Inclusion of a dry surface layer and modifications to the transpiration and canopy evaporation partitioning in the Canadian Land Surface Scheme Including biogeochemical Cycles (CLASSIC)

Gesa Meyer¹, Joe R. Melton², and Elyn R. Humphreys³

¹Environment and Climate Change Canada ²Environment Canada ³Carleton University

November 22, 2022

Abstract

Land surface/Earth System models depend upon accurate simulation of evapotranspiration (ET) to avoid excessive biases in simulated energy, water, and carbon cycles. The Canadian Land Surface Scheme including biogeochemical Cycles (CLASSIC), the land surface scheme of the Canadian Earth System Model (CanESM) shows reasonable ET fluxes globally, but CLASSIC's partitioning into evaporation (E) and transpiration (T) can be improved. Specifically, CLASSIC exhibited a high soil evaporation (Es) bias in sparsely vegetated areas during wet periods, which can deplete soil water and decrease photosynthesis and T later in the year.

A dry surface layer (DSL) parameterization was implemented to address biases in Es through an increased surface resistance to water vapour and heat fluxes. In arid/semi-arid regions, the DSL decreased Es, leading to improved seasonality of ET and increased gross primary productivity (GPP) due to an increase in soil moisture. The DSL simulations significantly (t-test, p<0.01) increased T/ET from 0.25 in baseline CLASSIC to 0.30 in the DSL simulations. T/ET was further increased to 0.41 (p<0.01), comparable to the CMIP5 model mean, by allowing T to occur from the dry canopy fraction while water evaporates from the wet fraction. This mainly affected densely vegetated areas, where T and ET increased significantly (p<0.01) and canopy E was reduced (p<0.01). In seasonally dry tropical forests, higher T and ET reduced GPP. Despite increases in arid/semi-arid regions, the reduced GPP in tropical forests resulted in 1.6% lower global GPP (p=0.018) than baseline CLASSIC. Including these modifications in CanESM might reduce biases in climate.

Inclusion of a dry surface layer and modifications to the transpiration and canopy evaporation partitioning in the Canadian Land Surface Scheme Including biogeochemical Cycles (CLASSIC)

Gesa Meyer¹, Joe R. Melton¹, Elyn R. Humphreys²

¹Environment and Climate Change Canada, Climate Research Division, Victoria, BC, Canada ²Carleton University, Geography and Environmental Studies, Ottawa, ON, Canada

Key Points:

1

2

3

4

5

6

8

9	•	Including a dry surface layer (DSL) parameterization reduced excessive soil evap-
10		oration (E_s) in CLASSIC globally, especially in dry regions
11	•	Evapotranspiration (ET) partitioning modifications increased photosynthesis in
12		arid/semi-arid regions
13	•	Global transpiration (T) to ET ratios were brought closer to observation-based
14		estimates due to increased T and reduced E_s in dry regions

Corresponding author: Gesa Meyer, gesa.meyer@ec.gc.ca

15 Abstract

Land surface/Earth System models depend upon accurate simulation of evapotranspi-16 ration (ET) to avoid excessive biases in simulated energy, water, and carbon cycles. The 17 Canadian Land Surface Scheme including biogeochemical Cycles (CLASSIC), the land 18 surface scheme of the Canadian Earth System Model (CanESM) shows reasonable ET 19 fluxes globally, but CLASSIC's partitioning into evaporation (E) and transpiration (T)20 can be improved. Specifically, CLASSIC exhibited a high soil evaporation (E_s) bias in 21 sparsely vegetated areas during wet periods, which can deplete soil water and decrease 22 photosynthesis and T later in the year. 23

A dry surface layer (DSL) parameterization was implemented in CLASSIC to ad-24 dress biases in E_s through an increased surface resistance to water vapour and heat fluxes. 25 In arid/semi-arid regions, the DSL decreased E_s , leading to improved seasonality of ET 26 and increased gross primary productivity (GPP) due to an increase in soil moisture. The 27 DSL simulations significantly (t-test, p < 0.01) increased T/ET from 0.25 in baseline CLAS-28 SIC to 0.30 in the DSL simulations. T/ET was further increased to 0.41 (p<0.01), com-20 parable to the CMIP5 model mean, by allowing T to occur from the dry canopy frac-30 tion while water evaporates from the wet fraction. This mainly affected densely vege-31 tated areas, where T and ET increased significantly (p<0.01) and canopy E was reduced 32 (p < 0.01). In seasonally dry tropical forests, higher T and ET reduced soil moisture and 33 GPP. Despite increases in arid/semi-arid regions, the reduced GPP in tropical forests 34 resulted in $\sim 1.6\%$ lower global GPP (p=0.018) than baseline CLASSIC. Including these 35 modifications in CanESM might reduce biases in climate. 36

37 Plain Language Summary

An important component of the global water cycle is the return of liquid water to 38 the atmosphere from the land surface. Evaporation (E) occurs on the surface of plants 39 and the soil while transpiration (T) is water that plants release through their stomata. 40 We investigated how well E and T are simulated by the Canadian Land Surface Scheme 41 including biogeochemical Cycles (CLASSIC). We found that the model simulated the 42 total amount of water lost from the land surface reasonably well, but too much was lost 43 via E at the expense of T. To improve this we changed how water evaporates from bare 44 soil to more realistically capture the resistance to evaporating water as a thin dry layer 45 forms on the soil surface. We additionally allowed the model to transpire water from plant 46 leaves while other leaves on the plant were wet and evaporating, which was previously 47 not the case. Our results improve the partitioning of E and T in CLASSIC resulting in 48 more realistic simulated plant productivity in dry regions. 49

50 1 Introduction

Evapotranspiration (ET) is an important component of the global terrestrial wa-51 ter budget, with about 60% of precipitation over land returned to the atmosphere via 52 ET (Jung et al., 2010). ET can be separated into its components soil evaporation (E_s) , 53 canopy evaporation (E_c) and transpiration (T). These components draw water from dif-54 ferent sources and their relative contributions to ET vary seasonally. While E_s mainly 55 originates from the soil surface and shallow soil depths, T uses water accessible to plant 56 roots and E_c occurs for a limited time following precipitation events, when water is on 57 the vegetation canopy due to precipitation interception. E_s , E_c and T then also show 58 different sensitivities to environmental drivers of ET such as vapor pressure deficit (VPD) 59 and solar radiation (K. Wang & Dickinson, 2012). Total ET and the contributions of the 60 different ET components vary significantly between ecosystems and seasons, as vegeta-61 tion cover, vegetation characteristics, i.e. leaf area index (LAI) and rooting depths, and 62 soil characteristics differ (K. Wang & Dickinson, 2012). 63

Available measurements of ET or latent (LE) and sensible heat fluxes (H) range 64 temporally from half-hourly to annual and spatially from point-scale to hundreds of me-65 ters based upon techniques using lysimeters, eddy covariance or Bowen ratio methods 66 and scintillometers (Barr et al., 1994; Baldocchi et al., 2001; Gavilán & Berengena, 2007; 67 Malek & Bingham, 1993; Savage, 2009). On monthly to annual time scales over large re-68 gions, the surface water balance method can be used. It integrates measurements of pre-69 cipitation, river discharges and estimates of changes in terrestrial water storage to de-70 termine LE on regional to global scales (L. Zhang et al., 2008; Güntner, 2008). Satel-71 lite remote sensing algorithms can estimate ET using empirical relationships with satellite-72 derived data (e.g., radiation, temperature, VPD) (Q. Mu et al., 2011). The relative con-73 tributions of the ET components can be estimated using several techniques. Canopy in-74 terception, which determines the amount of water available for E_c , can be estimated as 75 the difference between total precipitation and the precipitation measured underneath the 76 canopy (Herbst et al., 2008). For transpiration, sap flow methods can determine its value 77 at the tree level, which can then be up-scaled to the stand or landscape level (Smith & 78 Allen, 1996; Cermák et al., 2004; Warren et al., 2018). All three ET components, E_s , 79 E_c and T, can also be measured with stable isotope techniques whereby variations in the 80 stable isotopic composition of water vapour measured near the surface in combination 81 with measurements of the isotopic composition of water from the soil and within the plant 82 can determine the transpiration and evaporation fractions (Sutanto et al., 2014). How-83 ever, direct measurements of ET and its components are only available at small scales 84 (e.g., plant level), and thus there are large uncertainties in global T/ET with estimates 85 varying between 0.43 and 0.75 with a mean value of 0.57 ± 0.07 (Wei et al., 2017). Most 86 of global T originates from tropical forests (Good et al., 2015) with an estimated T/ET87 of 0.70 ± 0.14 (Schlesinger & Jasechko, 2014), while shrublands and desert ecosystems 88 tend to have the lowest T/ET with estimated values of 0.47 ± 0.10 and 0.54 ± 0.18 , re-89 spectively (Schlesinger & Jasechko, 2014). 90

Land surface models (LSMs) are used to simulate water and energy fluxes, includ-91 ing the different components of ET, for historical simulations and future projections. De-92 spite challenges validating the different ET components on large scales, it is important 93 for LSMs to correctly partition ET as it affects the water, energy and carbon (C) cycles 94 (Swenson & Lawrence, 2014). Poorly simulated ET also has implications for the simu-95 lated climate in Earth System Models (ESMs). Dong et al. (2022) attributed a warm bias 96 in 2 m air temperatures occurring in the central United States in models contributing 97 to the Climate Model Intercomparison Project Phase 6 (CMIP6) to an underestimated 98 ET and a low T/ET. In the CMIP6 models, ET is highly dependent on shallow soil mois-99 ture and water intercepted by the canopy while less dependent on root zone soil mois-100 ture. This leads to an underestimated contribution of T to ET, as well as a low total ET. 101 Summertime ET in CMIP6 models was underestimated which was suggested to be a re-102 sult of an overestimation of water stress, as the ESMs were not able to adequately sim-103 ulate the ability of plants to access soil moisture in deeper layers, which can sustain T, 104 and thereby were overly dependent on precipitation to supply near-surface soil moisture 105 (Dong et al., 2022). While simulated ET partitioning varies between models, e.g. T/ET106 ranged from 0.20 to 0.57 (Lian et al., 2018), on average, the CMIP5 models underesti-107 mated T with an ensemble mean T/ET of 0.41 ± 0.11 (Lian et al., 2018) compared to 108 the estimated 0.57 ± 0.07 (Wei et al., 2017) derived from upscaling site measurements 109 using ecosystem-specific LAI regressions and LAI and canopy interception estimates from 110 remote sensing and land surface models. As the underestimation of T/ET in ESMs leads 111 to underestimations of summertime ET as well as overestimations of air temperature, 112 improving ET partitioning in LSMs is important for future projections of the water and 113 C cycles (Dong et al., 2022). Dong et al. (2020) suggest that E_s stress functions, com-114 monly used in LSMs where they rely upon simple relationships with soil texture, cause 115 biases in soil moisture-ET coupling in LSMs. Especially in bare soil areas or regions with 116 sparse vegetation canopies, LSMs tend to overestimate ET due to an overestimation of 117 E_s during periods of high soil moisture (Swenson & Lawrence, 2014). Over the past decade, 118

studies have shown that simulated E_s can be improved by different means including re-119 sistance to E due to water vapour diffusion through a dry layer developing at the soil 120 surface (Swenson & Lawrence, 2014), a viscous sublayer (Haghighi & Or, 2015; Decker 121 et al., 2017) or a litter layer (Decker et al., 2017; M. Mu et al., 2021). Biases in simu-122 lated ET and its component fluxes were also shown to be reduced by an improved rep-123 resentation of the effects of soil texture in the E_s stress function, which decreased soil 124 moisture-ET coupling strength biases in the Noah land surface model with multiparam-125 eterization options (Noah-MP version 3.6) (Dong et al., 2020). 126

127 In this study, we investigate ET and its component fluxes in the Canadian Land Surface Scheme Including biogeochemical Cycles (CLASSIC). In order to improve mod-128 elled E_s and T, a process-based ground evaporation efficiency parameterization, in which 129 E_s is determined by water vapour diffusion through a thin dry surface layer (DSL) fol-130 lowing Swenson and Lawrence (2014) was implemented. The partitioning into E_c and 131 T was also modified such that the dry fraction of the canopy can transpire while E_c oc-132 curs from the wet canopy fraction following Fan et al. (2019). We compare the modi-133 fied and baseline CLASSIC versions at the site-level as well as globally, evaluating them 134 using eddy covariance or satellite-based observations of CO_2 and energy fluxes. Section 135 2 describes CLASSIC as well as the modifications made to its partitioning of ET. Sec-136 tion 3 shows the site-level and global water and carbon fluxes using the original CLAS-137 SIC, CLASSIC including the DSL parameterization and CLASSIC including the DSL 138 as well as a modified partitioning into E_c and T. Differences between the carbon and 139 water fluxes of the three CLASSIC versions, how they compare with other LSMs and pos-140 sible future improvements are discussed in Section 4. 141

142 2 Methods

143

2.1 Model description

CLASSIC is the land surface component of the Canadian Earth System Model (CanESM) 144 (Swart et al., 2019) and the open-source community model successor to CLASS-CTEM 145 (Melton et al., 2020), which couples the physics (the Canadian Land Surface Scheme; 146 CLASS; Verseghy (2017)) and biogeochemistry (the Canadian Terrestrial Ecosystem Model; 147 CTEM; Arora (2003); Melton and Arora (2016)) sub-modules. The exchange of energy, 148 water, momentum, and C at the land surface is represented in CLASSIC (for details see 149 Melton et al. (2020)). The model is driven by seven atmospheric variables: air temper-150 ature (T_a) , precipitation rate, air pressure, specific humidity (q), wind speed, and incom-151 ing shortwave and longwave radiation. Water and heat fluxes between the ground and 152 the atmosphere, as well as its transfer between soil layers and snow, when present, are 153 usually calculated on a half-hourly time step. The number of soil layers and their thick-154 nesses can be chosen depending on the application, but typically CLASSIC uses 20 ground 155 layers of increasing thicknesses starting with 10 layers of equal 10 cm thickness giving 156 a maximum depth of 61.4 m. Heat transfer occurs within the whole ground column, in-157 cluding both soil and bedrock layers. The movement of water, however, is limited to the 158 permeable soil layers. Canopy conductance and photosynthesis are calculated on the same 159 time step as the energy and water fluxes while vegetation (leaf, stem, root), litter and 160 soil C pools as well as respiratory fluxes are calculated on a daily time step. We prescribed 161 the vegetation cover which is represented by plant functional types (PFTs) and their per-162 cent coverage (see Table 1). Vegetation biomass and height, LAI and rooting depths are 163 dynamically determined within the biogeochemistry sub-module based upon photosyn-164 thesis and respiration, PFT-specific C allocation parameters and land surface charac-165 teristics (e.g., soil temperatures, soil moisture and net radiation) obtained from the physics 166 sub-module. The physical land surface properties are calculated separately for up to four 167 subareas of each grid cell (bare ground, snow-covered bare ground, vegetation over soil 168 and vegetation over snow). In CLASSIC version 1.2 as used here, the vegetation, as seen 169 by the physics submodule, is composed of five broad categories of PFTs (i.e., needleleaf 170

trees, broadleaf trees, crops, grasses and shrubs). The biogeochemical calculations differentiate between evergreen and deciduous (split into cold and drought deciduous) PFTs and C_3 and C_4 photosynthetic pathways for crops and grasses, which results in 12 PFTs for the biogeochemistry sub-module.

175

2.2 Evapotranspiration parameterization and partitioning

The calculation of ET in CLASSIC and modifications made to its partitioning are 176 described in detail in Appendix A. In short, ET is calculated as the sum of the compo-177 nents E_s , which originates from bare soil and the soil underneath the vegetation canopy, 178 E_c and T. The potential evaporation rate from the soil depends on the ground evapo-179 ration efficiency (β ; unitless; Equation A20), which is determined using an empirical for-180 mulation based on Lee and Pielke (1992) and Merlin et al. (2011). Based on simulations 181 at flux tower sites, we determined that CLASSIC overestimates E_s and thus ET in sparsely 182 vegetated arid or semi-arid regions (see Meyer et al. (2021); E_s and ET are not shown 183 here, but the ET bias is comparable to the bias in LE in Figure B3). During the wet sea-184 son, CLASSIC simulates excessive amounts of E_s , limiting the amount of moisture within 185 the soil for the dry season, which causes a suppression of photosynthesis in these regions. 186 In order to avoid excessive E_s from bare soil surfaces in CLASSIC, we implemented a 187 process-based β parameterization building on the previously used empirical formulation 188 (Merlin et al., 2011; Meyer et al., 2021). In the new formulation, E_s is determined by 189 water vapour diffusion through a thin DSL whose thickness is calculated based on the 190 moisture content of the top soil layer following Swenson and Lawrence (2014). This ap-191 proach was chosen, as it is likely to have a stronger effect on E_s than a litter layer for 192 example in sparsely-vegetated areas. The way the DSL parameterization was implemented 193 also works well with CLASSIC's structure. In addition to the DSL's effects on E_s , we 194 have implemented its effects on H and the ground heat flux (G) via the thermal con-195 ductivity, which depends on the degree of soil saturation (see Section A4 for details). Changes 196 in surface albedo, when the DSL is present, were also accounted for (see Section A5). Avail-197 able observations, although uncertain, indicate that CLASSIC also underestimates the 198 global T/ET. To address this, we modified the partitioning of E_c and T, as in the orig-199 inal CLASSIC formulation T could only occur when there was no water on the canopy. 200 The modified CLASSIC version allows the dry fraction of the canopy to transpire while 201 E_c occurs from the wet canopy fraction following Fan et al. (2019) (see Section A6 for 202 details). 203

204 2.3 Simulations

We performed simulations using CLASSIC v.1.2 with the original CEVAP formu-205 lation of soil evaporation (labelled 'Baseline'), a model version including the DSL pa-206 rameterization (labelled 'DSL'; Section A3) and a version including both the DSL pa-207 rameterization and a modified partitioning of E_c and T (labelled 'DSL-EcT'; Section A6) 208 (see Table 1). Site-level simulations for a selection of sites (see Table 2) from the FLUXNET2015 209 dataset (Pastorello et al., 2020) were driven by observed meteorology at these sites. Site-210 specific information such as vegetation cover and composition, soil texture and depth were 211 obtained from the literature (Melton et al., 2020). At these sites, CLASSIC was driven 212 by cycling through the meteorological measurements available and the atmospheric CO_2 213 concentration from the first year of measurements at each site until the C pools reached 214 equilibrium (defined as annual NEP / NPP ≤ 0.02 , where NEP is the net ecosystem pro-215 ductivity and NPP is the net primary productivity). Then, CLASSIC was run for the 216 years available at each site with transient atmospheric CO_2 concentrations from Le Quéré 217 et al. (2018). 218

We also performed global simulations on the CanESM grid (approximately 2.8°by 2.8°). In order to assess differences between the CLASSIC versions and account for uncertainty in model forcing and geophysical inputs, simulations are driven by combina-

Figure 1: Soil evaporation efficiency (β) determined using the original CEVAP parameterization (Equation A20; blue line) as well as the calculation using the resistance due to the DSL (first term on the right hand side of Equation A19; black line) for liquid water content values of the top soil layer ranging between 0 and the soil porosity (set to 0.41 m³ m⁻³ for this example) (a) and the thickness of the DSL for the respective liquid water content (b). This example was derived from annual average values of $C_{DH} \times v_a$, τ , and D_v from year 2005 at the US-Sta shrubland FLUXNET site (see Table 2).

Table 1: Calculation of the surface evaporation efficiency (β) and the canopy evaporation (E_c) and transpiration (T) components in the three CLASSIC versions (Baseline, DSL and DSL-EcT) used in this study as well as the meteorological forcing and land cover representations used in the simulations. The simulations, where the meteorological forcing and land cover are bold, are the ones shown in the geographic distributions and in Figure 5.

Simulation	Surface evaporation efficiency	$E_c - T$ partitioning	Meteorological forcing	Land cover
Baseline	CEVAP (Equation A20)	T only occurs, when the whole canopy is dry	CRUJRAv2.2	ESACCI
			GSWP3W5E5	ESACCI
			CRUJRAv2.2	GLC2000
			GSWP3W5E5	GLC2000
DSL	determined using DSL (Equation A19)	T only occurs, when the whole canopy is dry	CRUJRAv2.2	ESACCI
			GSWP3W5E5	ESACCI
			CRUJRAv2.2	GLC2000
			GSWP3W5E5	GLC2000
DSL-EcT	determined using DSL (Equation A19)	E_c occurs from wet canopy fraction, T from dry canopy fraction (Section A6)	CRUJRAv2.2	ESACCI
			GSWP3W5E5	ESACCI
			CRUJRAv2.2	GLC2000
			GSWP3W5E5	GLC2000
	1		1	1

tions of two different meteorological forcing datasets and two different land cover rep-

resentations, resulting in four simulations for each CLASSIC version. Meteorological forc-

ing for the simulations was either provided by the Climate Research Unit Japanese 55-

²²⁵ year reanalysis version 2.2 (CRUJRAv2.2, 1901-2020; CRU-JRA (2021); Harris et al. (2014,

^{2020);} Kobayashi et al. (2015)) or the Global Soil Wetness Project Phase 3 (GSWP3)

⁻WFDE5 over land merged with ERA5 over the ocean (W5E5) (GSWP3W5E5; 1901-

^{228 2016;} Lange (2020)). The methodology of Melton and Arora (2016) was used to disag-

gregate the 6-hourly meteorological data to the half-hourly time step CLASSIC uses. Model 229 preparation for historical simulations included spinups that cycled through the meteo-230 rological forcings from 1700-1725 using constant CO_2 concentrations from 1700 until an 231 equilibrium state was reached. Then, historical simulations with transient CO_2 concen-232 trations, vegetation cover and composition, including the effects of land use change and 233 fire, were performed from 1700-2019 (for CRUJRAv2.2) or 1700-2016 (for GSWP3W5E5). 234 Two different land cover representations are used for the CLASSIC simulations, which 235 are based on the Global Land Cover 2000 (GLC2000) and the European Space Agency 236 Climate Change Initiative (ESACCI; ESA (2017)) datasets. As described in A. Wang 237 et al. (2006), these datasets are mapped onto CLASSIC's PFTs and a timeseries includ-238 ing changes in crop area is created. While the site-level simulations can include all 12 239 PFTs described in 2.1, the global land cover representations used here do not include 240 shrub PFTs and sedges, so they only include nine PFTs for the biogeochemical calcu-241 lations and four PFTs (i.e., needleleaf trees, broadleaf trees, crops and grasses) for the 242 physics. 243

244

2.4 Observation-based estimates of global T/ET

Global average estimates of the T/ET ratio have been reported by other studies 245 and can be used to evaluate our model results. Techniques used to determine T/ET in-246 clude isotopes, site measurements, remote sensing as well as a hybrid approach (Wei et 247 al., 2017). As the water remaining after E is enriched in the heavier oxygen (¹⁸O) and 248 hydrogen (^{2}H) isotopes, whereas T does not change isotope ratios, measurements of oxy-249 gen and hydrogen stable isotope ratios can be used to partition T and E (Jasechko et 250 al., 2013). Jasechko et al. (2013) used isotope measurements from Earth's large lakes and 251 calculated lake catchment T from stable isotope mass balances between water inputs and 252 losses. They then up-scaled their calculations to global T using a global freshwater sta-253 ble isotope mass balance resulting in T/ET of 0.80-0.90 (25th and 75th percentiles) (Jasechko 254 et al., 2013). Coenders-Gerrits et al. (2014), however, suggest that Jasechko et al. (2013)'s 255 T/ET was overestimated and showed that using different inputs results in T/ET of 0.50-256 0.80 with a median value around 0.65. Further tests with different inputs and increased 257 uncertainty estimates, decreased the median T/ET even further to 0.58 and increased 258 its uncertainty with 25th and 75th percentiles of 0.35 and 0.8 (Coenders-Gerrits et al., 259 2014). Good et al. (2015) also comment that previous studies might have overestimated 260 T/ET, as they neglected that E originates from multiple pools and did not account for 261 their connectivity. Good et al. (2015) estimate the fraction of surface water that is bound 262 in the soil and accessible by plants for T versus mobile water that quickly passes through 263 the soil through preferential flow paths and is assumed to have the same isotopic com-264 position as precipitation, as it does not mix with soil water. Good et al. (2015) deter-265 mined the global terrestrial isotope budget using an isotope mass balance approach, grid-266 ded land-atmosphere water fluxes and an estimate of the soil water-surface water con-267 nectivity resulting in T/ET between 0.56 and 0.74 (25th and 75th percentiles) and a mean 268 of 0.64. A compilation of site-level measurements of T and ET in different ecoregions 269 using a range of techniques (eddy covariance, sap flow or isotopic approaches in combi-270 nation with biophysical models to partition ET) found a global mean T/ET of 0.61 \pm 271 $0.15 (\pm 1 \text{ SD})$ (Schlesinger & Jasechko, 2014). L. Wang et al. (2014) showed that site-272 level T/ET ranged from 0.38 to 0.77 (25th and 75th percentiles) and that 43% of the 273 variations in T/ET could be explained by differences in LAI and the growing stage of 274 the ecosystem. The remote sensing-based global T/ET estimates used to evaluate CLAS-275 SIC (Section 3.2) were obtained from studies using remotely sensed datasets of mete-276 orological variables (e.g., radiation, air temperature, precipitation) and vegetation char-277 acteristics to drive different ET algorithms, which included the Penman-Monteith model 278 (PM-MOD; Q. Mu et al. (2007, 2011)), the Global Land Evaporation Amsterdam Model 279 (GLEAM; Miralles et al. (2011)), the Priestley-Taylor Jet Propulsion Laboratory (PT-280 JPL; Fisher et al. (2008)) model (Miralles et al., 2016) and the Penman-Monteith-Leuning 281

used in this study.
dataset
FLUXNET2015
the
ies from
FLUXNET sit
Table 2:

	26	32	33	45	12	42	38	43	49	52	55	24	58	61	64	56	25	57	65	29	69	76	37	40	78	79	81	83	84	43	86	83	98	15	95	57	96	88	89
DOI	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14400	https://doi.org/10.5281/zenodo.43011	https://doi.org/10.18140/FLX/14400	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14402	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14402	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14402	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14402	https://doi.org/10.18140/FLX/14402	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14402	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14400	https://doi.org/10.18140/FLX/14400	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14400	https://doi.org/10.18140/FLX/14400	https://doi.org/10.18140/FLX/14400	https://doi.org/10.18140/FLX/14401	https://doi.org/10.18140/FLX/14401
IGBP code	EBF	EBF	HSO	ENF	DBF	SAV	GRA	ENF	CRO	ENF	DBF	GRA	ENF	DBF	EBF	HSO	HSO	HSO	\mathbf{EBF}	EBF	ENF	ENF	GRA	EBF	ENF	GRA	WET	ENF	GRA	DNF	SAV	DBF	HSO	HSO	DBF	HSO	GRA	SAV	DBF
Years	2001 - 2013	2002 - 2011	2004-2017	2003 - 2010	2012 - 2014	2006 - 2009	2004 - 2005	2004 - 2014	2004 - 2014	1996 - 2014	1996 - 2014	2000-2014	1996 - 2014	2005 - 2014	2000 - 2014	2008-2012	2007 - 2009	2004-2013	2004 - 2014	2011 - 2014	2003 - 2014	1999-2012	1999-2012	2003 - 2009	1996 - 2014	2007 - 2009	2002 - 2005	1998 - 2014	2002 - 2004	2012 - 2014	2005 - 2009	1999-2014	2008-2014	2005 - 2009	1999-2014	2008-2014	2004 - 2014	2000-2013	2007–2009
Elevation	1200	88	425	382	260	82	4313	875	478	385	40	38	181	103	270	58	2267	1600	48	124	1353	9	2160	147	25	68	9	265	446	246	500	275	950	2069	520	1370	1531	359	1053
Longitude	148.1517	54.9589	-111.5748	74.3421	80.5577	11.6564	91.0664	18.5369	13.5224	13.5652	11.6446	-20.5545	24.2948	2.7801	3.5957	-2.2523	2.9658	-2.7521	52.9249	2.6942	11.2813	10.2844	7.5781	102.3062	5.7436	79.6314	161.3414	32.9221	90.0022	129.1680	30.4783	-86.4131	-110.8395	-106.8024	90.0799	-110.0522	109.9419	31.4969	23.2528
Latitude	35.6566	2.8567	64.8689	49.6925	42.6353	4.2892	30.4978	49.5021	50.8931	50.9624	55.4859	74.4733	61.8474	48.4764	43.7413	36.8336	37.0979	36.9266	5.2788	5.2685	45.9562	43.7279	45.8444	2.9730	52.1666	9.3138	68.6130	56.4615	54.7252	62.2550	13.2829	39.3232	31.9083	41.3966	45.8059	31.7438	31.7365	25.0197	15.4378
Site name	Tumbarumba	Santarem-Km67-Primary Forest	Daring Lake - Mixed Tundra	Quebec – E. Boreal, Mature Black Spruce	Ontario – Turkey Point Mature Deciduous	Tchizalamou	Dangxiong	Bily Kriz forest	Klingenberg	Tharandt	Sorø	Zackenberg Heath	Hyytiälä	Fontainebleau-Barbeau	Puéchabon	Amoladeras	Laguna Seca	Llano de los Juanes	Guyaflux (French Guiana)	Ankasa	Lavarone	San Rossore	Torgnon	Pasoh Forest Reserve	Loobos	Sardinilla-Pasture	Cherski	Fyodorovskoye	Hakasia steppe	Yakutsk Spasskaya Pad larch	Demokeya	Morgan Monroe State Forest	Santa Rita Creosote	Saratoga	Willow Creek	Walnut Gulch Lucky Hills Shrub	Walnut Gulch Kendall grasslands	Skukuza	Mongu
Site ID	AU-Tum	BR-Sa1	CA-DL1	CA-Qfo	CA-TPD	CG-Tch	CN-Dan	CZ-BK1	DE-Kli	DE-Tha	DK-Sor	DK-ZaH	FI-Hyy	FR-Fon	FR-Pue	ES-Amo	ES-LgS	ES-LJu	GF-Guy	GH-Ank	IT-Lav	IT-SRo	IT-Tor	MY-PSO	NL-Loo	PA-SPs	RU-Che	RU-Fyo	RU-Ha1	RU-SkP	SD-Dem	US-MMS	US-SRC	US-Sta	US-WCr	US-Whs	US-Wkg	ZA-Kru	ZM-Mon

IGBP land classification abbreviations used include evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), savanna (SAV), deciduous broadleaf forest (DBF),

grassland (GRA), cropland (CRO), open shrubland(OSH), closed shrubland (CSH), permanent wetland (WET), and deciduous needleleaf forest (DNF).

(PML; Y. Zhang et al. (2016)) model. Of the remote-sensing-based global ET models, 282 PM-MOD is one of the most widely used (for example in the MODIS ET product MOD16). 283 Unlike other Penman-Monteith-based models, PM-MOD determines the surface and aero-284 dynamic resistances without using soil moisture or wind speed inputs. Its resistance pa-285 rameters have, however, been calibrated using EC towers, which is not required for GLEAM 286 and PT-JPL (Miralles et al., 2016). GLEAM determines the ET components based on 287 Priestley and Taylor (1972) apart from interception losses, which use Gash (1979)'s an-288 alytical model driven by precipitation observations (Miralles et al., 2016). Despite us-289 ing the same forcing datasets to drive PM-MOD, GLEAM and PT-JPL, where input re-290 quirements overlapped, differences in modelled ET and its component fluxes were large 291 (Miralles et al., 2016). Compared to the other two models and data from ERA-Interim 292 reanalysis (Dee et al., 2011) and the model tree ensemble (MTE; Jung et al. (2009, 2010)) 293 product, which uses a machine-learning algorithm trained on FLUXNET data, PM-MOD 294 tends to underestimate ET, especially in the tropics and dry subtropical regions, apart 295 from in the Northern high-latitudes (Miralles et al., 2016). In high latitudes, GLEAM 296 and PT-JPL had lower ET than PM-MOD likely due to deficiencies in the Priestley-Taylor 297 approach when available energy is low (Miralles et al., 2016). Partitioning of ET into 298 E_s , E_c and T largely differs between the models with T being much lower in PM-MOD 299 and E_s and E_c higher than in the other two models (Miralles et al., 2016). PM-MOD's 300 T/ET of 0.24 is an outlier compared with the other observation-based estimates (see Sec-301 tion 3.2), which might in part be due to its underestimation of ET in the tropics and dry 302 sub-tropics, which tend to contribute the most to global T (Schlesinger & Jasechko, 2014). 303 PM-MOD also shows relatively high E_s in tropical regions, where GLEAM and PT-JPL 304 show very little E_s . E_c 's contribution to ET is also much larger on average in PM-MOD 305 with 24% compared to 18% in PT-JPL and 10% in GLEAM (Miralles et al., 2016) and 306 PML (Y. Zhang et al., 2016). 307

308 **3 Results**

309 3.1 Site-level results

Baseline CLASSIC simulations at a selection of FLUXNET sites (Table 2) showed 310 an overestimation of LE compared with eddy covariance measurements at sparsely veg-311 etated sites such as open shrublands (e.g., ES-Amo, ES-LJu, US-Sta) during wet peri-312 ods and an underestimation of LE during the peak growing season or drier periods at 313 these sites (Figure 2 and B3). During wet periods, when LE was overestimated, H was 314 underestimated (Figure B4). During dry periods, on the other hand, H was overestimated 315 compared to observations. The ground heat flux (G; Figure B5) also tended to be over-316 estimated at these sites, especially during summer. The overestimation of LE led to a 317 strong reduction in soil moisture in the top layer (Figure B6). Thus, GPP was reduced 318 and underestimated during the peak growing season at several open shrubland or grass-319 land sites (e.g., ES-LJu, US-SRC, ES-Amo; Figure 2 and B2). 320

The DSL simulations mainly affected LE with statistically significant (t-test, p < p321 (0.01) differences between the bias in the DSL simulation and the bias in the Baseline sim-322 ulation (Figure B8) at sparsely vegetated sites such as open shrubland sites with a large 323 bare ground area (e.g., ES-Amo, ES-LgS, ES-LJu, US-Sta, US-SRC, US-Whs), where 324 the DSL parameterization reduced LE during wet periods and increased LE during dry 325 periods (Figure 2 and B3). Thus, the DSL simulations eliminated or reduced overesti-326 mation of LE during wet times and the simulated seasonal cycle of LE more closely rep-327 resented observations at these sites. The reduction in LE in the wet season led to an in-328 crease in soil moisture of the top layer (Figure B6) and thus to higher GPP later in the 329 year (Figure 2 and B2). At the majority of sites, G was only minimally affected (Fig-330 ure B5). 331

The DSL-EcT modifications affected LE at both sparsely vegetated sites as well 332 as sites with high LAI (e.g., every every every sites; Figures 2, B3, B7 and B8). As in the 333 DSL simulations, LE at the sparsely vegetated sites was reduced during wet periods and 334 increased during dry periods due to the DSL parameterization (Figure 2). Effects of the 335 E_c and T partitioning modifications on LE at the open shrubland sites were minor, while 336 LE at densely vegetated sites such as tropical forests in Brazil (BR-Sa1) or French Guiana 337 (GF-Guy) was more strongly impacted (Figure B3). At the sites where LE increased in 338 the DSL-EcT simulations (mainly denser forest sites), H decreased (Figure B4). For the 339 more sparsely-vegetated sites, on the other hand, H slightly increased, especially dur-340 ing wetter periods. The effect on G at each site was minimal (Figure B5). The E_c and 341 T partitioning modifications resulted in slightly lower GPP than for the DSL simulation, 342 as LE increased and the liquid water content of the top soil layer $(\theta_{l,1})$ decreased. 343

Biases in simulated daily LE and GPP compared to observations for the FLUXNET 344 sites were reduced in the DSL and DSL-EcT simulations compared to the Baseline sim-345 ulations at several of the sites (Figure 3 and 4). Averaged over all the sites, the mean 346 absolute error (MAE) and root mean square error (RMSE) in LE were reduced in the 347 DSL-EcT simulations compared to the Baseline with a decrease in mean MAE of 5% and 348 in mean RMSE of 4% (Figure 3). T-tests showed that the majority of sites showed sta-349 tistically significant differences (p < 0.01) between daily simulated and observed LE and 350 GPP for all model configurations (Figure 3 and 4). The magnitude of reduction in MAE 351 and RMSE varied between sites. 352

Figure 2: Monthly mean observed and simulated latent heat flux (LE) and gross primary productivity (GPP) for a selection of FLUXNET sites (showing different biomes and climates) for the Baseline, DSL and DSL-EcT simulations (Table 1). All sites are shown in Figures B2 and B3. The shading shows the standard deviation over the available years. Site names, their biomes and years of measurements used are listed for each site (for more details see Table 2). For some sites, the results from the different simulations and observations are overlapping and lines may be difficult to distinguish.

Figure 3: Mean absolute error (MAE, W m⁻²), root mean square error (RMSE, W m⁻²) and p value (determined using an independent two-sided t-test) between the observed and simulated daily latent heat flux (LE) for the FLUXNET sites (Table 2) for the Baseline, DSL and DSL-EcT simulations (Table 1). For MAE and RMSE, values closer to zero indicate better model performance.

Figure 4: Mean absolute error (MAE, g C m⁻² day⁻¹), root mean square error (RMSE, g C m⁻² day⁻¹) and p value (determined using an independent two-sided t-test) between the observed and simulated daily gross primary productivity (GPP) for the FLUXNET sites (Table 2) for the Baseline, DSL and DSL-EcT simulations (Table 1). For MAE and RMSE, values closer to zero indicate better model performance.

3.2 Global results

353

For the baseline CLASSIC simulations, the largest contribution to global ET comes 354 from E_s (39.5%), followed by E_c (34.6%) and T (25.9%) (Figure 5). Results shown in 355 Figure 5 focus on simulations using one land cover and one meteorological forcing dataset 356 as the results were similar across the simulations using different land cover and mete-357 orological forcing. The ET partitioning in baseline CLASSIC results in a lower T/ET358 ratio than estimates from isotope, remote sensing (apart from the PM-MOD algorithm, 359 which is an outlier compared to other remote sensing-based estimates as discussed in Sec-360 tion 2.4) or site measurements as well as several other process-based models suggest (Fig-361 ure 6). Total global GPP, LE and H are within the uncertainty bounds of observation-362 based estimates (Figure C1a-f). Low productivity regions such as the southwestern United 363

States, southern Australia, southern South America, however, show very low to zero GPP. Due to the low GPP, E_s exceeds E_c and T in these regions (not shown).

Implementing the DSL parameterization changes CLASSIC's ET partitioning by 366 significantly reducing E_s (t-test, p < 0.01) and increasing E_c (t-test, p = 0.013) and T 367 (t-test, p < 0.01) compared to baseline CLASSIC (Figure 5). As T increased and ET 368 decreased, global T/ET significantly increased (t-test, p < 0.01) from ~0.25 on average 369 (taken across the simulations listed in Table 1) in baseline CLASSIC to ~ 0.30 in the DSL 370 simulations (Figure 6). Slightly increased T in the DSL simulations was due to an in-371 372 crease in GPP, especially in arid and semi-arid regions, where E_s was reduced and soil moisture available to the vegetation increased. 373

Combining the DSL parameterization with the modifications to E_c and T parti-374 tioning resulted in slightly increased ET (t-test, p < 0.01), a reduction in E_s (t-test, p 375 < 0.01), a slight decrease in E_c (t-test, p < 0.01) and an increase in T (t-test, p < 0.01) 376 (Figure B9). Thus, the T/ET ratio is significantly higher (t-test, p < 0.01) for the DSL-377 EcT simulations than the CEVAP simulations by 0.15 - 0.17 depending on the land cover 378 and meteorological forcing (Table B1 and Figure 5). The DSL-EcT modifications decreased 379 both E_s and E_c while increasing T (all statistically significant, t-test, p < 0.01). Despite 380 differences in the water fluxes between simulations using the different forcings (see Fig-381 ure B9 and Section 2.3), the modified CLASSIC versions changed ET and its partition-382 ing more than the different forcing datasets did (Figure 5 and Table B1). The T/ET for 383 the DSL-EcT simulations remained lower than several observation-based estimates us-384 ing isotopes, other site measurements or remote sensing algorithms (except PM-MOD) 385 suggest, but was closer to estimates from other models and is close to the CMIP5 en-386 semble mean value of 0.41 (Lian et al., 2018). 387

As CLASSIC's T/ET remained low compared to observations and some other LSMs, 388 we considered further options to improve its ET partitioning. Lian et al. (2018) suggested 389 that the simulation of T/ET in ESMs could be improved by taking into account the dif-390 fuse fraction of incoming radiation, as it would affect the photosynthetic activity of shaded 391 leaves and likely increase T. Including the diffuse radiation fraction using a 2-leaf pho-392 tosynthesis scheme instead of the big-leaf scheme in CLASSIC (Arora, 2003), however, 393 only had minor impacts on T and T/ET. Both increased by $\sim 2\%$, respectively, compared 394 to the big-leaf scheme without the diffuse radiation fraction in CLASSIC resulting in T/ET395 of 0.427 driven with CRUJRA and ESACCI. 396

GPP significantly increased (t-test, p < 0.01) in arid and semi-arid regions such 397 as the southwestern United States and Australia due to the modifications in ET parti-398 tioning while some densely vegetated areas (especially in the Tropics) showed a reduc-399 tion in GPP (Figure 7b). The majority of the regions where GPP increased in the DSL-EcT simulations showed an increase in H and a small reduction in LE (Figure 7d and 401 f) or ET, as the decrease in E_s (Figure 8b) exceeded the increases in E_c and T (Figure 402 8d and f). In areas with reduced GPP, H decreased and LE (Figure 7b, d and f) and 403 ET tended to increase, as E_s increased or decreased only slightly, E_c decreased moder-404 ately and T increased statistically significantly (t-test, p < 0.01; Figure 8d and f). In 405 tropical forests (here defined as areas between 25° S and 25° N with a leaf area index > 406 3 m² m⁻²), the DSL-EcT simulation mainly affects E_c and T while the change in E_s is 407 relatively small. In semi-arid regions, on the other hand, E_s and T are more strongly af-408 fected than E_c . 409

Figure 5: Partitioning of evapotranspiration (ET) into its components soil evaporation (E_s) , canopy evaporation (E_c) and transpiration (T) for the three different CLASSIC versions (see Section 2.3; Table 1). Percentages of E_s , E_c and T are global averages over 1997-2016 for simulations using the CRUJRA meteorological forcing and the ESACCI land cover. Total ET values for the different CLASSIC versions are shown below the pie charts.

Figure 6: Globally averaged T/ET from observation-based datasets (see Section 2.4) and different land surface or Earth System models (adapted from Wei et al. (2017)) alongside the versions of CLASSIC tested in our study (see Section 2.3). The "Hybrid" reference dataset uses site measurements, satellite-based observations, as well as land surface model (a complex physically based model i.e., the Community Land Model 4.5, the remote sensing-based Global Land Evaporation Amsterdam Model (GLEAM) and a simple biophysical model i.e., Penman-Monteith-Leuning Model; PML) outputs, to upscale site-level measurements of the ET components (Wei et al., 2017). For each of the CLASSIC versions (Table 1), the four points represent the results using a combination of the two different meteorological forcing datasets and the two land cover representations (Section 2.3). The horizontal displacement of the dots is just to allow each one to be visible.

Figure 7: Geographic distribution of annual gross primary productivity (GPP), latent (LE) and sensible (H) heat flux averaged over 1997-2016 for the DSL-EcT simulation (a, c, e) and the difference between the DSL-EcT and Baseline simulations (b, d, f) using the CRUJRA meteorological forcing and the ESACCI land cover. Grid cells with dots indicate that differences are statistically significant (independent two-sample t-test p level < 0.01).

Figure 8: Geographic distribution of soil evaporation (E_s) , canopy evaporation (E_c) and transpiration (T) averaged over 1997-2016 for the DSL-EcT simulation (a, c, e) and the difference between the DSL-EcT and Baseline simulations (b, d, f) using the CRUJRA meteorological forcing and the ESACCI land cover. Grid cells with dots indicate that differences are statistically significant (independent two-sample t-test p level < 0.01)

Parameter values which determine the DSL thickness (z_{max} and K; Equations A12 and A13) and the interception capacity of the canopy (the maximum storage of liquid water; p_l , Equation A31) are uncertain. To investigate how the chosen parameter values impact simulated energy fluxes and GPP, we conducted a sensitivity analysis with global simulations. The simulations demonstrated that LE has the opposite response to H and GPP as K, z_{max} and p_l are changed (Figure 9). Changing K or p_l affected LE,

H and GPP more than changes in z_{max} . Of the ET components, E_s is most affected by 416 changes in K and z_{max} , while changes in p_l affected E_c the most. Changes in ET par-417 titioning due to a modified p_l were relatively small, however. A reduction in p_l by 50% 418 from 0.2 kg m⁻² to 0.1 kg m⁻² reduced E_c/ET only by 15% and increased E_s/ET and 419 T/ET by 7% and 6%, respectively. Thus, even with a significantly reduced interception 420 capacity, CLASSIC simulated an E_c that still contributed 25% of ET, which is higher 421 than GSWP-2 (16%) (Dirmeyer et al., 2006) and CLM4 (20%) (D. M. Lawrence et al., 422 2011), while T was 44% of ET. 423

Figure 9: Percentage change in LE, H and GPP (top) and in E_s , E_c and T (bottom) with change in the parameters K, maximum DSL thickness (z_{max}) and the maximum storage of liquid water (p_l) in the sensitivity simulations performed using CLASSIC with the DSL-EcT configuration.

424 4 Discussion

The original CLASSIC version had unreasonably low T/ET compared to most observation-425 based estimates (see Section 2.4 and Figure 6) and other LSMs with a global mean value 426 of 0.25 ± 0.01 (mean \pm standard deviation of the ensemble of four simulations using two 427 meteorological forcings and two land cover representations; Table B1). Similar to results 428 of Swenson and Lawrence (2014) using the Community Land Model (CLM), implement-429 ing a DSL parameterization in CLASSIC increased the resistance to E_s , improved sim-430 ulated ET and increased productivity in arid / semi-arid regions (Figures 2 and 7b). In 431 areas, where the original β formulation (Equation A20) simulated high E_s , which reduced 432 soil moisture availability later in the growing season, the DSL parameterization gener-433 ally improved simulated LE and increased GPP, as there was more water available in the 434 root zone (Figures 2 and B6). This agrees with findings in other studies using different 435 models such as Swenson and Lawrence (2014) (CLM4.5) and Decker et al. (2017) (CA-436 BLE). Inclusion of a DSL parameterization alone increased CLASSIC's global T/ET to 437 0.30 ± 0.01 from 0.25 ± 0.01 in baseline CLASSIC. A further modification which influ-438 ences the canopy fluxes, E_c and T, allowed T to occur from the dry portion of the canopy 439 while intercepted water is evaporating from the wet canopy fraction. This change increased 440 CLASSIC's global T/ET further to a value of 0.41 ± 0.01 . This value is lower than observation-441 based global estimates of 0.57 ± 0.07 (Wei et al., 2017), but it equals the CMIP5 ensem-442 ble mean (Lian et al., 2018) and is 0.16 higher than the baseline CLASSIC simulations. 443 Other models have been working on improving their T/ET ratio. For example, imple-444 mentation of a bare soil resistance term for dry soils in the ORganizing Carbon and Hy-445

drology in Dynamic Ecosystems (ORCHIDEE) LSM increased simulated T/ET at semi-446 arid shrub, grass and forest sites in the Southwestern US (MacBean et al., 2020). In the 447 Community Atmosphere Biosphere Land Exchange (CABLE) model, T/ET at several 448 FLUXNET sites was increased from an average value of 0.28 (ranging from 0.08 to 0.71449 depending on the site) to 0.70 (ranging from 0.29 to 0.84) by implementing pore-scale-450 based resistance formulations of E_s , which reduced overestimation of E_s (Decker et al., 451 2017). In CLM, global T/ET has been increased from 0.43 in CLM3.5, to 0.48 in CLM4, 452 which rises to 0.56 when the nitrogen (N) cycle is explicitly simulated, as ground evap-453 oration decreased from 39% to 32% and 23%, respectively (D. M. Lawrence et al., 2011). 454 To accomplish these increases in T/ET from CLM3.5 to CLM4 new litter resistance and 455 canopy turbulence functions were added, which increased the resistance to ground E when 456 litter was present and turbulent exchange was reduced under dense canopies. The dif-457 ferences in T/ET for the two versions of CLM4 (with and without the N cycle) are likely 458 due to a higher LAI with the N cycle explicitly simulated, which increased T and E_c and 459 reduced E_s (D. M. Lawrence et al., 2011). Our simulations with the modified DSL-EcT 460 CLASSIC, which had higher T and T/ET than the baseline CLASSIC, changed LAI re-461 gionally, showing a statistically significant (t-test, p value < 0.01) increase in LAI in arid/semi-462 arid regions and a decrease in some tropical forests. Global mean LAI, however, did not 463 appreciably change compared to the baseline CLASSIC and is higher than AVHRR and MODIS observations suggest in both simulations (Figure C1g and h). Comparing the 465 CLASSIC DSL-EcT against CLM4 (no N cycle) (D. M. Lawrence et al., 2011) show CLAS-466 SIC DSL-EcT to have lower T (48% CLM4, 41% CLASSIC DSL-EcT), similar E_s (32% 467 CLM4, 30% CLASSIC DSL-EcT) and higher E_c (20% CLM4, 29% CLASSIC DSL-EcT). 468 The Global Soil Wetness Project Phase 2 (GSWP-2) multi-model mean (including thir-469 teen land surface models; see Dirmeyer et al. (2006)) contributions to ET were 48% T, 470 $36\% E_s$ and $16\% E_c$ (Dirmeyer et al., 2006). Variability between global estimates of the 471 ET components from CLM4, GSWP-2 and other models such as GLEAM, PT-JPL and 472 PM-MOD (Miralles et al., 2016) is large and uncertainties are high (see Section 2.4). Com-473 pared against observation-based estimates and other models, however, E_c remains too 474 high in CLASSIC DSL-EcT while T is too low. As our parameter sensitivity tests (Sec-475 tion 3.2 and Figure 9) showed, the higher E_c is in part due to a higher maximum stor-476 age of liquid water (p_l) compared with CLM4 and a lower p_l of 0.1 kg m⁻² would reduce 477 CLASSIC's E_c to ~25% of ET from 29%. Measurements of maximum water storage per 478 leaf area index show large variability depending on the ecosystem, vegetation species and 479 stand age with values ranging from 0.14 to 0.88 mm (Hadiwijaya et al., 2021), which sug-480 gest that a p_l of 0.1 kg m⁻² could be too low. 481

In order to improve the simulation of the different ET components and especially 482 T/ET in LSMs or ESMs, further processes have been highlighted as potentially impor-483 tant in other studies using different models. Chang et al. (2018) found that simulated 484 T/ET of a subhumid, mountainous catchment improved when an empirical resistance 485 formulation to E was replaced by a process-based soil surface resistance parameteriza-486 tion, and lateral flow, redistributing precipitation in mountainous terrain, was included 487 in a process-based ecohydrological model. Here, we have included a process-based sur-488 face resistance parameterization through the simulation of the DSL, however, terrain-489 driven lateral flow is not included in CLASSIC. Its inclusion could improve T/ET fur-490 ther, as lateral flow affects soil moisture along hillslopes resulting in drier surfaces on up-491 per slopes suppressing E more than T (Chang et al., 2018). Water redistribution in semi-492 arid ecosystems, however, is complex and in addition to lateral flow, local microtopog-493 raphy and biocrusts forming on bare soils can affect runoff and channel water to vege-494 tated patches, where it infiltrates more easily and increases productivity (Chen et al., 495 496 2013; Rodríguez-Caballero et al., 2018). Another issue observed in LSMs is that root growth and distribution and interactions between soil moisture and root dynamics are often not 497 adequately represented (Chang et al., 2018; P. Wang et al., 2018). P. Wang et al. (2018) 498 showed that a dynamic root scheme combined with the simulation of the ground water 499 table implemented in the Noah LSM, where root dynamics depend on fluctuating ground-500

water levels, improves simulation of root water uptake and latent heat fluxes in arid or 501 semi-arid regions. During growing season periods when the water table declines, roots 502 extract water from the saturated zone or directly from groundwater. In forests with deep 503 roots, for example, ground water dynamics can impact energy, water and carbon fluxes 504 as well as simulated soil moisture (De Pue et al., 2022; MacBean et al., 2020; Decharme 505 et al., 2019). Including groundwater recharge from an aquifer in Niu et al. (2007) was 506 shown to increase soil moisture and ET especially in transition areas from arid to wet 507 regions (e.g., riparian zones in arid regions). The simulation of seasonal drought effects 508 in LSMs or ESMs was found to be improved by combining the representation of ground-509 water replenishment from an aquifer with lateral flow and dynamic root distributions 510 instead of commonly used static, prescribed root profiles (P. Wang et al., 2018). Uncer-511 tainties in pedotransfer functions, which are used to determine soil physical properties, 512 also affect the ability of LSMs to adequately represent soil moisture (De Pue et al., 2022). 513 Simulated soil moisture and infiltration might be improved by incorporating improved 514 pedotransfer functions (Gupta et al., 2021; Pinnington et al., 2021), which depend on 515 climatology and land use in addition to soil texture (Fatichi et al., 2020; Vereecken et 516 al., 2019). Simulated drought response can also be improved by implementing a plant 517 hydraulics scheme, which determines g_c based on xylem hydraulics instead of using an 518 empirical moisture stress function (Eller et al., 2018). Especially under extreme climatic 519 conditions or a changing climate, process-based models of g_c can improve simulated wa-520 ter fluxes during droughts. Eller et al. (2018) showed that their hydraulics-based q_c model 521 was able to better represent effects of drought on T of tropical forests during El Niño 522 events than an empirical drought scheme. 523

Future work, which would likely improve ET partitioning in CLASSIC and sim-524 ulated T/ET, could include the representation of terrain-dependent lateral flow, plant 525 hydraulics and possibly modifications to canopy interception such as inclusion of wind-526 driven loss of intercepted water or snow which increases throughfall (Véliz-Chávez et al., 527 2014). As Dong et al. (2022) attributed a warm bias in the central US in CMIP6 mod-528 els, which CanESM exhibits as well, to low ET and T/ET, we are also planning to in-529 vestigate the effects of the DSL and E_c -T partitioning modifications in the ESM CanESM 530 to determine their effects on land C and water fluxes as well as the climate, when the 531 land and the atmosphere interact. 532

533 5 Conclusions

LSMs often show poor ET partitioning with positive biases in E and negative bi-534 ases in T, resulting in an underestimation of T/ET (Chang et al., 2018; Lian et al., 2018). 535 These biases impact the simulation of C cycle processes. For example, we found that over-536 estimation of E_s during periods of high soil moisture in sparsely vegetated areas such 537 as low-latitude shrublands resulted in excessive plant water stress during the growing 538 season and depressed GPP in CLASSIC simulations. To address CLASSIC's bias in E_s , 539 we implemented a dry surface layer (DSL) parameterization that increases the surface 540 resistance to water vapour and heat fluxes. To further improve simulated T, T is now 541 allowed to occur from the dry fraction of the plant canopy at the same time as water evap-542 orates from the wet fraction, which previously did not allow T when a canopy was even 543 a small fraction wet. After these modifications, in arid and semi-arid regions E_s and ET 544 were reduced during wet periods leading to improved seasonality of ET and an increase 545 in GPP. However, the impact of our modifications globally was for GPP to decrease slightly 546 $(\sim 1.6\%)$ compared to the baseline CLASSIC simulations as a result of increased T and 547 ET and drier soils in other biomes including seasonally dry tropical forests. Globally, the 548 proportion of T relative to ET was improved compared to observations with an increase 549 from $\sim 25\%$ in baseline CLASSIC to $\sim 41\%$ in the DSL-EcT simulations. As the simu-550 lated global T/ET of 0.41 remains lower than observation-based estimates of 0.57 \pm 0.07 551 (Wei et al., 2017), possible future improvements to CLASSIC include implementing terrain-552

driven lateral flow redistributing water, and including a plant hydraulics-based g_c scheme instead of an empirical moisture stress function to improve the representation of plant water use and the vegetation's response to drought stress. Improvements in ET partitioning in LSMs and ESMs are important to simulate carbon and water fluxes well in historical and especially future simulations, as warmer climates are expected to enhance water cycles and impact ESM climate simulations.

559 Appendix A

560

A1 Evapotranspiration parameterization

ET is the sum of E_s , E_c and T. E_s consists of E originating from bare soil and from soil underneath the vegetation canopy. The potential evaporation rate from bare soil, E(0) (mm s⁻¹), is calculated as

$$E(0) = \rho_a C_{DH} v_a (q(0) - q_a), \tag{A1}$$

where ρ_a is the air density (kg m⁻³), C_{DH} the stability-dependent surface drag coefficient for heat (unitless), v_a the wind speed at the reference height (m s⁻¹), q(0) the specific humidity at the surface (kg kg⁻¹) and q_a the specific humidity at the reference height (kg kg⁻¹) (Verseghy, 2017). The saturated surface specific humidity, $q(0)_{sat}$ (kg kg⁻¹), q_a , and the surface evaporation efficiency (β ; unitless; Equation A20) are used to determine q(0) as

$$q(0) = \beta q(0)_{sat} + (1 - \beta)q_a.$$
(A2)

The surface evaporation rate is limited to a maximum value, $E(0)_{\text{max}} \pmod{\text{s}^{-1}}$ determined by the water content of the top soil layer (θ_1 ; m³ m⁻³) and the depth of water ponded on the surface (Z_p , m) as

$$E(0)_{max} = \rho_w \left[Z_p + (\theta_1 - \theta_{min}) \Delta Z_1 \right] / \Delta t, \tag{A3}$$

with the density of water ρ_w (kg m⁻³), the depth of the top soil layer ΔZ_1 (e.g. 0.10 m) and the time interval Δt (s) (typically 900-1800 s for CLASSIC) (Verseghy, 2017). θ_{min} (m³ m⁻³) is the residual soil liquid water content remaining after freezing or evaporation. This is set to 0.04 m³ m⁻³ for mineral and fibric organic soils and 0.15 and 0.22 m³ m⁻³ for hemic and sapric organic soils, respectively. Underneath the vegetation, the maximum surface evaporation rate, $E(0)_{\max,c}$ (mm s⁻¹), is determined as

$$E(0)_{max,c} = \rho_w(\theta_1 - \theta_{min})\Delta Z_1/\Delta t.$$
(A4)

The potential evaporation rate from soil under the vegetation, $E(0)_c \text{ (mm s}^{-1})$, is calculated as

$$E(0)_c = \frac{\rho_a}{r_{a,g}}(q(0) - q_{a,c}), \tag{A5}$$

where $q_{a,c}$ is the specific humidity of the canopy air (kg kg⁻¹) and $r_{a,g}$ (s m⁻¹) is the surface resistance, whose inverse is derived from Deardorff (1972) as

$$\frac{1}{r_{a,g}} = 1.9 \times 10^{-3} (T(0)_v - T_{ac,v})^{1/3}, \tag{A6}$$

with the virtual potential temperature at the surface $(T(0)_v; K)$ and of the canopy air $(T_{ac,v}; K)$ and the constant 1.9×10^{-3} in m s⁻¹ K^{-1/3}. The evapotranspiration rate from the vegetation (ET_c; mm s⁻¹), i.e., the sum of E_c and T, which is equivalent to the latent heat flux from the vegetation canopy divided by the latent heat of vaporization, is calculated as

$$\mathrm{ET}_{\mathrm{c}} = \rho_a \frac{q_c - q_{a,c}}{r_b + r_c},\tag{A7}$$

where q_c is the saturated specific humidity at the canopy temperature (kg kg⁻¹), r_b the leaf boundary layer resistance (s m⁻¹) and r_c the stomatal resistance (s m⁻¹). The relative contributions from E or T differ depending on the circumstances in the model. If

there is snow on the canopy, ET_c is limited to the intercepted snow amount and is in the form of E_c through sublimation. If instead, the canopy has liquid water upon it, the calculated ET_c is first drawn from the amount of liquid water stored on the canopy (W_l ; kg m⁻²). If that amount is insufficient to satisfy the calculated ET_c , T is possible after checking there is enough soil water available in the root zone. E_c is then set to W_l and the remainder of ET_c is allocated to T. Thus, T only occurs, when there is no water available on the canopy and enough soil water is available, i.e., the liquid water content (θ_l ; m³ m⁻³) exceeds θ_{min} for the respective soil layer. Based on Bonan (1996); McNaughton and Van Den Hurk (1995), the inverse of r_b is calculated as

$$1/r_b = v_{ac}^{1/2} \sigma f_i \gamma_i \text{PAI}^{1/2} / 0.75 [1 - \exp(-0.75 \text{PAI}^{1/2})]$$
(A8)

with the wind speed in the canopy air space v_{ac} , the fractional coverage of each PFT f_i , the PFT-dependent parameter describing leaf dimension γ_i (unitless), and the plant area index (PAI). By default, CLASSIC uses Leuning (1995)'s stomatal conductance (g_c ; mol CO₂ $m^{-2}s^{-1}$) formulation (details in Arora (2003); Melton and Arora (2016)) and g_c is calculated as

$$g_c = m \frac{G_{canopy,net} p}{(c_s - \Gamma)} \frac{1}{(1 + \text{VPD}/V_o)} + b \text{ LAI},$$
(A9)

where $G_{canopy,net}$ is the net canopy photosynthesis rate (mol CO₂ m⁻² s⁻¹), p is the surface atmospheric pressure (Pa) and Γ is the CO₂ compensation point (Pa). The parameter m (unitless) is 9.0 for needle-leaf trees, 12.0 for other C_3 plants and 6.0 for C_4 plants, b is set to 0.01 mol $m^{-2}s^{-1}$ for C_3 and 0.04 mol $m^{-2}s^{-1}$ for C_4 plants. The parameter V_o has values of 2000 Pa for trees and shrubs and 1500 Pa for crops and grasses. The partial pressure of CO₂ at the leaf surface, c_s (Pa), depends on the atmospheric CO₂ partial pressure c_{ap} (Pa), $G_{canopy,net}$ and the aerodynamic conductance g_b (mol CO₂ m⁻² s⁻¹) and is defined as

$$c_s = c_{ap} - \frac{1.37 \ G_{canopy,net} \ p}{q_b}.$$
 (A10)

The units of g_c and g_b can be converted from mol CO₂ m⁻² s⁻¹ to m s⁻¹ using

$$g_c(\text{m s}^{-1}) = 0.0224 \frac{T_c}{T_f} \frac{p_0}{p} g_c(\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}),$$
 (A11)

with the standard atmospheric pressure $p_0 = 101$ 325 Pa and the freezing temperature $T_f = 273.16$ K.

563

A2 Determination of the dry surface layer thickness

To avoid numerical instabilities due to thin soil layers, CLASSIC uses a 10 cm thick top soil layer. In reality, soil moisture can vary strongly within the top 10 cm of soil, especially during extended dry periods where a thin layer at the top of the soil surface gets very dry while the soil below stays moist (Goss & Madliger, 2007; Kurc & Small, 2004; Li et al., 2020). To approximate the effects of this thin dry layer on surface water and energy fluxes, a DSL parameterization is implemented in CLASSIC following Swenson and Lawrence (2014). Their DSL parameterization determines when a DSL is present, its thickness, and the resulting surface resistance to evaporation. The formation of a DSL is initiated when the soil moisture of the top soil layer falls below a defined moisture threshold, θ_{DSL0} (m³ m⁻³), which is determined as

$$\theta_{DSL0} = K\theta_{p,1},\tag{A12}$$

where $\theta_{p,1}$ is the porosity of the top soil layer (m³ m⁻³) and K is a constant (unitless), here with a value of 0.8 following Swenson and Lawrence (2014). The thickness of the DSL (m) is calculated as

$$DSL = \begin{cases} z_{max} \frac{\theta_{DSL0} - (\theta_{l,1} + \theta_{ice,1})}{\theta_{DSL0} - \theta_{air}} & \text{for } \theta_{l,1} + \theta_{ice,1} < \theta_{DSL0} \\ 0 & \text{for } \theta_{l,1} + \theta_{ice,1} \ge \theta_{DSL0}, \end{cases}$$
(A13)

where z_{max} is the maximum DSL thickness (m), here set to 0.015 m. As the liquid (θ_l) and frozen (θ_{ice}) water contents of the bare ground and ground under canopy subareas can differ in CLASSIC, the DSL thickness and the resistance to evaporation are calculated separately for these two subareas. The "air-dry" soil moisture value (θ_{air}) was determined following Dingman (2002) as

$$\theta_{air} = \theta_{p,1} \left(\frac{\Psi_{sat,1}}{\Psi_{air}} \right)^{\frac{1}{b}} \tag{A14}$$

with the saturated soil matric potential Ψ_{sat} (m), the air-dry matric potential $\Psi_{air} = 10^4$ m (Swenson & Lawrence, 2014) and the Clapp and Hornberger empirical soil water characteristic "b" parameter (unitless). The soil resistance to evaporation from bare ground or the ground under the canopy R_{soil} (s m⁻¹) is determined as

$$R_{soil} = \frac{DSL}{\tau D_v},\tag{A15}$$

where D_v (m² s⁻¹) is the molecular diffusivity of water vapour in the air and calculated as (D. M. Lawrence et al., 2020)

$$D_v = 2.12 \times 10^{-5} \left(\frac{T_1}{273.15}\right)^{1.75},\tag{A16}$$

where T_1 is the temperature of the top soil layer (K). τ (m³ m⁻³) in Equation A15 is the tortuosity of the vapour flow paths through the soil and determined following Moldrup et al. (2003) as

$$\tau = \Phi_{air}^2 \left(\frac{\Phi_{air}}{\theta_{p,1}}\right)^{3/b} \tag{A17}$$

with the air-filled pore space Φ_{air} (m³ m⁻³) calculated as

$$\Phi_{air} = \theta_{p,1} - \theta_{air}.\tag{A18}$$

A3 DSL effect on surface evaporation

An increasing thickness of the DSL acts to decrease surface evaporation and thus the latent heat flux in CLASSIC through a decrease in the surface evaporation efficiency (β ; unitless). β has a value between 0 and 1, where a value of 1 means that the specific humidity at the surface equals the saturated surface specific humidity and does not limit E, i.e. a DSL thickness of 0, whereas a β value of 0 means no surface evaporation can occur. β is calculated as the minimum, more limiting value, between the soil evaporation efficiency (R_{soil} ; Equation A15) derived from the DSL thickness and that calculated by using CLASSIC's original soil evaporation efficiency (Meyer et al., 2021; Merlin et al., 2011) (CEVAP), which limits β values below 1 except when soils are fully saturated when the value can be 1.

$$\beta = \min\left(\frac{1}{C_{DH}v_a R_{soil} + 1}, \text{CEVAP}\right).$$
(A19)

CEVAP is defined as

564

$$CEVAP = \begin{cases} 0 & \text{for } \theta_{l,1} < \theta_{min} \\ 0.25(1 - \cos(\pi \theta_{l,1}/\theta_{p,1}))^2 & \text{for } \theta_{min} < \theta_{l,1} \le \theta_{p,1}. \end{cases}$$
(A20)

⁵⁶⁵ When there is snow or ponded water on the surface, β is set to 1 and q(0) is set to $q(0)_{sat}$. ⁵⁶⁶ Equation A19 gives a β that is constrained to CEVAP, when the soil is too moist for a ⁵⁶⁷ DSL to develop. Figure 1 shows an example of the soil evaporation efficiency determined ⁵⁶⁸ using the original CEVAP parameterization as well as the calculation using the resistance ⁵⁶⁹ due to the DSL and the minimum of the two parameterizations for a range of liquid wa-⁵⁷⁰ ter content values of the top soil layer.

A4 DSL effect on the thermal conductivity

In CLASSIC, the soil thermal conductivity (λ_{soil} ; W m⁻¹ K⁻¹) is determined from the saturated thermal conductivity (λ_{sat} ; W m⁻¹ K⁻¹), the dry thermal conductivity (λ_{dry} ; W m⁻¹ K⁻¹) and a relative thermal conductivity (λ_r ; unitless; ranging from 0 for dry soils to 1 for saturated soils) following Côté and Konrad (2005) (Verseghy, 2017)

$$\lambda_{soil} = \lambda_r (\lambda_{sat} - \lambda_{dry}) + \lambda_{dry}. \tag{A21}$$

An empirical coefficient κ (unitless), which differs for frozen ($\kappa = 1.2, 0.85$, and 0.25 for coarse mineral, fine mineral, and organic soils, respectively) and unfrozen ($\kappa = 4.0, 1.9$, and 0.6 for coarse mineral, fine mineral, and organic soils, respectively) soils, and the degree of saturation (S_r ; unitless) determine λ_r

$$\lambda_r = \frac{\kappa S_r}{1 + S_r(\kappa - 1)},\tag{A22}$$

where

$$S_r = \frac{\theta_{l+ice}}{\theta_p}.$$
 (A23)

 λ_{dry} depends on θ_p and is calculated as

$$\lambda_{dry} = \begin{cases} 0.75 \ exp(-2.76 \ \theta_p) & \text{for mineral soil} \\ 0.30 \ exp(-2.00 \ \theta_p) & \text{for organic soil.} \end{cases}$$
(A24)

The thermal conductivities of liquid water ($\lambda_l = 0.57 \text{ W m}^{-1} \text{ K}^{-1}$), ice ($\lambda_{ice} = 2.24 \text{ W} \text{ m}^{-1} \text{ K}^{-1}$) and the soil particles (λ_s ; W m⁻¹ K⁻¹; values are 2.5 W m⁻¹ K⁻¹ for sand and clay and 0.25 W m⁻¹ K⁻¹ for organic matter) determine λ_{sat} following De Vries (1963) as

$$\lambda_{sat} = \begin{cases} \lambda_l \theta_p + \lambda_s (1 - \theta_p) & \text{for unfrozen soil} \\ \lambda_{ice} \theta_p + \lambda_s (1 - \theta_p) & \text{for frozen soil.} \end{cases}$$
(A25)

Similar to the latent heat flux (Section A3), the sensible heat flux should be limited by the DSL because the thermal properties, i.e., the thermal conductivity and heat capacity, which is influenced by changes in soil moisture, of the DSL differ from those of the top soil layer, as the DSL is drier and has more air filled-pore space. When a DSL is present, for mineral soils and organic soils in uplands, the thermal conductivity at the top of the first soil layer (λ ; W m⁻¹ K⁻¹) is linearly interpolated between the "dry" (λ_{dry}) and calculated top soil layer thermal conductivity (λ_{soil}) values depending on the DSL thickness

$$\lambda = \lambda_{soil} - \frac{DSL}{z_{max}} (\lambda_{soil} - \lambda_{dry}).$$
(A26)

A5 DSL effect on the ground albedo

In CLASSIC, the visible and near-infrared ground albedos (α_g ; unitless) are soil moisture dependent. As the top of the soil wets from a liquid water content value of 0.22 to 0.26 m³ m⁻³, the albedo values follow a linear relationship between the "dry" ($\alpha_{g,dry}$; unitless) and "wet" albedo values ($\alpha_{g,wet}$; unitless) of the respective soil colour index (P. J. Lawrence & Chase, 2007). Outside of this range of liquid water content, the model adopts either the dry or wet albedo value accordingly. With the DSL formulation, if a DSL exists, a DSL-dependent α_q is calculated as

$$\alpha_g = \alpha_{g,wet} - \frac{DSL}{z_{max}} (\alpha_{g,wet} - \alpha_{g,dry}) \tag{A27}$$

and the α_g value used by the model is set to the higher value of the original CLASSIC

calculation and the value determined in Equation A27.

572

A6 Modifications to canopy evaporation and transpiration in CLASSIC

In the CLASSIC v.1.2 formulation for snow-covered canopies the evaporative flux from the canopy (ET_c ; Equation A7) is first assigned to sublimation, as liquid water, if present, is assumed to be within or underneath the snow and no *T* is expected to occur. When there is only liquid water present on the canopy, we modified the original formulation so that *T* is allowed to occur from a partially-wet canopy instead of from a completely dry canopy only. To separate the calculated amount of evapotranspired water (ET_c ; see Equation A7) into E_c and *T*, we determine the wet (f_{wet}) and dry (f_{dry}) fractions of the canopy similar to Fan et al. (2019) as

$$f_{wet} = \begin{cases} F_l & \text{for } F_l \ge 0.01 \text{ and } F_l \le 0.99 \\ 0 & \text{for } F_l < 0.01 \\ 1 & \text{for } F_l > 0.99 \end{cases}$$
(A28)

$$f_{dry} = \begin{cases} (1 - f_{wet}) \frac{\text{LAI}}{\text{PAI}} & \text{for } f_{wet} \ge 0.01 \text{ and } f_{wet} \le 0.99 \\ 1 & \text{for } f_{wet} < 0.01 \\ 0 & \text{for } f_{wet} > 0.99 \end{cases}$$
(A29)

In general, only the leaves and not stems of a canopy can transpire, f_{dry} is adjusted by the LAI to PAI ratio. F_l is the fractional coverage of the canopy covered by liquid water (unitless) determined as

$$F_{l} = \begin{cases} \min(W_{l} / W_{l,max}, 1) & \text{for } W_{l,max} > 0) \\ 0 & \text{for } W_{l,max} = 0) \end{cases}$$
(A30)

where W_l (kg m⁻²) is the amount of liquid water stored on the canopy and $W_{l,max}$ (kg m⁻²) is the storage capacity of the canopy for liquid water, which is calculated as

$$W_{l,max} = p_l \times \text{PAI} \tag{A31}$$

with the maximum storage of liquid water p_l set as 0.20 kg m⁻² (Bartlett et al., 2006). W_l is calculated as the sum of W_l of the previous time step and the rainfall intercepted by the canopy during the current time step

$$W_{l,t} = \min(W_{l,t-1} + \Delta t \rho_w (P - \chi P), W_{l,max}), \tag{A32}$$

where P is the rainfall rate (m s⁻¹), χ is the canopy gap fraction (unitless), Δt is the model physics timestep (s) and ρ_w (kg m⁻³) the density of liquid water. To determine the canopy fractional coverage of liquid water exposed to the air, F_l is decreased by the fractional snow coverage (F_s).

$$F_l = \max(0, \min(F_l - F_s, 1))$$
(A33)

and, similar to F_l , F_s is found by

$$F_{s} = \begin{cases} \min(W_{f} / W_{f,max}, 1) & \text{for } W_{f,max} > 0) \\ 0 & \text{for } W_{f,max} = 0), \end{cases}$$
(A34)

576 577 578 where W_f (kg m⁻²) is the amount of frozen water stored on the canopy and $W_{f,max}$ (kg m⁻²) is the storage capacity of the canopy for frozen water. If there is no plant available water in the root zone, the wet canopy fraction is set to 1, as T is not allowed to occur.

The predicted mass of water evapotranspired from the canopy $(W_E; \text{ kg m}^{-2})$ is calculated as

$$W_E = \mathrm{ET}_{\mathrm{c}} \times \rho_w \Delta t, \tag{A35}$$

where ET_{c} is the evapotranspiration rate from the canopy (m s⁻¹; see Equation A7). The wet and dry canopy fractions as well as F_{RbRc} determine the fractions of W_E coming from

 E_c and T, respectively. The amount of W_l (see Equation A32) is adjusted by the amount of water evaporated from the wet canopy fraction as

$$W_{l} = W_{l} - (1 - f_{dry}) (1 - F_{RbRc}) W_{E} \text{ for } W_{E} (1 - f_{dry}) (1 - F_{RbRc}) \le W_{l}$$
(A36)

and W_E is reduced by the amount being evaporated

$$W_{E} = \begin{cases} W_{E} \left(F_{RbRc} + f_{dry} - f_{dry} F_{RbRc} \right) & \text{for } W_{E} \left(1 - f_{dry} \right) \left(1 - F_{RbRc} \right) \le W_{l} \\ W_{E} - W_{l} & \text{for } W_{E} \left(1 - f_{dry} \right) \left(1 - F_{RbRc} \right) > W_{l} \end{cases}$$
(A37)

The contribution of the leaf boundary layer resistance $(r_b; \text{ sm}^{-1}; \text{ Equation A8})$ to the total resistance, the sum of r_b and the stomatal resistance $(r_c \text{ or } 1/g_c; \text{ sm}^{-1}; \text{ Equation A9})$, is calculated as a proportion of the total resistance from the leaf boundary layer and stomata to determine when canopy evaporation is dominant and when T can occur, as

$$F_{RbRc} = r_b / (r_b + r_c). \tag{A38}$$

In the second case of Equation A37, where W_l could not meet the calculated amount of water to be evaporated, W_l is then set to zero. If the predicted mass of water evapotranspired from the vegetation (W_E) after considering evaporation from wet leaves is greater than zero, it is treated as T. If there is enough water available in the root zone and Tcan occur, the soil water content removed by T and the T flux are calculated for each soil layer and the liquid water content of each soil layer containing roots is updated.

585 Appendix B

Figure B1: Map of the FLUXNET sites used in this study (including their biomes).

Figure B2: Monthly mean observed and simulated gross primary productivity (GPP) for the FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1). The shading shows the standard deviation over the available years. Site names, their biomes and years of measurements used are listed for each site in Table 2.

Figure B3: Monthly mean observed and simulated latent heat flux (LE) for the FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1).

Figure B4: Monthly mean observed and simulated sensible heat flux (H) for the FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1).

Figure B5: Monthly mean observed and simulated ground heat flux (G) for the FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1).

Figure B6: Monthly mean simulated liquid water content of the top soil layer (0-10 cm depth; $\theta_{l,1}$) for the FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1).

Figure B7: Monthly mean simulated leaf area index (LAI) for the FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1).

Figure B8: Two-sided t-test p value between the error in simulated daily gross primary productivity (GPP) and latent heat flux (LE) for the FLUXNET sites (Table 2) for DSL and DSL-EcT simulations compared to the Baseline simulation (Table 1).

Figure B9: Annual ET, soil E, canopy E and T for 1960-2016 for the four Baseline and DSL-EcT simulations (Table 1), respectively.

Table B1: Transpiration (T) to evapotranspiration (ET) ratios of the different CLASSIC simulations (Table 1) averaged over 1997-2016.

Forcing data	Baseline	\mathbf{DSL}	DSL-EcT
ESACCI and CRUJRA	25.92%	30.33%	41.93%
ESACCI and GSWP3	26.72%	31.43%	41.85%
GLC2000 and CRUJRA	23.69%	28.62%	40.35%
GLC2000 and GSWP3	24.30%	29.48%	40.17%

586 Appendix C

Zonal ensemble plots of Baseline and DSL-EcT simulations show slight differences in GPP with the DSL-EcT simulations having slightly lower GPP in the Tropics and slightly higher GPP in the higher latitudes than the Baseline simulations. Globally, GPP is lower in the DSL-EcT simulations and shows less variability between the four simulations (using two different meteorological forcings and two different land cover representations) (Figure C1). In the Tropics, LE tends to be higher in the DSL-EcT simulations.

Figure C1: Zonally averaged and global mean GPP, LE, H and LAI over land for the Baseline and DSL-EcT simulations. The ensemble includes the four simulations using a combination of two different meteorological forcing datasets and two land cover representations (Table 1).

Seasonal averages for the 11 TRANSCOM regions show that the Baseline and DSL
 simulations have the greatest differences in the North American Boreal, the South American Tropics, Eurasian Temperate and Australia. During the spring, the DSL simulations tend to overestimate GPP in Australia (Figure C2), while they perform well during the rest of the year.

Figure C2: Monthly averaged GPP for 11 TRANSCOM regions and globally from March 2000 to December 2013.

In LE and H (Figure C3 and C4), the Baseline and DSL simulations show differences especially in the South American Tropical, Northern Africa and Tropical Asia. However, in all of the TRANSCOM regions as well as globally both simulations tend to lie within the uncertainty bounds of observations.

Figure C3: Monthly averaged LE for 11 TRANSCOM regions and globally from January 2003 to December 2009.

Figure C4: Monthly averaged H for 11 TRANSCOM regions and globally from January 2003 to December 2009.

602 Appendix D Open Research

603 D1 Data Availability Statement

The CLASSIC code versions (Baseline, DSL and DSL-EcT) and model outputs presented in our paper are archived on Zenodo (https://doi.org/10.5281/zenodo.7015764; Meyer et al. (2022)).

607 Acknowledgments

This work used eddy covariance data acquired and shared by the FLUXNET commu-608 nity, including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEu-609 ropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, 610 LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The FLUXNET eddy covari-611 ance data processing and harmonization were carried out by the European Fluxes Database 612 Cluster, AmeriFlux Management Project, and Fluxdata project of FLUXNET with the 613 support of CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux, 614 and AsiaFlux offices. We thank Christian Seiler for providing comments on a pre-submission 615 version of the manuscript. 616

617 References

- Arora, V. K. (2003, August). Simulating energy and carbon fluxes over winter wheat
 using coupled land surface and terrestrial ecosystem models. Agric. For. Mete orol., 118(1), 21–47. doi: 10.1016/S0168-1923(03)00073-X
- Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., ... Wofsy,
 S. (2001, November). FLUXNET: A new tool to study the temporal and
 spatial variability of Ecosystem-Scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc., 82(11), 2415–2434. doi:
 10.1175/1520-0477(2001)082(2415:FANTTS)2.3.CO;2
- Barr, A. G., King, K. M., Gillespie, T. J., Den Hartog, G., & Neumann, H. H.
 (1994, October). A comparison of bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest. Bound.-Layer
 Meteorol., 71(1), 21–41. doi: 10.1007/BF00709218
- ⁶³⁰ Bartlett, P. A., MacKay, M. D., & Verseghy, D. L. (2006, September). Modified

631	snow algorithms in the canadian land surface scheme: Model runs and sensitiv-
632	ity analysis at three boreal forest stands. Atmosphere-Ocean, $44(3)$, 207–222.
633	Denon $C = \frac{1006}{1006}$ A lond surface model (I CM surface 1.0) for coolerical hydro.
634	logical and atmospheric studies: Technical description and user's guide NCAR
635	technical note No. NCAB /TN-417+STB National Center for Atmospheric
637	Research. Boulder. CO. 150. doi: 10.5065/D6DF6P5X
638	Čermák J Kučera J & Nadezhdina N (2004 September) Sap flow measure-
630	ments with some thermodynamic methods flow integration within trees and
640	scaling up from sample trees to entire forest stands $Trees 18(5) 529-546$
641	doi: 10.1007/s00468-004-0339-6
642	Chang L. Dwivedi B. Knowles J. F. Fang Y. Niu G. Pelletier J. D.
642	Meixner T (2018 Sep 16) Why Do Large-Scale Land Surface Models
644	Produce a Low Ratio of Transpiration to Evapotranspiration? Journal of
645	Geophysical Research: Atmospheres, 123(17), 9109-9130. Retrieved from
646	https://onlinelibrary.wiley.com/doi/abs/10.1029/2018.DD029159 doi:
647	10.1029/2018JD029159
648	Chen, L., Sela, S., Svorav, T., & Assouline, S. (2013, September). The role of soil-
649	surface sealing, microtopography, and vegetation patches in rainfall-runoff
650	processes in semiarid areas. Water Resour. Res., 49(9), 5585–5599. doi:
651	10.1002/wrcr.20360
652	Coenders-Gerrits, A. M. J., van der Ent, R. J., Bogaard, T. A., Wang-Erlandsson,
653	L., Hrachowitz, M., & Savenije, H. H. G. (2014, February). Uncertainties in
654	transpiration estimates. <i>Nature</i> , 506(7487), E1–2. doi: 10.1038/nature12925
655	Côté, J., & Konrad, JM. (2005, April). A generalized thermal conductivity model
656	for soils and construction materials. Can. Geotech. J., 42(2), 443–458. doi: 10
657	.1139/t04-106
658	CRU-JRA. (2021, July). CRU-JRA v2.2: A forcings dataset of gridded land surface
659	blend of climatic research unit (CRU) and japanese reanalysis (JRA) data;
660	jan.1901 - dec.2020.
661	Deardorff, J. W. (1972, February). Parameterization of the planetary boundary layer
662	for use in general circulation models. Mon. Weather Rev., $100(2)$, 93–106. doi:
663	$10.1175/1520\text{-}0493(1972)100\langle 0093\text{:}\text{POTPBL}\rangle 2.3.\text{CO}\text{;}2$
664	Decharme, B., Delire, C., Minvielle, M., Colin, J., Vergnes, JP., Alias, A.,
665	Voldoire, A. (2019, May). Recent changes in the ISBA-CTRIP land surface
666	system for use in the CNRM-CM6 climate model and in global off-line hy-
667	drological applications. J. Adv. Model. Earth Syst., 11(5), 1207–1252. doi:
668	10.1029/2018 ms 001545
669	Decker, M., Or, D., Pitman, A., & Ukkola, A. (2017, jan). New turbulent resistance
670	parameterization for soil evaporation based on a pore-scale model: Impact on
671	surface fluxes in CABLE. Journal of Advances in Modeling Earth Systems,
672	9(1), 220-238. Retrieved from https://doi.org/10.1002%2F2016ms000832
673	doi: $10.1002/2016$ ms000832
674	Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,
675	Vitart, F. (2011, April). The ERA-Interim reanalysis: configuration and
676	performance of the data assimilation system. Quart. J. Roy. Meteor. Soc.,
677	<i>137</i> (656), 553–597. doi: 10.1002/qj.828
678	De Pue, J., Barrios, J. M., Liu, L., Ciais, P., Arboleda, A., Hamdi, R., Gellens-
679	Meulenberghs, F. (2022). Local scale evaluation of the simulated interactions
680	between energy, water and vegetation in land surface models. Biogeosciences
681	Discussions, 1-44. Retrieved from https://bg.copernicus.org/preprints/
682	Dg = 2021 = 5557 (101: 10.0194/ $Dg = 2021 = 550$) Do Unico D (1069) Thermal momenties of sails in all start and in the second start and in the sec
683	De viles, D. (1905). Inermai properties of sous, in physics of plant environment,
684	Dingman S. I. (2002) Drawing Londralans. Drawtics II-11
685	Dingman, S. L. (2002). Physical hydrology. Prentice Hall.

686	Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., & Hanasaki, N. (2006, Octo-
687	ber). GSWP-2: Multimodel analysis and implications for our perception of the
688	land surface. Bull. Am. Meteorol. Soc., 87(10), 1381–1398. doi: 10.1175/
690	BAMS-87-10-1381
005	Dong I Dirmovor P. A. Lei F. Anderson M. C. Helmes T. P. H. Hein C.
690	bong, 5., Di meyer, 1. A., Lei, F., Anderson, M. C., Honnes, I. R. I., Ham, C.,
691	& Crow, W. 1. (2020, November). Soil evaporation stress determines soil
692	Moisture-Evapotranspiration coupling strength in land surface modeling. Geo-
693	phys. Res. Lett., $47(21)$, 12. doi: $10.1029/2020$ GL090391
694	Dong, J., Lei, F., & Crow, W. T. (2022, January). Land transpiration-evaporation
695	partitioning errors responsible for modeled summertime warm bias in
696	the central united states. Nat. Commun., 13(1), 336. doi: 10.1038/
697	s41467-021-27938-6
600	Eller C B Rowland L Oliveira R S Bittencourt P B L Barros F V da
090	Costa A C I Cov P (2018 October) Modelling tropical forest ro
699	appropriate drought and al niño with a stamatal antimization model based on
700	sponses to arought and er mino with a stomatal optimization model based on $D = D = D = D = D = D = D = D = D = D $
701	xylem hydraulics. Philos. Trans. R. Soc. Lond. B Biol. Sci., 373(1760). doi:
702	10.1098/rstb.2017.0315
703	ESA. (2017). Land cover CCI product user guide version 2 (Vol. 2; Tech. Rep.).
704	<pre>maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0</pre>
705	.pdf.
706	Fan, Y., Meijide, A., Lawrence, D. M., Roupsard, O., Carlson, K. M., Chen, H.,
707	Knohl, A. (2019, March). Reconciling canopy interception parameterization
708	and rainfall forcing frequency in the community land model for simulating
700	evapotranspiration of rainforests and oil palm plantations in indonesia I Adv
709	Model Earth Sust 11(3) 732–751 doi: 10.1029/2018MS001490
710	Fatichi S Or D Walko B Vareackan H Voung M H Chazzahai T A
/11	Aviggar B (2020 January) Soil structure is an important omission in earth
712	Avissai, R. (2020, January). Son structure is an important of ission in earth system models. Net Commun. $11(1)$ 522 doi: 10.1028/s41467.020.14411 s
713	System models. <i>Nat. Commun.</i> , $II(1)$, 522 . doi: 10.1056/841407-020-14411-2
714	Fisher, J. B., Iu, K. P., & Baldocchi, D. D. (2008, March). Global estimates of the
715	land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data,
716	validated at 16 FLUXNET sites. <i>Remote Sens. Environ.</i> , 112(3), 901–919. doi:
717	10.1016/j.rse.2007.06.025
718	Gash, J. H. C. (1979, January). An analytical model of rainfall intercep-
719	tion by forests. Quart. J. Roy. Meteor. Soc., $105(443)$, $43-55$. doi:
720	10.1002/qj.49710544304
721	Gavilán, P., & Berengena, J. (2007, January). Accuracy of the bowen ratio-energy
722	balance method for measuring latent heat flux in a semiarid advective environ-
702	ment $Irrig Sci = 25(2) = 127-140$ doi: 10.1007/s00271-006-0040-1
704	Cood S P Noone D & Bowen C (2015 July) WATER RESOURCES hydro-
724	logic connectivity constrains partitioning of global terrestrial water fluxes. See
725	2/0.6244) 175 177 doi: 10.1126/acionec.202021
726	C = K H = 0 M H = M (2007 M) = F(1 + 1) = 1
727	Goss, KU., & Madliger, M. (2007, May). Estimation of water transport based on
728	in situ measurements of relative humidity and temperature in a dry tanzanian
729	soil. Water Resour. Res., $43(5)$. doi: $10.1029/2006$ wr005197
730	Güntner, A. (2008, October). Improvement of global hydrological models using
731	GRACE data. Surv. Geophys., 29(4), 375–397. doi: 10.1007/s10712-008-9038
732	-y
733	Gupta, S., Lehmann, P., Bonetti, S., Papritz, A., & Or, D. (2021, April). Global
734	prediction of soil saturated hydraulic conductivity using random forest in a
735	covariate-based GeoTransfer function (CoGTF) framework. J. Adv. Model.
736	Earth Sust., 13(4), doi: 10.1029/2020ms002242
737	Hadiwijava B Isabelle P-E Nadeau D E & Penin S (2021 February) Ob-
730	servations of canopy storage capacity and wat canopy evaporation in a humid
100	borgel forest Hudrol Process 25(2) doi: 10.1002/hum 14021
739	Howe have the first for the first for the first for the first for the first form in the first for

⁷⁴⁰ Haghighi, E., & Or, D. (2015, June). Linking evaporative fluxes from bare soil across

741	surface viscous sublayer with the Monin–Obukhov atmospheric flux-profile esti-
742	mates. J. Hydrol., 525, 684–693. doi: 10.1016/j.jhydrol.2015.04.019
743	Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014, March). Updated high-
744	resolution grids of monthly climatic observations - the CRU TS3.10 dataset.
745	Int. J. Climatol., 34(3), 623–642. doi: 10.1002/joc.3711
746	Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020, April). Version 4 of the CRU
747	TS monthly high-resolution gridded multivariate climate dataset. Sci Data,
748	7(1), 109. doi: 10.1038/s41597-020-0453-3
749	Herbst, M., Rosier, P. T. W., McNeil, D. D., Harding, R. J., & Gowing, D. J. (2008,
750	October). Seasonal variability of interception evaporation from the canopy of a
751	mixed deciduous forest. Agric. For. Meteorol., 148(11), 1655–1667. doi: 10
752	.1016/j.agrformet.2008.05.011
753	Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013,
754	April). Terrestrial water fluxes dominated by transpiration. <i>Nature</i> , 496(7445),
755	347–350. doi: 10.1038/nature11983
756	Jung, M., Reichstein, M., & Bondeau, A. (2009, October). Towards global em-
757	pirical upscaling of FLUXNET eddy covariance observations: validation of a
758	model tree ensemble approach using a biosphere model. <i>Biogeosciences</i> , $6(10)$,
759	2001–2013. doi: 10.5194/bg-6-2001-2009
760	Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L.,
761	Zhang, K. (2010, October). Recent decline in the global land evapotranspi-
762	ration trend due to limited moisture supply. <i>Nature</i> , 467(7318), 951–954. doi:
763	10.1038/nature09396
764	Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Taka-
765	hashi, K. (2015). The JRA-55 reanalysis: General specifications and basic
766	characteristics. Journal of the Meteorological Society of Japan. Ser. II. 93(1).
767	5–48. doi: 10.2151/imsi.2015-001
768	Kurc, S. A., & Small, E. E. (2004, September). Dynamics of evapotranspira-
769	tion in semiarid grassland and shrubland ecosystems during the summer
770	monsoon season, central new mexico. Water Resour. Res., $40(9)$. doi:
771	10.1029/2004wr 003068
772	Lange, S. (2020). The Inter-Sectoral Impact Model Intercomparison Project In-
773	put data set: GSWP3-W5E5. Retrieved from https://www.isimip.org/
774	gettingstarted/input-data-bias-correction/details/80/ (Accessed on
775	July 29, 2020)
776	Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
777	Vertenstein, M.,, Zeng, X. (2020, March). Technical description of ver-
778	sion 5.0 of the community land model (CLM) [Computer software manual].
779	Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C.,
780	Lawrence, P. J.,, Slater, A. G. (2011, January), Parameterization improve-
781	ments and functional and structural advances in version 4 of the community
782	land model. J. Adv. Model. Earth Syst., 3(1). doi: 10.1029/2011ms00045
783	Lawrence P. J. & Chase T. N. (2007 March) Representing a new MODIS consis-
784	tent land surface in the community land model (CLM 3.0). J. Geophys. Res.
785	112(G1), doi: 10.1029/2006ig000168
786	Lee T. J. & Pielke B. A. (1992 Max) Estimating the soil surface specific humid-
787	ity. J. Appl. Meteorol., 31(5), 480–484, doi: 10.1175/1520-0450(1992)031(0480:
788	ETSSSH)2.0.CO:2
780	Le Quéré C Andrew B M Friedlingstein P Sitch S Hauck J Pongratz
790	J Zheng, B. (2018 dec) Global Carbon Budget 2018 Earth Sus-
791	tem Science Data, 10(4), 2141–2194 Retrieved from https://doi.org/
792	10.5194%2Fessd=10=2141=2018 doi: 10.5194/essd=10=2141-2018
793	Lewing, B. (1995, April) A critical appraisal of a combined stomatal-
794	photosynthesis model for C3 plants. Plant Cell Environ 18(4) 330–355
795	doi: 10.1111/j.1365-3040.1995.tb00370.x
	10

Li, Z., Vanderborght, J., & Smits, K. M. (2020, January). The effect of the top soil 796 layer on moisture and evaporation dynamics. Vadose Zone J., 19(1). doi: 10 797 .1002/vzj2.20049 798 Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., ... Wang, T. (2018, 799 Jul). Partitioning global land evapotranspiration using CMIP5 models 800 constrained by observations. Nature Climate Change, 8(7), 640-646. Re-801 trieved from https://search.proquest.com/docview/2061820602 doi: 802 10.1038/s41558-018-0207-9 803 MacBean, N., Scott, R. L., Biederman, J. A., Ottlé, C., Vuichard, N., Ducharne, 804 A., ... Moore, D. J. P. (2020, November). Testing water fluxes and storage 805 from two hydrology configurations within the ORCHIDEE land surface model 806 across US semi-arid sites. Hydrol. Earth Syst. Sci., 24 (11), 5203–5230. doi: 807 10.5194/hess-24-5203-2020808 Malek, E., & Bingham, G. E. (1993, June). Comparison of the bowen ratio-energy 809 balance and the water balance methods for the measurement of evapotranspi-810 ration. J. Hydrol., 146, 209-220. doi: 10.1016/0022-1694(93)90276-F 811 McNaughton, K. G., & Van Den Hurk, B. J. J. M. (1995, May). A 'lagrangian' 812 revision of the resistors in the two-layer model for calculating the energy 813 budget of a plant canopy. Bound.-Layer Meteorol., 74(3), 261–288. doi: 814 10.1007/BF00712121 815 Melton, J. R., & Arora, V. K. (2016, jan). Competition between plant functional 816 types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geoscien-817 *tific Model Development*, 9(1), 323-361. Retrieved from https://doi.org/10 818 .5194%2Fgmd-9-323-2016 doi: 10.5194/gmd-9-323-2016 819 Melton, J. R., Arora, V. K., Wisernig-Cojoc, E., Seiler, C., Fortier, M., Chan, 820 E., & Teckentrup, L. (2020, jun). CLASSIC v1.0: the open-source com-821 munity successor to the Canadian Land Surface Scheme (CLASS) and the 822 Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model framework 823 and site-level performance. Geoscientific Model Development, 13(6), 2825-824 2850. Retrieved from https://doi.org/10.5194%2Fgmd-13-2825-2020 doi: 825 10.5194/gmd-13-2825-2020 826 Merlin, O., Bitar, A. A., Rivalland, V., Béziat, P., Ceschia, E., & Dedieu, G. (2011, 827 An Analytical Model of Evaporation Efficiency for Unsaturated Soil Feb 1.). 828 Surfaces with an Arbitrary Thickness. Journal of Applied Meteorology and Cli-829 matology, 50(2), 457-471.Retrieved from https://www.jstor.org/stable/ 830 26174034 doi: 10.1175/2010JAMC2418.1 831 Meyer, G., Humphreys, E. R., Melton, J. R., Cannon, A. J., & Lafleur, P. M. 832 (2021, June). Simulating shrubs and their energy and carbon dioxide fluxes 833 in canada's low arctic with the canadian land surface scheme including bio-834 geochemical cycles (CLASSIC). Biogeosciences, 18(11), 3263–3283. doi: 835 10.5194/bg-18-3263-2021 836 Meyer, G., Melton, J. R., & Humphreys, E. R. (2022, August). Inclusion of a dry 837 surface layer and modifications to the transpiration and canopy evaporation 838 partitioning in the Canadian Land Surface Scheme Including biogeochemical 839 Cycles (CLASSIC). Retrieved from https://doi.org/10.5281/ Zenodo. 840 zenodo.7015764 doi: 10.5281/zenodo.7015764 841 Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, 842 A. G. C. A., & Dolman, A. J. (2011, February). Global land-surface evap-843 oration estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 844 845 15(2), 453-469. doi: 10.5194/hess-15-453-2011Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., ... 846 Fernández-Prieto, D. (2016, February). The WACMOS-ET project – part 2: 847 Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci., 848 20(2), 823-842. doi: 10.5194/hess-20-823-2016 849 Moldrup, P., Olesen, T., Komatsu, T., Yoshikawa, S., Schjønning, P., & Rolston, 850

851 852 853	D. E. (2003, May). Modeling diffusion and reaction in soils: X. A unifying model for solute and gas diffusivity in unsaturated soil. <i>Soil Sci.</i> , 168(5), 321. doi: 10.1097/01.ss.0000070907.55992.3c
854	Mu, M., De Kauwe, M. G., Ukkola, A. M., Pitman, A. J., Gimeno, T. E., Med- lyn, B. E., Ellsworth, D. S. (2021, January). Evaluating a land surface
856	model at a water-limited site: implications for land surface contributions
857	to droughts and heatwaves. Hydrol. Earth Syst. Sci., 25(1), 447–471. doi:
858	10.5194/hess-25-447-2021
859	Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007, December). De-
860	velopment of a global evapotranspiration algorithm based on MODIS and
861	global meteorology data. Remote Sens. Environ., 111(4), 519–536. doi:
862	10.1016/j.rse.2007.04.015
863	Mu, Q., Zhao, M., & Running, S. W. (2011, August). Improvements to a MODIS
864	global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115(8),
865	1781–1800. doi: 10.1016/j.rse.2011.02.019
866	Niu, GY., Yang, ZL., Dickinson, R. E., Gulden, L. E., & Su, H. (2007, April).
867	Development of a simple groundwater model for use in climate models and
868	evaluation with gravity recovery and climate experiment data. J. Geophys.
869	<i>Res.</i> , 112(D7). doi: 10.1029/2006jd007522
870	Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, YW.,
871	Papale, D. (2020, July). The FLUXNET2015 dataset and the ONE-
872	Flux processing pipeline for eddy covariance data. Sci Data, $\gamma(1)$, 225. doi:
873	10.1038/s41597-020-0534-3
874	Pinnington, E., Amezcua, J., Cooper, E., Dadson, S., Ellis, R., Peng, J., Quaife,
875	T. (2021, March). Improving soil moisture prediction of a high-resolution
876	land surface model by parameterising pedotransfer functions through assimila-
877	tion of SMAP satellite data. Hydrol. Earth Syst. Sci., 25(3), 1617–1641. doi:
878	10.5194/hess-25-1617-2021
879	Priestley, C. H. B., & Taylor, R. J. (1972, February). On the assessment of surface
880	heat flux and evaporation using Large-Scale parameters. Mon. Weather Rev.,
881	100(2), 81-92. doi: $10.1175/1520-0493(1972)100(0081:OTAOSH)2.3.CO;2$
882	Rodríguez-Caballero, E., Chamizo, S., Roncero-Ramos, B., Román, R., & Cantón,
883	Y. (2018, September). Runoff from biocrust: A vital resource for vegeta-
884	tion performance on mediterranean steppes. $Ecohydrol., 11(6), e1977.$ doi:
885	10.1002/eco.1977
886	Savage, M. J. (2009, March). Estimation of evaporation using a dual-beam surface
887	layer scintillometer and component energy balance measurements. Agric. For.
888	<i>Meteorol.</i> , $149(3)$, 501–517. doi: 10.1016/j.agrformet.2008.09.012
889	Schlesinger, W. H., & Jasechko, S. (2014, June). Transpiration in the global water
890	cycle. Agric. For. Meteorol., 189-190, 115–117. doi: 10.1016/j.agrformet.2014
891	
892	Smith, D. M., & Allen, S. J. (1996, December). Measurement of sap flow in plant
893	stems. J. Exp. Bot., 47(12), 1833–1844. doi: 10.1093/jxb/47.12.1833
894	Sutanto, S. J., van den Hurk, B., Dirmeyer, P. A., Seneviratne, S. I., Rockmann,
895	T., Trenberth, K. E., Hoffmann, G. (2014, August). HESS opinions "a
896	perspective on isotope versus non-isotope approaches to determine the contri-
897	button of transpiration to total evaporation". Hydrol. Earth Syst. Sci., 18(8),
898	2815-2827. doi: 10.5194/fiess-18-2815-2014
899	Swart, N. C., Cole, J. N. S., Knarin, V. V., Lazare, M., Scinocca, J. F., Gillett,
900	IN. F., WILLER, D. (2019, NOV). The Canadian Earth System Model
901	4873 Retrieved from https://doi.org/10.510//9Egred-12-4822-2010 doi:
902	10 5194/gmd_12_4823_2010
903	Swenson S. C. & Lawrence D. M. (2014 Sep 16) Accossing a dry surface layor
904	based soil resistance parameterization for the Community Land Model using

906	GRACE and FLUXNET-MTE data. Journal of Geophysical Research: Atmo-
907	spheres, 119(17), 10,299-10,312. doi: 10.1002/2014JD022314
908	Véliz-Chávez, C., Mastachi-Loza, C. A., González-Sosa, E., Becerril-Piña, R.,
909	& Ramos-Salinas, N. M. (2014). Canopy storage implications on in-
910	terception loss modeling. Am. J. Plant Sci., 05(20), 3032–3048. doi:
911	10.4236/ajps.2014.520320
912	Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Verhoef, A., Herbst, M.,
913	Xue, Y. (2019, January). Infiltration from the pedon to global grid scales:
914	An overview and outlook for land surface modeling. Valose Zone $J.$, $18(1)$,
915	1–53. doi: 10.2136/vzj2018.10.0191
916	Verseghy, D. (2017). CLASS-The Canadian Land Surface Scheme (v.3.6.2) (Tech.
917	Rep.). Climate Research Divison, Science and Technology Branch, Environ-
918	ment and Climate Change Canada.
919	Wang, A., Price, D. T., & Arora, V. (2006, September). Estimating changes in
920	global vegetation cover (1850-2100) for use in climate models. Global Bio-
921	geochem. Cycles, $20(3)$. doi: $10.1029/2005$ GB002514
922	Wang, K., & Dickinson, R. E. (2012, June). A review of global terrestrial evapotran-
923	spiration: Observation, modeling, climatology, and climatic variability. <i>Rev.</i>
924	Geophys., 50(2). doi: $10.1029/2011rg000373$
925	Wang, L., Good, S. P., & Caylor, K. K. (2014, October). Global synthesis of vege-
926	tation control on evapotranspiration partitioning. Geophys. Res. Lett., 41(19),
927	6753-6757. doi: 10.1002/2014g1061439
928	Wang, P., Niu, GY., Fang, YH., Wu, RJ., Yu, JJ., Yuan, GF., Scott,
929	R. L. (2018, March). Implementing dynamic root optimization in Noan-MP
930	for simulating pireatophytic root water uptake. Water Resour. Res., $54(5)$, 1560, 1575, doi: 10.1002/2017
931	Warron R K Dannas C Holbig M Charmor I F Barg A A Baltzor I I
932	Sonnontag () (2018 July) Minor contribution of overstoroy transpiration
933	to landscape evapotranspiration in horeal permetrost peatlands: Contribution
934	of overstory transpiration in a boreal permatrost peatland $E_{cohydrol}$ (11(5)
935	e1975 doi: 10.1002/eco.1975
930	Wei Z Yoshimura K Wang L Miralles D G Jasechko S & Lee X (2017)
938	March). Revisiting the contribution of transpiration to global terrestrial evap-
939	otranspiration: Revisiting global ET partitioning. Geophus. Res. Lett., 44(6).
940	2792–2801. doi: 10.1002/2016GL072235
941	Zhang, L., Jiang, H., Wei, X., Zhu, Q., Liu, S., Sun, P., & Liu, J. (2008, Octo-
942	ber). Evapotranspiration in the meso-scale forested watersheds in minimizing
943	valley, west china1. J. Am. Water Resour. Assoc., 44(5), 1154–1163. doi:
944	10 1111/j 1752 1688 2008 00245 y
945	10.1111/J.1702-1000.2000.00240.x
	Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H. S., Vaze, J., Liu,
946	Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Pan, M. (2016, January). Multi-decadal trends in global terres-
946 947	 Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Pan, M. (2016, January). Multi-decadal trends in global terres- trial evapotranspiration and its components. <i>Sci. Rep.</i>, <i>6</i>, 19124. doi: