Comparing the importance of iodine and isoprene on tropospheric photochemistry

Ryan J Pound¹, Mathew J. Evans¹, and Lucy J. Carpenter²

¹University of York ²University of York, UK

November 22, 2022

Abstract

Naturally emitted reactive trace gases are thought to impact tropospheric composition, predominantly through the emission and chemistry of isoprene (C5H8). Other species are thought to play a less important role. Here the GEOS-Chem model is used to compare the impacts of isoprene and iodine emissions on present-day tropospheric composition. Removing isoprene emissions leads to a 4.4% decrease in tropospheric O3 burden, a smaller absolute change than the 5.7% increase from removing iodine emissions. Iodine has a negligible impact on global mean OH concentrations and methane lifetime (-0.2% and +0.1%). Isoprene has a substantial impact on both (-7% and +6.5%). Isoprene emissions and chemistry are seen as essential for tropospheric chemistry models, but iodine is often not. We suggest iodine should receive greater attention in model development and experimental research to allow improved predictions of past, present and future tropospheric O3.

Comparing the importance of iodine and isoprene on tropospheric photochemistry

R. J. Pound¹, M. J. Evans^{1,2}, L. J. Carpenter¹

⁴ ¹Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, YO10 5DD,

UK.

²National Centre for Atmospheric Science, University of York, YO10 5DD, UK.

Key Points:

1

2

3

5

6

7

The global impact on O₃ of present-day inorganic iodine and biogenic isoprene emission are similar in magnitude but opposite in sign. At the surface, the impact of iodine on O₃ exceeds that for isoprene, and is notably larger in defining the background for Europe and North America.

 Iodine has a negligible impact on OH concentrations and CH₄ lifetimes compared to isoprene.

Corresponding author: Ryan J. Pound, ryan.pound@york.ac.uk

14 Abstract

Naturally emitted reactive trace gases are thought to impact tropospheric composition, 15 predominantly through the emission and chemistry of isoprene (C_5H_8) . Other species 16 are thought to play a less important role. Here the GEOS-Chem model is used to com-17 pare the impacts of isoprene and iodine emissions on present-day tropospheric compo-18 sition. Removing isoprene emissions leads to a 4.4% decrease in tropospheric O₃ bur-19 den, a smaller absolute change than the 5.7% increase from removing iodine emissions. 20 Iodine has a negligible impact on global mean OH concentrations and methane lifetime 21 (-0.2% and +0.1%). Isoprene has a substantial impact on both (-7% and +6.5%). Iso-22 prene emissions and chemistry are seen as essential for tropospheric chemistry models, 23 but iodine is often not. We suggest iodine should receive greater attention in model de-24 velopment and experimental research to allow improved predictions of past, present and 25 future tropospheric O_3 . 26

27 Plain Language Summary

Natural emissions from the Earth's surface play a large role in determining the chem-28 istry of the atmosphere, influencing air quality and climate change. Considerable atten-29 tion is given to land based emissions, notably of isoprene, which are emitted in vast quan-30 tities by trees and other vegetation and can impact the concentration of O_3 , aerosols and 31 the hydroxyl radical. Historically less emphasis has been on the influence of emissions 32 of other compounds. We show that for one aspect of atmospheric composition (the glob-33 ally averaged O_3 concentrations) emission of iodine from the ocean are likely at least as 34 important as isoprene emissions and may be more so. As such, there should be an in-35 creased focus on better understanding the emissions and chemistry of iodine species (and 36 other halogens) and embed this information into our understanding of the Earth system. 37

38 1 Introduction

Gaseous emissions arising from terrestrial and marine ecosystems play important roles in regulating tropospheric photochemistry, in turn influencing climate and air quality. For example, oceanic emissions of dimethyl sulfide (DMS) are the dominant source of sulfur into clean background marine air (Yang et al., 2011; Sinha et al., 2007). The resulting sulfur aerosol directly scatters solar radiation as well as acting as cloud condensation nuclei and thus these emissions play an important role in global climate (Shaw,

⁴⁵ 1983; Andreae & Crutzen, 1997; Ayers & Gillett, 2000).

Natural terrestrial biogenic emissions of volatile organic compounds (VOCs) have 46 significant impacts on atmospheric oxidants (Trainer et al., 1987). Isoprene (C_5H_8) forms 47 the largest of these emissions (500Tg yr⁻¹ (Guenther et al., 2012, 2006)), and has been 48 the focus of a large body of research in terms of both the rate and controlling factors of 49 its emission and its subsequent atmospheric degradation chemistry. Isoprene emissions 50 come from plants and are dependent on temperature, rainfall, leaf area and other fac-51 tors, exhibiting large variability both geographically and seasonally (Fuentes & Wang, 52 1999; Schnitzler et al., 1997; Guenther et al., 2006). Tropical broadleaf trees contribute 53 approximately half of all global isoprene emissions (Guenther et al., 2006), thus the largest 54 isoprene emissions come from areas with the greatest concentration of this plant type, 55 in particular the Amazon rainforest. 56 The oxidation chemistry of isoprene has been extensively studied in the field (Wiedinmyer 57 et al., 2001; Roberts et al., 1998; Starn et al., 1998; Biesenthal & Shepson, 1997) and in 58 laboratory experiments (Atkinson et al., 1989; Paulson et al., 1992; Paulson & Seinfeld, 59 1992; Grosjean et al., 1993). Numerical models have been developed to incorporate known 60

degradation chemistry (Trainer et al., 1987; Jenkin et al., 2015; Saunders et al., 2003;

⁶² Bates & Jacob, 2019). Oxidation of isoprene is typically initiated by the hydroxyl rad-

 $_{63}$ ical (OH) and thus isoprene represents a large, natural, global sink for OH (Lelieveld et

 a_{4} al., 2008). It can also react with ozone (O₃) and other oxidants (nitrate radical (NO₃),

chlorine radical (Cl)) (Wennberg et al., 2018). The subsequent photo-chemistry is com-

plex, with a large number of long and short lived species (Wennberg et al., 2018). If iso-

 $_{67}$ prene oxidation occurs in the presence of suitable NO_x concentrations, the production

of peroxy radicals (RO₂) can lead to net O₃ production. At lower NO_x concentrations

 $_{69}$ the primary reaction between O_3 and isoprene, together with its ability to produce NO_y

reservoir species and so reduce NO_x concentrations, can lead to net O_3 loss (Paulot et

al., 2012; Horowitz et al., 2007). Transport of NO_y species produced during isoprene ox-

idation can increase NO_x concentrations in remote downwind regions, increasing O_3 pro-

⁷³ duction many thousands of kilometers from the isoprene source (Bates & Jacob, 2019).

 $_{74}$ Overall, isoprene is calculated to be a net source of O_3 into the global troposphere (Pierce

rs et al., 1998; Fiore et al., 2011; Squire et al., 2015; Bates & Jacob, 2019).

-3-

In contrast to isoprene, iodine emissions lead to the destruction of O_3 . O_3 from the 76 atmosphere can be transported into the ocean's surface microlayer (SML) where it can 77 react with iodide (I^-) to produce HOI and I_2 (Carpenter et al., 2021). These emissions 78 are estimated to supply 2 Gg yr^{-1} of iodine to the global atmosphere. An additional 0.6 79 Gg yr⁻¹ of iodine occurs through the emission of iodinated hydrocarbons (CH₃I, CH₂I₂, 80 CH₂IBr and CH₂ICl) (Jones et al., 2010; MacDonald et al., 2014; Prados-Roman et al., 81 2015). This reaction between I^- and O_3 in the SML is also responsible for a significant 82 fraction of the dry deposition of O_3 to the ocean (Fairall et al., 2007; Carpenter et al., 83 2013; Luhar et al., 2017; Pound et al., 2020). 84

⁸⁵ I⁻ in the SML is formed from the thermodynamically more stable iodate (IO₃⁻) via ⁸⁶ biological reduction processes (Amachi, 2008; Chance et al., 2007) and as such could dis-⁸⁷ play sensitivity to both seasonal and climate timescales (Carpenter et al., 2021). Ice core ⁸⁸ samples show that the atmospheric iodine abundance has increased since pre-industrial ⁸⁹ times and significantly accelerated through the end of the 20th century, which is mainly ⁹⁰ attributed to increased atmospheric O₃ driving higher HOI and I₂ emissions (Cuevas et ⁹¹ al., 2018; Legrand et al., 2018).

- Tropospheric lifetimes of the emitted gaseous iodine compounds are relatively short 92 (on the order of minutes to days), photolyzing to produce atomic iodine (I). The sub-93 sequent catalytic iodine cycles are an efficient chemical loss route of O₃. Iodine atoms 94 are rapidly oxidised by O_3 to form iodine oxide (IO), which can then further self-react 95 to form higher oxides or cycle back to atomic I (Sommariva et al., 2012). Further reac-96 tions of IO can impact both HOx (OH + HO₂) and NO_x (NO + NO₂) concentrations 97 (Sommariva et al., 2012; Sherwen, Evans, et al., 2016). The inclusion of I chemistry in 98 model simulations has been shown to reduce surface O_3 concentrations and lower back-99 ground O₃ (Sarwar et al., 2019; Sherwen, Evans, et al., 2016). Recent work also shows 100 that iodine containing trace compounds can be exported from the troposphere into the 101 stratosphere where they may play a role in modulating the concentration of stratospheric 102 O_3 (Koenig et al., 2020; Cuevas et al., 2022). 103
- 104

105

106

Observations of reactive inorganic iodine compounds in the atmosphere are limited mainly to IO, which has been measured using a number of optical techniques (Prados-Roman et al., 2015; Volkamer et al., 2015; S. Wang et al., 2015; Koenig et al., 2020; Gómez Martín

- et al., 2013; Großmann et al., 2013; Mahajan et al., 2012, 2010). Although these emis-
- ¹⁰⁸ sions are sparse, model simulations of IO generally compare well to these observations

-4-

(X. Wang et al., 2021). Observations have also been made of I_2 (Lawler et al., 2014) however these are even more limited in their spatial distribution than those of IO.

Although the mass of isoprene (500 Tg yr-1 (Guenther et al., 2012)) and iodine 111 $(4 \text{ TgI yr}^{-1} \text{ (Sherwen, Schmidt, et al., 2016)})$ emitted into the atmosphere differ sig-112 nificantly, both can have a profound impact on the composition of the troposphere. As-113 sessing the relative impacts on troposphere composition based on previous literature is 114 difficult as these assessments have been made in different models over different timescales 115 and have focused on the impact of only one of these sources at a time. Thus, assessing 116 the relatively importance of isoprene and iodine emissions on tropospheric photo-chemistry 117 is difficult. Here we use the GEOS-Chem model to compare the relative impacts of io-118 dine and isoprene on the tropospheric abundance of O_3 and OH, and the impact of both 119 iodine and isoprene on surface O_3 mixing ratios. Thus, we compare the overall impacts 120 of iodine and isoprene on atmospheric composition and present the argument that io-121 dine should be considered, analogously to isoprene, as an important natural control on 122 atmospheric composition. 123

¹²⁴ 2 Model description

This work uses the GEOS-Chem model (Bey et al., 2001) version 13.1.1 (GCC13.1.1, 2021) run globally at a spatial resolution of $2^{\circ}x2.5^{\circ}$ on the reduced vertical grid (47 vertical levels), running with full chemistry in both the troposphere and stratosphere. Meteorological data for these runs used MERRA-2 (Gelaro et al., 2017).

Isoprene emissions in GEOS-Chem are from MEGAN v2.1 (Guenther et al., 2012) which varies isoprene emissions depending on plant functional type, leaf area index, temperature, and photosynethically active radiation. The subsequent isoprene oxidation chemistry in GEOS-Chem is from Bates and Jacob (2019) which has been used since model version 12.8.

The halogen (Cl, Br, I) chemistry scheme in GEOS-Chem was recently updated in version 12.9 by X. Wang et al. (2021). Organic iodine emissions are from Ordóñez et al. (2012). Inorganic iodine emissions follow Carpenter et al. (2013) as implemented by Sherwen, Evans, et al. (2016) and are given by equations 1 and 2 where ws is the wind speed [m/s], $[O_{3(g)})$] is the O₃ concentration in the atmosphere at the interface with the surface [ppbv], and $[I_{aq}^-]$ is the oceanic iodide concentration [Mol].

$$F_{HOI} = \left[O_{3(g)}\right] \sqrt{\left[I_{(aq)}^{-}\right]} \left(\frac{3.56 \times 10^5}{ws} - 2.16 \times 10^4\right)$$
(1)

140

$$F_{I_2} = [O_{3(g)}][I_{(aq)}^-]^{1.3}(1.74 \times 10^9 - 6.54 \times 10^8 ln(ws))$$
⁽²⁾

The ocean surface iodide concentration is given by the parameterization of MacDonald et al. (2014), given in equation 3, where T is the sea surface temperature [K].

$$\left[I_{(aq)}^{-}\right] = 1.46 \times 10^{6} \times exp\left(\frac{-9134}{T}\right) \tag{3}$$

Three model runs were conducted from the 1^{st} of January 2015 to the 1^{st} of July 143 2017. The first year and a half of each simulation was considered the spin up to allow 144 the composition to reach equilibrium. Analysis was thus performed on the period 1^{st} July 145 2016 to 1^{st} July 2017. For the first simulations no changes were made to the model. For 146 the second simulation iodine emissions from the ocean were set to zero, and the concen-147 tration of iodine containing compounds in the model initial condition (for 2015-01-01) 148 were set to zero. In the third simulation, isoprene emissions were set to zero, and the con-149 centration of isoprene derived in the initial condition (for 2015-01-01) were also set to 150 zero. 151

The model output daily average diagnostics with data processing performed in python using xarray (Hoyer & Hamman, 2017), numpy (Harris et al., 2020), cartopy (Met Office, 2010 - 2015) and matplotlib (Hunter, 2007).

155 **3 Results**

¹⁵⁶ 3.1 Impacts on O₃

Figure 1 shows the percentage change in annual mean concentrations of surface and 157 zonal O_3 concentrations from switching off iodine (left) and isoprene emissions (right). 158 Equivalent analyses for CO, NO_x and NO_y are shown in the supplementary material (fig-159 ures S1 to S3). Iodine emissions reduce the global tropospheric O_3 burden from 332 Tg/yr 160 to 315 Tg/yr (5% reduction). The largest decreases occur within the tropical marine bound-161 ary layer $(\geq 20\%)$ above tropical waters where iodide concentrations are the greatest (Chance 162 et al., 2014), resulting in the highest iodine emissions (Sherwen, Evans, et al., 2016). Due 163 to rapid atmospheric convection over the tropics, this region of depleted O_3 extends up 164 to around 6km altitude. Another region of fractionally significant iodine-initiated O₃ loss 165

is the Southern Ocean where the large ocean surface area provides widespread iodine emission. However due to the comparatively low O_3 concentrations over the Southern Ocean, these large percentage changes do not correspond to large changes in absolute concentration. A percentage decrease of 10% at 2km here translates to 2 ppbv reduction in O_3 .

Isoprene emissions create a more complex distribution of changes. Over Amazo-171 nia and Oceania, the locations of the largest isoprene emission, O₃ concentrations de-172 crease at the surface. This is for two reasons. Firstly the direct reaction between O_3 and 173 isoprene increases the chemical loss of O_3 (10% of global isoprene emissions are oxidised 174 by O_3 (Bates & Jacob, 2019)). Secondly the concentrations of NO_x in the region decrease 175 as NO_x is shifted to reservoir species (NO_y, poly-aromatic nitrates (PAN) and organic 176 nitrates) which reduces the chemical production of O_3 over the region (NO_x and NO_y 177 are shown in the supplementary material (figures S2 and S3). Outside of these regions, 178 the isoprene driven shift of NO_x to NO_y species over emission regions contributes to the 179 global picture of increased O_3 . Away from these emission regions, transported NO_y in-180 crease NO_x concentrations over the remote oceans downwind of high isoprene emissions, 181 increasing O_3 production (figure 1). This is most noticeable in the southern hemisphere. 182 Globally the increase in O_3 from isoprene emissions is dominated by this increase in NO_x . 183 Any increase in O_3 due to an increase in VOC concentration is limited because only a 184 small amount of the world is VOC limited (mostly polluted cities in America, Europe 185 and Asia) with the majority of the worlds O_3 production being NO_x limited (Ivatt et 186 al., 2022). 187

Globally the impact of isoprene and iodine on O_3 are similar but opposite. Isoprene 188 increases the tropospheric O_3 burden by 13.6 Tg (4.1%) whereas iodine decreases it by 189 16.5 Tg (5.4%). Close to the surface (0-1km), iodine's impact on O_3 (2.4 Tg, 8.9% de-190 crease) is significantly larger than that of isoprene (1.2 Tg, 4.4% increase). Both are more 191 important in the southern hemisphere than the northern, although iodine reduces the 192 O_3 burden by almost 50% more than isoprene increases it. The relatively larger role of 193 both iodine and isoprene in southern hemispheric O_3 reflects the increased importance 194 of natural processes compared to anthropogenic emissions there. 195

-7-

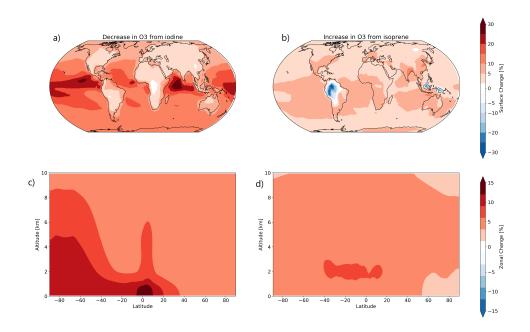


Figure 1. Annual average percentage decrease in surface [a) and b)] and zonal [c) and d)] O_3 from iodine emissions [a) and c)] and annual average percentage increase in surface and zonal O_3 from isoprene emissions [b) and d)].

196

3.2 Impact on OH

The similarity in the influence of isoprene and iodine on O_3 is not seen for OH. Fig-197 ure 2 shows that iodine emissions in the model have negligible changes to tropospheric 198 OH concentration (-0.24%), whereas isoprene emissions decrease tropospheric OH by around 199 7%. This difference in the response reflects different chemistry. The impact of iodine on 200 OH has previously been found to be small due to compensating effects (Sherwen, Evans, 201 et al., 2016). The reduction in O_3 concentrations from iodine leads to lower primary OH 202 production, this is however offset by increased conversion of HO₂ to OH cycling via HOI. 203 The global increase in O_3 from isoprene increases the primary chemical production of 204 OH, however globally the increase in the chemical sink from reactions of OH with iso-205 prene and its degradation products, is dominant and OH is decreased. The largest de-206 creases in OH coincide with the regions of greatest isoprene emissions (Amazonia and 207 Oceania). Due to efficient convection over these locations, the reduction in OH is observed 208 throughout the troposphere. The change in model OH concentrations driven by isoprene 209

and iodine emissions results in changes in methane lifetimes of similar importance. The reduction in OH concentrations from isoprene emissions increases the methane lifetime by 6.5% (from 8.7 to 9.3 yrs). The negligible changes in OH caused by iodine result in a minimal impact on methane lifetime (0.1% increase).

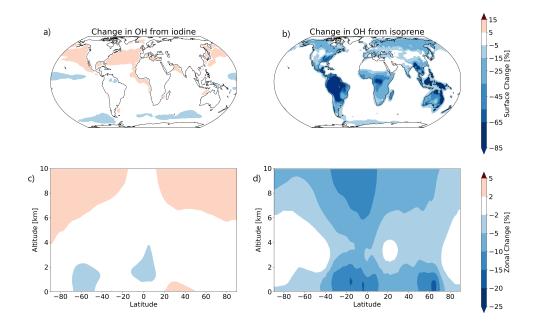


Figure 2. Annual average percentage change in surface [a) and b)] and zonal [c) and d)] OH from iodine emissions [a) and c)] and from isoprene emissions [b) and d)].

214

3.3 Importance of iodine and isoprene emissions on background O_3

Figure 3 shows the ratio of change in surface O_3 from isoprene and iodine emissions. Additional seasonal plots, both global and regional, are shown in figures S4-7 of the supplementary material. This ratio allows for a comparison of the relative importance of iodine or isoprene emissions to be determined on surface O_3 concentration.

Although isoprene emissions lead to O_3 production in remote regions via increasing NO_y concentration, O_3 loss due to iodine is more important in the marine environment. Iodine is thus more important than isoprene in determining the background concentration of O_3 at inflow regions (west coast of America and northern Europe). Iodine emissions are less important for Asia as transport of airmasses into this region spend no or negligible amounts of time over the ocean, with inflow coming from Europe.

Northern hemisphere winter O_3 in both terrestrial and oceanic environments has a significantly greater dependence on iodine emissions than isoprene emissions. This is largely due to minimal isoprene emissions and little O_3 production. This is not the case in the southern hemisphere where high isoprene emissions from South America and much of Africa maintain the dependence on isoprene. Changes to wind direction in summer and autumn result in iodine becoming important for O_3 into central Asia as the airmass entering this region switches from continental to oceanic in origin.

An important driver of the seasonal variation in the relative importance of iodine and isoprene is seasonality in their respective emissions. Iodine emissions only have a weak seasonal dependence when compared to isoprene emissions. Monthly iodine emissions in the northern hemisphere increase by 23% from minimum to maximum whereas isoprene increases by 270%.

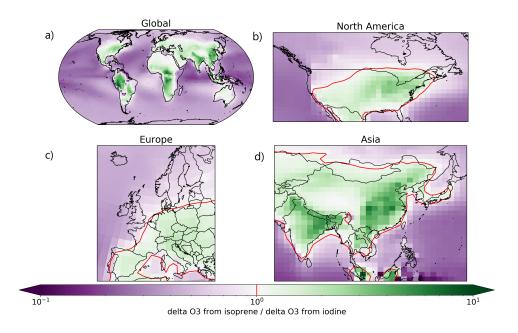


Figure 3. Average surface ratio of fractional change in O_3 from isoprene to fractional change in O_3 from iodine, globally [a)], North America [b)], Europe [c)] and Asia [d)]. Red contour lines on regional plots are drawn based on the value of the ratio being 1 (iodine and isoprene emissions have equal impact on surface O_3)

237 4 Conclusions

Globally, iodine and isoprene emissions have a similar impact on the tropospheric 238 O_3 burden but in an opposing direction. The relative importance of each depends on lo-239 cation and season. Although iodine has the larger impacts on O_3 , its impact on OH and 240 methane lifetime are negligible compared to isoprene. Iodine has significantly more im-241 pact on surface O_3 concentrations than isoprene. This has specific importance when con-242 sidering background O_3 air quality at inflow regions where the air mass has been trans-243 ported over the marine environment, such as the western coast of north America and Eu-244 rope. The emissions and subsequent chemistry of iodine should be considered in the same 245 way as isoprene. 246

The processes leading to inorganic iodine flux from the ocean surface are complex, 247 much like isoprene, however, the representation of these emissions is currently simplis-248 tic. Iodine emissions are dependent on the downward flux of O_3 from the atmosphere 249 into the SML, aqueous iodine chemistry, turbulence and the physical processes in the ocean 250 surface as well as biological factors. Previous experimental constrains of the $O_3 + I^-$ re-251 action and the role of organic chemistry are poorly constrained due to lack of experimen-252 tal data and experimental data not reflecting real world SML concentrations. A more 253 advanced representation of oceanic iodine emissions for use in global models should cou-254 ple the chemical, physical and biological processes in the SML which drive the flux of 255 iodine into the atmosphere. This will more accurately represent the production and sub-256 sequent emission of iodine and further improve our understanding of the role ocean at-257 mosphere exchange plays in modulating tropospheric photochemistry. 258

²⁵⁹ 5 Open Research

GEOS-Chem source code is openly available on GitHub (https://github.com/ geoschem/geos-chem). This work used model version 13.1.1 (GCC13.1.1, 2021).

Analysis code used to produce statistics and figures in this paper are available at https://doi.org/10.5281/zenodo.7016985 (Pound, 2022).

264 Acknowledgments

RJP and LJC acknowledge funding by the European Research Council (ERC) under the
 European Union's horizon 2020 programme - grant agreement No. 833290
 MJE thanks the UK National Centre for Atmospheric Science for funding.

-12-

- ²⁶⁸ We thank the GEOS-Chem community for developing the model over the past decades.
- ²⁶⁹ This project was undertaken on the Viking Cluster, which is a high-performance
- 270 compute facility provided by the University of York. We are grateful for computational
- support from the University of York High Performance Computing service, Viking and
- the Research Computing team.

References 273

285

- Amachi, S. (2008).Microbial contribution to global iodine cycling: Volatilization, 274 accumulation, reduction, oxidation, and sorption of iodine. Microbes and Envi-275 ronments, 23(4), 269-276. doi: 10.1264/jsme2.ME08548 276
- Andreae, M. O., & Crutzen, P. J. (1997).Atmospheric aerosols: Biogeochemical 277 sources and role in atmospheric chemistry. Science, 276(5315), 1052–1058. doi: 278 10.1126/science.276.5315.1052 279
- Atkinson, R., Aschmann, S. M., Tuazon, E. C., Arey, J., & Zielinska, B. (1989).280 Formation of 3-methylfuran from the gas-phase reaction of oh radicals with 281 isoprene and the rate constant for its reaction with the oh radical. Inter-282 national Journal of Chemical Kinetics, 21(7), 593-604. Retrieved from 283 https://onlinelibrary.wiley.com/doi/abs/10.1002/kin.550210709 284 doi: https://doi.org/10.1002/kin.550210709
- Ayers, G., & Gillett, R. (2000). Dms and its oxidation products in the remote ma-286 rine atmosphere: implications for climate and atmospheric chemistry. Journal 287 of Sea Research, 43(3), 275-286. doi: https://doi.org/10.1016/S1385-1101(00) 288 00022-8 289
- Bates, K. H., & Jacob, D. J. (2019).A new model mechanism for atmospheric 290 oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic prod-291 ucts, and secondary organic aerosol. Atmospheric Chemistry and Physics, 292 19(14), 9613-9640. Retrieved from https://acp.copernicus.org/articles/ 293 19/9613/2019/ doi: 10.5194/acp-19-9613-2019 294
- Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., 295
- (2001).Global modeling of tropospheric chemistry with ... Schultz, M. G. 296 assimilated meteorology: Model description and evaluation. J GEOPHYS 297 RES-ATMOS, 106(D19), 23073-23095. doi: 10.1029/2001JD000807 298
- Biesenthal, T. A., & Shepson, P. B. (1997).Observations of anthropogenic in-299 puts of the isoprene oxidation products methyl vinyl ketone and methacrolein 300 Geophysical Research Letters, 24(11), 1375-1378. to the atmosphere. doi: 301
- https://doi.org/10.1029/97GL01337 302
- Carpenter, L., Chance, R. J., Sherwen, T., Adams, T. J., Ball, S. M., Evans, 303 (2021).M. J., ... Wadley, M. R. Marine iodine emissions in a chang-304 ing world. Proceedings of the Royal Society A: Mathematical, Physi-305

306	cal and Engineering Sciences, 477(2247), 20200824. Retrieved from
307	https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2020.0824
308	doi: 10.1098/rspa.2020.0824
309	Carpenter, L., MacDonald, S., Shaw, M., Kumar, R., Saunders, R., Parthipan,
310	R., Plane, J. (2013). Atmospheric iodine levels influenced by sea sur-
311	face emissions of inorganic iodine. Nature Geoscience, 6, 108–111. doi:
312	https://doi.org/10.1038/ngeo1687
313	Chance, R., Baker, A. R., Carpenter, L., & Jickells, T. D. (2014). The distribution
314	of iodide at the sea surface. Environmental Science: Processes and Impacts,
315	16, 1841-1859. doi: 10.1039/C4EM00139G
316	Chance, R., Malin, G., Jickells, T., & Baker, A. R. (2007). Reduction of iodate to
317	iodide by cold water diatom cultures. Marine Chemistry, 105(1), 169-180.
318	Retrieved from https://www.sciencedirect.com/science/article/pii/
319	30304420306001150 doi: https://doi.org/10.1016/j.marchem.2006.06.008
320	Cuevas, C. A., Fernandez, R. P., Kinnison, D. E., Li, Q., Lamarque, JF., Trabelsi,
321	T., Saiz-Lopez, A. (2022). The influence of iodine on the antarctic strato-
322	spheric ozone hole. Proceedings of the National Academy of Sciences, $119(7)$,
323	e2110864119. doi: 10.1073/pnas.2110864119
324	Cuevas, C. A., Maffezzoli, N., Corella, J. P., Spolaor, A., Vallelonga, P., Kjær, H. A.,
325	\dots Saiz-Lopez, A. (2018). Rapid increase in atmospheric iodine levels in the
326	north atlantic since the mid-20th century. Nature Communications, 9, 1452.
327	doi: 10.1038/s41467-018-03756-1
328	Fairall, C. W., Helmig, D., Ganzeveld, L., & Hare, J. (2007). Water-side turbulence
329	enhancement of ozone deposition to the ocean. $ATMOS CHEM PHYS, 7(2),$
330	443-451. Retrieved from https://www.atmos-chem-phys.net/7/443/2007/
331	doi: 10.5194/acp-7-443-2007
332	Fiore, A. M., Levy II, H., & Jaffe, D. A. (2011). North american isoprene influ-
333	ence on intercontinental ozone pollution. Atmospheric Chemistry and Physics,
334	11(4), 1697-1710. Retrieved from https://acp.copernicus.org/articles/
335	11/1697/2011/ doi: 10.5194/acp-11-1697-2011
336	Fuentes, J. D., & Wang, D. (1999). On the seasonality of isoprene emissions from a
337	mixed temperate forest. Ecological Applications, $9(4)$, 1118-1131. doi: https://
338	doi.org/10.1890/1051-0761(1999)009 [1118:OTSOIE] 2.0.CO; 2000000000000000000000000000000000000

339	GCC13.1.1. (2021, June). The international geos-chem user community,
340	geoschem/gcclassic: Geos-chem 13.1.1. Zenodo. Retrieved from https://
341	doi.org/10.5281/zenodo.5014891 (Please see the LICENSE.txt and AU-
342	THORS.txt files in the root folder for the GEOS-Chem license description
343	(based on the MIT license) and a complete list of authors. For more infor-
344	mation about GEOS-Chem in general, please see www.geos- chem.org and
345	wiki.geos-chem.org.) doi: 10.5281 /zenodo. 5014891
346	Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
347	Zhao, B. (2017). The modern-era retrospective analysis for research and ap-
348	plications, version 2 (merra-2). Journal of Climate, $30(14)$, $5419-5454$. doi:
349	10.1175/JCLI-D-16-0758.1
350	Grosjean, D., Williams, E. L., & Grosjean, E. (1993). Atmospheric chemistry of
351	isoprene and of its carbonyl products. Environmental Science and Technology,
352	27, 830–840. doi: $10.1021/es00042a004$
353	Großmann, K., Frieß, U., Peters, E., Wittrock, F., Lampel, J., Yilmaz, S.,
354	Platt, U. (2013). Iodine monoxide in the western pacific marine bound-
355	ary layer. Atmospheric Chemistry and Physics, 13(6), 3363–3378. Re-
356	trieved from https://acp.copernicus.org/articles/13/3363/2013/ doi:
357	10.5194/acp-13-3363-2013
358	Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Em-
359	mons, L. K., & Wang, X. (2012). The model of emissions of gases and aerosols
360	from nature version 2.1 (megan 2.1): an extended and updated framework for
361	modeling biogenic emissions. $Geoscientific Model Development, 5(6), 1471-$
362	1492. Retrieved from https://gmd.copernicus.org/articles/5/1471/2012/
363	doi: 10.5194/gmd-5-1471-2012
364	Guenther, A. B., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C.
365	(2006). Estimates of global terrestrial isoprene emissions using megan (model
366	of emissions of gases and aerosols from nature). Atmospheric Chemistry and
367	<i>Physics</i> , 6(11), 3181–3210. Retrieved from https://acp.copernicus.org/
368	articles/6/3181/2006/ doi: 10.5194/acp-6-3181-2006
369	Gómez Martín, J. C., Mahajan, A. S., Hay, T. D., Prados-Román, C., Ordóñez, C.,
370	MacDonald, S. M., Saiz-Lopez, A. (2013). Iodine chemistry in the eastern
371	pacific marine boundary layer. Journal of Geophysical Research: Atmospheres,

372	118(2), 887-904. doi: https://doi.org/10.1002/jgrd.50132
373	Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-
374	napeau, D., Oliphant, T. E. (2020, September). Array programming with
375	NumPy. Nature, 585(7825), 357-362. Retrieved from https://doi.org/
376	10.1038/s41586-020-2649-2 doi: 10.1038/s41586-020-2649-2
377	Horowitz, L. W., Fiore, A. M., Milly, G. P., Cohen, R. C., Perring, A., Wooldridge,
378	P. J., Lamarque, JF. (2007). Observational constraints on the chemistry
379	of isoprene nitrates over the eastern united states. Journal of Geophysical Re-
380	search: Atmospheres, $112(D12)$. doi: https://doi.org/10.1029/2006JD007747
381	Hoyer, S., & Hamman, J. (2017). xarray: N-d labeled arrays and datasets in python.
382	Journal of Open Research Software, 5(1). doi: DOI:http://doi.org/10.5334/jors
383	.148
384	Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science
385	& Engineering, $9(3)$, 90–95. doi: 10.1109/MCSE.2007.55
386	Ivatt, P. D., Evans, M. J., & Lewis, A. C. (2022). Suppression of surface ozone by
387	an aerosol-inhibited photochemical ozone regime. Nature Geoscience, 15, 536-
388	540. doi: 10.1038/s41561-022-00972-9
389	Jenkin, M. E., Young, J. C., & Rickard, A. R. (2015). The mcm v3.3.1 degrada-
390	tion scheme for isoprene. Atmospheric Chemistry and Physics, $15(20)$, $11433-$
391	11459. Retrieved from https://acp.copernicus.org/articles/15/11433/
392	2015 / doi: 10.5194/acp-15-11433-2015
393	Jones, C. E., Hornsby, K. E., Sommariva, R., Dunk, R. M., von Glasow, R., McFig-
394	gans, G., & Carpenter, L. J. (2010). Quantifying the contribution of marine
395	organic gases to atmospheric iodine. Geophysical Research Letters, $37(18)$. doi:
396	https://doi.org/10.1029/2010GL043990
397	Koenig, T. K., Baidar, S., Campuzano-Jost, P., Cuevas, C. A., Dix, B., Fernandez,
398	R. P., Volkamer, R. (2020). Quantitative detection of iodine in the strato-
399	sphere. Proceedings of the National Academy of Sciences, 117(4), 1860-1866.
400	Retrieved from https://www.pnas.org/doi/abs/10.1073/pnas.1916828117
401	doi: 10.1073/pnas.1916828117
402	Lawler, M. J., Mahajan, A. S., Saiz-Lopez, A., & Saltzman, E. S. (2014). Obser-
403	vations of i_2 at a remote marine site. Atmospheric Chemistry and Physics,
404	14(5), 2669-2678. Retrieved from https://acp.copernicus.org/articles/

405	14/2669/2014/ doi: 10.5194/acp-14-2669-2014
406	Legrand, M., McConnell, J. R., Preunkert, S., Arienzo, M., Chellman, N., Gleason,
407	K., Carpenter, L. J. (2018). Alpine ice evidence of a three-fold increase in
408	atmospheric iodine deposition since 1950 in europe due to increasing oceanic
409	emissions. Proceedings of the National Academy of Sciences, 115(48), 12136-
410	12141. doi: $10.1073/\text{pnas.}1809867115$
411	Lelieveld, J., Butler, T., Crowley, J., Fischer, H., Ganzeveld, L., Harder, H.,
412	Williams, J. (2008). Atmospheric oxidation capacity sustained by a tropical
413	forest. Nature, 452, 737-740. doi: https://doi.org/10.1038/nature06870
414	Luhar, A. K., Galbally, I. E., Woodhouse, M. T., & Thatcher, M. (2017). An im-
415	proved parameterisation of ozone dry deposition to the ocean and its impact in
416	a global climate-chemistry model. ATMOS CHEM PHYS, 17, 3749–3767. doi:
417	10.5194/acp-17-3749-2017
418	MacDonald, S. M., Gómez Martín, J. C., Chance, R., Warriner, S., Saiz-Lopez, A.,
419	Carpenter, L. J., & Plane, J. M. C. (2014). A laboratory characterisation
420	of inorganic iodine emissions from the sea surface: dependence on oceanic
421	variables and parameterisation for global modelling. ATMOS CHEM PHYS,
422	14(11), 5841-5852. Retrieved from https://www.atmos-chem-phys.net/14/
423	5841/2014/ doi: 10.5194/acp-14-5841-2014
424	Mahajan, A. S., Gómez Martín, J. C., Hay, T. D., Royer, SJ., Yvon-Lewis, S., Liu,
425	Y., Saiz-Lopez, A. (2012). Latitudinal distribution of reactive iodine in the
426	eastern pacific and its link to open ocean sources. Atmospheric Chemistry and
427	Physics, 12(23), 11609-11617. Retrieved from https://acp.copernicus.org/
428	articles/12/11609/2012/ doi: $10.5194/acp-12-11609-2012$
429	Mahajan, A. S., Plane, J. M. C., Oetjen, H., Mendes, L., Saunders, R. W.,
430	Saiz-Lopez, A., McFiggans, G. B. (2010). Measurement and mod-
431	elling of tropospheric reactive halogen species over the tropical atlantic
432	ocean. Atmospheric Chemistry and Physics, 10(10), 4611–4624. Retrieved
433	from https://acp.copernicus.org/articles/10/4611/2010/ doi:
434	10.5194/acp-10-4611-2010
435	Met Office. (2010 - 2015). Cartopy: a cartographic python library with a matplotlib
436	interface [Computer software manual]. Exeter, Devon. Retrieved from http://
437	<pre>scitools.org.uk/cartopy</pre>

438	Ordóñez, C., Lamarque, JF., Tilmes, S., Kinnison, D. E., Atlas, E. L., Blake,
439	D. R., Saiz-Lopez, A. (2012). Bromine and iodine chemistry in a global
440	chemistry-climate model: description and evaluation of very short-lived
441	oceanic sources. Atmospheric Chemistry and Physics, 12(3), 1423–1447.
442	Retrieved from https://acp.copernicus.org/articles/12/1423/2012/
443	doi: 10.5194/acp-12-1423-2012
444	Paulot, F., Henze, D. K., & Wennberg, P. O. (2012). Impact of the isoprene pho-
445	tochemical cascade on tropical ozone. Atmospheric Chemistry and Physics,
446	12(3), 1307-1325. Retrieved from https://acp.copernicus.org/articles/
447	12/1307/2012/ doi: 10.5194/acp-12-1307-2012
448	Paulson, S. E., Flagan, R. C., & Seinfeld, J. H. (1992). Atmospheric photooxidation
449	of isoprene part i: The hydroxyl radical and ground state atomic oxygen reac-
450	tions. International Journal of Chemical Kinetics, 24(1), 79-101. Retrieved
451	from https://onlinelibrary.wiley.com/doi/abs/10.1002/kin.550240109
452	doi: https://doi.org/10.1002/kin.550240109
453	Paulson, S. E., & Seinfeld, J. H. (1992). Development and evaluation of a
454	photooxidation mechanism for isoprene. Journal of Geophysical Re-
454 455	photooxidation mechanism for isoprene.Journal of Geophysical Re-search: Atmospheres, 97(D18), 20703-20715.Retrieved from https://
455	search: Atmospheres, 97(D18), 20703-20715. Retrieved from https://
455 456	search: Atmospheres, 97(D18), 20703-20715. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi:
455 456 457	search: Atmospheres, 97(D18), 20703-20715. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914
455 456 457 458	<pre>search: Atmospheres, 97(D18), 20703-20715. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914 Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998).</pre>
455 456 457 458 459	 search: Atmospheres, 97(D18), 20703-20715. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914 Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone modeling. Journal
455 456 457 458 459 460	 search: Atmospheres, 97(D18), 20703-20715. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914 Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research: Atmospheres, 103(D19), 25611-25629. doi: https://
455 456 457 458 459 460 461	 search: Atmospheres, 97(D18), 20703-20715. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914 Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research: Atmospheres, 103(D19), 25611-25629. doi: https://doi.org/10.1029/98JD01804
455 456 457 458 459 460 461 462	 search: Atmospheres, 97(D18), 20703-20715. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914 Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research: Atmospheres, 103(D19), 25611-25629. doi: https://doi.org/10.1029/98JD01804 Pound, R. J. (2022, August). Analysis code for "comparing the importance of io-
455 456 457 458 459 460 461 462 463	 search: Atmospheres, 97(D18), 20703-20715. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914 Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research: Atmospheres, 103(D19), 25611-25629. doi: https://doi.org/10.1029/98JD01804 Pound, R. J. (2022, August). Analysis code for "comparing the importance of io-dine and isoprene on tropospheric photochemistry". Zenodo. Retrieved from
455 456 457 458 459 460 461 462 463 464	 search: Atmospheres, 97(D18), 20703-20715. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914 Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research: Atmospheres, 103(D19), 25611-25629. doi: https:// doi.org/10.1029/98JD01804 Pound, R. J. (2022, August). Analysis code for "comparing the importance of io- dine and isoprene on tropospheric photochemistry". Zenodo. Retrieved from https://doi.org/10.5281/zenodo.7016985 doi: 10.5281/zenodo.7016985
455 456 457 458 459 460 461 462 463 464 465	 search: Atmospheres, 97(D18), 20703-20715. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914 Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research: Atmospheres, 103(D19), 25611-25629. doi: https:// doi.org/10.1029/98JD01804 Pound, R. J. (2022, August). Analysis code for "comparing the importance of io- dine and isoprene on tropospheric photochemistry". Zenodo. Retrieved from https://doi.org/10.5281/zenodo.7016985 doi: 10.5281/zenodo.7016985 Pound, R. J., Sherwen, T., Helmig, D., Carpenter, L. J., & Evans, M. J. (2020).
455 456 457 458 459 460 461 462 463 464 465 466	 search: Atmospheres, 97(D18), 20703-20715. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JD01914 doi: https://doi.org/10.1029/92JD01914 Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research: Atmospheres, 103(D19), 25611-25629. doi: https:// doi.org/10.1029/98JD01804 Pound, R. J. (2022, August). Analysis code for "comparing the importance of io- dine and isoprene on tropospheric photochemistry". Zenodo. Retrieved from https://doi.org/10.5281/zenodo.7016985 doi: 10.5281/zenodo.7016985 Pound, R. J., Sherwen, T., Helmig, D., Carpenter, L. J., & Evans, M. J. (2020). Influences of oceanic ozone deposition on tropospheric photochemistry.

470 Prados-Roman, C., Cuevas, C. A., Hay, T., Fernandez, R. P., Mahajan, A. S.,

471	Royer, SJ., Saiz-Lopez, A. (2015). Iodine oxide in the global marine
472	boundary layer. Atmospheric Chemistry and Physics, 15(2), 583–593. Re-
473	trieved from https://acp.copernicus.org/articles/15/583/2015/ doi:
474	10.5194/acp-15-583-2015
475	Roberts, J. M., Williams, J., Baumann, K., Buhr, M. P., Goldan, P. D., Holloway,
476	J., Young, V. L. (1998). Measurements of pan, ppn, and mpan made
477	during the 1994 and 1995 nashville intensives of the southern oxidant study:
478	Implications for regional ozone production from biogenic hydrocarbons. $Jour$ -
479	nal of Geophysical Research: Atmospheres, 103(D17), 22473-22490. doi:
480	https://doi.org/10.1029/98JD01637
481	Sarwar, G., Gantt, B., Foley, K., Fahey, K., Spero, T. L., Kang, D., Saiz-Lopez,
482	A. (2019). Influence of bromine and iodine chemistry on annual, seasonal,
483	diurnal, and background ozone: Cmaq simulations over the northern hemi-
484	sphere. Atmospheric Environment, 213, 395-404. Retrieved from https://
485	www.sciencedirect.com/science/article/pii/S135223101930411X doi:
486	https://doi.org/10.1016/j.atmosenv.2019.06.020
487	Saunders, S. M., Jenkin, M. E., Derwent, R. G., & Pilling, M. J. (2003). Proto-
488	col for the development of the master chemical mechanism, mcm v3 (part a):
489	tropospheric degradation of non-aromatic volatile organic compounds. At -
490	mospheric Chemistry and Physics, 3(1), 161–180. Retrieved from https://
491	acp.copernicus.org/articles/3/161/2003/ doi: 10.5194/acp-3-161-2003
492	Schnitzler, JP., Lehning, A., & Steinbrecher, R. (1997). Seasonal pattern of
493	isoprene synthase activity in quercus robur leaves and its significance for
494	modeling isoprene emission rates. $Botanica Acta, 110(3), 240-243.$ doi:
495	https://doi.org/10.1111/j.1438-8677.1997.tb00635.x
496	Shaw, G. (1983). Bio-controlled thermostasis involving the sulfur cycle. <i>Climatic</i>
497	Change 5, 297–303. doi: https://doi.org/10.1007/BF02423524
498	Sherwen, T., Evans, M. J., Carpenter, L. J., Andrews, S. J., Lidster, R. T., Dix, B.,
499	\ldots Ordóñez, C. (2016). Iodine's impact on tropospheric oxidants: a global
500	model study in geos-chem. Atmospheric Chemistry and Physics, 16(2), 1161–
501	1186. Retrieved from https://acp.copernicus.org/articles/16/1161/
502	2016/ doi: 10.5194/acp-16-1161-2016
503	Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., East-

-20-

504	ham, S. D., Ordóñez, C. (2016). Global impacts of tropospheric halogens
505	(cl, br, i) on oxidants and composition in geos-chem. ATMOS CHEM PHYS,
506	16(18), 12239-12271. Retrieved from https://www.atmos-chem-phys.net/
507	16/12239/2016/ doi: 10.5194/acp-16-12239-2016
508	Sinha, V., Williams, J., Meyerhöfer, M., Riebesell, U., Paulino, A. I., & Larsen,
509	A. (2007). Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene and
510	dms from a norwegian fjord following a phytoplankton bloom in a meso-
511	cosm experiment. Atmospheric Chemistry and Physics, 7(3), 739–755. Re-
512	trieved from https://acp.copernicus.org/articles/7/739/2007/ doi:
513	10.5194/acp-7-739-2007
514	Sommariva, R., Bloss, W., & von Glasow, R. (2012). Uncertainties in gas-phase
515	atmospheric iodine chemistry. Atmospheric Environment, 57, 219-232. Re-
516	trieved from https://www.sciencedirect.com/science/article/pii/
517	S1352231012003627 doi: https://doi.org/10.1016/j.atmosenv.2012.04.032
518	Squire, O. J., Archibald, A. T., Griffiths, P. T., Jenkin, M. E., Smith, D., &
519	Pyle, J. A. (2015). Influence of isoprene chemical mechanism on mod-
520	elled changes in tropospheric ozone due to climate and land use over the
521	21st century. Atmospheric Chemistry and Physics, 15(9), 5123–5143. Re-
522	trieved from https://acp.copernicus.org/articles/15/5123/2015/ doi:
523	10.5194/acp-15-5123-2015
524	Starn, T. K., Shepson, P. B., Bertman, S. B., Riemer, D. D., Zika, R. G., & Ol-
525	szyna, K. (1998) . Nighttime isoprene chemistry at an urban-impacted forest
526	site. Journal of Geophysical Research: Atmospheres, 103(D17), 22437-22447.
527	doi: https://doi.org/10.1029/98JD01201
528	Trainer, M., Williams, E., Parrish, D., Buhr, M., Allwine, E., Westberg, H., Liu,
529	S. (1987) . Models and observations of the impact of natural hydrocarbons on
530	rural ozone. Nature, 329, 705–707. doi: https://doi.org/10.1038/329705a0
531	Volkamer, R., Baidar, S., Campos, T. L., Coburn, S., DiGangi, J. P., Dix, B.,
532	Romashkin, P. A. (2015). Aircraft measurements of bro, io, glyoxal, no ₂ ,
533	$\mathrm{h}_2\mathrm{o},\mathrm{o}_2\mathrm{-}\mathrm{o}_2$ and aerosol extinction profiles in the tropics: comparison with
534	aircraft-/ship-based in situ and lidar measurements. Atmospheric Measurement
535	Techniques, 8(5), 2121-2148. Retrieved from https://amt.copernicus.org/
536	articles/8/2121/2015/ doi: 10.5194/amt-8-2121-2015

-21-

537	Wang, S., Schmidt, J. A., Baidar, S., Coburn, S., Dix, B., Koenig, T. K., Volka-
538	mer, R. (2015). Active and widespread halogen chemistry in the tropical and
539	subtropical free troposphere. Proceedings of the National Academy of Sciences,
540	112(30), 9281-9286.doi: 10.1073/pnas.1505142112
541	Wang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., Thornton, J. A.
542	(2021). Global tropospheric halogen (cl, br, i) chemistry and its impact on
543	oxidants. Atmospheric Chemistry and Physics, 21(18), 13973–13996. Re-
544	trieved from https://acp.copernicus.org/articles/21/13973/2021/ doi:
545	10.5194/acp-21-13973-2021
546	Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C.,
547	Mertens, L. A., Seinfeld, J. H. (2018). Gas-phase reactions of isoprene
548	and its major oxidation products. Chemical Reviews, 118, 3337-3390. doi:
549	10.1021/acs.chemrev.7b00439
550	Wiedinmyer, C., Friedfeld, S., Baugh, W., Greenberg, J., Guenther, A., Fraser,
551	M., & Allen, D. (2001). Measurement and analysis of atmospheric con-
552	centrations of isoprene and its reaction products in central texas. At -
553	mospheric Environment, 35(6), 1001-1013. Retrieved from https://
554	www.sciencedirect.com/science/article/pii/S1352231000004064 doi:
555	https://doi.org/10.1016/S1352-2310(00)00406-4
556	Yang, M., Huebert, B. J., Blomquist, B. W., Howell, S. G., Shank, L. M., Mc-
557	Naughton, C. S., Collett, J. L. (2011). Atmospheric sulfur cycling in
558	the southeastern pacific – longitudinal distribution, vertical profile, and diel
559	variability observed during vocals-rex. Atmospheric Chemistry and Physics,
560	11(10), 5079-5097.doi: 10.5194/acp-11-5079-2011

Supporting Information for "Comparing the importance of iodine and isoprene in tropospheric photochemistry"

R. J. Pound¹, M. J. Evans^{1,2}L. J. Carpenter¹

¹Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK.

 $^2\mathrm{National}$ Centre for Atmospheric Science, University of York, UK.

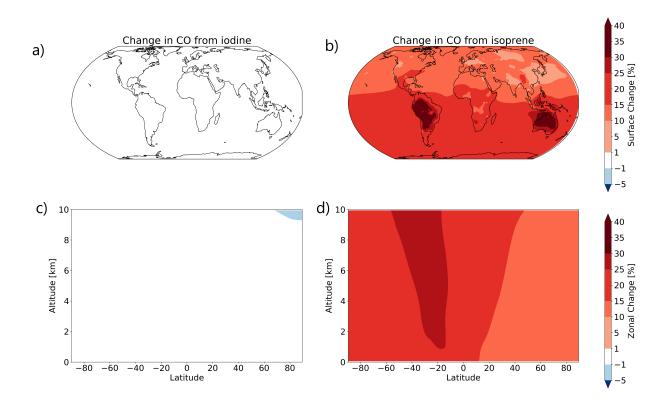
Contents of this file

- 1. Text S1 and S2
- 2. Figures S1 to S7

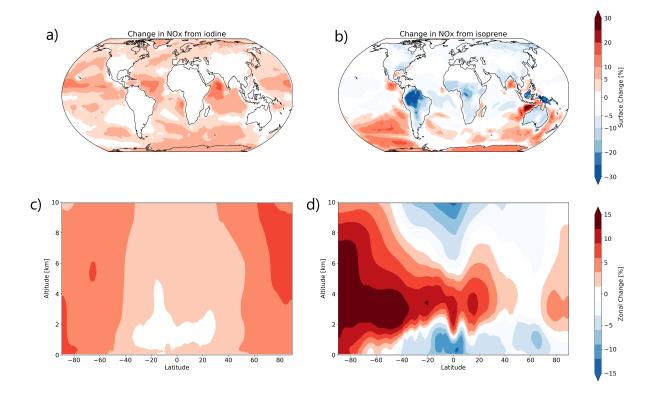
Introduction This supplemental material covers additional figures and description of results for the paper Comparing the importance of iodine and isoprene in tropospheric photochemistry.

Text S1. - Additional plots for tropospheric changes

Iodine has a negligible impact on tropospheric CO concentration (figure S1). Iodine's impacts CO via CO lifetime, as iodine has a negligible impact on tropospheric OH, a negligible change in CO is also the result. Isoprene significantly increases global CO concentrations, and as with OH and O_3 , the increase is more pronounced in the southern


hemisphere. The increase in CO concentration from isoprene emissions is due to the oxidation and subsequent reactions of isoprene.

Isoprene increases NO_x in remote regions and decreases NO_x over tropical regions (figure S2). This is through conversion of NO_x into NO_y (figure S3) in the tropical locations which is then transported and subsequently reacts in remote regions, increasing NO_x there. Increase in NO_x and NO_y from iodine emissions are likely a result of nitrogenated iodine compounds. For figure S3 NO_y was defined as the sum of species (with GEOS-Chem species name where needed) NO, NO_2 , NO_3 , HNO_2 HNO_3 , HNO_4 , $BrNO_2$, $BrNO_3$, $CINO_2$, $CINO_3$, ethanal nitrate (ETHLN), ethyl nitrate (ETNO3), monoterpene organic nitrate (HONIT), isoprene nitrates and dinitrates (ICN, IDN, IHN1, IHN2, IHN3, IHN4, INPB, INPD, ITCN, ITHN), hydroxynitrate from methacrolein (MCRHN, MCRHNB), methyl nitrate (MENO3), organic nitrate from monoterpene (MONITA, MONITS, MONITU), peroxymethacroyl nitrate (MPAN), methyl peroxy nitrate (MPN), hydroxynitrate from methyl vinyl ketone (MVKN), N_2O_5 , n-propyl nitrte (NPRNO3), peroxyacetylnitrate (PAN), peroxypropionylnitrate (PPN), propanone nitrate (PROPNN) and alkylnitrates greater than or equal to C4 (R4N2).


Text S2. - Seasonal plots for ratio of iodine and isoprene changes to surface ozone

Figures S4 - S7 show the seasonal variation in each region and globally from figure ??. These are northern hemisphere seasons, with winter defined as December, January and

February. Spring is defined as March, April and May. Summer is June, July and August. Autumn is September, October, November.

Figure S1. Annual average percentage change in surface [a) and b)] and zonal [c) and d)] CO from iodine emissions [a) and c)] and isoprene emissions [b) and d)].

:

Figure S2. Annual average percentage change in surface [a) and b)] and zonal [c) and d)] NO_x (NO + NO₂) from iodine emissions [a) and c)] and isoprene emissions [b) and d)].

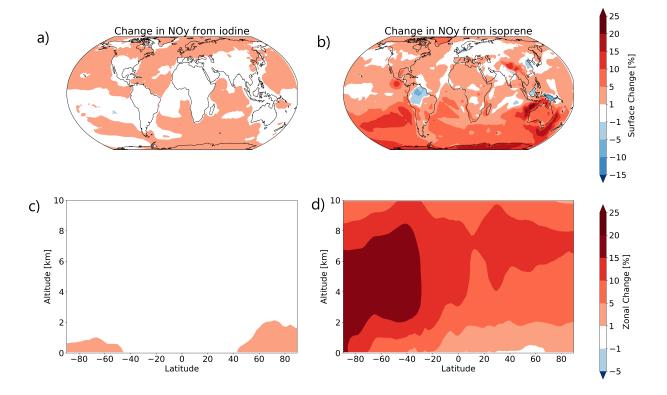
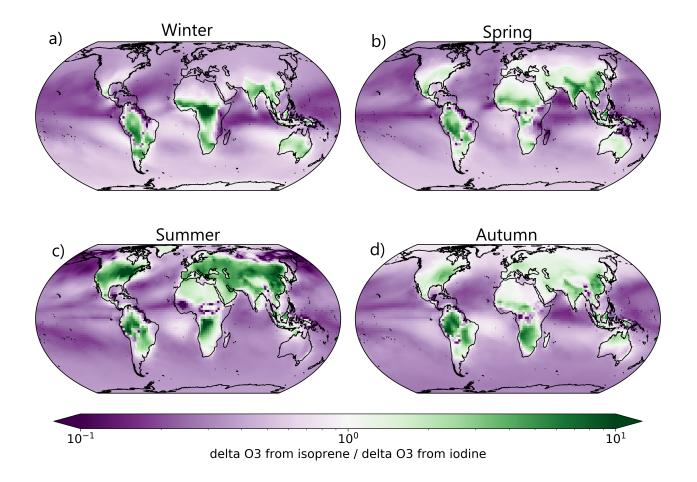



Figure S3. Annual average percentage change in surface [a) and b)] and zonal [c) and d)] NO_y from iodine emissions [a) and c)] and isoprene emissions [b) and d)].

:

Figure S4. Global seasonal surface ratio of magnitude of change in O_3 from isoprene to magnitude of change in O_3 from iodine. Red contour lines represent value of the ratio as 1 (iodine and isoprene have the same magnitude impact on surface O_3)

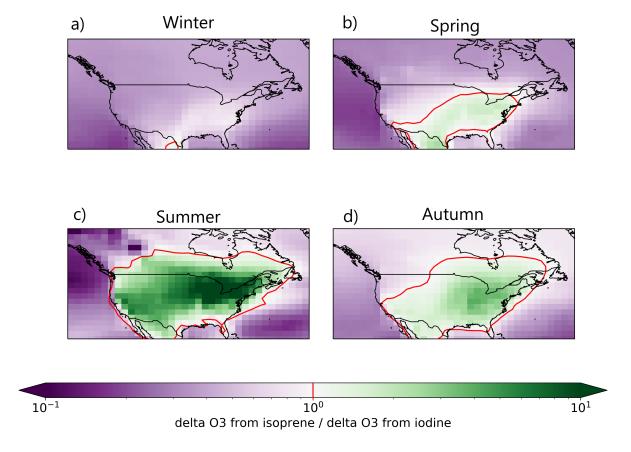


Figure S5. Seasonal surface ratio of magnitude of change in O_3 from isoprene to magnitude of change in O_3 from iodine over North America. The red contour line represents value of 1 (iodine and isoprene have the same magnitude impact on surface O_3)

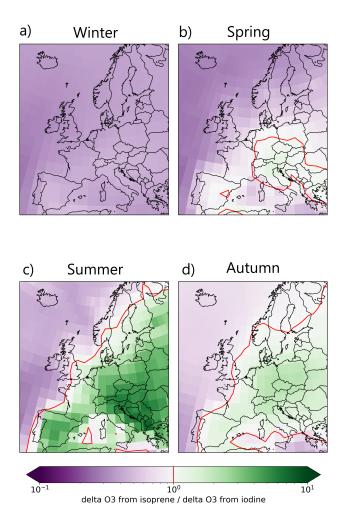


Figure S6. Seasonal surface ratio of magnitude of change in O_3 from isoprene to magnitude of change in O_3 from iodine over Europe. The red contour line represents value of 1 (iodine and isoprene have the same magnitude impact on surface O_3)

:

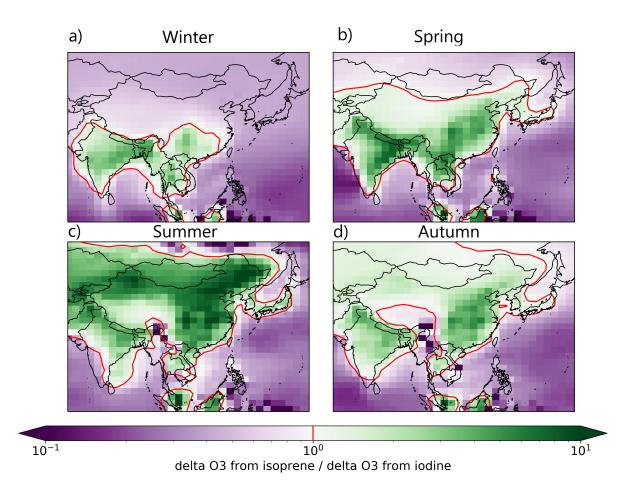


Figure S7. Seasonal surface ratio of magnitude of change in O_3 from isoprene to magnitude of change in O_3 from iodine over Asia. The red contour line represents value of 1 (iodine and isoprene have the same magnitude impact on surface O_3)