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Abstract

Land surface/Earth System models depend upon accurate simulation of evapotranspiration (ET) to avoid excessive biases in
simulated energy, water, and carbon cycles. The Canadian Land Surface Scheme including biogeochemical Cycles (CLASSIC),
the land surface scheme of the Canadian Earth System Model (CanESM) shows reasonable ET fluxes globally, but CLASSIC’s
partitioning into evaporation (E) and transpiration (T ) can be improved. Specifically, CLASSIC exhibited a high soil evapo-
ration (Es) bias in sparsely vegetated areas during wet periods, which can deplete soil water and decrease photosynthesis and
T later in the year.

A dry surface layer (DSL) parameterization was implemented to address biases in Es through an increased surface resistance

to water vapour and heat fluxes. In arid/semi-arid regions, the DSL decreased Es, leading to improved seasonality of ET and

increased gross primary productivity (GPP) due to an increase in soil moisture. The DSL simulations significantly (t-test,

p<0.01) increased T/ET from 0.25 in baseline CLASSIC to 0.30 in the DSL simulations. T/ET was further increased to 0.41

(p<0.01), comparable to the CMIP5 model mean, by allowing T to occur from the dry canopy fraction while water evaporates

from the wet fraction. This mainly affected densely vegetated areas, where T and ET increased significantly (p<0.01) and canopy

E was reduced (p<0.01). In seasonally dry tropical forests, higher T and ET reduced GPP. Despite increases in arid/semi-arid

regions, the reduced GPP in tropical forests resulted in 1.6% lower global GPP (p=0.018) than baseline CLASSIC. Including

these modifications in CanESM might reduce biases in climate.
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Key Points:8

• Including a dry surface layer (DSL) parameterization reduced excessive soil evap-9

oration (Es) in CLASSIC globally, especially in dry regions10

• Evapotranspiration (ET) partitioning modifications increased photosynthesis in11

arid/semi-arid regions12

• Global transpiration (T ) to ET ratios were brought closer to observation-based13

estimates due to increased T and reduced Es in dry regions14
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Abstract15

Land surface/Earth System models depend upon accurate simulation of evapotranspi-16

ration (ET) to avoid excessive biases in simulated energy, water, and carbon cycles. The17

Canadian Land Surface Scheme including biogeochemical Cycles (CLASSIC), the land18

surface scheme of the Canadian Earth System Model (CanESM) shows reasonable ET19

fluxes globally, but CLASSIC’s partitioning into evaporation (E) and transpiration (T )20

can be improved. Specifically, CLASSIC exhibited a high soil evaporation (Es) bias in21

sparsely vegetated areas during wet periods, which can deplete soil water and decrease22

photosynthesis and T later in the year.23

A dry surface layer (DSL) parameterization was implemented in CLASSIC to ad-24

dress biases in Es through an increased surface resistance to water vapour and heat fluxes.25

In arid/semi-arid regions, the DSL decreased Es, leading to improved seasonality of ET26

and increased gross primary productivity (GPP) due to an increase in soil moisture. The27

DSL simulations significantly (t-test, p<0.01) increased T/ET from 0.25 in baseline CLAS-28

SIC to 0.30 in the DSL simulations. T/ET was further increased to 0.41 (p<0.01), com-29

parable to the CMIP5 model mean, by allowing T to occur from the dry canopy frac-30

tion while water evaporates from the wet fraction. This mainly affected densely vege-31

tated areas, where T and ET increased significantly (p<0.01) and canopy E was reduced32

(p<0.01). In seasonally dry tropical forests, higher T and ET reduced soil moisture and33

GPP. Despite increases in arid/semi-arid regions, the reduced GPP in tropical forests34

resulted in ∼1.6% lower global GPP (p=0.018) than baseline CLASSIC. Including these35

modifications in CanESM might reduce biases in climate.36

Plain Language Summary37

An important component of the global water cycle is the return of liquid water to38

the atmosphere from the land surface. Evaporation (E) occurs on the surface of plants39

and the soil while transpiration (T ) is water that plants release through their stomata.40

We investigated how well E and T are simulated by the Canadian Land Surface Scheme41

including biogeochemical Cycles (CLASSIC). We found that the model simulated the42

total amount of water lost from the land surface reasonably well, but too much was lost43

via E at the expense of T . To improve this we changed how water evaporates from bare44

soil to more realistically capture the resistance to evaporating water as a thin dry layer45

forms on the soil surface. We additionally allowed the model to transpire water from plant46

leaves while other leaves on the plant were wet and evaporating, which was previously47

not the case. Our results improve the partitioning of E and T in CLASSIC resulting in48

more realistic simulated plant productivity in dry regions.49

1 Introduction50

Evapotranspiration (ET) is an important component of the global terrestrial wa-51

ter budget, with about 60% of precipitation over land returned to the atmosphere via52

ET (Jung et al., 2010). ET can be separated into its components soil evaporation (Es),53

canopy evaporation (Ec) and transpiration (T ). These components draw water from dif-54

ferent sources and their relative contributions to ET vary seasonally. While Es mainly55

originates from the soil surface and shallow soil depths, T uses water accessible to plant56

roots and Ec occurs for a limited time following precipitation events, when water is on57

the vegetation canopy due to precipitation interception. Es, Ec and T then also show58

different sensitivities to environmental drivers of ET such as vapor pressure deficit (VPD)59

and solar radiation (K. Wang & Dickinson, 2012). Total ET and the contributions of the60

different ET components vary significantly between ecosystems and seasons, as vegeta-61

tion cover, vegetation characteristics, i.e. leaf area index (LAI) and rooting depths, and62

soil characteristics differ (K. Wang & Dickinson, 2012).63
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Available measurements of ET or latent (LE) and sensible heat fluxes (H) range64

temporally from half-hourly to annual and spatially from point-scale to hundreds of me-65

ters based upon techniques using lysimeters, eddy covariance or Bowen ratio methods66

and scintillometers (Barr et al., 1994; Baldocchi et al., 2001; Gavilán & Berengena, 2007;67

Malek & Bingham, 1993; Savage, 2009). On monthly to annual time scales over large re-68

gions, the surface water balance method can be used. It integrates measurements of pre-69

cipitation, river discharges and estimates of changes in terrestrial water storage to de-70

termine LE on regional to global scales (L. Zhang et al., 2008; Güntner, 2008). Satel-71

lite remote sensing algorithms can estimate ET using empirical relationships with satellite-72

derived data (e.g., radiation, temperature, VPD) (Q. Mu et al., 2011). The relative con-73

tributions of the ET components can be estimated using several techniques. Canopy in-74

terception, which determines the amount of water available for Ec, can be estimated as75

the difference between total precipitation and the precipitation measured underneath the76

canopy (Herbst et al., 2008). For transpiration, sap flow methods can determine its value77

at the tree level, which can then be up-scaled to the stand or landscape level (Smith &78

Allen, 1996; Čermák et al., 2004; Warren et al., 2018). All three ET components, Es,79

Ec and T , can also be measured with stable isotope techniques whereby variations in the80

stable isotopic composition of water vapour measured near the surface in combination81

with measurements of the isotopic composition of water from the soil and within the plant82

can determine the transpiration and evaporation fractions (Sutanto et al., 2014). How-83

ever, direct measurements of ET and its components are only available at small scales84

(e.g., plant level), and thus there are large uncertainties in global T/ET with estimates85

varying between 0.43 and 0.75 with a mean value of 0.57 ± 0.07 (Wei et al., 2017). Most86

of global T originates from tropical forests (Good et al., 2015) with an estimated T/ET87

of 0.70 ± 0.14 (Schlesinger & Jasechko, 2014), while shrublands and desert ecosystems88

tend to have the lowest T/ET with estimated values of 0.47 ± 0.10 and 0.54 ± 0.18, re-89

spectively (Schlesinger & Jasechko, 2014).90

Land surface models (LSMs) are used to simulate water and energy fluxes, includ-91

ing the different components of ET, for historical simulations and future projections. De-92

spite challenges validating the different ET components on large scales, it is important93

for LSMs to correctly partition ET as it affects the water, energy and carbon (C) cycles94

(Swenson & Lawrence, 2014). Poorly simulated ET also has implications for the simu-95

lated climate in Earth System Models (ESMs). Dong et al. (2022) attributed a warm bias96

in 2 m air temperatures occurring in the central United States in models contributing97

to the Climate Model Intercomparison Project Phase 6 (CMIP6) to an underestimated98

ET and a low T/ET. In the CMIP6 models, ET is highly dependent on shallow soil mois-99

ture and water intercepted by the canopy while less dependent on root zone soil mois-100

ture. This leads to an underestimated contribution of T to ET, as well as a low total ET.101

Summertime ET in CMIP6 models was underestimated which was suggested to be a re-102

sult of an overestimation of water stress, as the ESMs were not able to adequately sim-103

ulate the ability of plants to access soil moisture in deeper layers, which can sustain T ,104

and thereby were overly dependent on precipitation to supply near-surface soil moisture105

(Dong et al., 2022). While simulated ET partitioning varies between models, e.g. T/ET106

ranged from 0.20 to 0.57 (Lian et al., 2018), on average, the CMIP5 models underesti-107

mated T with an ensemble mean T/ET of 0.41 ± 0.11 (Lian et al., 2018) compared to108

the estimated 0.57 ± 0.07 (Wei et al., 2017) derived from upscaling site measurements109

using ecosystem-specific LAI regressions and LAI and canopy interception estimates from110

remote sensing and land surface models. As the underestimation of T/ET in ESMs leads111

to underestimations of summertime ET as well as overestimations of air temperature,112

improving ET partitioning in LSMs is important for future projections of the water and113

C cycles (Dong et al., 2022). Dong et al. (2020) suggest that Es stress functions, com-114

monly used in LSMs where they rely upon simple relationships with soil texture, cause115

biases in soil moisture-ET coupling in LSMs. Especially in bare soil areas or regions with116

sparse vegetation canopies, LSMs tend to overestimate ET due to an overestimation of117

Es during periods of high soil moisture (Swenson & Lawrence, 2014). Over the past decade,118
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studies have shown that simulated Es can be improved by different means including re-119

sistance to E due to water vapour diffusion through a dry layer developing at the soil120

surface (Swenson & Lawrence, 2014), a viscous sublayer (Haghighi & Or, 2015; Decker121

et al., 2017) or a litter layer (Decker et al., 2017; M. Mu et al., 2021). Biases in simu-122

lated ET and its component fluxes were also shown to be reduced by an improved rep-123

resentation of the effects of soil texture in the Es stress function, which decreased soil124

moisture-ET coupling strength biases in the Noah land surface model with multiparam-125

eterization options (Noah-MP version 3.6) (Dong et al., 2020).126

In this study, we investigate ET and its component fluxes in the Canadian Land127

Surface Scheme Including biogeochemical Cycles (CLASSIC). In order to improve mod-128

elled Es and T , a process-based ground evaporation efficiency parameterization, in which129

Es is determined by water vapour diffusion through a thin dry surface layer (DSL) fol-130

lowing Swenson and Lawrence (2014) was implemented. The partitioning into Ec and131

T was also modified such that the dry fraction of the canopy can transpire while Ec oc-132

curs from the wet canopy fraction following Fan et al. (2019). We compare the modi-133

fied and baseline CLASSIC versions at the site-level as well as globally, evaluating them134

using eddy covariance or satellite-based observations of CO2 and energy fluxes. Section135

2 describes CLASSIC as well as the modifications made to its partitioning of ET. Sec-136

tion 3 shows the site-level and global water and carbon fluxes using the original CLAS-137

SIC, CLASSIC including the DSL parameterization and CLASSIC including the DSL138

as well as a modified partitioning into Ec and T . Differences between the carbon and139

water fluxes of the three CLASSIC versions, how they compare with other LSMs and pos-140

sible future improvements are discussed in Section 4.141

2 Methods142

2.1 Model description143

CLASSIC is the land surface component of the Canadian Earth System Model (CanESM)144

(Swart et al., 2019) and the open-source community model successor to CLASS-CTEM145

(Melton et al., 2020), which couples the physics (the Canadian Land Surface Scheme;146

CLASS; Verseghy (2017)) and biogeochemistry (the Canadian Terrestrial Ecosystem Model;147

CTEM; Arora (2003); Melton and Arora (2016)) sub-modules. The exchange of energy,148

water, momentum, and C at the land surface is represented in CLASSIC (for details see149

Melton et al. (2020)). The model is driven by seven atmospheric variables: air temper-150

ature (Ta), precipitation rate, air pressure, specific humidity (q), wind speed, and incom-151

ing shortwave and longwave radiation. Water and heat fluxes between the ground and152

the atmosphere, as well as its transfer between soil layers and snow, when present, are153

usually calculated on a half-hourly time step. The number of soil layers and their thick-154

nesses can be chosen depending on the application, but typically CLASSIC uses 20 ground155

layers of increasing thicknesses starting with 10 layers of equal 10 cm thickness giving156

a maximum depth of 61.4 m. Heat transfer occurs within the whole ground column, in-157

cluding both soil and bedrock layers. The movement of water, however, is limited to the158

permeable soil layers. Canopy conductance and photosynthesis are calculated on the same159

time step as the energy and water fluxes while vegetation (leaf, stem, root), litter and160

soil C pools as well as respiratory fluxes are calculated on a daily time step. We prescribed161

the vegetation cover which is represented by plant functional types (PFTs) and their per-162

cent coverage (see Table 1). Vegetation biomass and height, LAI and rooting depths are163

dynamically determined within the biogeochemistry sub-module based upon photosyn-164

thesis and respiration, PFT-specific C allocation parameters and land surface charac-165

teristics (e.g., soil temperatures, soil moisture and net radiation) obtained from the physics166

sub-module. The physical land surface properties are calculated separately for up to four167

subareas of each grid cell (bare ground, snow-covered bare ground, vegetation over soil168

and vegetation over snow). In CLASSIC version 1.2 as used here, the vegetation, as seen169

by the physics submodule, is composed of five broad categories of PFTs (i.e., needleleaf170
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trees, broadleaf trees, crops, grasses and shrubs). The biogeochemical calculations dif-171

ferentiate between evergreen and deciduous (split into cold and drought deciduous) PFTs172

and C3 and C4 photosynthetic pathways for crops and grasses, which results in 12 PFTs173

for the biogeochemistry sub-module.174

2.2 Evapotranspiration parameterization and partitioning175

The calculation of ET in CLASSIC and modifications made to its partitioning are176

described in detail in Appendix A. In short, ET is calculated as the sum of the compo-177

nents Es, which originates from bare soil and the soil underneath the vegetation canopy,178

Ec and T . The potential evaporation rate from the soil depends on the ground evapo-179

ration efficiency (β; unitless; Equation A20), which is determined using an empirical for-180

mulation based on Lee and Pielke (1992) and Merlin et al. (2011). Based on simulations181

at flux tower sites, we determined that CLASSIC overestimates Es and thus ET in sparsely182

vegetated arid or semi-arid regions (see Meyer et al. (2021); Es and ET are not shown183

here, but the ET bias is comparable to the bias in LE in Figure B3). During the wet sea-184

son, CLASSIC simulates excessive amounts of Es, limiting the amount of moisture within185

the soil for the dry season, which causes a suppression of photosynthesis in these regions.186

In order to avoid excessive Es from bare soil surfaces in CLASSIC, we implemented a187

process-based β parameterization building on the previously used empirical formulation188

(Merlin et al., 2011; Meyer et al., 2021). In the new formulation, Es is determined by189

water vapour diffusion through a thin DSL whose thickness is calculated based on the190

moisture content of the top soil layer following Swenson and Lawrence (2014). This ap-191

proach was chosen, as it is likely to have a stronger effect on Es than a litter layer for192

example in sparsely-vegetated areas. The way the DSL parameterization was implemented193

also works well with CLASSIC’s structure. In addition to the DSL’s effects on Es, we194

have implemented its effects on H and the ground heat flux (G) via the thermal con-195

ductivity, which depends on the degree of soil saturation (see Section A4 for details). Changes196

in surface albedo, when the DSL is present, were also accounted for (see Section A5). Avail-197

able observations, although uncertain, indicate that CLASSIC also underestimates the198

global T/ET. To address this, we modified the partitioning of Ec and T , as in the orig-199

inal CLASSIC formulation T could only occur when there was no water on the canopy.200

The modified CLASSIC version allows the dry fraction of the canopy to transpire while201

Ec occurs from the wet canopy fraction following Fan et al. (2019) (see Section A6 for202

details).203

2.3 Simulations204

We performed simulations using CLASSIC v.1.2 with the original CEVAP formu-205

lation of soil evaporation (labelled ‘Baseline’), a model version including the DSL pa-206

rameterization (labelled ‘DSL’; Section A3) and a version including both the DSL pa-207

rameterization and a modified partitioning of Ec and T (labelled ‘DSL-EcT’; Section A6)208

(see Table 1). Site-level simulations for a selection of sites (see Table 2) from the FLUXNET2015209

dataset (Pastorello et al., 2020) were driven by observed meteorology at these sites. Site-210

specific information such as vegetation cover and composition, soil texture and depth were211

obtained from the literature (Melton et al., 2020). At these sites, CLASSIC was driven212

by cycling through the meteorological measurements available and the atmospheric CO2213

concentration from the first year of measurements at each site until the C pools reached214

equilibrium (defined as annual NEP / NPP ≤ 0.02, where NEP is the net ecosystem pro-215

ductivity and NPP is the net primary productivity). Then, CLASSIC was run for the216

years available at each site with transient atmospheric CO2 concentrations from Le Quéré217

et al. (2018).218

We also performed global simulations on the CanESM grid (approximately 2.8°by219

2.8°). In order to assess differences between the CLASSIC versions and account for un-220

certainty in model forcing and geophysical inputs, simulations are driven by combina-221
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Figure 1: Soil evaporation efficiency (β) determined using the original CEVAP parame-
terization (Equation A20; blue line) as well as the calculation using the resistance due to
the DSL (first term on the right hand side of Equation A19; black line) for liquid water
content values of the top soil layer ranging between 0 and the soil porosity (set to 0.41
m3 m-3 for this example) (a) and the thickness of the DSL for the respective liquid water
content (b). This example was derived from annual average values of CDH ×va, τ , and Dv

from year 2005 at the US-Sta shrubland FLUXNET site (see Table 2).

Table 1: Calculation of the surface evaporation efficiency (β) and the canopy evaporation
(Ec) and transpiration (T ) components in the three CLASSIC versions (Baseline, DSL
and DSL-EcT) used in this study as well as the meteorological forcing and land cover
representations used in the simulations. The simulations, where the meteorological forcing
and land cover are bold, are the ones shown in the geographic distributions and in Figure
5.

Simulation Surface evaporation efficiency Ec − T partitioning Meteorological forcing Land cover

Baseline CEVAP (Equation A20) T only occurs, when the whole canopy is dry CRUJRAv2.2 ESACCI
GSWP3W5E5 ESACCI
CRUJRAv2.2 GLC2000
GSWP3W5E5 GLC2000

DSL determined using DSL (Equation A19) T only occurs, when the whole canopy is dry CRUJRAv2.2 ESACCI
GSWP3W5E5 ESACCI
CRUJRAv2.2 GLC2000
GSWP3W5E5 GLC2000

DSL-EcT determined using DSL (Equation A19) Ec occurs from wet canopy fraction, T from dry canopy fraction (Section A6) CRUJRAv2.2 ESACCI
GSWP3W5E5 ESACCI
CRUJRAv2.2 GLC2000
GSWP3W5E5 GLC2000

tions of two different meteorological forcing datasets and two different land cover rep-222

resentations, resulting in four simulations for each CLASSIC version. Meteorological forc-223

ing for the simulations was either provided by the Climate Research Unit Japanese 55-224

year reanalysis version 2.2 (CRUJRAv2.2, 1901-2020; CRU-JRA (2021); Harris et al. (2014,225

2020); Kobayashi et al. (2015)) or the Global Soil Wetness Project Phase 3 (GSWP3)226

-WFDE5 over land merged with ERA5 over the ocean (W5E5) (GSWP3W5E5; 1901-227

2016; Lange (2020)). The methodology of Melton and Arora (2016) was used to disag-228
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gregate the 6-hourly meteorological data to the half-hourly time step CLASSIC uses. Model229

preparation for historical simulations included spinups that cycled through the meteo-230

rological forcings from 1700-1725 using constant CO2 concentrations from 1700 until an231

equilibrium state was reached. Then, historical simulations with transient CO2 concen-232

trations, vegetation cover and composition, including the effects of land use change and233

fire, were performed from 1700-2019 (for CRUJRAv2.2) or 1700-2016 (for GSWP3W5E5).234

Two different land cover representations are used for the CLASSIC simulations, which235

are based on the Global Land Cover 2000 (GLC2000) and the European Space Agency236

Climate Change Initiative (ESACCI; ESA (2017)) datasets. As described in A. Wang237

et al. (2006), these datasets are mapped onto CLASSIC’s PFTs and a timeseries includ-238

ing changes in crop area is created. While the site-level simulations can include all 12239

PFTs described in 2.1, the global land cover representations used here do not include240

shrub PFTs and sedges, so they only include nine PFTs for the biogeochemical calcu-241

lations and four PFTs (i.e., needleleaf trees, broadleaf trees, crops and grasses) for the242

physics.243

2.4 Observation-based estimates of global T/ET244

Global average estimates of the T/ET ratio have been reported by other studies245

and can be used to evaluate our model results. Techniques used to determine T/ET in-246

clude isotopes, site measurements, remote sensing as well as a hybrid approach (Wei et247

al., 2017). As the water remaining after E is enriched in the heavier oxygen (18O) and248

hydrogen (2H) isotopes, whereas T does not change isotope ratios, measurements of oxy-249

gen and hydrogen stable isotope ratios can be used to partition T and E (Jasechko et250

al., 2013). Jasechko et al. (2013) used isotope measurements from Earth’s large lakes and251

calculated lake catchment T from stable isotope mass balances between water inputs and252

losses. They then up-scaled their calculations to global T using a global freshwater sta-253

ble isotope mass balance resulting in T/ET of 0.80-0.90 (25th and 75th percentiles) (Jasechko254

et al., 2013). Coenders-Gerrits et al. (2014), however, suggest that Jasechko et al. (2013)’s255

T/ET was overestimated and showed that using different inputs results in T/ET of 0.50-256

0.80 with a median value around 0.65. Further tests with different inputs and increased257

uncertainty estimates, decreased the median T/ET even further to 0.58 and increased258

its uncertainty with 25th and 75th percentiles of 0.35 and 0.8 (Coenders-Gerrits et al.,259

2014). Good et al. (2015) also comment that previous studies might have overestimated260

T/ET, as they neglected that E originates from multiple pools and did not account for261

their connectivity. Good et al. (2015) estimate the fraction of surface water that is bound262

in the soil and accessible by plants for T versus mobile water that quickly passes through263

the soil through preferential flow paths and is assumed to have the same isotopic com-264

position as precipitation, as it does not mix with soil water. Good et al. (2015) deter-265

mined the global terrestrial isotope budget using an isotope mass balance approach, grid-266

ded land-atmosphere water fluxes and an estimate of the soil water-surface water con-267

nectivity resulting in T/ET between 0.56 and 0.74 (25th and 75th percentiles) and a mean268

of 0.64. A compilation of site-level measurements of T and ET in different ecoregions269

using a range of techniques (eddy covariance, sap flow or isotopic approaches in combi-270

nation with biophysical models to partition ET) found a global mean T/ET of 0.61 ±271

0.15 (± 1 SD) (Schlesinger & Jasechko, 2014). L. Wang et al. (2014) showed that site-272

level T/ET ranged from 0.38 to 0.77 (25th and 75th percentiles) and that 43% of the273

variations in T/ET could be explained by differences in LAI and the growing stage of274

the ecosystem. The remote sensing-based global T/ET estimates used to evaluate CLAS-275

SIC (Section 3.2) were obtained from studies using remotely sensed datasets of mete-276

orological variables (e.g., radiation, air temperature, precipitation) and vegetation char-277

acteristics to drive different ET algorithms, which included the Penman-Monteith model278

(PM-MOD; Q. Mu et al. (2007, 2011)), the Global Land Evaporation Amsterdam Model279

(GLEAM; Miralles et al. (2011)), the Priestley-Taylor Jet Propulsion Laboratory (PT-280

JPL; Fisher et al. (2008)) model (Miralles et al., 2016) and the Penman-Monteith-Leuning281
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(PML; Y. Zhang et al. (2016)) model. Of the remote-sensing-based global ET models,282

PM-MOD is one of the most widely used (for example in the MODIS ET product MOD16).283

Unlike other Penman-Monteith-based models, PM-MOD determines the surface and aero-284

dynamic resistances without using soil moisture or wind speed inputs. Its resistance pa-285

rameters have, however, been calibrated using EC towers, which is not required for GLEAM286

and PT-JPL (Miralles et al., 2016). GLEAM determines the ET components based on287

Priestley and Taylor (1972) apart from interception losses, which use Gash (1979)’s an-288

alytical model driven by precipitation observations (Miralles et al., 2016). Despite us-289

ing the same forcing datasets to drive PM-MOD, GLEAM and PT-JPL, where input re-290

quirements overlapped, differences in modelled ET and its component fluxes were large291

(Miralles et al., 2016). Compared to the other two models and data from ERA-Interim292

reanalysis (Dee et al., 2011) and the model tree ensemble (MTE; Jung et al. (2009, 2010))293

product, which uses a machine-learning algorithm trained on FLUXNET data, PM-MOD294

tends to underestimate ET, especially in the tropics and dry subtropical regions, apart295

from in the Northern high-latitudes (Miralles et al., 2016). In high latitudes, GLEAM296

and PT-JPL had lower ET than PM-MOD likely due to deficiencies in the Priestley-Taylor297

approach when available energy is low (Miralles et al., 2016). Partitioning of ET into298

Es, Ec and T largely differs between the models with T being much lower in PM-MOD299

and Es and Ec higher than in the other two models (Miralles et al., 2016). PM-MOD’s300

T/ET of 0.24 is an outlier compared with the other observation-based estimates (see Sec-301

tion 3.2), which might in part be due to its underestimation of ET in the tropics and dry302

sub-tropics, which tend to contribute the most to global T (Schlesinger & Jasechko, 2014).303

PM-MOD also shows relatively high Es in tropical regions, where GLEAM and PT-JPL304

show very little Es. Ec’s contribution to ET is also much larger on average in PM-MOD305

with 24% compared to 18% in PT-JPL and 10% in GLEAM (Miralles et al., 2016) and306

PML (Y. Zhang et al., 2016).307

3 Results308

3.1 Site-level results309

Baseline CLASSIC simulations at a selection of FLUXNET sites (Table 2) showed310

an overestimation of LE compared with eddy covariance measurements at sparsely veg-311

etated sites such as open shrublands (e.g., ES-Amo, ES-LJu, US-Sta) during wet peri-312

ods and an underestimation of LE during the peak growing season or drier periods at313

these sites (Figure 2 and B3). During wet periods, when LE was overestimated, H was314

underestimated (Figure B4). During dry periods, on the other hand, H was overestimated315

compared to observations. The ground heat flux (G; Figure B5) also tended to be over-316

estimated at these sites, especially during summer. The overestimation of LE led to a317

strong reduction in soil moisture in the top layer (Figure B6). Thus, GPP was reduced318

and underestimated during the peak growing season at several open shrubland or grass-319

land sites (e.g., ES-LJu, US-SRC, ES-Amo; Figure 2 and B2).320

The DSL simulations mainly affected LE with statistically significant (t-test, p <321

0.01) differences between the bias in the DSL simulation and the bias in the Baseline sim-322

ulation (Figure B8) at sparsely vegetated sites such as open shrubland sites with a large323

bare ground area (e.g., ES-Amo, ES-LgS, ES-LJu, US-Sta, US-SRC, US-Whs), where324

the DSL parameterization reduced LE during wet periods and increased LE during dry325

periods (Figure 2 and B3). Thus, the DSL simulations eliminated or reduced overesti-326

mation of LE during wet times and the simulated seasonal cycle of LE more closely rep-327

resented observations at these sites. The reduction in LE in the wet season led to an in-328

crease in soil moisture of the top layer (Figure B6) and thus to higher GPP later in the329

year (Figure 2 and B2). At the majority of sites, G was only minimally affected (Fig-330

ure B5).331
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The DSL-EcT modifications affected LE at both sparsely vegetated sites as well332

as sites with high LAI (e.g., evergreen forest sites; Figures 2, B3, B7 and B8). As in the333

DSL simulations, LE at the sparsely vegetated sites was reduced during wet periods and334

increased during dry periods due to the DSL parameterization (Figure 2). Effects of the335

Ec and T partitioning modifications on LE at the open shrubland sites were minor, while336

LE at densely vegetated sites such as tropical forests in Brazil (BR-Sa1) or French Guiana337

(GF-Guy) was more strongly impacted (Figure B3). At the sites where LE increased in338

the DSL-EcT simulations (mainly denser forest sites), H decreased (Figure B4). For the339

more sparsely-vegetated sites, on the other hand, H slightly increased, especially dur-340

ing wetter periods. The effect on G at each site was minimal (Figure B5). The Ec and341

T partitioning modifications resulted in slightly lower GPP than for the DSL simulation,342

as LE increased and the liquid water content of the top soil layer (θl,1) decreased.343

Biases in simulated daily LE and GPP compared to observations for the FLUXNET344

sites were reduced in the DSL and DSL-EcT simulations compared to the Baseline sim-345

ulations at several of the sites (Figure 3 and 4). Averaged over all the sites, the mean346

absolute error (MAE) and root mean square error (RMSE) in LE were reduced in the347

DSL-EcT simulations compared to the Baseline with a decrease in mean MAE of 5% and348

in mean RMSE of 4% (Figure 3). T-tests showed that the majority of sites showed sta-349

tistically significant differences (p < 0.01) between daily simulated and observed LE and350

GPP for all model configurations (Figure 3 and 4). The magnitude of reduction in MAE351

and RMSE varied between sites.352
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Figure 2: Monthly mean observed and simulated latent heat flux (LE) and gross primary
productivity (GPP) for a selection of FLUXNET sites (showing different biomes and cli-
mates) for the Baseline, DSL and DSL-EcT simulations (Table 1). All sites are shown in
Figures B2 and B3. The shading shows the standard deviation over the available years.
Site names, their biomes and years of measurements used are listed for each site (for more
details see Table 2). For some sites, the results from the different simulations and observa-
tions are overlapping and lines may be difficult to distinguish.
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Figure 3: Mean absolute error (MAE, W m−2), root mean square error (RMSE, W m−2)
and p value (determined using an independent two-sided t-test) between the observed and
simulated daily latent heat flux (LE) for the FLUXNET sites (Table 2) for the Baseline,
DSL and DSL-EcT simulations (Table 1). For MAE and RMSE, values closer to zero indi-
cate better model performance.
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Figure 4: Mean absolute error (MAE, g C m−2 day−1), root mean square error (RMSE,
g C m−2 day−1) and p value (determined using an independent two-sided t-test) between
the observed and simulated daily gross primary productivity (GPP) for the FLUXNET
sites (Table 2) for the Baseline, DSL and DSL-EcT simulations (Table 1). For MAE and
RMSE, values closer to zero indicate better model performance.

3.2 Global results353

For the baseline CLASSIC simulations, the largest contribution to global ET comes354

from Es (39.5%), followed by Ec (34.6%) and T (25.9%) (Figure 5). Results shown in355

Figure 5 focus on simulations using one land cover and one meteorological forcing dataset356

as the results were similar across the simulations using different land cover and mete-357

orological forcing. The ET partitioning in baseline CLASSIC results in a lower T/ET358

ratio than estimates from isotope, remote sensing (apart from the PM-MOD algorithm,359

which is an outlier compared to other remote sensing-based estimates as discussed in Sec-360

tion 2.4) or site measurements as well as several other process-based models suggest (Fig-361

ure 6). Total global GPP, LE and H are within the uncertainty bounds of observation-362

based estimates (Figure C1a-f). Low productivity regions such as the southwestern United363
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States, southern Australia, southern South America, however, show very low to zero GPP.364

Due to the low GPP, Es exceeds Ec and T in these regions (not shown).365

Implementing the DSL parameterization changes CLASSIC’s ET partitioning by366

significantly reducing Es (t-test, p < 0.01) and increasing Ec (t-test, p = 0.013) and T367

(t-test, p < 0.01) compared to baseline CLASSIC (Figure 5). As T increased and ET368

decreased, global T/ET significantly increased (t-test, p < 0.01) from ∼0.25 on average369

(taken across the simulations listed in Table 1) in baseline CLASSIC to ∼0.30 in the DSL370

simulations (Figure 6). Slightly increased T in the DSL simulations was due to an in-371

crease in GPP, especially in arid and semi-arid regions, where Es was reduced and soil372

moisture available to the vegetation increased.373

Combining the DSL parameterization with the modifications to Ec and T parti-374

tioning resulted in slightly increased ET (t-test, p < 0.01), a reduction in Es (t-test, p375

< 0.01), a slight decrease in Ec (t-test, p < 0.01) and an increase in T (t-test, p < 0.01)376

(Figure B9). Thus, the T/ET ratio is significantly higher (t-test, p < 0.01) for the DSL-377

EcT simulations than the CEVAP simulations by 0.15 - 0.17 depending on the land cover378

and meteorological forcing (Table B1 and Figure 5). The DSL-EcT modifications decreased379

both Es and Ec while increasing T (all statistically significant, t-test, p < 0.01). Despite380

differences in the water fluxes between simulations using the different forcings (see Fig-381

ure B9 and Section 2.3), the modified CLASSIC versions changed ET and its partition-382

ing more than the different forcing datasets did (Figure 5 and Table B1). The T/ET for383

the DSL-EcT simulations remained lower than several observation-based estimates us-384

ing isotopes, other site measurements or remote sensing algorithms (except PM-MOD)385

suggest, but was closer to estimates from other models and is close to the CMIP5 en-386

semble mean value of 0.41 (Lian et al., 2018).387

As CLASSIC’s T/ET remained low compared to observations and some other LSMs,388

we considered further options to improve its ET partitioning. Lian et al. (2018) suggested389

that the simulation of T/ET in ESMs could be improved by taking into account the dif-390

fuse fraction of incoming radiation, as it would affect the photosynthetic activity of shaded391

leaves and likely increase T . Including the diffuse radiation fraction using a 2-leaf pho-392

tosynthesis scheme instead of the big-leaf scheme in CLASSIC (Arora, 2003), however,393

only had minor impacts on T and T/ET. Both increased by ∼2%, respectively, compared394

to the big-leaf scheme without the diffuse radiation fraction in CLASSIC resulting in T/ET395

of 0.427 driven with CRUJRA and ESACCI.396

GPP significantly increased (t-test, p < 0.01) in arid and semi-arid regions such397

as the southwestern United States and Australia due to the modifications in ET parti-398

tioning while some densely vegetated areas (especially in the Tropics) showed a reduc-399

tion in GPP (Figure 7b). The majority of the regions where GPP increased in the DSL-400

EcT simulations showed an increase in H and a small reduction in LE (Figure 7d and401

f) or ET, as the decrease in Es (Figure 8b) exceeded the increases in Ec and T (Figure402

8d and f). In areas with reduced GPP, H decreased and LE (Figure 7b, d and f) and403

ET tended to increase, as Es increased or decreased only slightly, Ec decreased moder-404

ately and T increased statistically significantly (t-test, p < 0.01; Figure 8d and f). In405

tropical forests (here defined as areas between 25°S and 25°N with a leaf area index >406

3 m2 m−2), the DSL-EcT simulation mainly affects Ec and T while the change in Es is407

relatively small. In semi-arid regions, on the other hand, Es and T are more strongly af-408

fected than Ec.409
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Figure 5: Partitioning of evapotranspiration (ET) into its components soil evaporation
(Es), canopy evaporation (Ec) and transpiration (T ) for the three different CLASSIC
versions (see Section 2.3; Table 1). Percentages of Es, Ec and T are global averages over
1997-2016 for simulations using the CRUJRA meteorological forcing and the ESACCI
land cover. Total ET values for the different CLASSIC versions are shown below the pie
charts.

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 6: Globally averaged T/ET from observation-based datasets (see Section 2.4) and
different land surface or Earth System models (adapted from Wei et al. (2017)) alongside
the versions of CLASSIC tested in our study (see Section 2.3) . The “Hybrid” refer-
ence dataset uses site measurements, satellite-based observations, as well as land surface
model (a complex physically based model i.e., the Community Land Model 4.5, the re-
mote sensing-based Global Land Evaporation Amsterdam Model (GLEAM) and a simple
biophysical model i.e., Penman-Monteith-Leuning Model; PML) outputs, to upscale site-
level measurements of the ET components (Wei et al., 2017). For each of the CLASSIC
versions (Table 1), the four points represent the results using a combination of the two
different meteorological forcing datasets and the two land cover representations (Section
2.3). The horizontal displacement of the dots is just to allow each one to be visible.
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(a) DSL-EcT (b) DSL-EcT - Baseline

(c) DSL-EcT (d) DSL-EcT - Baseline

(e) DSL-EcT (f) DSL-EcT - Baseline

Figure 7: Geographic distribution of annual gross primary productivity (GPP), latent
(LE) and sensible (H) heat flux averaged over 1997-2016 for the DSL-EcT simulation (a,
c, e) and the difference between the DSL-EcT and Baseline simulations (b, d, f) using the
CRUJRA meteorological forcing and the ESACCI land cover. Grid cells with dots indi-
cate that differences are statistically significant (independent two-sample t-test p level <
0.01).
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(a) DSL-EcT (b) DSL-EcT - Baseline

(c) DSL-EcT (d) DSL-EcT - Baseline

(e) DSL-EcT (f) DSL-EcT - Baseline

Figure 8: Geographic distribution of soil evaporation (Es), canopy evaporation (Ec) and
transpiration (T ) averaged over 1997-2016 for the DSL-EcT simulation (a, c, e) and the
difference between the DSL-EcT and Baseline simulations (b, d, f) using the CRUJRA
meteorological forcing and the ESACCI land cover. Grid cells with dots indicate that dif-
ferences are statistically significant (independent two-sample t-test p level < 0.01)

Parameter values which determine the DSL thickness (zmax and K; Equations A12410

and A13) and the interception capacity of the canopy (the maximum storage of liquid411

water; pl, Equation A31) are uncertain. To investigate how the chosen parameter val-412

ues impact simulated energy fluxes and GPP, we conducted a sensitivity analysis with413

global simulations. The simulations demonstrated that LE has the opposite response to414

H and GPP as K, zmax and pl are changed (Figure 9). Changing K or pl affected LE,415
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H and GPP more than changes in zmax. Of the ET components, Es is most affected by416

changes in K and zmax, while changes in pl affected Ec the most. Changes in ET par-417

titioning due to a modified pl were relatively small, however. A reduction in pl by 50%418

from 0.2 kg m-2 to 0.1 kg m-2 reduced Ec/ET only by 15% and increased Es/ET and419

T/ET by 7% and 6%, respectively. Thus, even with a significantly reduced interception420

capacity, CLASSIC simulated an Ec that still contributed 25% of ET, which is higher421

than GSWP-2 (16%) (Dirmeyer et al., 2006) and CLM4 (20%) (D. M. Lawrence et al.,422

2011), while T was 44% of ET.423

Figure 9: Percentage change in LE, H and GPP (top) and in Es, Ec and T (bottom)
with change in the parameters K, maximum DSL thickness (zmax) and the maximum
storage of liquid water (pl) in the sensitivity simulations performed using CLASSIC with
the DSL-EcT configuration.

4 Discussion424

The original CLASSIC version had unreasonably low T/ET compared to most observation-425

based estimates (see Section 2.4 and Figure 6) and other LSMs with a global mean value426

of 0.25 ± 0.01 (mean ± standard deviation of the ensemble of four simulations using two427

meteorological forcings and two land cover representations; Table B1). Similar to results428

of Swenson and Lawrence (2014) using the Community Land Model (CLM), implement-429

ing a DSL parameterization in CLASSIC increased the resistance to Es, improved sim-430

ulated ET and increased productivity in arid / semi-arid regions (Figures 2 and 7b). In431

areas, where the original β formulation (Equation A20) simulated high Es, which reduced432

soil moisture availability later in the growing season, the DSL parameterization gener-433

ally improved simulated LE and increased GPP, as there was more water available in the434

root zone (Figures 2 and B6). This agrees with findings in other studies using different435

models such as Swenson and Lawrence (2014) (CLM4.5) and Decker et al. (2017) (CA-436

BLE). Inclusion of a DSL parameterization alone increased CLASSIC’s global T/ET to437

0.30 ± 0.01 from 0.25 ± 0.01 in baseline CLASSIC. A further modification which influ-438

ences the canopy fluxes, Ec and T , allowed T to occur from the dry portion of the canopy439

while intercepted water is evaporating from the wet canopy fraction. This change increased440

CLASSIC’s global T/ET further to a value of 0.41 ± 0.01. This value is lower than observation-441

based global estimates of 0.57 ± 0.07 (Wei et al., 2017), but it equals the CMIP5 ensem-442

ble mean (Lian et al., 2018) and is 0.16 higher than the baseline CLASSIC simulations.443

Other models have been working on improving their T/ET ratio. For example, imple-444

mentation of a bare soil resistance term for dry soils in the ORganizing Carbon and Hy-445
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drology in Dynamic EcosystEms (ORCHIDEE) LSM increased simulated T/ET at semi-446

arid shrub, grass and forest sites in the Southwestern US (MacBean et al., 2020). In the447

Community Atmosphere Biosphere Land Exchange (CABLE) model, T/ET at several448

FLUXNET sites was increased from an average value of 0.28 (ranging from 0.08 to 0.71449

depending on the site) to 0.70 (ranging from 0.29 to 0.84) by implementing pore-scale-450

based resistance formulations of Es, which reduced overestimation of Es (Decker et al.,451

2017). In CLM, global T/ET has been increased from 0.43 in CLM3.5, to 0.48 in CLM4,452

which rises to 0.56 when the nitrogen (N) cycle is explicitly simulated, as ground evap-453

oration decreased from 39% to 32% and 23%, respectively (D. M. Lawrence et al., 2011).454

To accomplish these increases in T/ET from CLM3.5 to CLM4 new litter resistance and455

canopy turbulence functions were added, which increased the resistance to ground E when456

litter was present and turbulent exchange was reduced under dense canopies. The dif-457

ferences in T/ET for the two versions of CLM4 (with and without the N cycle) are likely458

due to a higher LAI with the N cycle explicitly simulated, which increased T and Ec and459

reduced Es (D. M. Lawrence et al., 2011). Our simulations with the modified DSL-EcT460

CLASSIC, which had higher T and T/ET than the baseline CLASSIC, changed LAI re-461

gionally, showing a statistically significant (t-test, p value < 0.01) increase in LAI in arid/semi-462

arid regions and a decrease in some tropical forests. Global mean LAI, however, did not463

appreciably change compared to the baseline CLASSIC and is higher than AVHRR and464

MODIS observations suggest in both simulations (Figure C1g and h). Comparing the465

CLASSIC DSL-EcT against CLM4 (no N cycle) (D. M. Lawrence et al., 2011) show CLAS-466

SIC DSL-EcT to have lower T (48% CLM4, 41% CLASSIC DSL-EcT), similar Es (32%467

CLM4, 30% CLASSIC DSL-EcT) and higher Ec (20% CLM4, 29% CLASSIC DSL-EcT).468

The Global Soil Wetness Project Phase 2 (GSWP-2) multi-model mean (including thir-469

teen land surface models; see Dirmeyer et al. (2006)) contributions to ET were 48% T ,470

36% Es and 16% Ec (Dirmeyer et al., 2006). Variability between global estimates of the471

ET components from CLM4, GSWP-2 and other models such as GLEAM, PT-JPL and472

PM-MOD (Miralles et al., 2016) is large and uncertainties are high (see Section 2.4). Com-473

pared against observation-based estimates and other models, however, Ec remains too474

high in CLASSIC DSL-EcT while T is too low. As our parameter sensitivity tests (Sec-475

tion 3.2 and Figure 9) showed, the higher Ec is in part due to a higher maximum stor-476

age of liquid water (pl) compared with CLM4 and a lower pl of 0.1 kg m-2 would reduce477

CLASSIC’s Ec to ∼25% of ET from 29%. Measurements of maximum water storage per478

leaf area index show large variability depending on the ecosystem, vegetation species and479

stand age with values ranging from 0.14 to 0.88 mm (Hadiwijaya et al., 2021), which sug-480

gest that a pl of 0.1 kg m-2 could be too low.481

In order to improve the simulation of the different ET components and especially482

T/ET in LSMs or ESMs, further processes have been highlighted as potentially impor-483

tant in other studies using different models. Chang et al. (2018) found that simulated484

T/ET of a subhumid, mountainous catchment improved when an empirical resistance485

formulation to E was replaced by a process-based soil surface resistance parameteriza-486

tion, and lateral flow, redistributing precipitation in mountainous terrain, was included487

in a process-based ecohydrological model. Here, we have included a process-based sur-488

face resistance parameterization through the simulation of the DSL, however, terrain-489

driven lateral flow is not included in CLASSIC. Its inclusion could improve T/ET fur-490

ther, as lateral flow affects soil moisture along hillslopes resulting in drier surfaces on up-491

per slopes suppressing E more than T (Chang et al., 2018). Water redistribution in semi-492

arid ecosystems, however, is complex and in addition to lateral flow, local microtopog-493

raphy and biocrusts forming on bare soils can affect runoff and channel water to vege-494

tated patches, where it infiltrates more easily and increases productivity (Chen et al.,495

2013; Rodŕıguez-Caballero et al., 2018). Another issue observed in LSMs is that root growth496

and distribution and interactions between soil moisture and root dynamics are often not497

adequately represented (Chang et al., 2018; P. Wang et al., 2018). P. Wang et al. (2018)498

showed that a dynamic root scheme combined with the simulation of the ground water499

table implemented in the Noah LSM, where root dynamics depend on fluctuating ground-500
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water levels, improves simulation of root water uptake and latent heat fluxes in arid or501

semi-arid regions. During growing season periods when the water table declines, roots502

extract water from the saturated zone or directly from groundwater. In forests with deep503

roots, for example, ground water dynamics can impact energy, water and carbon fluxes504

as well as simulated soil moisture (De Pue et al., 2022; MacBean et al., 2020; Decharme505

et al., 2019). Including groundwater recharge from an aquifer in Niu et al. (2007) was506

shown to increase soil moisture and ET especially in transition areas from arid to wet507

regions (e.g., riparian zones in arid regions). The simulation of seasonal drought effects508

in LSMs or ESMs was found to be improved by combining the representation of ground-509

water replenishment from an aquifer with lateral flow and dynamic root distributions510

instead of commonly used static, prescribed root profiles (P. Wang et al., 2018). Uncer-511

tainties in pedotransfer functions, which are used to determine soil physical properties,512

also affect the ability of LSMs to adequately represent soil moisture (De Pue et al., 2022).513

Simulated soil moisture and infiltration might be improved by incorporating improved514

pedotransfer functions (Gupta et al., 2021; Pinnington et al., 2021), which depend on515

climatology and land use in addition to soil texture (Fatichi et al., 2020; Vereecken et516

al., 2019). Simulated drought response can also be improved by implementing a plant517

hydraulics scheme, which determines gc based on xylem hydraulics instead of using an518

empirical moisture stress function (Eller et al., 2018). Especially under extreme climatic519

conditions or a changing climate, process-based models of gc can improve simulated wa-520

ter fluxes during droughts. Eller et al. (2018) showed that their hydraulics-based gc model521

was able to better represent effects of drought on T of tropical forests during El Niño522

events than an empirical drought scheme.523

Future work, which would likely improve ET partitioning in CLASSIC and sim-524

ulated T/ET, could include the representation of terrain-dependent lateral flow, plant525

hydraulics and possibly modifications to canopy interception such as inclusion of wind-526

driven loss of intercepted water or snow which increases throughfall (Véliz-Chávez et al.,527

2014). As Dong et al. (2022) attributed a warm bias in the central US in CMIP6 mod-528

els, which CanESM exhibits as well, to low ET and T/ET, we are also planning to in-529

vestigate the effects of the DSL and Ec-T partitioning modifications in the ESM CanESM530

to determine their effects on land C and water fluxes as well as the climate, when the531

land and the atmosphere interact.532

5 Conclusions533

LSMs often show poor ET partitioning with positive biases in E and negative bi-534

ases in T , resulting in an underestimation of T/ET (Chang et al., 2018; Lian et al., 2018).535

These biases impact the simulation of C cycle processes. For example, we found that over-536

estimation of Es during periods of high soil moisture in sparsely vegetated areas such537

as low-latitude shrublands resulted in excessive plant water stress during the growing538

season and depressed GPP in CLASSIC simulations. To address CLASSIC’s bias in Es,539

we implemented a dry surface layer (DSL) parameterization that increases the surface540

resistance to water vapour and heat fluxes. To further improve simulated T , T is now541

allowed to occur from the dry fraction of the plant canopy at the same time as water evap-542

orates from the wet fraction, which previously did not allow T when a canopy was even543

a small fraction wet. After these modifications, in arid and semi-arid regions Es and ET544

were reduced during wet periods leading to improved seasonality of ET and an increase545

in GPP. However, the impact of our modifications globally was for GPP to decrease slightly546

(∼1.6%) compared to the baseline CLASSIC simulations as a result of increased T and547

ET and drier soils in other biomes including seasonally dry tropical forests. Globally, the548

proportion of T relative to ET was improved compared to observations with an increase549

from ∼25% in baseline CLASSIC to ∼41% in the DSL-EcT simulations. As the simu-550

lated global T/ET of 0.41 remains lower than observation-based estimates of 0.57 ± 0.07551

(Wei et al., 2017), possible future improvements to CLASSIC include implementing terrain-552
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driven lateral flow redistributing water, and including a plant hydraulics-based gc scheme553

instead of an empirical moisture stress function to improve the representation of plant554

water use and the vegetation’s response to drought stress. Improvements in ET parti-555

tioning in LSMs and ESMs are important to simulate carbon and water fluxes well in556

historical and especially future simulations, as warmer climates are expected to enhance557

water cycles and impact ESM climate simulations.558

Appendix A559

A1 Evapotranspiration parameterization560

ET is the sum of Es, Ec and T . Es consists of E originating from bare soil and from
soil underneath the vegetation canopy. The potential evaporation rate from bare soil,
E(0) (mm s-1), is calculated as

E(0) = ρaCDHva(q(0)− qa), (A1)

where ρa is the air density (kg m-3), CDH the stability-dependent surface drag coeffi-
cient for heat (unitless), va the wind speed at the reference height (m s-1), q(0) the spe-
cific humidity at the surface (kg kg-1) and qa the specific humidity at the reference height
(kg kg-1) (Verseghy, 2017). The saturated surface specific humidity, q(0)sat (kg kg-1),
qa, and the surface evaporation efficiency (β; unitless; Equation A20) are used to deter-
mine q(0) as

q(0) = βq(0)sat + (1− β)qa. (A2)

The surface evaporation rate is limited to a maximum value, E(0)max (mm s-1) deter-
mined by the water content of the top soil layer (θ1; m

3 m-3) and the depth of water ponded
on the surface (Zp, m) as

E(0)max = ρw [Zp + (θ1 − θmin)∆Z1] /∆t, (A3)

with the density of water ρw (kg m-3), the depth of the top soil layer ∆Z1 (e.g. 0.10 m)
and the time interval ∆t (s) (typically 900-1800 s for CLASSIC) (Verseghy, 2017). θmin

(m3 m-3) is the residual soil liquid water content remaining after freezing or evaporation.
This is set to 0.04 m3 m-3 for mineral and fibric organic soils and 0.15 and 0.22 m3 m-3

for hemic and sapric organic soils, respectively. Underneath the vegetation, the maxi-
mum surface evaporation rate, E(0)max,c (mm s-1), is determined as

E(0)max,c = ρw(θ1 − θmin)∆Z1/∆t. (A4)

The potential evaporation rate from soil under the vegetation, E(0)c (mm s-1), is cal-
culated as

E(0)c =
ρa
ra,g

(q(0)− qa,c), (A5)

where qa,c is the specific humidity of the canopy air (kg kg-1) and ra,g (s m-1) is the sur-
face resistance, whose inverse is derived from Deardorff (1972) as

1

ra,g
= 1.9× 10−3(T (0)v − Tac,v)

1/3, (A6)

with the virtual potential temperature at the surface (T (0)v; K) and of the canopy air
(Tac,v; K) and the constant 1.9 × 10-3 in m s-1 K-1/3. The evapotranspiration rate from
the vegetation (ETc; mm s-1), i.e., the sum of Ec and T , which is equivalent to the la-
tent heat flux from the vegetation canopy divided by the latent heat of vaporization, is
calculated as

ETc = ρa
qc − qa,c
rb + rc

, (A7)

where qc is the saturated specific humidity at the canopy temperature (kg kg-1), rb the
leaf boundary layer resistance (s m-1) and rc the stomatal resistance (s m-1). The rel-
ative contributions from E or T differ depending on the circumstances in the model. If
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there is snow on the canopy, ETc is limited to the intercepted snow amount and is in the
form of Ec through sublimation. If instead, the canopy has liquid water upon it, the cal-
culated ETc is first drawn from the amount of liquid water stored on the canopy (Wl;
kg m-2). If that amount is insufficient to satisfy the calculated ETc, T is possible after
checking there is enough soil water available in the root zone. Ec is then set to Wl and
the remainder of ETc is allocated to T . Thus, T only occurs, when there is no water avail-
able on the canopy and enough soil water is available, i.e., the liquid water content (θl;
m3 m-3) exceeds θmin for the respective soil layer. Based on Bonan (1996); McNaughton
and Van Den Hurk (1995), the inverse of rb is calculated as

1/rb = v1/2ac σfiγiPAI1/2/0.75[1− exp(−0.75PAI1/2)] (A8)

with the wind speed in the canopy air space vac, the fractional coverage of each PFT fi,
the PFT-dependent parameter describing leaf dimension γi (unitless), and the plant area
index (PAI). By default, CLASSIC uses Leuning (1995)’s stomatal conductance (gc; mol
CO2 m−2s−1) formulation (details in Arora (2003); Melton and Arora (2016)) and gc
is calculated as

gc = m
Gcanopy,net p

(cs − Γ)

1

(1 + VPD/Vo)
+ b LAI, (A9)

where Gcanopy,net is the net canopy photosynthesis rate (mol CO2 m-2 s-1), p is the sur-
face atmospheric pressure (Pa) and Γ is the CO2 compensation point (Pa). The param-
eter m (unitless) is 9.0 for needle-leaf trees, 12.0 for other C3 plants and 6.0 for C4 plants,
b is set to 0.01 mol m−2s−1 for C3 and 0.04 mol m−2s−1 for C4 plants. The parameter
Vo has values of 2000 Pa for trees and shrubs and 1500 Pa for crops and grasses. The
partial pressure of CO2 at the leaf surface, cs (Pa), depends on the atmospheric CO2 par-
tial pressure cap (Pa), Gcanopy,net and the aerodynamic conductance gb (mol CO2 m-2

s-1) and is defined as

cs = cap −
1.37 Gcanopy,net p

gb
. (A10)

The units of gc and gb can be converted from mol CO2 m-2 s-1 to m s-1 using

gc(m s-1) = 0.0224
Tc

Tf

p0
p
gc(mol CO2 m-2 s-1), (A11)

with the standard atmospheric pressure p0 = 101 325 Pa and the freezing temperature561

Tf = 273.16 K.562

A2 Determination of the dry surface layer thickness563

To avoid numerical instabilities due to thin soil layers, CLASSIC uses a 10 cm thick
top soil layer. In reality, soil moisture can vary strongly within the top 10 cm of soil, es-
pecially during extended dry periods where a thin layer at the top of the soil surface gets
very dry while the soil below stays moist (Goss & Madliger, 2007; Kurc & Small, 2004;
Li et al., 2020). To approximate the effects of this thin dry layer on surface water and
energy fluxes, a DSL parameterization is implemented in CLASSIC following Swenson
and Lawrence (2014). Their DSL parameterization determines when a DSL is present,
its thickness, and the resulting surface resistance to evaporation. The formation of a DSL
is initiated when the soil moisture of the top soil layer falls below a defined moisture thresh-
old, θDSL0 (m3 m-3), which is determined as

θDSL0 = Kθp,1, (A12)

where θp,1 is the porosity of the top soil layer (m3 m-3) and K is a constant (unitless),
here with a value of 0.8 following Swenson and Lawrence (2014). The thickness of the
DSL (m) is calculated as

DSL =

{
zmax

θDSL0−(θl,1+θice,1)
θDSL0−θair

for θl,1 + θice,1 < θDSL0

0 for θl,1 + θice,1 ≥ θDSL0,
(A13)
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where zmax is the maximum DSL thickness (m), here set to 0.015 m. As the liquid (θl)
and frozen (θice) water contents of the bare ground and ground under canopy subareas
can differ in CLASSIC, the DSL thickness and the resistance to evaporation are calcu-
lated separately for these two subareas. The “air-dry” soil moisture value (θair) was de-
termined following Dingman (2002) as

θair = θp,1

(
Ψsat,1

Ψair

) 1
b

(A14)

with the saturated soil matric potential Ψsat (m), the air-dry matric potential Ψair =
104 m (Swenson & Lawrence, 2014) and the Clapp and Hornberger empirical soil wa-
ter characteristic “b” parameter (unitless). The soil resistance to evaporation from bare
ground or the ground under the canopy Rsoil (s m

−1) is determined as

Rsoil =
DSL

τDv
, (A15)

where Dv (m2 s−1) is the molecular diffusivity of water vapour in the air and calculated
as (D. M. Lawrence et al., 2020)

Dv = 2.12× 10−5

(
T1

273.15

)1.75

, (A16)

where T1 is the temperature of the top soil layer (K). τ (m3 m−3) in Equation A15 is
the tortuosity of the vapour flow paths through the soil and determined following Moldrup
et al. (2003) as

τ = Φ2
air

(
Φair

θp,1

)3/b

(A17)

with the air-filled pore space Φair (m3 m−3) calculated as

Φair = θp,1 − θair. (A18)

A3 DSL effect on surface evaporation564

An increasing thickness of the DSL acts to decrease surface evaporation and thus
the latent heat flux in CLASSIC through a decrease in the surface evaporation efficiency
(β; unitless). β has a value between 0 and 1, where a value of 1 means that the specific
humidity at the surface equals the saturated surface specific humidity and does not limit
E, i.e. a DSL thickness of 0, whereas a β value of 0 means no surface evaporation can
occur. β is calculated as the minimum, more limiting value, between the soil evapora-
tion efficiency (Rsoil; Equation A15) derived from the DSL thickness and that calculated
by using CLASSIC’s original soil evaporation efficiency (Meyer et al., 2021; Merlin et al.,
2011) (CEVAP), which limits β values below 1 except when soils are fully saturated when
the value can be 1.

β = min

(
1

CDHvaRsoil + 1
,CEVAP

)
. (A19)

CEVAP is defined as

CEVAP =

{
0 for θl,1 < θmin

0.25(1− cos(πθl,1/θp,1))
2 for θmin < θl,1 ≤ θp,1.

(A20)

When there is snow or ponded water on the surface, β is set to 1 and q(0) is set to q(0)sat.565

Equation A19 gives a β that is constrained to CEVAP, when the soil is too moist for a566

DSL to develop. Figure 1 shows an example of the soil evaporation efficiency determined567

using the original CEVAP parameterization as well as the calculation using the resistance568

due to the DSL and the minimum of the two parameterizations for a range of liquid wa-569

ter content values of the top soil layer.570
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A4 DSL effect on the thermal conductivity571

In CLASSIC, the soil thermal conductivity (λsoil; W m-1 K-1) is determined from
the saturated thermal conductivity (λsat; W m-1 K-1), the dry thermal conductivity (λdry;
W m-1 K-1) and a relative thermal conductivity (λr; unitless; ranging from 0 for dry soils
to 1 for saturated soils) following Côté and Konrad (2005) (Verseghy, 2017)

λsoil = λr(λsat − λdry) + λdry. (A21)

An empirical coefficient κ (unitless), which differs for frozen (κ = 1.2, 0.85, and 0.25 for
coarse mineral, fine mineral, and organic soils, respectively) and unfrozen (κ = 4.0, 1.9,
and 0.6 for coarse mineral, fine mineral, and organic soils, respectively) soils, and the de-
gree of saturation (Sr; unitless) determine λr

λr =
κSr

1 + Sr(κ− 1)
, (A22)

where

Sr =
θl+ice

θp
. (A23)

λdry depends on θp and is calculated as

λdry =

{
0.75 exp(−2.76 θp) for mineral soil

0.30 exp(−2.00 θp) for organic soil.
(A24)

The thermal conductivities of liquid water (λl = 0.57 W m-1 K-1), ice (λice = 2.24 W
m-1 K-1) and the soil particles (λs; W m-1 K-1; values are 2.5 W m-1 K-1 for sand and
clay and 0.25 W m-1 K-1 for organic matter) determine λsat following De Vries (1963)
as

λsat =

{
λlθp + λs(1− θp) for unfrozen soil

λiceθp + λs(1− θp) for frozen soil.
(A25)

Similar to the latent heat flux (Section A3), the sensible heat flux should be lim-
ited by the DSL because the thermal properties, i.e., the thermal conductivity and heat
capacity, which is influenced by changes in soil moisture, of the DSL differ from those
of the top soil layer, as the DSL is drier and has more air filled-pore space. When a DSL
is present, for mineral soils and organic soils in uplands, the thermal conductivity at the
top of the first soil layer (λ; W m-1 K-1) is linearly interpolated between the “dry” (λdry)
and calculated top soil layer thermal conductivity (λsoil) values depending on the DSL
thickness

λ = λsoil −
DSL

zmax
(λsoil − λdry). (A26)

A5 DSL effect on the ground albedo572

In CLASSIC, the visible and near-infrared ground albedos (αg; unitless) are soil
moisture dependent. As the top of the soil wets from a liquid water content value of 0.22
to 0.26 m3 m−3, the albedo values follow a linear relationship between the “dry” (αg,dry;
unitless) and “wet” albedo values (αg,wet; unitless) of the respective soil colour index (P. J. Lawrence
& Chase, 2007). Outside of this range of liquid water content, the model adopts either
the dry or wet albedo value accordingly. With the DSL formulation, if a DSL exists, a
DSL-dependent αg is calculated as

αg = αg,wet −
DSL

zmax
(αg,wet − αg,dry) (A27)

and the αg value used by the model is set to the higher value of the original CLASSIC573

calculation and the value determined in Equation A27.574
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A6 Modifications to canopy evaporation and transpiration in CLASSIC575

In the CLASSIC v.1.2 formulation for snow-covered canopies the evaporative flux
from the canopy (ETc; Equation A7) is first assigned to sublimation, as liquid water, if
present, is assumed to be within or underneath the snow and no T is expected to occur.
When there is only liquid water present on the canopy, we modified the original formu-
lation so that T is allowed to occur from a partially-wet canopy instead of from a com-
pletely dry canopy only. To separate the calculated amount of evapotranspired water (ETc;
see Equation A7) into Ec and T , we determine the wet (fwet) and dry (fdry) fractions
of the canopy similar to Fan et al. (2019) as

fwet =


Fl for Fl ≥ 0.01 and Fl ≤ 0.99

0 for Fl < 0.01

1 for Fl > 0.99

(A28)

fdry =


(1− fwet)

LAI
PAI for fwet ≥ 0.01 and fwet ≤ 0.99

1 for fwet < 0.01

0 for fwet > 0.99

(A29)

In general, only the leaves and not stems of a canopy can transpire, fdry is adjusted by
the LAI to PAI ratio. Fl is the fractional coverage of the canopy covered by liquid wa-
ter (unitless) determined as

Fl =

{
min(Wl / Wl,max, 1) for Wl,max > 0)

0 for Wl,max = 0)
(A30)

where Wl (kg m-2) is the amount of liquid water stored on the canopy and Wl,max (kg
m-2) is the storage capacity of the canopy for liquid water, which is calculated as

Wl,max = pl × PAI (A31)

with the maximum storage of liquid water pl set as 0.20 kg m-2 (Bartlett et al., 2006).
Wl is calculated as the sum of Wl of the previous time step and the rainfall intercepted
by the canopy during the current time step

Wl,t = min(Wl,t−1 +∆tρw(P − χP ),Wl,max), (A32)

where P is the rainfall rate (m s-1), χ is the canopy gap fraction (unitless), ∆t is the model
physics timestep (s) and ρw (kg m-3) the density of liquid water. To determine the canopy
fractional coverage of liquid water exposed to the air, Fl is decreased by the fractional
snow coverage (Fs).

Fl = max(0,min(Fl − Fs, 1)) (A33)

and, similar to Fl, Fs is found by

Fs =

{
min(Wf / Wf,max,1) for Wf,max > 0)

0 for Wf,max = 0),
(A34)

where Wf (kg m-2) is the amount of frozen water stored on the canopy and Wf,max (kg576

m-2) is the storage capacity of the canopy for frozen water. If there is no plant available577

water in the root zone, the wet canopy fraction is set to 1, as T is not allowed to occur.578

The predicted mass of water evapotranspired from the canopy (WE ; kg m-2) is cal-
culated as

WE = ETc × ρw∆t, (A35)

where ETc is the evapotranspiration rate from the canopy (m s-1; see Equation A7). The
wet and dry canopy fractions as well as FRbRc determine the fractions of WE coming from
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Ec and T , respectively. The amount of Wl (see Equation A32) is adjusted by the amount
of water evaporated from the wet canopy fraction as

Wl = Wl - (1 - fdry) (1 - FRbRc) WE for WE (1 - fdry)(1 - FRbRc) ≤ Wl (A36)

and WE is reduced by the amount being evaporated

WE =

{
WE (FRbRc + fdry - fdry FRbRc) for WE (1 - fdry) (1 - FRbRc) ≤ Wl

WE - Wl for WE (1 - fdry) (1 - FRbRc) > Wl

(A37)

The contribution of the leaf boundary layer resistance (rb; s m
-1; Equation A8) to the

total resistance, the sum of rb and the stomatal resistance (rc or 1/gc; s m
-1; Equation

A9), is calculated as a proportion of the total resistance from the leaf boundary layer
and stomata to determine when canopy evaporation is dominant and when T can oc-
cur, as

FRbRc = rb/(rb + rc). (A38)

In the second case of Equation A37, where Wl could not meet the calculated amount of579

water to be evaporated, Wl is then set to zero. If the predicted mass of water evapotran-580

spired from the vegetation (WE) after considering evaporation from wet leaves is greater581

than zero, it is treated as T . If there is enough water available in the root zone and T582

can occur, the soil water content removed by T and the T flux are calculated for each583

soil layer and the liquid water content of each soil layer containing roots is updated.584

Appendix B585

Figure B1: Map of the FLUXNET sites used in this study (including their biomes).
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Figure B2: Monthly mean observed and simulated gross primary productivity (GPP)
for the FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1). The
shading shows the standard deviation over the available years. Site names, their biomes
and years of measurements used are listed for each site in Table 2.
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Figure B3: Monthly mean observed and simulated latent heat flux (LE) for the
FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1).
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Figure B4: Monthly mean observed and simulated sensible heat flux (H) for the
FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1).
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Figure B5: Monthly mean observed and simulated ground heat flux (G) for the
FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Table 1).
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Figure B6: Monthly mean simulated liquid water content of the top soil layer (0-10 cm
depth; θl,1) for the FLUXNET sites for the Baseline, DSL and DSL-EcT simulations (Ta-
ble 1).
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Figure B7: Monthly mean simulated leaf area index (LAI) for the FLUXNET sites for
the Baseline, DSL and DSL-EcT simulations (Table 1).
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Figure B8: Two-sided t-test p value between the error in simulated daily gross primary
productivity (GPP) and latent heat flux (LE) for the FLUXNET sites (Table 2) for DSL
and DSL-EcT simulations compared to the Baseline simulation (Table 1).
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Figure B9: Annual ET, soil E, canopy E and T for 1960-2016 for the four Baseline and
DSL-EcT simulations (Table 1), respectively.

Table B1: Transpiration (T ) to evapotranspiration (ET) ratios of the different CLASSIC
simulations (Table 1) averaged over 1997-2016.

Forcing data Baseline DSL DSL-EcT

ESACCI and CRUJRA 25.92% 30.33% 41.93%
ESACCI and GSWP3 26.72% 31.43% 41.85%

GLC2000 and CRUJRA 23.69% 28.62% 40.35%
GLC2000 and GSWP3 24.30% 29.48% 40.17%

Appendix C586

Zonal ensemble plots of Baseline and DSL-EcT simulations show slight differences587

in GPP with the DSL-EcT simulations having slightly lower GPP in the Tropics and slightly588

higher GPP in the higher latitudes than the Baseline simulations. Globally, GPP is lower589

in the DSL-EcT simulations and shows less variability between the four simulations (us-590

ing two different meteorological forcings and two different land cover representations)591

(Figure C1). In the Tropics, LE tends to be higher in the DSL-EcT simulations.592
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(a) Baseline (b) DSL-EcT

(c) Baseline (d) DSL-EcT

(e) Baseline (f) DSL-EcT

(g) Baseline (h) DSL-EcT

Figure C1: Zonally averaged and global mean GPP, LE, H and LAI over land for the
Baseline and DSL-EcT simulations. The ensemble includes the four simulations using a
combination of two different meteorological forcing datasets and two land cover represen-
tations (Table 1).

Seasonal averages for the 11 TRANSCOM regions show that the Baseline and DSL593

simulations have the greatest differences in the North American Boreal, the South Amer-594

ican Tropics, Eurasian Temperate and Australia. During the spring, the DSL simula-595

tions tend to overestimate GPP in Australia (Figure C2), while they perform well dur-596

ing the rest of the year.597
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(a) Baseline (b) DSL-EcT

Figure C2: Monthly averaged GPP for 11 TRANSCOM regions and globally from March
2000 to December 2013.

In LE and H (Figure C3 and C4), the Baseline and DSL simulations show differ-598

ences especially in the South American Tropical, Northern Africa and Tropical Asia. How-599

ever, in all of the TRANSCOM regions as well as globally both simulations tend to lie600

within the uncertainty bounds of observations.601

(a) Baseline (b) DSL-EcT

Figure C3: Monthly averaged LE for 11 TRANSCOM regions and globally from January
2003 to December 2009.
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(a) Baseline (b) DSL-EcT

Figure C4: Monthly averaged H for 11 TRANSCOM regions and globally from January
2003 to December 2009.

Appendix D Open Research602

D1 Data Availability Statement603

The CLASSIC code versions (Baseline, DSL and DSL-EcT) and model outputs pre-604

sented in our paper are archived on Zenodo (https://doi.org/10.5281/zenodo.7015764;605

Meyer et al. (2022)).606
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Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz,789

J., . . . Zheng, B. (2018, dec). Global Carbon Budget 2018. Earth Sys-790

tem Science Data, 10 (4), 2141–2194. Retrieved from https://doi.org/791

10.5194%2Fessd-10-2141-2018 doi: 10.5194/essd-10-2141-2018792

Leuning, R. (1995, April). A critical appraisal of a combined stomatal-793

photosynthesis model for C3 plants. Plant Cell Environ., 18 (4), 339–355.794

doi: 10.1111/j.1365-3040.1995.tb00370.x795

–41–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Li, Z., Vanderborght, J., & Smits, K. M. (2020, January). The effect of the top soil796

layer on moisture and evaporation dynamics. Vadose Zone J., 19 (1). doi: 10797

.1002/vzj2.20049798

Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., . . . Wang, T. (2018,799

Jul). Partitioning global land evapotranspiration using CMIP5 models800

constrained by observations. Nature Climate Change, 8 (7), 640-646. Re-801

trieved from https://search.proquest.com/docview/2061820602 doi:802

10.1038/s41558-018-0207-9803

MacBean, N., Scott, R. L., Biederman, J. A., Ottlé, C., Vuichard, N., Ducharne,804
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