ Γ(3), (C3d)

−n(4) ·D(1)∇ξχ
(1)[3] = 0 for ξ ∈ Γ(4). (C3e)
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C14 Closure Problem for χ(1)[4]
386

Peϵ (u0 − ⟨u0⟩B) + Peϵu0 ·∇ξχ
(1)[4] −D(1)∇ξ ·

(
I+∇ξχ

(1)[4]
)
= 0 for ξ ∈ B, (C4a)

−n(1) ·D(1)
(
I+∇ξχ

(1)[4]
)
= 0 for ξ ∈ Γ(1), (C4b)

−n(2) ·D(1)
(
I+∇ξχ

(1)[4]
)
= 0 for ξ ∈ Γ(2), (C4c)

−n(3) ·D(1)
(
I+∇ξχ

(1)[4]
)
= 0 for ξ ∈ Γ(3), (C4d)

−n(4) ·D(1)
(
I+∇ξχ

(1)[4]
)
= 0 for ξ ∈ Γ(4). (C4e)

C2 Closure Problems for c
(2)
1 :387

C21 Closure Problem for χ(2)[1]
388

−Da8
|B|

(
|Γ(2)|+ |Γ(3)|+ |Γ(4)|

)
+ Peϵu0 ·∇ξχ

(2)[1] −D(2)∇2
ξχ

(2)[1] = 0 for ξ ∈ B, (C5a)

−n(1) ·D(2)∇ξχ
(2)[1] = 0 for ξ ∈ Γ(1), (C5b)

−n(2) ·D(2)∇ξχ
(2)[1] = Da8 for ξ ∈ Γ(2), (C5c)

−n(3) ·D(2)∇ξχ
(2)[1] = Da8 for ξ ∈ Γ(3), (C5d)

−n(4) ·D(2)∇ξχ
(2)[1] = Da8 for ξ ∈ Γ(4). (C5e)

C22 Closure Problem for χ(2)[2]
389

Peϵ (u0 − ⟨u0⟩B) + Peϵu0 ·∇ξχ
(2)[2] −D(2)∇ξ ·

(
I+∇ξχ

(2)[2]
)
= 0 for ξ ∈ B, (C6a)

−n(1) ·D(2)
(
I+∇ξχ

(2)[2]
)
= 0 for ξ ∈ Γ(1), (C6b)

−n(2) ·D(2)
(
I+∇ξχ

(2)[2]
)
= 0 for ξ ∈ Γ(2), (C6c)

−n(3) ·D(2)
(
I+∇ξχ

(2)[2]
)
= 0 for ξ ∈ Γ(3), (C6d)

−n(4) ·D(2)
(
I+∇ξχ

(2)[2]
)
= 0 for ξ ∈ Γ(4). (C6e)
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C3 Closure Problems for c
(3)
1 :390

C31 Closure Problem for χ(3)[1]
391

Da5θ2
|B|

|Γ(1)|+ Da6θ3
|B|

(
|Γ(1)|+ |Γ(2)|

)
+ Peϵu0 ·∇ξχ

(3)[1] −D(3)∇2
ξχ

(3)[1] = 0 for ξ ∈ B, (C7a)

−n(1) ·D(3)∇ξχ
(3)[1] = −Da5θ2 −Da6θ3 for ξ ∈ Γ(1), (C7b)

−n(2) ·D(3)∇ξχ
(3)[1] = −Da6θ3 for ξ ∈ Γ(2), (C7c)

−n(3) ·D(3)∇ξχ
(3)[1] = 0 for ξ ∈ Γ(3), (C7d)

−n(4) ·D(3)∇ξχ
(3)[1] = 0 for ξ ∈ Γ(4). (C7e)

C32 Closure Problem for χ(3)[2]
392

−Da6
|B|

(
|Γ(1)|+ |Γ(2)|

)
+ Peϵu0 ·∇ξχ

(3)[2] −D(3)∇2
ξχ

(3)[2] = 0 for ξ ∈ B, (C8a)

−n(1) ·D(3)∇ξχ
(3)[2] = Da6 for ξ ∈ Γ(1), (C8b)

−n(2) ·D(3)∇ξχ
(3)[2] = Da6 for ξ ∈ Γ(2), (C8c)

−n(3) ·D(3)∇ξχ
(3)[2] = 0 for ξ ∈ Γ(3), (C8d)

−n(4) ·D(3)∇ξχ
(3)[2] = 0 for ξ ∈ Γ(4). (C8e)

C33 Closure Problem for χ(3)[3]
393

−Da5
|B|

|Γ(1)|+ Peϵu0 ·∇ξχ
(3)[3] −D(3)∇2

ξχ
(3)[3] = 0 for ξ ∈ B, (C9a)

−n(1) ·D(3)∇ξχ
(3)[3] = Da5 for ξ ∈ Γ(1), (C9b)

−n(2) ·D(3)∇ξχ
(3)[3] = 0 for ξ ∈ Γ(2), (C9c)

−n(3) ·D(3)∇ξχ
(3)[3] = 0 for ξ ∈ Γ(3), (C9d)

−n(4) ·D(3)∇ξχ
(3)[3] = 0 for ξ ∈ Γ(4). (C9e)
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C34 Closure Problem for χ(3)[4]
394

Peϵ (u0 − ⟨u0⟩B) + Peϵu0 ·∇ξχ
(3)[4] −D(3)∇2

ξχ
(3)[4] = 0 for ξ ∈ B, (C10a)

−n(1) ·D(3)
(
I+∇ξχ

(3)[4]
)
= 0 for ξ ∈ Γ(1), (C10b)

−n(2) ·D(3)
(
I+∇ξχ

(3)[4]
)
= 0 for ξ ∈ Γ(2), (C10c)

−n(3) ·D(3)
(
I+∇ξχ

(3)[4]
)
= 0 for ξ ∈ Γ(3), (C10d)

−n(4) ·D(3)
(
I+∇ξχ

(3)[4]
)
= 0 for ξ ∈ Γ(4). (C10e)

C4 Closure Problems for c
(4)
1 :395

C41 Closure Problem for χ(4)[1]
396

Da7θ4
|B|

(
|Γ(1)|+ |Γ(3)|+ |Γ(4)|

)
+

Da8θ5
|B|

(
|Γ(2)|+ |Γ(3)|+ |Γ(4)|

)
+Peϵu0 ·∇ξχ

(4)[1] −D(4)∇2
ξχ

(4)[1] = 0 for ξ ∈ B,
(C11a)

−n(1) ·D(4)∇ξχ
(4)[1] = −Da7θ4 for ξ ∈ Γ(1), (C11b)

−n(2) ·D(4)∇ξχ
(4)[1] = −Da8θ5 for ξ ∈ Γ(2), (C11c)

−n(3) ·D(4)∇ξχ
(4)[1] = −Da7θ4 −Da8θ5 for ξ ∈ Γ(3), (C11d)

−n(4) ·D(4)∇ξχ
(4)[1] = −Da7θ4 −Da8θ5 for ξ ∈ Γ(4). (C11e)

C42 Closure Problem for χ(4)[2]
397

−Da7
|B|

(
|Γ(1)|+ |Γ(3)|+ |Γ(4)|

)
+ Peϵu0 ·∇ξχ

(4)[2] −D(4)∇2
ξχ

(4)[2] = 0 for ξ ∈ B, (C12a)

−n(1) ·D(4)∇ξχ
(4)[2] = Da7 for ξ ∈ Γ(1), (C12b)

−n(2) ·D(4)∇ξχ
(4)[2] = 0 for ξ ∈ Γ(2), (C12c)

−n(3) ·D(4)∇ξχ
(4)[2] = Da7 for ξ ∈ Γ(3), (C12d)

−n(4) ·D(4)∇ξχ
(4)[2] = Da7 for ξ ∈ Γ(4). (C12e)
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C43 Closure Problem for χ(4)[3]
398

−Da8
|B|

(
|Γ(2)|+ |Γ(3)|+ |Γ(4)|

)
+ Peϵu0 ·∇ξχ

(4)[3] −D(4)∇2
ξχ

(4)[3] = 0 for ξ ∈ B, (C13a)

−n(1) ·D(4)∇ξχ
(4)[3] = 0 for ξ ∈ Γ(1), (C13b)

−n(2) ·D(4)∇ξχ
(4)[3] = Da8 for ξ ∈ Γ(2), (C13c)

−n(3) ·D(4)∇ξχ
(4)[3] = Da8 for ξ ∈ Γ(3), (C13d)

−n(4) ·D(4)∇ξχ
(4)[3] = Da8 for ξ ∈ Γ(4). (C13e)

C44 Closure Problem for χ(4)[4]
399

Peϵ (u0 − ⟨u0⟩B) + Peϵu0 ·∇ξχ
(4)[4] −D(4)∇2

ξχ
(4)[4] = 0 for ξ ∈ B, (C14a)

−n(1) ·D(4)
(
I+∇ξχ

(4)[4]
)
= 0 for ξ ∈ Γ(1), (C14b)

−n(2) ·D(4)
(
I+∇ξχ

(4)[4]
)
= 0 for ξ ∈ Γ(2), (C14c)

−n(3) ·D(4)
(
I+∇ξχ

(4)[4]
)
= 0 for ξ ∈ Γ(3), (C14d)

−n(4) ·D(4)
(
I+∇ξχ

(4)[4]
)
= 0 for ξ ∈ Γ(4). (C14e)
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Appendix D The Closure Solutions for the Nonlinear Homogeneous and Heterogeneous400

Reactions: Multiple Species401

In this Appendix, we provide contour plots of the solutions to the closure problems recorded in Ap-402

pendix C for the problem considering a multi-species system undergoing linear and nonlinear, homoge-403

neous and heterogeneous reactions with multiple reactive interfaces. Due to D(1) = D(2) = D(3) =404

D(4), we note that some closure variables have the same closure problems. For these variables, we solve405

the corresponding closure problem once and noted both variables in the contours.406

Figure D1. The numerical results of the closure problems in the unit-cell for the system involving multiple

species undergoing linear and nonlinear, homogeneous and heterogeneous reactions. In (a) and (b), the contour

plots of [χ(i)[k1]]1, the resulting ξ-component of χ(i)[k1], and [χ(i)[k1]]2, the resulting η-component of χ(i)[k1], are

displayed respectively, where k1 ∈ {4} for i ∈ {1, 3, 4}, and k1 ∈ {2} for i ∈ {2}. (c) The contour plot of χ(1)[1]. (d)

The contour plot of χ(3)[1]. (e) The contour plot of χ(1)[2]. (f) The contour plot of χ(2)[1] and χ(4)[3].
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Figure D2. The numerical results of the closure problems in the unit-cell for the system involving multiple

species undergoing linear and nonlinear, homogeneous and heterogeneous reactions. (a) The contour plot of χ(1)[3]

and χ(3)[3]. (b) The contour plot of χ(4)[2]. (c) The contour plot of χ(3)[2]. (d) The contour plot of χ(4)[1].
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