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Abstract

Here, we develop and test an artificial intelligence (AI)-based approach to monitor major Brazilian aquifers. The approach

combines Gravity Recovery and Climate Experiment (GRACE) data and ground-based hydrogeological measurements from

Brazil’s Integrated Groundwater Monitoring Network at hundreds of wells distributed in twelve aquifers across the country.

We use a model ensemble composed of four different AI models: Extreme Gradient Boost, Light Gradient Boosting Model,

CatBoost and Multilayer Perceptron. The approach is further boosted with wavelet and seasonal decomposition processes

applied to GRACE data. To determine the sensitivity of the AI approach to data availability, we propose four experiments

combining hydrogeological measurements from different aquifers. Groundwater storage estimates from the Global Land Data

Assimilation System (GLDAS) are used as the benchmark. The AI approach successfully reproduces groundwater storage

estimates at all Brazilian aquifers. Results show that the proposed approach outperforms GLDAS in all experiments, with an

average Nash-Sutcliff efficiency of 0.91 and an average RMSE of 0.43cm for the experiment that covers all monitored wells in

Brazil. GLDAS resulted in -1.311 and 5.84cm, respectively. This study demonstrates that combining satellite data and AI can

be a cost-effective alternative to monitor poorly equipped aquifers at the continental scale.

1



Large-scale groundwater monitoring in Brazil assisted with 1 

satellite-based artificial intelligence techniques 2 

Clyvihk Renna Camacho1,2, Augusto Getirana3,4, Otto Corrêa Rotunno Filho2, Maria 3 

Antonieta A. Mourão1 4 

1 Geological Survey of Brazil, Belo Horizonte, Brazil 5 

2 Civil Engineering Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 6 

3 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, 7 

United States 8 

4 Science Applications International Corporation, Greenbelt, MD, United States 9 

Abstract – Here, we develop and test an artificial intelligence (AI)-based approach to 10 

monitor major Brazilian aquifers. The approach combines Gravity Recovery and Climate 11 

Experiment (GRACE) data and ground-based hydrogeological measurements from 12 

Brazil’s Integrated Groundwater Monitoring Network at hundreds of wells distributed in 13 

twelve aquifers across the country. We use a model ensemble composed of four different 14 

AI models: Extreme Gradient Boost, Light Gradient Boosting Model, CatBoost and 15 

Multilayer Perceptron. The approach is further boosted with wavelet and seasonal 16 

decomposition processes applied to GRACE data. To determine the sensitivity of the AI 17 

approach to data availability, we propose four experiments combining hydrogeological 18 

measurements from different aquifers. Groundwater storage estimates from the Global 19 

Land Data Assimilation System (GLDAS) are used as the benchmark. The AI approach 20 

successfully reproduces groundwater storage estimates at all Brazilian aquifers. Results 21 

show that the proposed approach outperforms GLDAS in all experiments, with an average 22 

Nash-Sutcliff efficiency of 0.91 and an average RMSE of 0.43cm for the experiment that 23 

covers all monitored wells in Brazil. GLDAS resulted in -1.311 and 5.84cm, respectively. 24 

This study demonstrates that combining satellite data and AI can be a cost-effective 25 

alternative to monitor poorly equipped aquifers at the continental scale.  26 
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Key Points 27 

• An Artificial Intelligence (AI)-based model was built to monitor groundwater in 28 

Brazilian aquifers using satellite gravimetry data  29 

• AI-based groundwater changes outperformed Global Land Data Assimilation 30 

System (GLDAS) estimates in all proposed experiments 31 

• Results show that satellite-based AI techniques can be an effective solution for 32 

groundwater monitoring in poorly equipped regions  33 
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1 - Introduction 34 

Proper aquifer monitoring at local, regional and large scale faces enormous 35 

difficulties to be achieved due the complexity and diversity of geological formations and 36 

the corresponding lithologic and facial structures, hydraulic properties, recharge zones 37 

and groundwater exploitation accentuated by land use and land cover changes coupled to 38 

meteorological and climatic variability. There is definitely a demand for global and 39 

operational hydrogeological monitoring, once groundwater is the largest unfrozen 40 

freshwater stock on the planet and tightly connected to surface water, reservoir and lakes 41 

(Condon et al., 2021). In 2002, over 1.5 billion people were estimated to be directly 42 

supplied  by groundwater (Alley et al., 2002). This number has risen to 2 billion people 43 

in 2020 (UNESCO, 2020). It is estimated that 43% of the total water used in irrigation 44 

has underground origin (Siebert et al., 2010). Countries such as the United States and 45 

India use approximately 25% and 40% of groundwater resources to supply their 46 

respective needs (Getirana et al., 2021), resulting in significant aquifer depletions (e.g., 47 

Rodell et al. 2018; Nie et al. 2019). In Brazil, about 57% of its municipalities have 48 

groundwater supply to some extent (IBGE, 2020). The intensification of groundwater use, 49 

combined with the impacts of climate change, has been causing the depletion of aquifers 50 

worldwide (Richey et al., 2015). Therefore, it is essential to understand groundwater 51 

spatiotemporal dynamics to ensure its sustainable use. 52 

Groundwater monitoring networks have been based on observation wells 53 

associated with the creation of conceptual and mathematical models (Condon et al., 54 

2021). Large-scale hydrological model outputs, such as those produced by the Global 55 

Land Data Assimilation System (GLDAS; Rodell et al., 2003), can be used as an 56 

alternative to the absence of hydrogeological monitoring systems. Such modeling systems 57 

can explicitly represent, in a simplified way, groundwater dynamics (Getirana et al., 2020; 58 

Li et al., 2019). Such models are robust in their structure and have the ability to provide 59 

the behavior of surface water and groundwater at continental and global scales. However, 60 

these models still need to be adjusted for optimal regional use (Getirana et al., 2020). 61 

A new frontier has been opened for the study of groundwater by gravitational data 62 

provided by the Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 63 

2004) and GRACE Follow On (GRACE-FO) missions, which measure changes on global 64 

gravitational forces. Among those changes, there are those promoted by the water cycle. 65 

They can be mapped by satellites and later converted into terrestrial water storage (TWS) 66 
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variability. Several studies have used data from GRACE missions to capture  regional 67 

groundwater behavior and to assess measurements related to groundwater levels (Andrew 68 

et al., 2017; Frappart and Ramillien, 2018; Getirana et al., 2020; Scanlon et al., 2012, 69 

2018). In Brazil, the use of GRACE data to understand the water behavior can be found 70 

in recent studies (Getirana, 2016; Hu et al., 2017;  Gonçalves et al., 2020; Getirana et al., 71 

2021).  Li et al. (2019) assimilated GRACE data into a hydrological model globally and 72 

analyzed groundwater variations, comparing model results to in situ observations. 73 

There is a clear contribution of GRACE data assimilation (DA) into hydrological 74 

models in the representation and prediction of hydrological processes (Getirana et al., 75 

2020; Getirana et al., 2020; Girotto et al., 2017; Jung et al., 2019; Kumar et al., 2016). 76 

Nevertheless, new tools based on the so-called artificial intelligence (AI) algorithms have 77 

also proved to be very efficient for the pattern recognition of groundwater behavior 78 

worldwide (Afzaal et al., 2020; Huang et al., 2019; Iqbal et al., 2021; Lähivaara et al., 79 

2019; Ren et al., 2021; Tao et al., 2022; Zhang et al., 2020).  80 

AI algorithms, associated with GRACE-based TWS variations can be of great 81 

value in the survey of aquifers. Groundwater studies using AI and GRACE data have 82 

been carried out for some years (Gemitzi and Lakshmi, 2017; Sun, 2013; Sun et al., 2019). 83 

Wave decomposition methods are also very useful in hydrological studies for flow 84 

prediction, seasonal analysis or even hydrogeological studies (Ashraf et al., 2022; Basu 85 

et al., 2022; Erkyihun et al., 2016; Qi and Neupauer, 2008). Hybrid use of AI and wavelet 86 

decomposition techniques turned out to be an important and active research area, resulting 87 

in more accurate models in water resources applications, due to its great ability to 88 

discriminate non-stationary and nonlinear trends that occur at different scales in 89 

groundwater time series (e.g., Tao et al., 2022). For example, Andrew et al. (2017) 90 

presented the possibility of disaggregating GRACE data using wavelets as a viable path 91 

to study groundwater under different observational spatiotemporal scales. 92 

Brazil’s Integrated Groundwater Monitoring Network (RIMAS), conceived and 93 

built by the Geological Service of Brazil, initiated in 2010 and is currently composed of 94 

409 wells, monitoring 24 aquifers across the country. The distribution of wells across the 95 

monitoring network is not homogeneous, leading to constraints in monitoring the 96 

spatiotemporal variability of the nation’s aquifers. Also, only porous, free or semi-97 

confined aquifers have been monitored by RIMAS. Such a sparce network is substantially 98 

less dense than those  found in other large countries, such as the U.S. and India, which 99 
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have more than 16,000 and 22,000 wells, respectively (Getirana et al., 2021). That leads 100 

to limited groundwater monitoring in Brazil. The limited knowledge on Brazil’s 101 

groundwater dynamics limits management and optimized use of its aquifers. The absence 102 

of data also limits the development and parameterization of hydrological and 103 

hydrogeological models to monitor Brazil’s water resources, resulting in inaccurate water 104 

flow and storage calculations, affecting various sectors of society such as agriculture, 105 

energy generation and domestic supply (Getirana et al., 2021). 106 

Considering the limitations described above, this work presents a methodology 107 

that combines point-based in situ groundwater measurements and spatially-distributed 108 

satellite-based TWS, in addition to wavelet decomposition techniques and artificial 109 

intelligence (AI) as tools to understand the behavior of large aquifers in Brazil. The main 110 

advantage of the proposed methodology is the use of a hybrid model (wave decomposition 111 

+ ensemble model) with the application of four different AI techniques. GLDAS-based 112 

groundwater simulations are used as the benchmark to determine the potential of the 113 

proposed methodology. GLDAS simulations are those derived from the Catchment Land 114 

Surface Model (CLSM) (Koster et al., 2000) with GRACE-DA (Li et al., 2019). We 115 

considered such simulations as our benchmark because they have been comprehensively 116 

evaluated globally and are widely used. Also, it is currently the only temporally 117 

continuous and spatially distributed groundwater product available in Brazil. We expect 118 

that the proposed methodology can be used for the management of large Brazilian 119 

aquifers, in addition to enabling the monitoring of groundwater in places where 120 

monitoring networks are precarious, inexistent, or with heterogeneous hydrogeological 121 

and climatic conditions.  122 

2 – Case study and Datasets 123 

2.1 – In situ data from aquifers 124 

Aquifers monitored by RIMAS total 2,839,558km2, or 34% of the Brazilian 125 

territory. Their sizes vary from 884km2 (Missão Velha) to 774,385km2 (Içá), with 126 

monitoring coverage varying from 3 (Ronuro) to 71 (Urucuia) wells. Their spatial 127 

distribution and RIMAS network are shown in Figure 1. The monitoring network density 128 

varies significantly, with Missão Velha being the aquifer with the highest density of wells 129 

(0.018 wells/km2) and Içá with the lowest density (0.000013 wells/km2). Such a 130 

heterogeneous density is mostly explained by the way the network is installed, which as 131 

initial criteria: sedimentary aquifers, socioeconomic importance of the water, water use 132 
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for public supply, natural vulnerability and risk aspects, spatial representativeness of the 133 

aquifer and existence of wells for monitoring (Mourão, 2009). Effective porosity (Sy) 134 

values for each aquifer were estimated based on available data found in the literature 135 

(please refer to Table 1 for a full list), varying from 0.03 in Cabeças Aquifer to 0.18 in 136 

Alter do Chão Aquifer. 137 

RIMAS is designed based on wells equipped with automatic level meters 138 

collecting data at the hourly step, which are subsequently subjected to consistency, 139 

treatment, and availability processes (http://rimasweb.cprm.gov.br/layout/). The 140 

estimated error of the measurements is the minimum resolution of the equipment, which 141 

varies between 0.01 and 1.5 cm. More specifically, porous, free, semi-confined and wells 142 

in areas of crystalline rocks are addressed in this study, focusing on the responses that 143 

different lithologies might produce and how that information could be translated into the 144 

building AI model approach we are developing in-here. Geological and hydrogeological 145 

description of the aquifers monitored by RIMAS can be found at 146 

http://rimasweb.cprm.gov.br/layout/apresentacao.php. 147 

The RIMAS dataset is available at the hourly time step. Monthly groundwater 148 

level change (dhi) at each well was computed by first converting the time series to 149 

monthly means, then subtracting the value in the previous month (ηi-1) from the 150 

subsequent one (ηi), as follows: 151 

 𝑑ℎ! = η" − η"#$ (1) 

Where i stands for months of the time series. Each dhi value was then subtracted by their 152 

respective long-term mean, and multiplied by their corresponding aquifer Sy value, 153 

resulting in the time series used as input in our approach, named hereafter as 154 

GWSOBS(cm). Sy was used in order to normalize time series at all wells, from groundwater 155 

level to storage equivalent. Equation 2 shows the calculation of GWSOBS (cm) for each 156 

month i: 157 

2.2 - Terrestrial water storage 158 

GRACE RL06 Mascon data, processed by the Center of Space Research (CSR; 159 

Save et al., 2016), is retrieved at 0.25-degre spatial resolution and monthly time step from 160 

 GWS%&'(i) = 	 [𝑑ℎ! −mean(𝑑ℎ)]. 𝑆( (2) 
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April, 2002 to present with gaps throughout the period. Initially, monthly GRACE-based 161 

TWS values had uncertainties estimated at 1cm for areas equal to or greater than 162 

400,000km2 (Swenson et al., 2003). However, such estimates had a significant 163 

improvement, as described in Ditmar (2018), obtaining more refined results for TWS 164 

approximations at 0.25-degree spatial resolution. Such Mascon-based products have 165 

lower errors compared to spherical harmonics (Rowlands et al., 2010). Even maintaining 166 

a resolution limited by the nature of the GRACE data and uncertainties in the TWS of 167 

1cm, these estimates allow a more detailed study of hydrological and hydrogeological 168 

basins with dimensions smaller than those indicated by Save (2020) as demonstrated in 169 

Melati et al. (2019) and Gonçalves et al. (2020), both carried out in Brazil. 170 

2.3 – GLDAS-based groundwater 171 

The CLSM with GRACE-DA was chosen among the different GLDAS products 172 

for presenting an explicit and more accurate representation groundwater storage (GWS). 173 

CLSM is a state-of-the-art energy and water balance model of the Earth's surface, 174 

designed for use in models of global earth systems. The model simulates a dynamic water 175 

table with a spatial distribution related to the topography of the basin (Bechtold et al., 176 

2019). Details about the model configuration and global evaluation can be found in  Li et 177 

al. (2019). 178 

3 – Methodology 179 

Briefly, the methodology follows four steps. First, wave decomposition (wavelet 180 

and seasonal) on the TWS values for Brazil. Second, interpolation of the values obtained 181 

by the wavelets for the original time scale. Third, the decomposition results are associated 182 

with the RIMAS measurements, according to latitude, longitude and time. 183 

Hydrogeological data of the Hydrogeological Map of Brazil (HMB) is also associated 184 

with RIMAS wells according to latitude and longitude. Finally, the dataset is inserted into 185 

an AI model to approximate the groundwater storage (GWSOBS) values obtained by the 186 

RIMAS wells. The input values in the model are: TWS values, decompositions (wavelet 187 

and seasonal), hydrogeological description of the HMB in addition to the latitude and 188 

longitude values of wells. Groundwater storage estimates from the CLSM GRACE-DA 189 

(GWSCLSM) are used as the benchmark. 190 

Wavelet transform is a technique that has proven to be effective for capturing 191 

nonlinear relationships in time series (Tao et al., 2022). It removes noise in the data and 192 
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allows a better performance in AI models. Several hydrogeological studies have 193 

combined these techniques and demonstred the ability to approximate variations in 194 

groundwater levels from different data sources (Barzegar et al., 2017; Ebrahimi and 195 

Rajaee, 2017; Khalil et al., 2015; Moosavi et al., 2014, 2013; Yosefvand and Shabanlou, 196 

2020; Zare and Koch, 2018). Here, GRACE-based TWS was decomposed using two 197 

techniques: the wavelet transform and the seasonal decomposition. 198 

Wavelet transform (WT) is a mathematical tool to decompose functions 199 

hierarchically, and can be considered as a technique for transforming a signal, sampled in 200 

the time domain, into a frequency-scaled domain, defining different components of the 201 

signal frequency spectrum (Stollnitz et al., 1995). WT consists of approximating a 202 

function by a linear combination of basic functions (also called wavelets), obtaining a 203 

representation of the original function. The application of wavelets does not necessarily 204 

require the stationarity of the time series as a prerequisite, being appropriate for the 205 

analysis of irregularly distributed and extreme events (Torrence and Compo, 1998). For 206 

non-continuous functions, the use of the discrete wavelet decomposition (DWT) is 207 

recommended (Daubechies, 1992), as in the case of this study.  208 

To apply the wavelet transform, the highest possible decomposition level of the 209 

TWS signal was tested, resulting in five levels. The wavelet family chosen for the 210 

decomposition was db3 (Daubechies, 1992). The signal extension model was observed, 211 

seeking the best possible application of DWT. The data normalization mode adopted for 212 

the WT was the antireflect, signal is extended by reflecting anti-simmetrically about the 213 

edge sample (PyWavelets, 2022). After decomposing the TWS with DWT, the results are 214 

a sequence compressed in one of the dimensions. As the TWS is being treated in three 215 

dimensions (i.e., latitude, longitude and time), and decomposed into the time dimension, 216 

the transform results reduce the time dimension. The time scale reduction occurs because 217 

DWT employs a grid where the mother wavelet is scaled by power two, expressing the 218 

results of each decomposition level as half of the previous level (Rhif et al., 2019). As the 219 

TWS input data has 194 data points per time series, DWT returns the approximation 220 

values A5 (194 values) and details, namely D1 (96 values), D2 (48 values), D3 (24 221 

values), D4 (12 values) and D5 (6 values). To return the time dimension to the original 222 

scale of the decomposition, an interpolation model in Spline was applied. This method 223 

adapts a smooth variation of values for locations without data. This procedure requires 224 

the application of a mathematical function that minimizes the curvature of the surface, 225 
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obtaining a result where the response is smooth and the surface passes exactly through 226 

the given entry points (Marcuzzo et al., 2012). 227 

TWS time series has also passed through the seasonal decomposition method, 228 

which returns a moving average around an established window value. The chosen 229 

window size was 12 months, seeking to observe the annual variations in the data. The 230 

model is additive and suggests that the components are added together as follows 231 

(Perktold et al., 2022): 232 

    𝑇𝑊𝑆[*] =	𝑇[*] + 𝑆[*] + 𝑒[*] (3) 

The results are represented in three outputs at each time step [t], seasonality (S), 233 

trend (T) and residual (e). T is an increasing or decreasing value in the series, S is the 234 

short-term repetitive cycle in the series, and e is the random variation of the series. 235 

Hydrogeological characteristics of aquifers obtained from the Hydrogeological 236 

Map of Brazil (Diniz et al., 2014) were inserted into the model. The characteristics 237 

observed in each well were as follows: geological group, lithological description of the 238 

group, the type of aquifer, the degree of fracturing and the productivity of the aquifer. 239 

These non-numerical data were converted into zero and one values (0, 1) by the one-hot 240 

function (Scikit-learn, 2021) to be better used in the model. 241 

3.1 - Ensemble model 242 

The ensemble model is composed of four different AI models, three of which use 243 

the Decision Tree (DT technique); the Extreme Gradient Boost (XGB; Chen and 244 

Guestrin, 2016), the Light Gradinet Boosting Model (LGBM; Ke et al., 2017) and the 245 

CatBoost (CtB; Prokhorenkova et al., 2017), followed by an Artificial Neural Network, 246 

Multilayer Perceptron (MLP; Manaswi, 2018). Figure 2 shows the data processing flow 247 

and the architecture of the ensemble model. The input data in the model are the TWS, 248 

decompositions (wavelet and seasonal), the hydrogeological characteristics depicted by 249 

the hydrogeological map and the position of the well in space (latitude and longitude). 250 

The extreme values are removed from the input dataset by quantile threshold evaluation, 251 

respecting the criteria of being greater than 99% and less than 1% of the GWSOBS. Finally, 252 

the data are normalized. It should be noted that the GWSOBS values are not normalized. 253 

After the initial processes, the data are inserted into the DT models for the first 254 

approximations of the GWSOBS values from the input data. The results obtained after 255 
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processing in the DT models are then inserted into the MLP that finalizes the 256 

approximations of the GWSOBS observed in the wells. The ensemble model application 257 

uses the AI premise that weak models joined together can build a stronger model (Géron, 258 

2019). 259 

The architecture of the AI models used was: 260 

XGB: estimators 3000; learning rate 0.001; sampling set 1; maximum depth 7; 261 

XGBRegressor – gbtree; early stop 150 steps. 262 

LGBM: regression boosting_type gbdt; l1 and l2 metrics; learning rate of 0.001; layer 263 

fraction of 0.9; bagging_fraction 0.7; bagging_freq 20; maximum depth 8; number of 264 

sheets 128; max_bin 512; number of interactions 3000; early stop 150 steps. 265 

CtB: number of iterations 3000, learning rate 0.01, depth 7, RMSE rating metric, 266 

bagging_temperature 0.01, od_type: Iter and od_wait: 20. 267 

MLP: Selu activation functions in the input layer with 128 neurons and Swish; in the 268 

others, with 256/256/128 neurons; 10000 epochs; between the hidden layers the functions 269 

Dropout (0.2) and GaussianNoise (0.5); LazyAdam optimizer; with a reduction in the 270 

learning rate over time; 150 steps early stop. 271 

For MLP, the Swish activation function (Ramachandran et al., 2017) was used 272 

because it presents great empirical performance. The Selu function or Scaled Exponential 273 

Linear Unit (Klambauer et al., 2017) was selected for inducing properties of self-274 

normalization in the data; this function allows training deep networks with many layers, 275 

employing strong regularization schemes and making the learning highly robust. Finally, 276 

the optimizer chosen was LazyAdam, which is a stochastic gradient descent method. This 277 

optimizer is adapted from the Adam method (Kingma and Ba, 2015), which in turn 278 

combines the advantages of two methods, AdaGrad (Duchi and Singer, 2011) and 279 

RMSProp (Hinton et al., 2012). AdaGrad works well with sparse gradients, and RMSProp 280 

shows good results for non-stationary configurations. 281 

The data entered in the models are divided into two sets. The first with 80% of the 282 

data for training/testing the model and the second with 20% of the data for blind testing 283 

the model, noting that the second batch was selected from the initial data set at random. 284 

In the first batch of data, for separating training from testing, 80% of the data is for 285 

training and 20% for testing the models during processing. After training and testing with 286 
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the first batch, the model is retested with the blind test wells. This procedure was 287 

performed to observe the real capacity of the model to adapt to different data sets. 288 

The hyperparameters of the models had their initial adjustment by the Hyperactive 289 

algorithm (Blanke, 2021). However the final adjustment was done manually. We chose 290 

to use cross-validation (K-Fold) with ten (k=10) non-random subsets. Cross-validation is 291 

used to measure the accuracy of a model. The method consists of dividing the dataset into 292 

k mutually exclusive subsets of the same size and, from there, one subset is used for 293 

testing and the remaining k-1 are used for error estimation (Sklearn, 2022). 294 

3.2 Evaluation of the ensemble model 295 

The RIMAS network monitors the largest porous aquifers in Brazil, as illustrated 296 

in Figure 1. To assess the ability of the model proposed in this work to approximate the 297 

values of GWSOBS observed in situ, the error analysis statistical metrics described in this 298 

section were used. However, in seeking a realistic comparison for the study areas with 299 

results obtained from a robust and widely tested model, the GWS results obtained from 300 

the CLSM model with GRACE-DA (GWSCLSM), were used as baseline. For a comparison 301 

of the results obtained by the proposed ensemble model with GWSCLSM and in situ data, 302 

four experiments were carried out, all using the same model described in the previous 303 

section. The experiments were designed to observe the model's ability to adjust to 304 

different datasets, training and test batch sizes, and different hydrological and 305 

hydrogeological conditions. 306 

Experiment E1 – RIMAS and GRACE data used in Li et al. (2019), plus data obtained 307 

from the HMB. For this experiment, 60 wells with 4504 monthly in situ measurements 308 

were used. 309 

Experiment E2 – In this experiment, all wells contained in the RIMAS database with 310 

more than 24 months of measurements were analyzed, as well as GRACE-based TWS 311 

and HMB data referring to the wells. In this experiment, 373 wells were used, resulting 312 

in 16,487 monthly in situ measurements. 313 

Experiment E3 - RIMAS and GRACE data used in the work by Li et al. (2019), plus the 314 

data obtained from the MHB and separating the wells by monitored aquifer. Eight 315 

aquifers were selected, as follows: Alter do Chão, Parecis, Urucuia, Bauru-Caiuá, 316 

Guarani, Cabeças, Poti and Serra Grande. The Cabeças, Poti and Serra Grande aquifers 317 

were included in the same model as Poti and Serra Grande present similar effective 318 
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porosity (Sy) and close spatial distribution, renamed Cabeças/Serra Grande. Experiment 319 

3 was not performed in the Içá, Missão Velha, and Mauruti aquifers, as there are only two 320 

wells in this aquifer in the dataset used by Li et al. (2019), which made it not possible to 321 

execute the model. 322 

Experiment E4 - In this experiment, all wells contained in the RIMAS database with more 323 

than 24 months of measurements were analyzed, in addition to the GRACE and HMB 324 

data referring to the wells. Data were separated by monitored aquifer. Eleven aquifers 325 

were selected, as follows: Alter do Chão, Parecis, Urucuia, Bauru-Caiuá, Guarani, 326 

Cabeças, Poti, Serra Grande, Içá, Missão Velha and Mauruti. As in experiment E3, the 327 

Cabeças, Poti and Serra Grande aquifers were included in the same model as Poti and 328 

Serra Grande present similar effective porosity and close spatial distribution. The same 329 

procedure was performed for the Missão Velha and Mauruti aquifers, included in the 330 

same model, as they have a very close spatial distribution, wells in the same GRACE 331 

pixel, renamed as Araripe. 332 

In experiments E3 and E4, not all monitored aquifers were addressed, as the 333 

number of wells used in the work by Li et al. (2019) is very small or non-existent in 334 

several of them. However, aquifers were selected in all regions of Brazil. It is important 335 

to emphasize that the input data in the model is related to the RIMAS data in spatial (pixel) 336 

and temporal scales, since each input data in the model has as reference the location of a 337 

well on a given date. 338 

Cross-validation (K-Fold) was applied only in E1 and E2, due to the limited 339 

amount of data for training in E3 and E4. 340 

As statistical metrics adopted for error evaluation across all experiments, the mean 341 

absolute error (MAE) (Equation 4), the root mean square error (RMSE) (Equation 5) and 342 

the Nash-Sutcliffe Efficiency (NSE) (Equation 6), were selected. For MAE and RMSE, 343 

the ideal values are zero. For the NSE, values closer to one indicate a better adjusted 344 

model.  345 

    
MAE = 	<|x" −	y"|

,

"-$

 (4) 

 346 
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RMSE = 	A

∑ (x" −	y").,
"-$

n  (5) 

 347 

     
NSE = 	1 −	

∑ (𝑥" − 	y").,
"-$
∑ (𝑥" − yF").,
"-$

 (6) 

where xi stands for the in situ measurements, yi the estimated values by the model, yF" the 348 

average of the model estimates, and n is the number of observations. 349 

4 - Results and Discussion 350 

4.1 Experiments E1 and E2 351 

In experiments E1 and E2, the small errors were concentrated in the central and 352 

northeastern region of Brazil (Figure 3a, 3b), areas with a greater number of wells, while 353 

the largest errors were concentrated in the northern portion of the country, where there 354 

are fewer RIMAS wells inserted into the models. In general, the model built for 355 

experiments E1 and E2 presented MAE < 2 cm and RMSE < 3 cm (Figure 3a, 3b).  356 

An interesting aspect that draws special attention in examining such results is the 357 

ability of the model to simulate the values of GWSOBS in wells inserted in an environment 358 

of crystalline rocks, presented in the results of E2 (Figure 3b), southeastern region of 359 

Brazil. Despite the great variability of the GRACE signal in both experiments E1 and E2, 360 

which used data from all regions of Brazil, the average results show the great 361 

approximation of the simulated values GWSSIM and GWSOBS (Figures 3c to 3f), 362 

demonstrating the low variance of the presented results achieved by the constructed 363 

model. NSE values for E1 and E2 were 0.80 and 0.65, respectively (Figures 3a, 3b), 364 

indicating a good fit of the models to the datasets. However, those results make clear that 365 

not all the dependent variables were explained with precision. On the other hand, the low 366 

RMSE and MAE values show that the prediction errors presented for large areas are much 367 

lower than those derived from GWSCLSM (see Table 2). 368 

The cross-validation result (K-Fold) shows values very close to the complete 369 

model. For E1, NSE = 0.78, RMSE = 2.01 and MAE = 1.30. For E2, results are NSE = 370 

0.64, RMSE = 2.67 and MAE = 1.68. Artificial intelligence models tend to perform better 371 

with larger batches of training and testing (Lecun et al., 2015). Due to the large 372 
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concentration of data in the central and northeast regions of Brazil, the model may have 373 

presented a biased result (Figure 3a, 3b), that is, with a tendency to present better results 374 

in areas with greater amount of data. In addition, there is a greater variability of GRACE 375 

signals in the north of the country. 376 

As for the variability of the GRACE signal, it is expected that groundwater will 377 

present a different participation in each region of Brazil and in each aquifer studied. 378 

Signal variability is related to the hydrological processes of each region, as well as types, 379 

cover and land use. The northern region of Brazil has large bodies of surface water such 380 

as the Tocantins, Solimões, Negro and Amazon rivers, in addition to extensive floodable 381 

areas in the Amazon region, indicating a large contribution of surface water to the region's 382 

TWS signal (Getirana et al. 2017; Melo and Getirana 2019). Unlike the northern region 383 

and the swamps of the Brazilian Pantanal, the other regions of the country have a smaller 384 

amount of large surface water bodies. Even with the water filled up reservoirs built for 385 

the hydroelectric plants in these regions, a smaller component of surface water in the 386 

TWS signal is expected. Complementarily, these areas other than the northern regions 387 

have a higher groundwater extraction rate compared to the northern region of Brazil 388 

(IBGE, 2020). These factors may help to explain greater errors in the northern region of 389 

Brazil. 390 

4.2 Experiments E3 and E4 391 

Experiment E4 denotes that the highest values for RMSE are in Alter do Chão 392 

(Figure 4b), Parecis (Figure 4h) and Guarani (Figure 4f) aquifers. Although featuring 393 

RMSE values of 3.11 cm and MAE of 2.36 cm, Alter do Chão aquifer has an NSE value 394 

of 0.89. This result may occur due to the proximity of the wells to the Amazon River, 395 

which would affect the static water level fluctuations according to the water level 396 

variation of the river.  In addition, many of these wells are inserted in an urban context, 397 

where land use and land cover jointly with underground water exploitation water can 398 

interfere in the results achieved by the models. 399 

In the case of the Parecis aquifer, RMSE, MAE and NSE are 2.4cm, 1.36cm and 400 

0.90, respectively. Uncertainties might be related once more to groundwater pumping, as 401 

the region has witnessed an increasing agricultural expansion in the past several years 402 

(IBGE, 2020). 403 
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For the Guarani aquifer, the variability of the GRACE signal associated with 404 

extraction processes might have hindered the best convergence of the models. The aquifer 405 

extends over thousands of kilometers and has experienced increasing groundwater 406 

pumping in its recharge areas for many years, as described by Takahashi (2012). 407 

Areas with a higher concentration of monitoring wells return lower error values for 408 

each aquifer. Such a relationship is more visible in the results for the Cabeças/Serra 409 

Grande aquifers (Figure 4c) and Urucuia (Figure 4e). Errors of the test wells present lower 410 

values in these areas. Içá and Alter do Chão aquifers do not have as much data for training, 411 

resulting in model errors. However, results of all the aquifer models still return GWSSIM 412 

values better than GWSCLSM. 413 

As noted by Brookfield et al. (2018), linear correlation analyses do not have the 414 

ability to extract from the TWS data relationships of water level variations of in situ 415 

measurements in areas with large vadose zones, areas that present greater depth of the 416 

static level. Different from the non-linear model presented in-here. This is highlighted in 417 

the responses of the ensemble model proposed and used in this work, mainly for the 418 

Urucuia aquifer (Figure 4e), an area of significant groundwater extraction and deep static 419 

water levels. Our model also has the ability to provide accurate estimates over areas with 420 

low thickness of the vadose zone and with great influence of surface waters, as observed 421 

in the wells present in the Içá (Figure 4a) and Alter do Chão (Figure 4b)  aquifers. 422 

The difference in scale between satellite data and in situ measurement data is 423 

addressed in many works, which may use statistical, dynamic methods (Gaur and 424 

Simonovic, 2019; Sehgal et al., 2021; Yin et al., 2018) and more recently artificial 425 

intelligence (Ali et al., 2021; Liu et al., 2020; Miro and Famiglietti, 2018). This issue was 426 

well solved by our model, as demonstrated in the results. Results are above expectations 427 

in the Araripe aquifer (Figure 4d), with RMSE, MAE and NSE of 0.24cm, 0.88cm and 428 

0.88, respectively. This shows that aquifers inserted in a small area and wells in the same 429 

GRACE pixel were not a problem for the approximations made by the model. 430 

Experiment E4 (Figure 5) indicate that, when the input data is concentrated in the 431 

same aquifer (e.g., Guarani, Urucuia and Bauru aquifers), estimated groundwater storage 432 

change less, which is expected due to the lower variability of the TWS signal, as well as 433 

constant geological characteristics of the aquifer under study. However, there were small 434 

gains, which can be explained by the amount of training data for the models. 435 
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Figure 5 shows the average observed and simulated (CLSM and our approach) GWS 436 

in the Guarani, Bauru-Caiuá and Urucuia aquifers. For the Guarani aquifer, experiment 437 

E4 shows that the model can predict with good accuracy the average behavior of the wells. 438 

It is worth noting that the test wells show a better result than GWSCLSM (Figure 5). 439 

However, these wells depict a deviation from the expected response obtained for the wells 440 

included in the blind group for testing, which could indicate that the number of values for 441 

training the series might have directly interfered in the result. In the Bauru-Caiuá aquifer, 442 

the model presents results very close to RIMAS measurements (Figure 5).  443 

The model's response could be associated with the spatial distribution of the RIMAS 444 

monitoring wells within the aquifer (Figure 4g), which covers almost the entire aquifer 445 

with a relatively constant spacing between the wells. In this aquifer, it is possible to notice 446 

that the model can approximate with great precision the RIMAS values for E4. 447 

For experiment E3, the response is superior to that derived from GWSCLSM, even 448 

with a high RMSE. This may have occurred because the wells included in this experiment 449 

are concentrated in an area of intense underground water extraction. 450 

For the Urucuia aquifer, the behavior of adherence between AI model and 451 

measurements is superior to that of Bauru-Caiuá, however the great variability of the 452 

GRACE-based TWS estimates at each studied point, associated with different responses 453 

in each monitoring well to the groundwater extraction processes in the region, might 454 

contribute to a small departure of the predicted data with respect to the data measured by 455 

RIMAS in the blind test, even though this area presented the best results in the study 456 

(Figure 5). The small variation of the GWS observed and the one estimated by the model 457 

could indicate a constant loss of water along the column in the aquifer, as reported by the 458 

work of Gonçalves et al. (2020). 459 

5 – Conclusions and recommendations 460 

Here, we demonstrate the viability of satellite-based monitoring of Brazilian 461 

aquifers. A novel artificial intelligence model was conceived and built by employing 462 

GRACE-based TWS data and its decomposition using wavelet and seasonal techniques, 463 

jointly with point-based in situ hydrogeological data. As a benchmark for our results, we 464 

used GLDAS outputs, specifically, groundwater simulations derived from the CLSM 465 

model with GRACE data assimilation (GWSCLSM). Results of the proposed methodology 466 
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over all selected aquifers showed accurate groundwater estimates, overperforming 467 

GLDAS estimates.  468 

The TWS signal decomposition process proved to be very useful for the model, 469 

which adequately approximates the variations in groundwater storage in the different 470 

experiments. The proposed methodology can be applied in areas with a short history of 471 

groundwater monitoring and discontinuous time series, since aquifers such as Parecis, Iça 472 

and Cabeças/Serra Grande have less than ten years of static water level measurements 473 

and all wells in the RIMAS have gaps in their time series. 474 

 It is important to emphasize that the proposed models are representing the sample 475 

space inserted in the dataset. The big difference between the scales of the GRACE data 476 

with a resolution of 0.25° and in situ RIMAS measurements collected at an approximate 477 

point scale, were overcome by the models. Furthermore, more than one well per pixel 478 

was also not a problem, demonstrated by the results for the aquifers Içá, Parecis, Araripe 479 

and Urucuia. It is expected that the proposed model can be applied in areas with physical 480 

and geological characteristics similar to the training region, since the response of 481 

GRACE-based TWS signals tend to be similar. This feature can help to spatialize the 482 

storage of groundwater to unmonitored areas, being very useful for large aquifers. 483 

As a model constraint, aquifers without a history of groundwater monitoring are 484 

difficult to approximate. Regions with great variation in physical characteristics, such as 485 

soil type, geology, land use and occupation, precipitation rates or groundwater extraction, 486 

can create situations in which the proposed model does not respond as expected. Another 487 

limitation of the model is the spatial resolution for unmonitored areas, which initially 488 

depends on the resolution of the GRACE data. In experiment E2, some wells are inserted 489 

in an environment of crystalline rocks. Despite the good results, the model has not yet 490 

been properly adjusted for this geological environment, as well as for karstic aquifers, 491 

being the subject of future investigation. 492 

Groundwater monitoring using satellite data and artificial intelligence can be a 493 

solution to spatialize groundwater storage values with good accuracy. Additionally, it is 494 

possible to make predictions for storage in different scenarios and with low computational 495 

costs, modifying only TWS values. This approach can also help in understanding aquifer 496 

dynamics, since, after the initial adjustments, the model can evaluate the past groundwater 497 

behavior using the GRACE data that started in 2002. 498 
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Tables and Figures 810 

Table 1 – Effective porosity in Brazilian aquifers. 811 

Aquifer Effective porosity (Sy) Reference 
Açu 0.10 (Diniz et al., 2012)  
Alter do Chão 0.18 (Aguiar & Mourão, 2012) 
Areado 0.05 Estimated 
Barreiras (Pirabas e 
Grajau) 

0.10 (Silva et al., 2008) 

Caiuá 0.17 (Franzini, 2012) 
Beberibe 0.10 (Silva et al., 2008) 
Boa Vista 0.18 Estimated 
Cabeças 0.03 (Correia Filho et al., 2010) 
Cenozoic Covers Aquifer 0.10 Estimated 
Furnas 0.13 (Peixoto et al., 2012a) 
Guarani 0.18 (Takahashi, 2012) 
Iça 0.10 (Galvão et al., 2012) 
Itapecuru 0.13 (Santos, 2005) 
Coastal 0.14 Estimated 
Missão/Velha-Mauriti 0.10 (Souza and Castro, 2013)  
Parecis 0.15 (Silva, 2013) 
Poti Piauí 0.15 (Correia Filho et al., 2010) 
Prosperança 0.15 (Peixoto et al., 2012b) 
Ronuro 0.12 (Peixoto et al., 2012b) 
Salto das Nuvens 0.13 (Peixoto et al., 2012b) 
Serra do Tucano 0.17 Estimated 
Serra Grande 0.03 (Aguiar, 2017) 
Tacaratu 0.03 (Diniz et al., 2012) 
Trombetas 0.15 Estimated 
Tucunare 0.10 Estimated 
Urucuia 0.13 (Gaspar and Campos, 2007) 
  812 
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Table 2 - Results of the E3 and E4 experiments for Brazilian aquifers. 813 

Aquifer  Wells 
Correlation 
RIMAS x 
GRACE 

RMSE 
(cm) 

GWSSIM 

MAE(cm) 
GWSSIM 

NSE 

GWSSIM 

RMSE (cm) 
GWSCLSM 

MAE(cm) 
GWSCLSM 

G
ua

ra
ni

 

Exp. 3 
Train -0.305 1.651 1.430 0.63 3.629 2.802 

Test -0.529 1.492 1.044 - - - 

Exp. 4 
Train -0.312 2.351 1.535 0.63 5.958 4.562 

Test -0.134 3.168 2.309 - - - 

Ba
ur

u-
C

ai
uá

 

Exp. 3 
Train -0.394 1.520 0.894 0.84 6.662 5.492 

Test -0.367 2.502 1.660 - - - 

Exp. 4 
Train -0.408 1.911 1.120 0.85 6.854 5.375 

Test -0.411 1.100 1.934 - - - 

Pa
re

ci
s 

Exp. 3 
Train -0.569 1.733 1.207 0.84 9.680 8.224 

Test -0.59 3.104 2.493 - - - 

Exp. 4 
Train -0.445 2.412 1.361 0.90 9.118 6.984 

Test -0.417 2.979 2.368 - - - 

U
ru

cu
ia

 

Exp. 3 
Train -0.153 0.705 0.37 0.88 2.812 2.124 

Test -0.411 1.593 0.95 - - - 

Exp. 4 
Train -0.178 0.645 0.361 0.74 3.247 2.440 

Test -0.108 1.431 1.015 - - - 

C
ab

eç
as

 

Exp. 3 
Train -0.229 0.216 0.123 0.92 5.541 4.427 

Test -0.465 0.88 0.597 - - - 

Exp.4 
Train -0.049 0.412 0.34 0.73 5.543 4.271 

Test -0.297 0.668 0.47 - - - 

A
lte

r 
do

 
C

hã
o 

Exp. 4 
Train -0.028 3.114 2.364 0.89 9.749 7.601 

Test 0.187 7.265 5.940 - - - 

A
ra

ri
pe

 

Exp. 4 
Train -0.205 0.240 0.880 0.88 2.161 1.519 

Test -0.302 2.127 1.714 - - - 

Iç
a  

Exp. 4 
Train -0.043 1.112 0.685 0.91 4.237 3.131 

Test -0.01 4.936 3.733 - - - 
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 815 

Figure 1 - Geographical location of Brazilian aquifers and spatial distribution of the 816 

RIMAS groundwater monitoring network. RIMAS wells colored in red are those used in 817 

Li et al. (2019). 818 
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819 
  820 

Figure 2 - Processing flow diagram and ensemble model architecture. It should be emphasized 821 

that both the DT models and the MLP model target the GWSOBS, values observed in the RIMAS 822 

wells. 823 

  824 
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 825 

Figure 3 – Experimental results for E1 and E2: (a) RMSE (cm) mapping of the forecast model 826 

set for the wells used in Li et al. (2019) and statistical metrics of the model for the data set used; 827 

(b) RMSE  (cm) mapping of all RIMAS wells in Brazil and model metrics for the dataset used,  828 

highlighted area of crystalline rocks; (c), (e) graphs of the average results GWS, E1 and E2, for 829 

the observed values (GWSOBS), simulated (GWSSIM) and obtained from CLSM (GWSCLSM); and 830 

(d), (f) values of NSE, RMSE and MAE for the means of the results of E1 and E2. 831 

  832 
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 833 

Figure 4 – Results for experiments E4: RMSE (cm) mapping for Içá, Alter do Chão and Parecis 834 

aquifers, featuring wells inserted in an Equatorial climate and with great contribution of surface 835 

water in the TWS response (a, b and h); RMSE (cm) mapping for Cabeças, Serra Grande, Poti 836 

aquifers (Cabeças/Serra Grande), Missão Velha and Mauriti (Araripe) and Urucuia, a region of 837 

great exploitation of groundwater, inserted in a semi-arid climate (c, d and e); RMSE (cm) 838 

mapping for  Guarani and Bauru-Caiuá aquifers, region of intense exploitation of groundwater 839 

and tropical climate (f and g). The scatter plots represent the 20% simulated test values (GWSSIM) 840 

and observed values (GWSOBS), in each aquifer.  841 
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 842 

Figure 5 - Average results of the GWS for the experiments E3 and E4, in the Guarani, Bauru-843 

Caiuá and Urucuia aquifers, considering in situ values (GWSOBS), forecasted values (GWSSIM) 844 

and CLSM results (GWSCLSM). RMSE [cm], MAE [cm] and NSE [-] values for both GWSSIM and 845 

GWSCLSM are also provided. 846 


