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Abstract

Earth’s hydrological cycle is expected to intensify in response to global warming, with a ‘wet-gets-wetter, dry-gets-drier’ re-

sponse anticipated. The subtropics (˜15-30°N/S) are predicted to become drier, yet proxy evidence from past warm climates

suggests these regions may be characterised by wetter conditions. Here we use an integrated data-modelling approach to recon-

struct global- and regional-scale rainfall patterns during the early Eocene (˜48-56 million years ago), with an emphasis on the

subtropics. Model-derived precipitation–evaporation (P–E) estimates in the tropics (0-15° N/S) and high latitudes (>60° N/S)

are positive and increase in response to higher temperatures, whereas model-derived P–E estimates in the subtropics (15-30°
N/S) are negative and decrease in response to higher temperatures. This is consistent with a ‘wet-gets-wetter, dry-gets-drier’

response. However, some DeepMIP model simulations predict increasing – rather than decreasing – subtropical precipitation at

higher temperatures (e.g., CESM, GFDL). Using moisture budget diagnostics we find that the models with higher subtropical

precipitation are characterised by a reduction in the strength of subtropical moisture circulation due to weaker meridional

temperature gradients. These model simulations (e.g., CESM, GFDL) agree more closely with various proxy-derived climate

metrics and imply a reduction in the strength of subtropical moisture circulation during the early Eocene. Although this was
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insufficient to induce subtropical wetting, if the meridional temperature was weaker than suggested by the DeepMIP models, this

may have led to wetter subtropics. This highlights the important role of the meridional temperature gradient when predicting

past (and future) rainfall patterns.
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Figures S1 to S8 Tables S1 Dataset S1

Introduction

Included are various supplementary figures (S1 to S11), a supplementary table that provides summary
statistics for the late Paleocene – early Eocene (LPEE) mean annual precipitation (MAP) proxy compilation
(Table S1), and supplementary datasets (Dataset S1).

Supplementary Figures

Figure S1 . Precipitation anomalies (mm/day) for the pre-industrial control runs minus modern observa-
tions for the 9 models in the DeepMIP ensemble, highlighting model-specific biases in reproducing modern
observations.

Hosted file

image3.emf available at https://authorea.com/users/543996/articles/601477-global-and-

regional-scale-hydrological-response-to-early-eocene-warmth

Figure S2. Temperature anomalies (mm/day) of the DeepMIP experiments, relative to pre-industrial
control simulations, ordered by CO2 forcing and model.

Hosted file

image4.emf available at https://authorea.com/users/543996/articles/601477-global-and-

regional-scale-hydrological-response-to-early-eocene-warmth

Figure S3. Precipitation anomalies (mm/day) of the DeepMIP experiments, relative to pre-industrial
control simulations, ordered by CO2 forcing and model.

Hosted file

image5.emf available at https://authorea.com/users/543996/articles/601477-global-and-

regional-scale-hydrological-response-to-early-eocene-warmth

Figure S4. Evaporation anomalies (mm/day) of the DeepMIP experiments, relative to pre-industrial control
simulations, ordered by CO2 forcing and model.
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Hosted file

image6.emf available at https://authorea.com/users/543996/articles/601477-global-and-

regional-scale-hydrological-response-to-early-eocene-warmth

Figure S5. Precipitation minus evaporation (PE; mm/day) anomalies of the DeepMIP experiments, relative
to pre-industrial control simulations, ordered by CO2 forcing and model.

Figure S6 . Spatial patterns of temperature, precipitation, and moisture divergence in the DeepMIP sim-
ulations . a) surface air temperature (°C), b) precipitation (mm/day), c) time mean moisture divergence
(P-E; mm/day) and d) eddy moisture divergence (P-E; mm/day). ”n” values above each plot represent the
number of models available for calculating the MMM.
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y. Figure S7 . Spatial patterns of moisture divergence in the DeepMIP simulations a) time mean moisture
divergence assosciated with thermodynamical changes (P-E; mm/day), b) time mean moisture divergence
assosciated with dynamical changes (P-E; mm/day), c) time mean moisture divergence (P-E; mm/day), ”n”
values above each plot represent the number of models available for calculating the MMM.

Figure S8 . Zonal plot proxy-model biases for all of the models in the DeepMIP emsemble. Mean annual
precipitation (MAP; mm/day) on the vertical axis (note vertical axis scale break) against latitude on the
horizontal axis. Simulations ordered per model (panels), with different CO2 levels as different colors. Proxy-
based data compiled in this study in black. Paleolatitude of 55 Ma used.
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Supplementary Tables

Table S1. Summary statistics of our late Paleocene – early Eocene (LPEE) mean annual precipitation
(MAP) proxy compilation

Number of data points in compilation (total = 322) Number of data points in compilation (total = 322) Data points merged by unique site location (total = 157) Data points merged by unique site location (total = 157)

Time period n = % n = %
general ”LPEE” 33 10% 16 9%
Thanetian 40 12% 22 12%
PETM 6 2% 4 2%
Ypresian 197 61% 110 62%
Lutetian 46 14% 25 14%
Proxy type n = % n = %
LP; CLAMP 45 14% 36 17%
LP; LAA 84 26% 42 20%
NLR 51 16% 37 17%
NLR; BA 50 16% 32 15%
NLR; CA 87 27% 62 29%
NLR; CAM 3 1% 3 1%
WP 2 1% 2 1%
Continent / Ocean n = % n = %
Africa 11 3% 6 4%
Antarctica 25 8% 6 4%
Arctic Ocean 6 2% 3 2%
Asia 75 23% 56 36%
New Zealand and Australia 46 14% 16 10%
Europe 7 2% 5 3%
North America 129 40% 50 32%
South America 23 7% 15 10%
Paleolatitude band (hotspot reference frame) n = % n = %
60-90S 41 13% 15 10%
30-60S 47 15% 19 12%
15-30S 1 0% 1 1%
0-15S 12 4% 6 4%
0-15N 14 4% 10 6%
15-30N 16 5% 15 10%
30-60N 142 44% 73 46%
60-90N 49 15% 18 11%

Hosted file

essoar.10512308.1.docx available at https://authorea.com/users/543996/articles/601477-global-
and-regional-scale-hydrological-response-to-early-eocene-warmth
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Abstract
Earth’s hydrological cycle is expected to intensify in response to global warm-
ing, with a ‘wet-gets-wetter, dry-gets-drier’ response anticipated. The subtrop-
ics (~15-30°N/S) are predicted to become drier, yet proxy evidence from past
warm climates suggests these regions may be characterised by wetter condi-
tions. Here we use an integrated data-modelling approach to reconstruct global-
and regional-scale rainfall patterns during the early Eocene (~48-56 million
years ago), with an emphasis on the subtropics. Model-derived precipitation–
evaporation (P–E) estimates in the tropics (0-15° N/S) and high latitudes (>60°
N/S) are positive and increase in response to higher temperatures, whereas
model-derived P–E estimates in the subtropics (15-30° N/S) are negative and
decrease in response to higher temperatures. This is consistent with a ‘wet-gets-
wetter, dry-gets-drier’ response. However, some DeepMIP model simulations
predict increasing – rather than decreasing – subtropical precipitation at higher
temperatures (e.g., CESM, GFDL). Using moisture budget diagnostics we find
that the models with higher subtropical precipitation are characterised by a re-
duction in the strength of subtropical moisture circulation due to weaker merid-
ional temperature gradients. These model simulations (e.g., CESM, GFDL)
agree more closely with various proxy-derived climate metrics and imply a reduc-
tion in the strength of subtropical moisture circulation during the early Eocene.
Although this was insufficient to induce subtropical wetting, if the meridional
temperature was weaker than suggested by the DeepMIP models, this may have
led to wetter subtropics. This highlights the important role of the meridional
temperature gradient when predicting past (and future) rainfall patterns.

Key points:

• The early Eocene hydrological cycle is characterised by a ’wet-gets-wetter,
dry-gets-drier’ response

• The early Eocene exhibits weaker subtropical moisture circulation in sim-
ulations with reduced meridional temperature gradients

• This highlights the important role of the meridional temperature gradient
when predicting past (and future) rainfall patterns

Introduction
Global warming is projected to be associated with increasing global mean an-
nual precipitation (MAP) and a shift in regional and seasonal rainfall patterns
(Masson-Delmotte et al., 2022), with important consequences for societies and
ecosystems. Under higher global temperatures, Earth’s atmosphere will contain
more water vapour following the Clausius–Clapeyron relation (Held and So-
den, 2006). This ‘thermodynamic effect’ forms the basis for the predicted “wet-
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gets-wetter, dry-gets-drier” response under enhanced radiative forcing, whereby
the existing spatial patterns in precipitation-evaporation (P–E) are exacerbated
(Held and Soden, 2006; Seager et al., 2010). General circulation models (GCMs)
used in Coupled Model Intercomparison Project Phase 6 (CMIP6) suggest that
higher global mean surface temperatures (GMST) will lead to wetter high lati-
tudes (> 60 °N/S) (i.e., positive P–E change), and drier subtropics (15–30°N/S)
(i.e., negative P–E change) (Hoegh-Guldberg et al., 2018; Masson-Delmotte et
al., 2022). However, these same models disagree on the nature of change in
much of the remainder of the low to middle latitudes, both over land and ocean
(Slingo et al., 2022; Masson-Delmotte et al., 2022), which is a key uncertainty
for appropriate climate mitigation and adaptation.

Moreover, evidence from warm intervals in the geological past suggests that
the subtropics may get wetter (rather than drier) under warmer conditions, i.e.
“dry-gets-wetter”. For example, both the Miocene (23.0 to 5.3 million years ago;
Ma) and Pliocene (5.3 to 2.6 Ma) yield proxy evidence for wetter subtropics in
southern Australia (Sniderman et al., 2016), North Africa (Hailemichael et al.,
2002; Schuster et al., 2009), South America (Carrapa et al., 2019) and South-
East Asia (Wang et al., 2019). Burls and Federov (2017) suggest this is due
to weaker subtropical moisture divergence. Although the impact of changes in
circulation is often considered secondary to changes in atmospheric humidity, the
former may be important under certain climate scenarios (e.g., weak latitudinal
temperature gradients; LTGs) and may even compensate for an increase in
atmospheric humidity (Burls & Fedorov 2017).

Here we focus on the early Eocene (56.0 to 47.8 million years ago; Ma), an
interval characterised by higher CO2 values (> 1000 parts per million) (Anag-
nostou et al., 2020), higher global mean surface temperature (10–16 °C warmer
than pre-industrial) (Inglis et al., 2020) and reduced pole-to-equator LTGs (~17
to 22°C) (Cramwinckel et al., 2018; Evans et al., 2018; Gaskell et al., 2022).
As such, this is an ideal interval to study how changes in the LTG impact
subtropical rainfall patterns. However, there are very few quantitative early
Eocene-aged MAP estimates from the subtropics (15-30°N/S) and the hydrolog-
ical response to warming remains largely unknown. To resolve this, we utilise the
recently published state-of-the-art Deep-Time Model Intercomparison Project
(DeepMIP) suite of model simulations (Lunt et al., 2021) to explore the global-
and regional-scale hydrological response to warming. This is combined with a
new proxy compilation to answer the following questions: i) Are early Eocene
simulations characterised by a ‘wet-gets-wetter, dry-gets-drier’ response, ii) How
do the simulated thermodynamic (i.e., humidity) and dynamic (i.e. moisture
circulation) effects contribute to changes in moisture transport in the subtrop-
ics, and iii) How well do the DeepMIP models replicate proxy-derived MAP
estimates?
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Methods
Modelling simulations
We make use of the DeepMIP suite of model simulations, embedded in the
sixth phase of the Coupled Model Intercomparison Project (CMIP6; (Eyring
et al., 2016)). An extensive description of the standard design of these model
experiments is provided in Lunt et al. (2017), and a large-scale overview of
results has been presented in Lunt et al. (2021). The main advantage of these
simulations over the EoMIP (Eocene Modelling Intercomparison Project) “en-
semble of opportunity” employed in earlier work (Carmichael et al., 2016) is
that the new DeepMIP simulations have been designed and carried out using
internally consistent Eocene boundary conditions (from Herold et al., 2014).
Simulations have been run at different atmospheric CO2 levels – typically ×1,
×3, ×6, and ×9 preindustrial (PI) CO2, but with a subset of these, or ad-
ditional atmospheric CO2 concentrations, chosen by some model groups (see
Lunt et al., 2017; Lunt et al., 2021). Different CO2 experiments are expected
to provide comparison targets to climate reconstructions for different key time
slices, including the early Eocene Climatic Optimum (EECO; ~53.3–49.1 Ma),
the Paleocene–Eocene Thermal Maximum (PETM; ~56 Ma), and the latest
Paleocene (i.e., pre-PETM). Pre-industrial simulations (x1 CO2) with modern
continental configurations have also been performed to assess the influence of
non-CO2 Eocene boundary conditions. Simulations have been performed with
eight different models (Table 1) and detailed descriptions of the models and
simulations are provided in Lunt et al. (2021). To explore regional variations
in hydroclimate, we subdivide our data into four latitudinal bands (following
Burls and Federov, 2017): I) the tropics (0–15° N/S), II) the subtropics (15–30
°N/S), III) the mid-latitudes (30–60 °N/S), and IV) the high-latitudes (>60
°N/S). To further deconvolve the cause of global and regional variations, we
perform a moisture budget analysis. The analysed climatologies are based on
the last 100 years of each simulation. As different models provided slightly
different variables, for some models we were not able to provide analysis of
P–E (NorESM), or moisture budget analysis (IPSL, INMCM, and NorESM).
We compare observed changes in subtropical hydrology to changes in modelled
latitudinal temperature gradient (LTG), here taken as the difference in surface
temperature between the mid-latitudes (30–60 °N/S) and the tropics (15° N–15°
S).

Proxy synthesis
Approach

Fossil leaves and palynomorphs (spores/pollen) can provide quantitative esti-
mates of mean annual precipitation (MAP) in the past. The primary approaches
are: I) leaf physiognomy (i.e., leaf shape) (Givnish, 1984; Wolfe, 1993; Wing
and Greenwood, 1993; Greenwood, 2007) and II) nearest living relative (NLR)-
based approaches (Pross et al., 2000; Greenwood et al., 2003; Pancost et al.,
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2013; Suan et al., 2017; West et al., 2020). A multi-proxy approach combining
leaf physiognomy and NLR data is generally recommended and mitigates the
different uncertainties incorporated by individual approaches (e.g., West et al.,
2020).

Methods based on leaf physiognomy utilise the correlation between the architec-
ture of leaves and climatic variables. As leaf size and shape are highly sensitive
to moisture availability (Givnish, 1984; Peppe et al., 2011; Spicer et al., 2021),
fossil leaf architecture can be related to precipitation using univariate methods
such as Leaf Area Analysis (LAA) (Wilf et al., 1998). The Climate Leaf Analy-
sis Multivariate Program (CLAMP) (Wolfe, 1993, 1995) combines multiple leaf
traits, including leaf area, leaf shape, and margin state (i.e., toothed or un-
toothed), to provide estimates of annual and seasonal precipitation (Spicer et
al., 2021). Anatomical characteristics of fossil wood can likewise reflect climate
variables (Wiemann et al., 1998; Poole and van Bergen, 2006). Although wood
anatomy as a climate proxy has not had widespread application in deep time cli-
mate compilations, multivariate models of various wood anatomical characters
are typically used (e.g., Poole et al., 2005).

Nearest living relative (NLR) approaches are based on the premise that the
climatic tolerance of a paleo-vegetation assemblage can be inferred from their
presumed extant relatives (e.g., Mosbrugger and Utescher, 1997; Fauquette et
al., 1998; Greenwood et al., 2003; Willard et al., 2019; West et al., 2020). These
methods can be based on macrofossil (most often leaf fossils but also seeds,
fruits, or wood) or microfossil (i.e. sporomorphs) paleobotanical assemblages,
as long as the taxa can be correlated to a living relative with a known climatic
tolerance. The coexistence approach (CA; Mosbrugger and Utescher, 1997) is a
specific instance of this, in which the single climatic interval in which all NLRs
can coexist is reconstructed. More recent studies employing Bioclimatic Anal-
ysis (BA) typically calculate probability density functions of climatic variables
instead of minimum-to-maximum intervals (e.g., Willard et al., 2019; West et
al., 2020). The Climatic Amplitude Method (CAM) is an alternative NLR ap-
proach that incorporates relative abundances of different taxa (Fauquette et al.,
1998).

Proxy compilation

Here we compile paleobotanical MAP estimates for the late Paleocene (59.2 to 56
Ma; Thanetian) to early Eocene (56.0 to 47.8 Ma; Ypresian). Our compilation
builds upon previous EECO- (Carmichael et al., 2016) and Paleocene-Eocene
Thermal Maximum (PETM; 56 Ma)-aged (Carmichael et al., 2017) compila-
tions. We supplement this with i) published MAP estimates generated since,
and ii) newly generated MAP estimates using CLAMP and NLR on published
palynological and macrofloral (predominantly leaf-based) datasets. Our new
proxy synthesis (n = 322) contains 133 MAP estimates (41%) from Carmichael
et al. (2016), 106 data points (33%) from other published sources, and 83 new
data points (26%) (Figure 1; Table S1; Supplementary Data). The new
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data in the compilation helps to improve geographical coverage in previously
data-poor regions, including central west coast and eastern Africa (e.g., Eisawi
and Schrank, 2008; Adeonipekun et al., 2012; Cantrill et al., 2013) (also re-
cently presented in Williams et al., 2022); the coal and lignite bearing deposits
of northeastern India and southern Pakistan (Frederiksen, 1994; Tripathi et al.,
2000; Verma et al., 2019); the Tibetan plateau and sedimentary basins of south-
ern China (e.g., Aleksandrova et al., 2015; Su et al., 2020; Xie et al., 2020); and
the South American (e.g., Quattrocchio and Volkheimer, 2000; Pardo‐Trujillo et
al., 2003; Jaramillo et al., 2007) and North American continent and Caribbean
islands (e.g., Graham et al., 2000; Jarzen and Klug, 2010; Smith et al., 2020)
(Figure 1; Supplementary Data). Most of these use the NLR approach
based on palynological datasets, as plant macrofossils from the late Paleocene –
early Eocene low latitudes are more rarely preserved, although some exceptions
are known (Wing et al., 2009; Shukla et al., 2014; Herman et al., 2017). We also
incorporate data from the mid and high latitudes, e.g., southern South America,
North America, Australia and New Zealand, and high Siberia (Supplementary
Data). For regions with exceptionally poor data coverage (e.g., tropical and
subtropical latitudes, Antarctica), we also compile and generate MAP estimates
from the early middle Eocene (47.8 to ~45 Ma; first half of the Lutetian). Pub-
lished CLAMP and NLR data were re-analysed following recent recommenda-
tions, so that there is no bias as a result of discrepant methodology. Specifically,
1) CLAMP-scored fossil leaf assemblages were re-analysed using up-to-date geo-
graphically appropriate calibration datasets (Kennedy et al., 2014; Yang et al.,
2015; Reichgelt et al., 2019), 2) for both CLAMP and NLR reconstructions,
gridded climate datasets from the R package dismo were employed (Hijmans
et al., 2020), and 3) NLR analysis was performed using consistently filtered
modern distribution datasets to avoid regional overrepresentation (e.g. West et
al., 2020). Modern site coordinates and age constraints were extracted from the
original publications.

Data-model comparison framework

To compare proxy and model data, we employ a data comparison similar to that
used for the Miocene MioMIP ensemble (Burls et al., 2021). This approach re-
quires inclusion of uncertainty for both the proxy and model MAP estimates. To
account for site location uncertainty, we determine site co-ordinates for the age
range of our proxy data compilation above, i.e., from 59 Ma (late Paleocene) to
45 Ma (early middle Eocene) using the Müller et al. (2016) Gplates continental
polygons in combination with the hotspot-based rotation frame of Matthews et
al. (2016) (i.e., analogous to the DeepMIP simulations; Lunt et al., 2020). For
the model simulations, MAP values are taken from the grid cells that fall within
the proxy location uncertainty. The model MAP uncertainty is subsequently
defined as the range between minimum and maximum MAP within these model
grid cells. For proxy estimates, we use the proxy error and error type as re-
ported in the original study. Typically, this is a minimum–maximum range or
confidence interval (e.g., 95%) for NLR approaches (e.g., Willard et al., 2019;
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West et al., 2020), and standard error (SE) or standard deviation (SD) derived
from calibration dataset residuals for leaf physiognomy methods (e.g., Teodor-
idis et al., 2011). For our newly generated values, uncertainties are reported
as 95% confidence interval for NLR and ±1 SD for CLAMP. The subsequent
overlap between the model and proxy uncertainty range is assessed following
the MioMIP methodology (Burls et al., 2021). Any overlap between the proxy
and model uncertainty ranges is defined as “no bias” (Figure S1 in Burls et al.,
2021).

Results and Discussion
DeepMIP models reproduce pre-industrial global precipi-
tation patterns
Each model included in the DeepMIP suite is able to reproduce the main fea-
tures of pre-industrial global precipitation patterns (Figure 2, Figure S1).
This implies the DeepMIP models can be used to assess the simulated hydro-
logical response in past warm climates (see below). However, some common
model precipitation biases are apparent. For example, all simulations exhibit a
double-intertropical convergence zone (ITCZ) in MAP, simulating excess precip-
itation south of the equator. This is expected and the double ICTZ remains a
consistent error in both the previous (e.g., CMIP3, CMIP5) and latest (CMIP6)
generation of climate models (Tian & Dong 2020). There is also a lack of simu-
lated precipitation in the west central Pacific (Figure 2c). However, the shape
of the South Pacific convergence zone (SPCZ) is improved in the multi-model
mean (MMM) compared to the previous EoMIP generation model simulations
(Carmichael et al., 2016).

Influence of non-CO2 boundary conditions on the early
Eocene hydrological cycle
Non-CO2 boundary conditions (i.e., paleogeography, vegetation, aerosols) can
exert an influence on global and regional MAP and P–E values. The previ-
ous EoMIP ensemble found a minor role for non-CO2 boundary conditions on
global MAP (+0.1 mm/day; Carmichael et al., 2016). However, this was only
performed for a single model simulation (HadCM3L). To fully isolate the influ-
ence of non-CO2 boundary conditions on the early Eocene hydrological cycle,
we compared early Eocene 1x CO2 simulations and pre-industrial 1x CO2 sim-
ulations.

At a global scale, the early Eocene 1x CO2 simulations are characterised by
higher MAP values relative to pre-industrial (> 0.1 to 0.4 mm/day; 1x CO2
symbols in Figure 3). This is because the early Eocene 1x CO2 simulations have
higher global mean surface temperatures (~3–5°C) relative to the preindustrial
1x CO2 control simulations (see also Lunt et al., 2021) (Figure S2). This leads
to enhanced surface evaporation which is balanced by precipitation globally
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(Held and Soden, 2006; Siler et al., 2019). However, this effect is relatively
minor compared to changes in global MAP that occur when CO2 levels are
elevated (e.g. >1.4 mm/day at 9x CO2; Figure 3; see Section 3.3).

At a regional scale, the early Eocene 1x CO2 simulations are characterised by
higher MAP estimates in the tropics (0-15° N/S), mid-latitudes (30-60 °N/S),
and high-latitude (>60 °N/S) (typically +0.1 to +0.4 mm/day, but up to +0.6
mm/day in the high-latitudes, Figure 4 and 5; Figure S3) relative to pre-
industrial. The tropics (0-15° N/S), mid-latitudes (30-60 °N/S), and high-
latitude (>60 °N/S) are also characterised by positive P–E values (typically
+0.1 to 0.2 mm/day, but up to +0.4 mm/day in the high-latitudes (Figure 4
and 6; Figure S4 and S5) relative to pre-industrial. In the tropics (0-15° N/S)
are also characterised by an eastward shift and expansion in deep tropical con-
vection, and hence the Walker Circulation, over the Pacific Ocean (Figure 4).
The subtropical (15-30 °N/S) early Eocene 1x CO2 simulations are characterised
by negative P–E values (-0.2 to -0.8 mm/day; Figure 6; Figure S4 and S5),
but the associated MAP estimates span a wide range and can be higher (i.e.,
CESM, GFDL, MIROC; 0.1 to 0.6 mm/day) or lower (i.e., COSMOS, HadCM3L,
HadCM3LB; -0.1 to -0.2 mm/day) relative to pre-industrial (Figure 5; Fig-
ure S3). To diagnose the cause of these differences, we use moisture budget
diagnostics to decompose changes in P–E (see discussion below).

Global and regional variability in the early Eocene hydro-
logical cycle
The DeepMIP simulations span a wide range of CO2 concentrations (x1 to x9
PI CO2) and global mean surface temperatures (GMST; ~17 to 35°C) and can
thus provide insights into the global- and regional-scale hydrological response to
CO2-induced warming. Across the DeepMIP ensemble, higher GMST estimates
are associated with higher global MAP estimates as warming leads to enhanced
surface evaporation (Figure 3). Similar to previous studies (e.g. Held and
Soden 2006; Siler et al., 2019) the best linear fit across the entire DeepMIP
ensemble is a 2.4% increase in global MAP per degree of warming.

There are also regional variations in MAP that differ in their relationship with
GMST (Figure 5). In the tropics (0–15° N/S), the mid-latitudes (30–60 °N/S)
and the high-latitudes (>60 °N/S), higher GMST estimates are associated with
higher MAP estimates, with the greatest sensitivity to GMST in the high lat-
itudes (9.1% increase in precipitation per °C warming; Figure 5d). This is a
consistent feature across the DeepMIP model ensemble. In the subtropics (15–
30 °N/S) however, the relationship between GMST and MAP differs between
the DeepMIP model simulations. For this latitudinal band there is a wide range
in MAP estimates: HadCM3, MIROC and COSMOS simulate lower MAP val-
ues relative to pre-industrial, whereas CESM and GFDL simulate higher MAP
values relative to pre-industrial (Figure 5b). Moisture budget diagnostics (see
below) suggest that a weaker latitudinal temperature gradient is the cause of
higher MAP values in both CESM and GFDL.
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The DeepMIP models also exhibit different regional P–E responses for a given
global mean temperature change. In the tropics (0-15° N/S) and the high-
latitudes (>60 °N/S), higher GMST estimates are associated with more positive
P–E values and overall wetter conditions (Figure 6). In the subtropics (15-30
°N/S), higher GMST estimates are associated with more negative P–E value
and overall drier conditions (Figure 6b). This indicates that the early Eocene
largely conforms to the ‘wet-gets-wetter, dry-gets-drier’ hypothesis within the
DeepMIP simulations. Lastly, there is a weak relationship between GMST and
P–E values in the mid-latitudes (30–60 °N/S; Figure 6c). As the mid-latitude
band encompasses both positive and negative P–E values compared to pre-
industrial (ca. -2 to +2 mm/day; Figure 4), the lack of relationship between
CO 2 and temperature in this zonally-averaged view is perhaps unsurprising.

To diagnose the cause of P–E changes within the DeepMIP ensemble, we conduct
a moisture budget analysis, focusing in particular on the zonal mean component
(Figure 7). This approach relies on the fact that climatological changes in
P–E, calculated over a long enough timescale that fluctuations in the column
integrated moisture content are negligible (in our case the last 100 years of each
DeepMIP simulation), are balanced by the column-integrated convergence of
moisture in the overlying atmosphere, as follows:

𝑃 − 𝐸 = −∇ • 1
𝑔 ∫

𝑝𝑠

𝑝𝑡

v�q dp

where g is the acceleration due to gravity (ms-2), q the atmospheric specific
humidity (kg/kg), and v the horizontal wind vector (ms-1) integrated across
(decreasing) pressure (p, Pa) levels from the surface (ps) to the top of the tropo-
sphere (tropopause; pt) (Figure 7a-b). This moisture convergence can be fur-
ther decomposed into its time mean (𝑣 𝑞) and eddy (𝑣′ 𝑞′) components (Figure
7c-d; Figure S6). Generally speaking, the time mean component is the domi-
nant component in the tropics, where the time mean moisture transport typically
dominates over the eddy component (Figure 7c-7d). Changes in net P–E val-
ues (�(P–E)) due to the time mean component can be further decomposed into:
i) changes in humidity assuming constant preindustrial circulation (𝑣cnt𝛿𝑞, the
thermodynamic component of changes in the time mean moisture divergence),
ii) changes in circulation assuming constant preindustrial humidity (𝛿𝑣 𝑞cnt, the
dynamic component of changes in the time mean moisture divergence), and iii) a
perturbation term representing the coupling of changes in humidity and changes
in circulation (𝛿𝑣𝛿𝑞) (Figures 7e-f; Figure S7):

𝛿(𝑃 −𝐸) = −∇• 1
𝑔 ∫

𝑝𝑠

𝑝𝑡

𝑣cnt��q dp−∇• 1
𝑔 ∫

𝑝𝑠

𝑝𝑡

𝛿𝑣𝜐𝑞cntq dp− −∇• 1
𝑔 ∫

𝑝𝑠

𝑝𝑡

𝛿𝑣��q dp

where � represents the change in each variable between the study interval (i.e.,
the early Eocene) and the pre-industrial climate. With increasing tempera-
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tures, atmospheric humidity (q) is predicted to increase following the Clausius-
Clapeyron relation. Assuming that circulation (v) remains identical to pre-
industrial (𝛿𝑣 = 0), the dynamic term will be zero and the thermodynamic
term will result in the tropics and high-latitudes becoming wetter (i.e. the
moisture convergence into these regions in the control climate is enhanced) and
the subtropics becoming drier (i.e., the moisture divergence from this region
in the control climate is enhanced). Circulation changes are often considered
secondary to changes in atmospheric humidity. However, it has been demon-
strated the former may be important under certain climate scenarios (e.g., weak
latitudinal temperature gradients) and may even compensate for changes in at-
mospheric humidity (Burls & Fedorov 2017). In a scenario where circulation
(v) – specifically a decrease in Hadley cell strength – dominates over an increase
in humidity (q), the subtropics will be characterised by reduced (rather than
enhanced) moisture divergence and wetter (rather than drier) conditions.

Focusing on the subtropics in the DeepMIP simulations, higher GMST values
result in an increase in atmospheric humidity and enhanced subtropical mois-
ture divergence. This leads to a corresponding decrease in P–E (up to > -1.5
mm/day; Figure 8a) and is consistent with a ‘wet-gets-wetter, dry-gets-drier’
scenario in warmer climates. However, this is partially compensated by a reduc-
tion in LTGs, here taken as the difference between 15°S–15°N and 30–60°N/S.
Reduced LTGs lead to a reduction in the strength of subtropical moisture circu-
lation (v) and a relative increase in subtropical P-E (Figure 8b). This dynam-
ical effect is stronger in model simulations with weaker latitudinal temperature
gradients (i.e., CESM and GFDL model simulations) and weaker in models with
stronger latitudinal temperature gradients (e.g., HadCM3L). This explains why
DeepMIP models with the lowest LTGs (e.g, CESM and GFDL) are charac-
terised by higher MAP estimates relative to pre-industrial. Intriguingly, those
models with reduced LTGs most closely reproduce temperature gradients (and
GMST estimates) as reconstructed by proxies (Figure 1 in Lunt et al., 2021).
This implies that the early Eocene was likely characterised by a reduction in
the strength of subtropical moisture circulation. However, all DeepMIP models,
including CESM and GFDL, show that this reduction in subtropical moisture
circulation (Figure 8d) was not sufficient to compensate fully for changes in
atmospheric humidity (Figure 8c). As such, the subtropics are characterised
by overall drier conditions in terms of P–E (Figure 8a).

Extrapolating from this, if early Eocene LTGs were weaker than suggested by
these models (Lunt et al., 2021), changes in strength of subtropical moisture
circulation may outcompete changes in enhanced moisture divergence, leading
to overall wetter subtropics (see Burls & Federov, 2017). Although proxy-model
bias is decreasing for certain models, overall, early Eocene proxy compilations
suggest weaker global pole-to-equator LTGs (~14–22°C; Gaskell et al., 2022;
Evans et al., 2018; Cramwinckel et al., 2018) than predicted in the DeepMIP
model ensemble (~18 to 25°C; Figure 1b in Lunt et al., 2021). However, proxy-
derived LTG estimates remain associated with large uncertainties due to the
use of different input datasets and/or the analysis of different time intervals (cf.

10



GMST estimates; Inglis et al., 2020). Taken together, this highlights the impor-
tant role of the meridional temperature gradient when interpreting subtropical
rainfall patterns.

Proxy-based precipitation estimates during the early
Eocene
Our proxy synthesis indicates that high-latitude regions were characterised by
high MAP estimates, consistent with previous results from the northern (Eberle
and Greenwood, 2012; West et al., 2015; Suan et al., 2017; Salpin et al., 2019;
West et al., 2020) and southern high-latitudes (Poole et al., 2005; Pross et
al., 2012) (Figure 9). This is consistent with evidence for low-salinity sea
surface conditions in the high northern latitudes near the termination of the
EECO (~49 Ma) (i.e., the Azolla interval) (Brinkhuis et al., 2006; Barke et al.,
2012). Proxy estimates from more transient warming events (e.g., the PETM
and Eocene Thermal Maximum 2; ETM2) provide additional support for high
MAP in the Arctic (Pagani et al., 2006; Willard et al., 2019), the North Sea
Basin (Kender et al., 2012; Garel et al., 2013; Collinson et al., 2003), and
the southwest Pacific (Sluijs et al., 2011; Pancost et al., 2013). We note that
in our compilation, early Eocene-aged CLAMP-derived MAP estimates from
North America are much higher than most NLR estimates. CLAMP estimates
are based on locally derived floral assemblages, whereas NLR estimates can
reflect both locally derived floral elements but also floral elements transported
over long distance (e.g. wind- or water-dispersed pollen). As a consequence,
CLAMP estimates may reflect a bias towards wetter environments, whereas
NLR estimates may be biased towards drier (upland) environments. The set
of MAP estimates from Antarctica based on wood physiognomy are also far
higher than the other proxies (Poole et al., 2005). Due to the lack of wood
physiognomic MAP estimates from other regions, it is unclear whether these
values are representative of the Antarctic continent.

Early Eocene tropical and subtropical MAP estimates are also relatively high
(> 2 to 4 mm/day). Although proxy-derived subtropical MAP values imply
wetter conditions during the early Eocene (see above), these estimates are bi-
ased towards regions with well-preserved floral assemblages and, by extension,
relatively wet regions. Subsequently, arid and semi-arid environments are likely
under sampled in our synthesis. Indeed, evidence from other climate intervals
(e.g., the PETM) suggests drier subtropics, with evidence for enhanced evapo-
transpiration in Tanzania during the onset of the PETM (Handley et al., 2012),
drying in the continental interior (e.g., Bighorn Basin) during the body of the
PETM (Smith et al., 2007; Kraus and Riggins, 2007; Kraus et al., 2013), and
increased subtropical salinity in the central Pacific during ETM2 (Harper et
al., 2017). Moving forward, we suggest that alternative proxies, for example
clumped isotope-�18O analysis of pedogenic siderites (van Dijk et al., 2020),
could help to reconstruct hydrological change in arid and semi-arid environ-
ments where plant macrofossils are unlikely to be preserved, and the availability
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of plant-based terrestrial proxy data will therefore be limited or absent.

Terrestrial precipitation data-model comparison
To explore whether the DeepMIP models realistically reproduce regional MAP
patterns during the early Eocene, we employ a data-model comparison (follow-
ing Burls et al., 2021) using our new and published botanical-based MAP esti-
mates. A previous site-by-site data-model comparison (Carmichael et al., 2016)
suggested that the EoMIP models were able to reproduce key features of the hy-
drological cycle in the mid-latitudes (e.g., western US interior, central Europe),
but modelled MAP estimates were typically lower than those from proxies in the
high-latitudes (e.g., East Antarctica, SE Australia, Axel Heiberg). In the new
DeepMIP compilation, we find that the multi-model mean (MMM) is able to
replicate MAP estimates in various regional bands (i.e., the tropics, subtropics
and southern high latitudes) within error (Figure 10). However, the MMM
underestimates proxy-derived MAP in the high northern latitudes, especially at
lower CO2 levels (Figure 10). We attribute this mismatch to the lack of polar
amplification in certain models, especially at lower CO2 levels (e.g., HadCM3,
COSMOS) (Lunt et al., 2021). The mid-latitudes are likewise associated with a
large data-model mismatch. Here, the MMM either underestimates MAP (e.g.,
western South America and Tibet) or overestimates MAP (e.g., western North
America; Figure 10). As these mismatches lie close to major mountain ranges
(e.g., Rockies, proto-Tibetan Plateau, Andes), it is possible that mismatches are
largely due to topographic effects. For a given model, the data-model mismatch
is lowest for CESM and GFDL, i.e., the models with higher GMST estimates
and lower LTGs (Lunt et al., 2021) (Figure 11; Figure S8). Our results indi-
cate that the models with higher GMST estimates and weaker LTGs are able to
better simulate the global and regional scale hydrological cycle. Overall, our in-
tegrated data-model approach suggests that the early Eocene was characterised
by a thermodynamically-dominated hydrological response to warming within
the mid and high latitudes, with increased CO2 forcing improving the model-
proxy fit by increasing precipitation (Figure 11c-d; Figure S8). Overall, the
DeepMIP models show a slight overshoot in precipitation in the tropics (Figure
11a; Figure S8). Lastly, in the subtropical latitudes, dynamical changes in
large-scale circulation in response to weaker surface temperature gradients could
have supported regional wetting, as seen to some extent in the GFDL and CESM
models (Figure 11b; Figure S8).

Conclusions
Here we use the DeepMIP model simulations to reconstruct global- and regional-
scale rainfall patterns during the early Eocene (~56–48 million years ago), with
an emphasis on the subtropical hydrological cycle. At higher temperatures,
model simulations indicate that low- (0-15° N/S) and high-latitudes (>60° N/S)
are characterised by positive P–E values (wetter conditions), whereas the sub-
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tropics (15-30° N/S) are characterised by negative P–E values (drier conditions).
The DeepMIP models can (partly) replicate proxy-derived MAP estimates in
various regional bands (i.e., the tropics, subtropics and southern high latitudes)
within error, especially at high CO2 and in models with weaker latitudinal
temperature gradients. This indicates that the early Eocene was overall char-
acterised by a thermodynamically-dominated ‘wet-gets-wetter, dry-gets-drier’
response in the mid and high latitudes. However, there is large inter-model vari-
ability in subtropical mean annual precipitation (MAP) due to the competing
influence of humidity (i.e., thermodynamic changes) and atmospheric moisture
circulation (i.e., dynamic changes) in this region. We show that models with
weaker latitudinal temperature gradients are characterised by a reduction in
subtropical moisture circulation, leading to an overall increase in subtropical
MAP. Crucially, these models agree more closely with proxy-derived precipita-
tion estimates and imply weaker subtropical moisture circulation in the early
Eocene. However, changes in subtropical moisture circulation were not suffi-
cient to induce subtropical wetting. Taken together, our study highlights the
importance of the meridional temperature gradient when studying past (and
future) subtropical rainfall patterns.
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Figures

Figure 1. Overview of early Eocene precipitation proxy compilation.
Previously published estimates compiled by the Carmichael et al., (2016) shown
as purple squares; additional published estimates plotted as dark green circles;
new estimates (this study) plotted as light green circles. Sample locations plotted
with their modern positions on a present-day world map.

Figure 2. Rainfall patterns in DeepMIP pre-industrial simulations.
a) Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP)
Observations (Xie & Arkin 1997), b) multi-model mean (MMM) of precipitation
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estimates (mm/day) for the pre-industrial control runs for the 9 models in the
DeepMIP ensemble (middle), c) MMM anomalies in precipitation (mm/day)
for DeepMIP pre-industrial control runs minus modern observations. d) Zonal
mean precipitation of DeepMIP model control runs and modern observations.

Figure 3. Global hydrological response to warming in the DeepMIP
experiments. Global mean change in precipitation relative to pre-industrial
(in % change) on the vertical axis plotted against global mean surface air tem-
perature (GMST) relative to pre-industrial (in °C) on the horizontal axis. Sim-
ulations with the same model at three or more different CO2 levels have been
connected by coloured lines. Correlation coefficient of a linear fit through the
combined values (black line) is 0.96, slope is 2.4% increase in precipitation per
°C of warming.
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Figure 4. Multi-model mean temperature and precipitation anomalies relative to the pre-industrial control in the DeepMIP simulations. a) surface air temperature (°C), b) precipitation (mm/day) and c) precipitation – evaporation (P-E; mm/day). ”n” values above each plot represent the number of models available for calculating the MMM.
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Figure 5. Zonally-averaged mean annual precipitation (MAP) values
in the DeepMIP experiments for the a) tropics (15°–15° N/S), b)
subtropics (15°–30° N/S), c) mid latitudes (30°–60° N/S), and d)
high latitudes (60°–90° N/S). Panels (a-d) show the % change in MAP
relative to pre-industrial vs the change in global mean surface air temperature
change (GMST; °C) relative to pre-industrial. Simulations with the same model
at 3 or more different CO2 levels have been connected by colored lines. Dashed
black line represents a linear fit through the combined values and the slope and
correlation coefficient are shown in bottom right hand corner. Note that y-axis
scaling differs between plots.
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Figure 6. Zonally-averaged precipitation-evaporation (P–E) values in the DeepMIP model simulations for the a) tropics (15°–15° N/S), b) subtropics (15°–30° N/S), c) mid latitudes (30°–60° N/S), and d) high latitudes (60°–90° N/S). Panels (a-d) show the change in P–E relative to pre-industrial (mm/day) vs the change in global mean surface air temperature change (GMST; °C) relative to pre-industrial. Simulations with the same model at 3 or more different CO2 levels have been connected by colored lines. Dashed black line represents a linear fit through the combined values and the slope and correlation coefficient are shown in bottom right hand corner Note that y-axis scaling differs between plots.
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Figure 7. Zonal-mean components of the hydrological cycle as functions of latitude in the DeepMIP simulations. a) surface precipitation minus evaporation (P−E), b) implied moisture transport (𝑣𝑞 implied in g/kg m/s), c) moisture transport by time-mean flow (𝑣 𝑞 in g/kg m/s), d) moisture transport by eddy transport (𝑣′ 𝑞′ in g/kg m/s), e) the contribution of changes in the time-mean humidity to changes in the moisture transport (i.e., thermodynamic effects) (𝑣cnt𝛿𝑞 in g/kg m/s), f) the contribution of changes in the circulation to changes in moisture transport (i.e., dynamic effects) (𝛿𝑣𝑞cnt in g/kg m/s).
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Figure 8. Moisture budget diagnostics show competing influence of humidity and atmospheric moisture circulation in the subtropics (15-30°N/S). a) the relationship between changes in subtropical P−E (mm/day) and GMST (°C), b) the relationship between changes in subtropical P−E and the latitudinal temperature gradient (LTG) between 15°S–15°N and 30–60°N/S, c) changes in subtropical P−E due to humidity-induced changes in the moisture transport (i.e., thermodynamic effects), d) changes in subtropical P−E due to circulation-induced changes in the moisture transport (i.e., dynamic effects). Note that due to different models having different variables available, IPSL, INMCM, and NorESM are missing from the moisture budget analysis.
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Figure 9. Map of proxy-based mean annual precipitation (MAP;
mm/day) values. Plotted together with multi-model mean precipitation of
the DeepMIP simulations.

Figure 10. Data-model comparison for the early Eocene. In each panel, the early Eocene multi-model-mean (MMM) mean annual precipitation (MAP) bias is shown for a given CO2 concentration. The root-mean-square error across all the sites is shown in black on the bottom left. Lower values indicate a closer data-model agreement.
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Figure 11. Zonally-averaged model-data mean annual precipitation
(MAP) bias for the a) tropics (15°–15° N/S), b) subtropics (15°–30°
N/S), c) mid latitudes (30°–60° N/S), and d) high latitudes (60°–90°
N/S). Panels (a-d) show the model-data bias in mm/day for the different model
simulations, sorted by CO2 forcing.

Tables
Table 1. Overview of DeepMIP models and simulations, table adapted from
Lunt et al., (2021).
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Model Long
name

Short
name

CO2 CMIP
genera-
tion

Simulation
reference

CESM1.2_CAM5Community
Earth
System
Model

CESM ×1, ×3,
×6, ×9

CMIP5 Zhu et al.,
(2019)

COSMOS-
landveg_r2413

Community
Earth
System
Models

COSMOS ×1, ×3,
×4

CMIP3 Lunt et al.,
(2021)

GFDL_CM2.1Geophysical
Fluid
Dynamics
Labora-
tory

GFDL ×1, ×2,
×3, ×4,
×6

CMIP3 Lunt et al.,
(2021)

HadCM3B_M2.1aNHadley
Centre
Climate
Model

HadCM3 ×1, ×2,
×3

CMIP3 Lunt et al.,
(2021)

INM-CM4-
8

INMCM ×6 CMIP6 Lunt et al.,
(2021)

IPSLCM5A2 Institut
Pierre
Simon
Laplace

IPSL ×1:5, ×3 CMIP5 Zhang et
al., (2020)

MIROC4m Model for
Interdisci-
plinary
Research
on
Climate

MIROC ×1, ×3 CMIP3 Lunt et al.,
(2021)

NorESM1_F Norwegian
Earth
System
Model

NorESM ×2, ×4 CMIP5-6 Lunt et al.,
(2021)
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