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Abstract

Serpentinite subduction and the associated formation of dehydration veins is important for subduction zone dynamics and

water cycling. Field observations suggest that en-échelon olivine veins in serpentinite mylonites formed by dehydration during

simultaneous shearing of ductile serpentinite. Here, we test a hypothesis of shear-driven formation of dehydration veins with

a two-dimensional hydro-mechanical-chemical numerical model. We consider the reaction antigorite + brucite = forsterite +

water. Shearing is viscous and the shear viscosity decreases exponentially with porosity. The total and fluid pressures are initially

homogeneous and in the antigorite stability field. Initial perturbations in porosity, and hence viscosity, cause fluid pressure

perturbations. Dehydration nucleates where the fluid pressure decreases locally below the thermodynamic pressure defining

the reaction boundary. Dehydration veins grow during progressive simple-shearing in a direction parallel to the maximum

principal stress, without involving fracturing. The porosity evolution associated with dehydration reactions is controlled to

approximately equal parts by three mechanisms: volumetric deformation, solid density variation and reactive mass transfer.

The temporal evolution of dehydration veins is controlled by three characteristic time scales for shearing, mineral-reaction

kinetics and fluid-pressure diffusion. The modelled vein formation is self-limiting and slows down due to fluid flow decreasing

fluid pressure gradients. Mineral-reaction kinetics must be significantly faster than fluid-pressure diffusion to generate forsterite

during vein formation. The self-limiting feature can explain the natural observation of many, small olivine veins and the absence

of few, large veins. We further discuss implications for transient weakening during metamorphism and episodic tremor and

slow-slip in subduction zones.
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 14 

Key points: 15 

• During viscous simple-shearing of serpentinite, en-échelon olivine veins form by 16 

dehydration and grow in direction parallel to compression 17 

• Vein formation is a self-limiting process and kinetic reaction rate must be faster than 18 

fluid-pressure diffusion rate to form olivine 19 

• Porosity evolution is controlled by three mechanisms: volume change, temporal solid 20 

density variation and reactive mass transfer  21 
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Abstract 22 

Serpentinite subduction and the associated formation of dehydration veins is important for 23 

subduction zone dynamics and water cycling. Field observations suggest that en-échelon 24 

olivine veins in serpentinite mylonites formed by dehydration during simultaneous shearing of 25 

ductile serpentinite. Here, we test a hypothesis of shear-driven formation of dehydration veins 26 

with a two-dimensional hydro-mechanical-chemical numerical model. We consider the 27 

reaction antigorite + brucite = forsterite + water. Shearing is viscous and the shear viscosity 28 

decreases exponentially with porosity. The total and fluid pressures are initially homogeneous 29 

and in the antigorite stability field. Initial perturbations in porosity, and hence viscosity, cause 30 

fluid pressure perturbations. Dehydration nucleates where the fluid pressure decreases locally 31 

below the thermodynamic pressure defining the reaction boundary. Dehydration veins grow 32 

during progressive simple-shearing in a direction parallel to the maximum principal stress, 33 

without involving fracturing. The porosity evolution associated with dehydration reactions is 34 

controlled to approximately equal parts by three mechanisms: volumetric deformation, solid 35 

density variation and reactive mass transfer. The temporal evolution of dehydration veins is 36 

controlled by three characteristic time scales for shearing, mineral-reaction kinetics and fluid-37 

pressure diffusion. The modelled vein formation is self-limiting and slows down due to fluid 38 

flow decreasing fluid pressure gradients. Mineral-reaction kinetics must be significantly faster 39 

than fluid-pressure diffusion to generate forsterite during vein formation. The self-limiting 40 

feature can explain the natural observation of many, small olivine veins and the absence of 41 

few, large veins. We further discuss implications for transient weakening during 42 

metamorphism and episodic tremor and slow-slip in subduction zones. 43 

 44 

 45 
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Plain language summary 46 

Serpentinite is a rock that contains water which is bound within the crystal lattice. When 47 

serpentinite is plunging together with tectonic plates into the Earth mantle, the changing 48 

pressure and temperature conditions cause chemical reactions which releases the water bound 49 

in the crystal lattice; a process called dehydration. A typical mineral that forms by 50 

dehydration is olivine. Dehydration is important for the global water cycle, since much water 51 

is transferred with tectonic plates into the mantle and is migrating back to the Earth surface 52 

after dehydration. However, many aspects of the water cycle remain still unclear, since 53 

dehydration during plunging of tectonic plates involves the incompletely understood 54 

interaction of three fundamental mechanical and chemical processes: mechanical deformation 55 

of the rock, porous flow of released fluid and chemical reactions involving changes in rock 56 

density. Here, we present a new mathematical model to investigate the coupled processes of 57 

rock deformation, fluid flow and dehydration reactions. We present computer simulations 58 

which can explain why the dehydration occurs in narrow and elongated regions which are 59 

termed veins. We propose that our simulations could explain the observation of many small 60 

olivine veins in strongly sheared serpentinite.    61 

  62 
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1. Introduction  63 

The dehydration of serpentinite at subduction zones is an important process for the 64 

global water cycle (e.g., Peacock, 1990; Pettke and Bretscher, 2022; Ulmer and Trommsdorff, 65 

1995; Rupke et al., 2004), for the dynamics and seismicity at subduction zones (e.g., Bloch et 66 

al., 2018; Hacker et al., 2003) or for arc magmatism due to hydration of the mantle wedge 67 

(e.g., Hebert et al., 2009; John et al., 2012). More generally, the interaction of mineral 68 

reactions, fluid flow and rock deformation is important for a variety of geodynamic processes, 69 

such as chemical and volatile cycling (e.g., Bebout, 2014) or reaction-induced weakening of 70 

faults and shear zones (e.g., Labrousse et al., 2010; Sulem and Famin, 2009), as well as for 71 

practical applications such as natural carbon storage (e.g., Matter and Kelemen, 2009) or 72 

geothermal energy exploitation (e.g., Pandey et al., 2018). However, many aspects of the 73 

coupling of mineral reactions, fluid flow and rock deformation are still unclear. 74 

Indirect observations that have been attributed to serpentinite dehydration at 75 

subduction zones are aseismic episodic tremor and slow-slip (ETS) phenomena (e.g., Burlini 76 

et al., 2009; Tarling et al. 2019). These phenomena are commonly thought to result from 77 

episodic fault slip, likely facilitated or promoted by pulses of fluid release associated with 78 

fluid pressure variations (e.g., Audet et al., 2009; Connolly, 1997; Frank et al., 2015; 79 

Gomberg et al., 2010; Shelly et al., 2006; Taetz et al., 2018). For example, such slow-slip 80 

occurs on the plate interface in Cascadia at 30 to 40 km depth (e.g., Gomberg et al., 2010) and 81 

for temperatures probably between 400 and 500 °C (e.g., Tarling et al., 2019 and references 82 

therein). However, how the dehydration reaction, the associated fluid release and the 83 

volumetric and shear deformation of the involved rocks are coupled and actually cause the 84 

episodic slow-slip phenomena remains elusive. 85 

Direct observation of the dehydration of serpentinite at subduction zones is not 86 

possible in nature. However, field observations in areas with abundant exposed serpentinites 87 
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at variable pressure and temperature may provide insight into incipient dehydration stages. In 88 

the European Alps, exposed serpentinites, which experienced variable peak pressures and 89 

temperatures, are abundant in many regions. Examples are the serpentinites of Saas Zermatt 90 

(Western Alps) or of the Erro-Tobbio unit (Voltri massif, Ligurian Alps, Italy; e.g., Hermann 91 

et al., 2000; Peters et al., 2020; Plümper et al., 2017; Scambelluri et al. 1991, Scambelluri et 92 

al., 1995; Kempf et al., 2020). These serpentinite bearing regions are key areas that preserve 93 

ductile and brittle structures that are related to fluid release. The serpentinites of the Erro-94 

Tobbio unit exhibit olivine-bearing veins and the metamorphic olivine most likely results 95 

from the breakdown of antigorite and brucite (Fig. 1; e.g., Hermann et al., 2000; Plümper et 96 

al., 2017; Scambelluri et al., 2004). The olivine veins occur in two settings: as minimally 97 

deformed veins within little deformed, variably serpentinized peridotite  and as deformed 98 

veins within strongly deformed antigorite serpentinite, described as a serpentinite mylonite 99 

(Fig. 1; e.g., Hermann et al., 2000; Plümper et al., 2017). These serpentinite mylonites are cut 100 

by en-échelon olivine veins, which in turn are dissected by multiple sets of olivine-bearing 101 

shear bands (Hermann et al., 2000). Plümper et al. (2017) suggest that the association of 102 

undeformed and sheared veins attests that dehydration-induced vein formation was 103 

synchronous with ductile deformation in the enclosing serpentinite mylonites. Furthermore, 104 

Hermann et al. (2000) hypothesize that (i) multiple sets of olivine shear bands provide 105 

evidence for continuous deformation, (ii) sheared olivine-rich veins are probably very weak 106 

due to continuous solution and precipitation in the presence of a fluid phase, (iii) fluid 107 

produced by the dehydration reaction was (partially) trapped in the serpentinite mylonite and 108 

(iv) serpentinite mylonites are not only zones with highly localized deformation but also 109 

zones of focused fluid flow. However, these coupled physical-chemical hypotheses for olivine 110 

vein formation have not been tested with theoretical models based on the concepts of 111 

continuum mechanics and thermodynamics. Recently, Huber et al. (2022) presented a hydro-112 
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chemical (HC) model to study the formation of olivine veins in dehydrating serpentinite. 113 

However, they do not consider any solid-mechanical aspects of olivine vein formation and do, 114 

hence, not consider volumetric or shear deformation of the serpentinite and associated fluid 115 

pressure changes. Therefore, we cannot apply their model to test the coupled physical-116 

chemical hypothesis of shear-driven olivine vein formation. 117 

Here, we test the hydrological, mechanical and chemical feasibility of a hypothesis for 118 

the formation of observed olivine veins in serpentinite mylonites with a new two-dimensional 119 

(2D) hydro-mechanical-chemical (HMC) model. The hypothesis is (Fig. 2): During viscous 120 

shearing of serpentinite, the magnitudes of ambient pressure and temperature were close to 121 

the magnitudes required for triggering the dehydration reaction from serpentinite to olivine 122 

(Fig. 3A). The effective viscosity of serpentinite was spatially variable, for example due to 123 

variable porosity or heterogeneities in mineralogy (Fig. 2A). Weak domains, with lower 124 

viscosity, cause pressure variations in the sheared serpentinite so that the dehydration 125 

reactions are triggered in domains with locally decreased pressure. The dehydration forms 126 

olivine and increases the porosity locally, which in turn increases the size of weak domains, 127 

consisting of an olivine-fluid mixture. The dehydration region forms vein-like structures that 128 

grow in a direction parallel to the maximal compressive stress without any fracturing (Fig. 2A 129 

and B). After fluid has escaped the olivine-rich region, the olivine-rich veins, observable in 130 

the field, have formed (Fig. 2C). We test this hypothesis with a 2D HMC model because such 131 

models are suitable to theoretically study the coupling between chemical reactions, fluid flow 132 

and deformation (e.g., Kolditz et al., 2015; Poulet et al., 2012). Such coupled models have 133 

been applied to study a variety of geodynamic processes, for example, reaction-driven 134 

cracking during serpentinization (e.g., Evans et al., 2020), porosity evolution and clogging 135 

during serpentinization (e.g. Malvoisin et al., 2021), the impact of dehydration on earthquake 136 

nucleation (e.g., Brantut et al., 2011), the impact of shear heating and associated chemical 137 
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rock decomposition on thrusting (e.g., Poulet et al., 2014) or reactive melt migration (e.g., 138 

Aharonov et al., 1997; Baltzell et al., 2015; Bessat et al., 2022; Schiemenz et al., 2011). We 139 

apply here an extension of a HMC model that was  previously used to model the dehydration 140 

reaction: brucite = periclase + water (Schmalholz et al., 2020). Here, we elaborate this HMC 141 

model and consider a simple MgO-SiO2-H2O (MSH) system for the reaction: antigorite + 142 

brucite = forsterite + water (Fig. 3). For simplicity, we consider an isothermal system and a 143 

fixed chemical composition so that the reaction antigorite + brucite = forsterite + water is 144 

balanced everywhere in the model domain.     145 

The main aim of our study is to better understand the fundamental coupling of 146 

dehydration reactions, fluid flow and rock deformation, for which a simplified model is 147 

useful. Particular aims of our study are (1) to test the hypothesis for the shear-driven 148 

formation of olivine veins, (2) to quantify the mechanisms that control the porosity evolution 149 

and fluid pressure during dehydration of rocks and (3) to quantify the impact of shearing rate 150 

and kinetic reaction rate on the growth of dehydration veins.  151 

 152 

2. Mathematical model 153 

2.1. Porous medium densities 154 

We consider a simple MSH system and the reaction antigorite (Mg48Si34O85(OH)62) + 155 

20 brucite (Mg(OH)2) = 34 forsterite (Mg2SiO4) +  51 water (H2O). We assume that antigorite 156 

and brucite together represent one solid rock phase with a homogeneous solid density, sρ  (in 157 

kg/m3), and homogeneous material properties. All model parameters and variables are 158 

presented in Table 1. The total density of the porous rock, either consisting of antigorite + 159 

brucite or forsterite + water, is 160 



8 
 

 ( )1T f sρ ρ φ ρ φ= + −   (1) 161 

with porosity φ  (volume ratio) and pore-fluid density fρ . For simplicity, we assume that the 162 

solid phase consists of two components, (1) the non-volatile components, MgO and SiO2, that 163 

remain always in the solid and (2) the volatile component, H2O, that is liberated during 164 

dehydration. We quantify the amount of the non-volatile component as a function of MgO 165 

inside the solid with its solid mass (in kg) fraction, sX , which is 0.74sX =  (68 times the 166 

molar mass of MgO / (68 times the molar mass of MgO + 51 times the molar mass of H2O) ) 167 

for the solid made of antigorite + brucite in a molar ratio of 1/20. Equivalently, 1sX =  for 168 

forsterite. We neglect the SiO2 in the calculations, because the SiO2 for the considered 169 

reaction cannot vary independently from MgO. The relative density of the solid MgO 170 

component in the solid phase is 171 

 X s sXρ ρ=   (2) 172 

2.2. Hydro-chemical model 173 

The conservation of mass (per unit volume) of the solid and the fluid is given by 174 

respectively (e.g., McKenzie, 1984) 175 

 
( )( ) ( )
1

1s s
st

ρ φ
ρ φ

∂ −
 + ∇ − = −Γ ∂

v  (3) 176 

 
( )f f

ft
ρ φ

ρ φ
∂

 + ∇ = Γ ∂
v   (4) 177 

where t  is time, ∇  is the divergence operator, fv  and sv  are vectors of the fluid and solid 178 

barycentric velocities, respectively, and Γ  is a dehydration rate that quantifies the rate at 179 

which mass is transferred from the solid to the fluid phase. Concerning the symbols for vector 180 

and tensor quantities, we use indices f  and s  as superscripts, because vector and tensor 181 
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components will have additional subscripts indicating the spatial direction, and scalar 182 

quantities can be easier distinguished from vector and tensor quantities. Here, we do not use 183 

two separate mass conservation equations for solid and fluid, but use the conservation 184 

equation of total mass which results from the sum of equations (3) and (4) (e.g., Fowler, 1985; 185 

Beinlich et al., 2020; Malvoisin et al., 2021; Plümper et al., 2016; Schmalholz et al., 2020): 186 

 ( ) ( ) 0f s sT
f Tt

ρ ρ φ ρ∂  + ∇ − + ∇ = ∂
v v v   (5) 187 

The relative velocity of the fluid to the solid, f s−v v , in equation (5) is expressed by Darcy’s 188 

law in the absence of gravity 189 

 ( )
3

f s
f

f

k pφφ
η

− = − ∇v v   (6) 190 

where k  is the permeability coefficient in a Kozeny–Carman-type permeability expression, 191 

fη  is the fluid viscosity and fp  is the fluid pressure. We need two mass conservation 192 

equations because we consider two phases, solid and fluid. In addition to the conservation of 193 

total mass, we use the conservation of the total non-volatile component (MgO) which is 194 

described by 195 

 ( ) ( )1 1 0s
X Xt

ρ φ ρ φ∂  − + ∇ − =    ∂
v .  (7) 196 

There is no fluid velocity in this conservation equation because we assume that the dissolution 197 

of MgO in the fluid is negligible.  198 

We consider a constant temperature and a closed system with constant system 199 

composition for the whole model domain, however, H2O can migrate within our model 200 

domain. It has been experimentally demonstrated that dehydration reactions are controlled by 201 
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fluid pressure (e.g., Llana-Fúnez et al., 2012) and, therefore, we approximate sρ , fρ  and sX  202 

as a function of fp , which is expressed as (Schmalholz et al., 2020): 203 

 

( )
( )
( )

EQ
f f f

EQ
s s f

EQ
s s f

p

p

X X p

ρ ρ

ρ ρ

=

=

=

,  (8) 204 

whereby the values of EQ
sρ , EQ

fρ  and EQ
sX  for a range of values of fp  are calculated by 205 

equilibrium Gibbs free-energy minimization (e.g., Connolly, 2005, 2009; Fig. 3), using the 206 

thermodynamic dataset of Holland and Powell (1998). We assume that fρ  always 207 

corresponds to EQ
fρ , as a result of its equation of state (Fig. 3C). Due to the sharp, step-like 208 

variation of EQ
sρ  and EQ

sX  with varying fp  across the dehydration reaction (Fig. 3C and D) 209 

we assume that the reaction is controlled by a kinetic reaction timescale, so that values of sρ  210 

do not change instantaneously if fp  crosses the value of the reaction pressure at 12.65 kbar 211 

(Fig. 3). The kinetic reaction timescales relevant to thermodynamic equilibrium are (e.g., 212 

Omlin et al., 2017) 213 

 

EQ
s s s

kin
EQ

s s s

kin

t t
X X X
t t

∂ρ ρ − ρ=
∂

∂ −=
∂

 (9) 214 

where tkin is the characteristic kinetic timescale. Employing an effective kinetic timescale for 215 

the considered reaction allows us to quantify the impact of reaction kinetics on the model 216 

results. Furthermore, the simulations are numerically more stable because the kinetic 217 

formulation resolves better the temporal transition of the reaction and prohibits potentially 218 
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strong density oscillations for numerical grid points where values of fp  are very close to the 219 

reaction pressure.  220 

 221 

2.3. Mechanical model 222 

The solid part of the 2D porous medium is behaving in a visco-plastic manner under 223 

shear deformation. We assume that the shear viscosity is an exponential function of the 224 

porosity (e.g., Schmeling et al., 2012). There are other possible porosity-viscosity relations, 225 

but for simplicity we apply here only one of these relations. The relations between the 226 

deviatoric stress tensor components, ij ij ijpτ σ δ= +  (where ijσ  are the components of the total 227 

stress tensor, p  is total pressure and ijδ  is the Kronecker delta) and solid velocity gradients, 228 

or deviatoric strain rate tensor components ijD , are then 229 

 ( )0 02 exp 30 2ij s ij s ijD Dτ η η= − ϕ − ϕ =     (10) 230 

where subscripts i  and j  are either 1 (representing the horizontal x-direction) or 2 231 

(representing the vertical y-direction), 0sη  is the reference solid shear viscosity for the initial 232 

porosity, 0ϕ , and ( ) ( )/ / / 2 / / 3s s s
ij i j j i ij i iD v x v x v xδ= ∂ ∂ + ∂ ∂ − ∂ ∂ . The sη represents the 233 

effective, porosity-dependent shear viscosity of the porous rock. The factor 30 was 234 

determined by experiments with olivine-melt mixtures (e.g., Schmeling et al., 2012). We 235 

further apply for one simulation a von Mises yield stress, yτ , to limit the maximal value of the 236 

deviatoric stresses. The square root of the second invariant of the deviatoric stress tensor, 237 

( )2 2 20.5II xx yy xyτ τ τ τ= + +  controls a plastic multiplier, 1 /y IIϑ τ τ= − . If 0ϑ > , then 238 

deviatoric stresses are modified using 239 
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 ( )1ij ijτ ϑ τ= − . (11) 240 

This von Mises plasticity prohibits that stresses locally increase to unrealistically high values. 241 

Furthermore, we consider a poro-visco-elastic volumetric deformation for which the 242 

divergence of the solid velocity field is a function of total pressure, p , and fluid pressure, fp  243 

(e.g., Yarushina and Podladchikov, 2015):  244 

 
( )

1
1

f fs

d

dp p pdp
K dt dt φ λ

− 
∇ = − − α −  − 

v   (12) 245 

where λ  is the bulk viscosity, dK  is the drained bulk modulus, and 1 /d sK Kα = −  with sK  246 

being the solid bulk modulus. The applied equations for conservation of total linear 247 

momentum (or force balance equations) without inertial forces and gravity are 248 

 0ijσ∇ =  (13)   249 

2.4. Governing system of equations 250 

 The above equations represent a system of 11 equations for 11 unknowns, which are fp , 251 

φ , sρ , fρ , sX , p , s
xv , s

yv , xxτ , yyτ  and xyτ , assuming that the deviatoric stress tensor is 252 

symmetric, xy yxτ τ= . The deviatoric stress tensor components, xxτ , yyτ  and xyτ , are calculated 253 

using equations (10). The solid and fluid densities and the mass fraction are calculated from 254 

the fluid pressure using equation (8) (see also equation (16) below and Fig. 3C and D). 255 

Equation (5) is used to determine the fluid pressure, fp , equation (12) to determine total 256 

pressure, p , equation (7) to determine the porosity, φ , and the two force balance equations 257 

(13) to determine the two solid velocities, s
xv  and s

yv . To determine fp , p , φ , s
xv  and s

yv  we 258 

employ the iterative pseudo-transient (PT) finite difference method described in detail in 259 

Schmalholz et al. (2020). The PT equations are 260 
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( )

( ) ( )

( )

3

1 1

1
1

PT
f sT

f f TPT
pf f

PT
s

X XPT

PT s
i

ijPT
v

PT
f fs

PT
p d

p k p
t t

t t

v
t

dp p pp dp
t K dt dt

ϕ

ρ φρ ρ
η

φ ρ φ ρ φ

σ

φ λ

 Δ ∂= − + ∇ ∇ − ∇ Δ ∂   
Δ ∂  = − + ∇ −    Δ ∂

Δ = ∇
Δ

− Δ = −∇ − − α − Δ − 

v

v

v

. (14) 261 

When the discrete PT time derivatives of the left-hand sides of the equations (14) converge 262 

towards zero during iterations, then the corresponding steady-state equations on the right-263 

hand sides are solved. The closed system of governing equations is given by equations (8), 264 

(10), (12) and (14). 265 

 266 

2.5. Model configuration 267 

We assume that fp  and p  are initially identical. The porosity is 2%, except in an 268 

elliptical region in the model center where the porosity exhibits a Gaussian distribution with a 269 

maximal value of 16%  (Fig. 4). The initial Gaussian distribution of the porosity is: 270 

( ) ( )2 2
0 0.02 0.14exp / / 2x r y rφ  = + − −  . The distance r  controls the width, or variance, of 271 

the porosity distribution which has an elliptical form with an axis ratio of 2 and with the long 272 

axis parallel to the vertical y-direction (Fig. 4). The origin of the coordinate system is at the 273 

center of the elliptical region with positive coordinates indicating towards the right side and 274 

upwards (Fig. 4). The shear and bulk viscosities are smaller in the central region due to the 275 

higher porosity. We assume a constant temperature of 500 °C for which the thermodynamic 276 

reaction pressure in our model is at 12.65 kbar (Fig. 3). The exact temperature value is not 277 

essential for our isothermal study, because the variation of the solid and fluid densities with 278 
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varying fluid pressure is similar for temperatures between 450 and 550 °C (Fig. 3A and B). 279 

The initial values of fp  and p  are everywhere equal to 12.75 kbar, which is a pressure value 280 

slightly above the thermodynamic reaction pressure (Fig. 3A and B). We apply far-field 281 

simple shear for the boundary velocities (Fig. 4) so that the divergence, or volume change, of 282 

the entire model domain is zero. Shearing is parallel to the horizontal x-direction and, hence, 283 

orthogonal to the long axis of the elliptical region with elevated porosity (Fig. 4). Boundary 284 

conditions for φ  and fp  are of Dirichlet type, with boundary values fixed to the initial 285 

ambient values.  286 

 287 

2.6. Numerical algorithm and dimensionless parameters 288 

 All partial derivatives are approximated with discrete difference ratios following the 289 

standard procedure of staggered finite difference (FD) methods (e.g., Gerya, 2019). The 290 

numerical algorithm consists of an outer time loop containing an internal PT iteration loop 291 

(Schmalholz et al., 2020). The PT iteration procedure aims at minimizing the PT time 292 

derivatives, i.e. the left-hand sides in the discretized equations (14). The iteration procedure is 293 

stopped when the PT time derivatives reach a predefined tolerance, here 10-8. The iterative 294 

implicit PT solution of the discretised system of equations (14) requires the definition of four 295 

numerical pseudo time steps, PTtΔ , namely, PT
pftΔ , PT

ptΔ , PTtφΔ , and PT
vtΔ  to solve for fp , p , 296 

φ , and s
xv  and s

yv , respectively. The physical time step, tΔ , controls the evolution of the 297 

system in physical time for which we implicitly solve. The applied numerical time steps are 298 

specified in appendix A1.  299 

 There are many possibilities to scale and non-dimensionalize the model parameters inside 300 

the numerical algorithm. We programmed the numerical algorithm in such a way that the 301 
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specific magnitudes of individual parameters, such as shear viscosity, are not significant and 302 

that the characteristic physical behaviour of the system is controlled by dimensionless 303 

parameters. This scaling provided also the most stable convergence during the PT iterations. 304 

The applied dimensionless parameters and numerical examples applied in the simulations are: 305 

 
( )

1 1 1

22 2 18

2 2 22 3 1

18

3 3 18

10 1 18

4 4 8

4. . 40
10
10 10. . 10
10 10

2 10. . 2
10

1.12 10 10. . 0.0878
12.75 10

s

f

s

s
xy

ini

w me g
r m
k m Pase g

r Pas m

Pase g
Pas

D s Pase g
p Pa

η
η

λ
η

η

−

−

− −

− −

Ω = Ω = =

Ω = Ω = =

×Ω = Ω = =

×Ω = Ω = =
×

  (15) 306 

where w  is the model width and xyD  is the applied far-field simple shear rate (Fig. 4). The 307 

values of the applied parameters are discussed in section 4.  308 

         For reasons of numerical efficiency, we approximate the thermodynamic relations of the 309 

densities and mass fractions with the fluid pressure, obtained with Gibbs free-energy 310 

minimization, with analytical functions (Fig. 3C and D):  311 
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 (16) 312 

where Rp  is the reaction pressure, here 12.65 kbar. We use the functions above in the 313 

numerical algorithm to calculate densities and mass fraction from the current fluid pressure. 314 

 315 
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3. Results 316 

3.1. Scaling and presentation of results 317 

 We present most quantities in dimensionless form to emphasize their general validity. For 318 

example, all distances are made dimensionsless by dividing them by r  and all times are made 319 

dimensionless by dividing them with the characteristic time ( )2 /c f st r k Kη= . Consequently, 320 

all velocities are made dimensionless by dividing them by the characteristic velocity / cr t . In 321 

contrast, since we consider a particular metamorphic reaction, we display the densities and 322 

pressures in dimensional units.     323 

3.2. Dehydration vein formation under simple shear 324 

          For the first simulation presented here, we use the dimensionless parameters and 325 

specific parameter values given in equation (15) . The numerical resolution is 900×900 grid 326 

points in the x- and y-direction, respectively. A numerical resolution test is given in appendix 327 

A2. The coupling of the dehydration reaction, fluid flow and solid deformation is controlled 328 

by four characteristic time scales: a time scale related to fluid pressure diffusion, 329 

( )2 3
0/dif f st r k Kη ϕ= , a time scale related to the applied far-field deformation, 1/def xyt D= , a 330 

time scale related to the mineral-reaction kinetics, kint  (equation (9)), and a time scale related 331 

to viscoelastic stress relaxation, /rel s st Kη= . We assume here sK = 1011 Pa which, for the 332 

parameter values in equation (15), yields /rel deft t  ~ 10-3 and indicates that the deformation is 333 

effectively viscous since relt  is significantly shorter than deft . The ratio /rel deft t  is commonly 334 

referred to as Deborah number (e.g. Reiner, 1964; Moulas et al., 2019). For the first 335 

simulation, /def dift t  = 0.071  and /kin dift t  = 0.0025 so that both the characteristic times for 336 

shearing and reaction kinetics are shorter than the characteristic time of diffusive fluid flow. 337 
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The ratio /kin dift t  is similar to a Damköhler number since it relates the characteristic time of 338 

mineral reactions to the characteristic time of transport by diffusive fluid flow. The central 339 

region with initially higher porosity (Fig. 5E) represents a mechanically weak inclusion 340 

because the shear and bulk viscosity decrease with increasing porosity. The applied far-field 341 

simple shear causes variations in fp  around the weak region and the numerical results for the 342 

first time step show two regions in which fp  is smaller than the reaction pressure of 12.65 343 

kbar (black contours in Fig. 5A). Therefore, dehydration is triggered in these two regions of 344 

decreased fp . The dehydration causes the release of water, consequently an increase in 345 

porosity and, hence, a decrease of viscosity. With progressive simple shearing these 346 

dehydrating regions grow in the direction parallel to the maximal principal stress, 1σ , which 347 

is oriented 45 degrees with respect to the shearing direction (Fig. 5E). The maximal and 348 

minimal, 3σ , principal stresses have been calculated using the algorithm of Spitz et al. (2020), 349 

which was originally developed to calculate principal strain directions.  During progressive 350 

shearing, two dehydrating regions evolve and form vein-like regions with increased values of 351 

sρ  and φ  (Fig. 5). The total solid velocity field (grey arrows in Fig. 5A to D) indicates the 352 

applied far-field simple shear and local deviations from the horizontal shear direction. For the 353 

specific parameters given in equation (15) the maximal shear stresses are ca. 125 MPa. We 354 

also calculate the distance between the highest (in vertical y-direction) and the lowest point on 355 

the contours for fp  = 12.65 kbar (red straight lines in Fig 5A to D). We will use this distance 356 

as a proxy for the change in length of the dehydrating region representing the length of the 357 

dehydration vein. During progressive shearing, the value of sρ  in the dehydration region 358 

increases from initially ca. 2550 kg m-3 to ca. 3100 kg m-3 which represents the transformation 359 

from antigorite + brucite to forsterite (Figs. 3C and 5A to D). In the region of the two 360 

forsterite veins, the associated values of φ  increase from initially 2% to ca. 60% (Fig. 5E to 361 
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H). Two representative contours of φ , for 5 and 15%, highlight two features of the evolution 362 

of φ : the growth of high-porosity dehydration veins and the clock-wise rotation of the initial 363 

porosity field due to the applied simple shear (Fig. 5E to H).   364 

      365 

3.3. Dehydration vein formation for faster deformation rate and plastic yield stress 366 

We perform a second simulation with the same parameters as the first simulation, except that 367 

we apply now a different value of  deft  which provides /def dift t  = 0.038 (Fig. 6A to D) 368 

generating a faster shearing since the characteristic time of deformation is shorter. The main 369 

difference to the simulation with  /def dift t  = 0.071 (Fig. 5) is that the two dehydration regions 370 

connect during progressive shearing to form a single dehydration vein (Fig. 6D). For the 371 

specific parameters given in equation (15) the maximal shear stresses are ca. 220 MPa. We 372 

perform a third simulation with the same parameters as in the second simulation and apply a 373 

von Mises yield stress of 150 MPa (Fig. 6E to H). With such yield stress, a single dehydration 374 

vein also forms but the vein is shorter and thicker for the same simulated times (Fig. 6). The 375 

performed three simulations result in a similar development of dehydration veins with 376 

forsterite, but show that different deformation rates and the application of a yield stress impact 377 

the geometry and length of the veins.   378 

       379 

3.4. Coupling of dehydration reaction, fluid flow and solid deformation 380 

To better understand and visualize the coupling between the dehydration reaction, fluid flow 381 

and solid deformation we show the distribution and evolution of various quantities on a single 382 

figure (Fig. 7). We use the results of the first simulation (Fig. 5) and we focus on one 383 

dehydration region in the area to the top-left of the model center (Fig. 7).  The divergence of 384 
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the solid velocity, / /s s s
x yv x v y∇ = ∂ ∂ + ∂ ∂v , indicates a volumetric change associated with 385 

dehydration vein formation (Fig. 7). A positive value of s∇v  indicates volume increase, or 386 

dilation (blue colors in Fig. 7). Overall, the solid velocities indicate the applied far-field 387 

simple shear deformation (blue arrows in Fig. 7), with some deviations around the 388 

dehydrating region. The fluid velocities (red arrows in Fig. 7) are completely different 389 

compared to the solid velocities. For the first time step, fluid flow only occurs in the central 390 

region where the porosity, and hence permeability, is high (Fig. 7A). During dehydration vein 391 

formation, fluid flow mainly occurs in the region of the veins where significant dilation takes 392 

places (Fig. 7B to D). The fluid velocities indicate fluid flow from the boundary of the 393 

dehydrating region towards the centre of the vein (Fig. 7C). In other words, fluid is released 394 

during dehydration from the surrounding serpentinite and the released fluid flows into the 395 

vein. For the first time step, the porosity distribution indicates the initial, Gaussian-type, 396 

porosity distribution (blue contours in Fig. 7). With progressive deformation and vein 397 

formation, the high-porosity region grows in the direction of the dehydration vein, indicated 398 

by significant dilation and fluid flow. At the beginning of shearing, a larger region with fluid 399 

pressure (red contours in Fig. 7) <12.65 kbar corresponds more or less to the region of 400 

significant dilation (Fig. 7A). The solid densities (dashed grey contours in Fig. 7) increase 401 

during the progressive dehydration reaction and the transformation from antigorite + brucite 402 

to forsterite (Fig. 7B to D). The values of solid density increase with time due to the applied 403 

mineral-reaction kinetics which avoids that the density changes instantaneously once the fluid 404 

pressure decreases locally below 12.65 kbar. With progressive vein formation, fluid pressures 405 

below 12.65 kbar only exist in the region of significant dilation, fluid flow and increased 406 

values of solid density (Fig. 7).      407 

 408 
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3.5. Mechanisms controlling porosity variation and fluid pressure 409 

 In our coupled HMC model, the temporal variation of porosity is controlled by several 410 

mechanisms, such as volumetric deformation of the solid or mass transfer due to the 411 

dehydration reaction. To quantify the relative contribution of the mechanisms controlling the 412 

temporal variation of porosity, we post-process our numerical results (i.e. calculate values 413 

from saved numerical results). We quantify the mass transfer rate, Γ , associated with the 414 

dehydration reaction, which can be expressed by (using equation (3)): 415 

 
( )( ) ( )
1

1s s
s

d
dt

ρ φ
ρ φ

−
Γ = − − − ∇v . (17) 416 

Note that in equation (17) the material time derivative ( /d dt , including the advection term, 417 

( )1s
sρ φ∇ −  v ) is used and, hence, the divergence term is different compared to equation (3)418 

. Therefore, equation (17) represents an approximation of Γ  since the advective term is not 419 

taken into account, here for simplicity of the post-processing. Equation (17) can be rearranged 420 

to provide an expression for the temporal variation of the porosity: 421 
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− −

v  (18) 422 

Equation (18) shows that the temporal variation of the porosity is controlled by three 423 

mechanisms: (1) volumetric deformation of the solid (i.e. divergence of velocity field; first 424 

term on right-hand side of equation (18)), (2) temporal variation of solid density (second 425 

term) and (3) mass transfer of H2O from the solid to the fluid phase associated with the 426 

dehydration reaction (third term). We display the spatial distribution of the four terms in 427 

equation (18) for the first simulation at a dimensionless time of 0.7 (Fig. 8). The temporal 428 

variation of porosity, quantified by the term on the left-hand side of equation (18), is positive 429 

and largest in the region of increased porosity, indicating an increase in porosity with time 430 
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(Fig. 8A). Each of the three terms on the right-hand side of equation (18) can be calculated 431 

from the saved numerical results (Fig. 8C to E) and their sum (Fig. 8B) provides essentially 432 

the same result as the term on the left-hand side of equation (18) (Fig. 8A). The results show 433 

that the magnitudes of the relative contributions of volume change (Fig. 8C), solid density 434 

variation (Fig. 8D) and mass transfer (Fig. 8E) to the temporal variation of porosity are 435 

similar. Therefore, volume change, solid density variation and mass transfer equally 436 

contribute to the porosity variation and, hence, for the evolution of the dehydration veins.  437 

We also investigate the porosity variation for a simulation which has the same value of 438 

/def dift t  = 0.071 as the first simulation, but with a slower kinetic-reaction rate (or longer 439 

reaction time) of /kin dift t  = 0.022 for a dimensionless time of 1.0 (Fig. 9). The magnitude of 440 

the temporal porosity variation is now slower (compare Fig. 8A and 9A) but the relative 441 

contribution of volume change, solid density variation and mass transfer to the porosity 442 

variation is again similar. Therefore, different kinetic reaction rates change the magnitude of 443 

the temporal porosity variation, but do not change the relative importance of volume change, 444 

density variation and mass transfer controlling the porosity evolution. 445 

Similar to the temporal variation of φ , the distribution of fp  is also controlled by 446 

several mechanisms and variables. To quantify the mechanisms controlling fp , we post-447 

process again our numerical results. Substituting equation (12), which defines s∇v , into 448 

equation (18) and solving for fp  yields   449 

 ( ) ( )1 1f s
f

d s s

dp ddp dp p
K dt dt dt dt

λ φ λ φ ρφ λλ
ρ ρ

− − 
= + − α + − − Γ 

 
. (19) 450 

Equation (19) shows that fp  is controlled by five mechanisms and quantities: (1) the 451 

magnitude of p  (first term on the right-hand side of equation (19)), (2) elastic deformation 452 
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involving the temporal variation of p  and fp  (second term), (3) temporal variations in 453 

porosity (third term), (4) temporal variations of solid density (fourth term) and (5) mass 454 

transfer by dehydration (fifth term). We display the spatial distribution of all terms in equation 455 

(19) for the first simulation at a dimensionless time of 0.7 (Fig. 10). The distribution of fp  is 456 

mainly controlled by the distribution of p  (Fig. 10A and C). The distribution of fp  can be 457 

accurately post-processed by summing up the five terms on the right-hand side of equation 458 

(19) (Fig. 10B). The mass transfer (Fig. 10E), the porosity variation (Fig. 10F) and the solid 459 

density variation (Fig. 10G) have an approximately equal impact on the distribution of fp , 460 

but their contributions are significantly smaller compared to the contribution of p . The 461 

contribution of elastic volumetric deformation (Fig. 10H) is essentially negligible, since it is 462 

three orders of magnitude smaller than the magnitude of fp . For the presented simulation, the 463 

maximal value of the deviatoric stress invariant, IIτ  (equation (11)), in the model domain is 464 

ca. 140 MPa (Fig. 10D). 465 

 466 

3.6. Impact of kinetic reaction rate and shearing rate on vein evolution 467 

We performed in total ten simulations to investigate the impact of the far-field 468 

shearing rate and of the kinetic reaction rate on the evolution of dehydration veins and 469 

forsterite generation (Fig. 11). Six simulations had the same value of /kin dift t  = 0.0025 but 470 

different values of /def dift t  (legend in Fig. 11A). The increase in length of the red line shown 471 

in figure 5A to D is used as a proxy for the temporal evolution of the vein length (Fig. 5A). 472 

The initial value of vein length is determined by the initial distribution of fp  (Fig. 5A). In 473 

regions with fp  <12.65 kbar the dehydration reaction is triggered, which causes a local 474 
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increase of H2O and an increase of fp  (Fig. 11B). For the six simulations, this initial increase 475 

of fp  generated values of fp  >12.65 kbar everywhere in the model domain, so that the vein 476 

length is zero (Fig. 11A and B). With progressive deformation, values of fp  decrease again 477 

below 12.65 kbar initiating the growth of a dehydration vein. The time until values of fp  478 

decrease below 12.65 kbar is longest for the simulation with the slowest far-field deformation 479 

rate (Fig. 11A). Consequently, the increase of sρ  starts latest for the simulation with slowest 480 

far-field deformation rate (Fig. 11C). However, during significant increase of sρ  the rate of 481 

increase (indicated by the slope of the density versus time lines) of sρ  is similar for all 482 

simulations, because they considered the same mineral-kinetic rate ( /kin dift t  = 0.0025). The 483 

simulation with the fastest deformation rate (Fig. 6A to D; blue line in Fig. 11A to C) was run 484 

a second time, but then with a von Mises yield stress (Fig. 6E to F; dashed blue line in Fig. 485 

11A to C). The application of the yield stress slows down the vein growth, but has no 486 

significant impact on the evolution of sρ  (Fig. 11C). The temporal evolution of the vein 487 

length shows that the veins grow fast at the onset of vein formation and then vein growth 488 

slows down progressively (Fig. 11A) because the minimum values of fp  in the model 489 

increase progressively (Fig. 11B) due to ongoing fluid flow which reduces gradients of fp . 490 

We performed four simulations for the same value of /def dift t  = 0.071 but for four different 491 

values of /kin dift t  (legend in Fig. 11D). The vein growth is similar for the four simulations 492 

(Fig. 11D), however, the increase of sρ  is significantly different due to the different mineral-493 

reaction rates (Fig. 11F). The values of sρ  increase fastest for the fastest reaction rate (Fig. 494 

11F), but values of fp  vary less during deformation for faster reaction rates (Fig. 11E). For 495 

slow reaction kinetics, /kin dift t  = 0.022 (Fig. 11F), maximal values of sρ  did not reach 2800 496 
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kg m-3 hindering the complete formation of forsterite when the vein growth has essentially 497 

stopped (corresponding blue line in Fig. 11D). The results for different kinetic rates suggest 498 

that the kinetic reaction rate must be significantly faster than the pressure diffusion rate to 499 

allow the complete transformation from antigorite + brucite to forsterite during dehydration 500 

and vein growth, while fluid pressures are in the forsterite stability field.         501 

 502 

4. Discussion 503 

The performed simulations show that it is hydrologically, mechanically and 504 

chemically feasible to form olivine veins by dehydration reactions during ductile shearing of 505 

serpentinite. In the scenario studied here, dehydration is shear-driven and triggered by fluid 506 

pressure perturbations caused by heterogeneities in porosity-dependent effective viscosity. 507 

The resulting veins grow in a direction parallel to the maximal principal stress and no 508 

fracturing is required for vein formation and growth. The simulations show that the two 509 

dimensionless ratios /def dift t  and /kin dift t  control the temporal evolution of the dehydration 510 

vein length, the fluid pressure and the solid density (Fig. 11). In our simulations both the 511 

values of deft  and kint  need to be significantly shorter than dift  (Fig. 11). To test the 512 

applicability of our simulations to sheared serpentinite at subduction zones, we estimate the 513 

value of ( )2 3
0/dif f st r k Kη ϕ=  using the parameter values specified in equation (15) and the 514 

initial porosity of 2%. The least constrained parameter in dift  is likely the effective 515 

permeability, 3
0kϕ , which in our simulations would be 22 2 310 0.02m− ×  = 28 28 10 m−× . 516 

Experimental studies suggest that serpentinite permeability decreases exponentially with 517 

depth and is in the order of 10-23 and 10-21 m2 at a depth of 7 km below seafloor (e.g. 518 

Hatakeyama et al., 2017). Using the extrapolation of Hatakeyama et al. (2017) (their equation 519 
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1) for their sepertinite termed Sengen-03 provides a permeability of 10-30 m2 for a confining 520 

pressure of 9 kbar and 10-35 m2 for a confining pressure of 12.75 kbar, as applied here. 521 

Therefore, an effective permeability in the order of 10-27 m2, as used here, seems not 522 

unrealistic for serpentinite under a confining pressure of 12.75 kbar and the assumed 523 

temperature of 500 °C. For simplicity, we assume here an isotropic permeability, but in 524 

natural serpentinite the permeability might be anisotropic. For the considered parameter 525 

values we obtain dift = 111.25 10 s× ≈ 4 kyr. A representative value of deft  in our simulations is 526 

0.05 dift×  (Fig. 11A). The inverse of deft  corresponds to the applied far-field shearing rate, 527 

xyD , which is then 10 11.6 10 s− −× . A shear strain rate in the order of 10 110 s− −  is feasible for 528 

serpentinite shearing at a subduction plate interface (e.g. Chernak and Hirth, 2010). A 529 

representative value of kint  in our simulations forming forsterite is 0.001 dift×  (Fig. 11D) 530 

which corresponds to 4 years. Here, we assume a viscosity of serpentinite of 1018 Pas. Despite 531 

the importance of serpentinite, its rheology at lithospheric-scale pressure and temperature 532 

conditions remains not well constrained (David et al., 2018; Hirauchi et al., 2020, and 533 

references therein). However, for the ambient pressure and temperature conditions considered 534 

here, viscosities of serpentinite between 1017 and 1018 Pas seem feasible based on 535 

experimental studies (e.g., Chernak and Hirth, 2010; Hilairet et al., 2007). For the applied 536 

parameter values, the characteristic time, ( )2 /c f st r k Kη= , is ca. 12 days. The dimensionless 537 

simulation times for the ten simulations are between 600 and 1500 (Fig. 11) which then 538 

corresponds to a real time between approximately 20 and 50 years, respectively.  539 

We consider here, for simplicity, a fixed chemical composition for which forsterite + 540 

water results from dehydration of antigorite + brucite + a negligible amount of free water. We 541 

consider this negligle amount of free water simply to be able to calculate thermodynamically 542 

the fluid density in the stability field of antigorite + brucite (Fig. 3C). Natural chemical 543 
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compositions, in for example the Erro-Tobbio unit, are more complex and feature a higher 544 

chemical variability as considered in our model. However, the main aim of our study is to 545 

investigate the fundamental coupling between dehydration reactions, fluid flow and rock 546 

deformation, justifying the use of a simplified MSH system. Our model suggests that natural 547 

areas of serpentinite dehydration, consisting of olivine and water, are mechanically weak due 548 

to their high, up to 60%, porosity and water content. After the formation of the dehydration 549 

veins, the water eventually escapes the dehydration region, so that finally only olivine is left 550 

in the veins.  551 

Field data show that in the Erro Tobbio region the olivine in the veins is metamorphic 552 

olivine which resulted from the dehydration of serpentinite. A dehydration origin of the 553 

olivine is supported by geochemical studies (e.g., Kempf et al., 2020; Peters et al., 2020). 554 

Furthermore, the particular en-échelon orientation of the olivine veins suggest that the vein 555 

orientation is controlled by the stress field associated with the serpentinite shearing (Hermann 556 

et al. 2000). Therefore, based on published geochemical studies and structural observations 557 

we propose that the formation of observed olivine veins was the result of a coupled 558 

deformation-reaction process that accelerated the mineral dehydration along particular 559 

orientations, controlled by the local stress field in the sheared serpentinite. Similar veins made 560 

of metamorphic olivine have been described from subducted serpentinite, such as in the 561 

Zermatt-Saas unit in the Central Alps (e.g., Kempf et al., 2020). 562 

The initial distribution of porosity in the presented simulations is simple and defined 563 

by a Gaussian distribution. Such a simple initial porosity distribution is again useful to study 564 

the fundamental coupling of dehydration reactions and rock deformation. More realistic 565 

would likely be an initial random distribution of porosity. To test whether the studied 566 

formation of dehydration veins also occurs for a more realistic initial porosity distribution, we 567 

performed one simulation with an initial random porosity distribution. The initial values of 568 
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porosity vary randomly between 2 and 16% in the model domain. We generated the initial 569 

porosity distribution with the random field generator presented in Räss et al. (2019). For this 570 

simulation, we applied /def dift t  = 0.012 and /kin dift t  = 8.2×10-4. Furthermore, the initial 571 

values for p  and fp  are 12.73 kbar. All other parameters are identical to the values of the 572 

first simulation (Fig. 5). The simulation shows that during shearing many dehydration veins 573 

with increasing solid density and porosity are formed, similar to the simulations with an initial 574 

Gaussian porosity distribution (Fig. 12). Particularly, despite the variability in shape of the 575 

dehydrating regions, the longest axis of the dehydrating regions always grows in the direction 576 

of the maximum principal stress. Hence, the results with an initial random porosity 577 

distribution suggest that the investigated simulations with an initial Gaussian porosity 578 

distribution capture the first-order mechanisms of shear-driven dehydration vein formation for 579 

more complex and natural model configurations. Furthermore, the simulation shows the 580 

formation of many veins with similar length which is similar to observations from natural 581 

olivine veins (Fig. 1A to C). The generation of many similar veins results from the self-582 

limiting nature of vein growth (Fig. 11A and D) which prohibits the generation of few large 583 

veins. 584 

The presented model could potentially be applied to investigate fluid-related processes 585 

causing episodic tremor and slow-slip events (ETS; e.g., Peng & Gomberg 2010). Despite the 586 

lack of consensus on the inter-relationships between mineral dehydration, fluid flow, critical 587 

stress and ETS, the coincidence of the location of low-frequency earthquakes to regions with 588 

high Vp/Vs ratios requires the consideration of fluid flow and mineral dehydration in these 589 

settings (e.g., Burlini et al. 2009; Kato et al. 2010; Shelly et al. 2006; Van Avendonk et al., 590 

2010). For example, Van Avendonk et al. (2010) infer a zone of very high Vp/Vs ratio of 6 at 591 

the top of the subducting Cocos slab between 35 and 55 km depth, lying downdip of the 592 

seismogenic zone. They propose that these high Vp/Vs ratios are due to several-meter thick 593 
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shear zones under high pore pressure and that the hydrous pore fluids were generated by 594 

prograde dehydration reactions. The 35 to 55 km depth range with inferred high Vp/Vs ratios 595 

corresponds to the depth range and ambient pressure considered in our model. In addition, the 596 

correlation of rapid-tremor migration to pore-pressure waves suggests that this coincidence 597 

can be explained by the coupled processes of dehydration, fault weakening and tremor 598 

migration (Cruz-Atienz et al. 2018). Thus, the formation of fluid-filled veins, as modelled 599 

here, can be correlated to the transient weakening that is inferred in regions of mineral 600 

dehydration. Furthermore, the dehydration reaction, generating olivine-fluid bearing veins, 601 

and the subsequent fluid escape, leaving behind olivine-only veins, will cause a viscosity 602 

inversion: when significant fluid is present in the olivine bearing veins, then the effective 603 

viscosity of the olivine-fluid veins is smaller than the viscosity of the serpentinite; but once 604 

the fluid has escaped the veins the effective viscosity of the olivine-only veins is larger than 605 

the viscosity of the serpentinte. We expect that, under the presence of a general anisotropic 606 

stress field, the vein formation will lead to an increase of the anisotropic effective viscosity of 607 

the subducted mantle rocks as a result of the different effective viscosities of serpentinite and 608 

olivine + fluid assemblages. When the fluid is completely drained from these veins, the 609 

viscosity contrast between olivine and serpentinite is such that the associated anisotropy will 610 

be permanent. 611 

 612 

5. Conclusions 613 

We present a hydro-mechanical-chemical model to investigate the reaction antigorite + 614 

brucite = forsterite + water. The model can explain shear-driven formation of dehydration 615 

veins in ductile serpentinite and, hence, supports the hypothesis of shear-driven formation of 616 

metamorphic olivine veins in the serpentinites of the Erro Tobbio unit (Fig. 1). Vein 617 

formation is triggered by fluid pressure perturbations caused by local perturbations of a 618 
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porosity-dependent effective viscosity. The veins consist of a weak forsterite-water mixture 619 

and grow in a direction parallel to the maximal principal stress which is controlled by the 620 

applied far-field simple shearing. The modelled growth of the dehydration veins is not a stable 621 

or runaway process but a self-limiting process because the fluid pressure perturbations that 622 

drive the vein growth decrease during progressive shearing due to fluid flow. 623 

In our model, three characteristic time scales control the formation of dehydration 624 

veins: (1) The time scale of fluid pressure diffusion, tdif, which controls porous fluid flow via 625 

Darcy’s law, (2) the time scale of the far-field shearing, tdef, which is the inverse of the far-626 

field shearing rate and (3) the time scale of the mineral-reaction kinetics, tkin, which controls 627 

the time to achieve thermodynamic equilibrium. To form an olivine (here forsterite) vein, the 628 

kinetic reaction rate for the transformation from serpentinite to olivine must be fast enough so 629 

that olivine can form during vein growth, while significant fluid pressure perturbations exist. 630 

The numerical simulations suggest that the kinetic reaction rate should be at least two orders 631 

of magnitude faster than the characteristic rate of fluid pressure diffusion.     632 

In our models, the temporal evolution of porosity during dehydration is controlled by 633 

three mechanisms: solid volume change, solid density variation and reactive mass transfer. 634 

All three mechanisms have a similar impact on the porosity evolution. Hence, our model 635 

shows that deformation of the solid rock should be considered when quantifying dehydration 636 

vein formation. The fluid pressure distribution is mainly controlled by the total pressure 637 

distribution. Mass transfer, porosity variation and solid density variation impact the fluid 638 

pressure distribution to a minor extend and only in the dehydrating region. 639 

The presented model can help to understand the formation of olivine veins in 640 

serpentinite mylonites in subduction zones. Such veins are observed in several high pressure 641 

serpentinites in the Western Alps and Liguria. The modelled veins have a similar orientation 642 

as natural en-échelon olivine veins in serpentinite mylonite. The self-limiting feature of the 643 
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modelled vein growth might also explain the natural observation of many smaller olivine 644 

veins and the absence of few large olivine veins. Furthermore, the presented model can 645 

explain transient weakening during dehydration in deforming rock which may be an important 646 

process during episodic tremor and slow-slip observed in subduction zones.  647 
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A1. Pseudo-transient time steps 667 
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 To solve the system of equations (14) iteratively, we apply the following physical, tΔ , 668 

pseudo-transient (PT), PTtΔ , time steps: 669 
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where xΔ  and yΔ  are horizontal and vertical numerical grid spacing, respectively. More 671 

information concerning the choice of such PT time steps can be found in Wang et al. (2022). 672 

 673 

A2. Numerical resolution test 674 

We present here the results of a numerical resolution test. Such test is essential to 675 

determine whether the evolution of the dehydrating region is independent of the employed 676 

numerical resolution. We performed the first simulation (Fig. 5) with the following different 677 

numerical resolutions: 150×150, 300×300, 500×500, 700×700 and 900×900 grid points (Fig. 678 

A1). For a dimensionless model time of 950, the ratio of the mean porosity in the model 679 

domain divided by the mean porosity for a simulation with 900 × 900 grid points is plotted 680 

versus the corresponding resolution for simulations with different resolution (Fig. A1A). 681 

Similar ratios are plotted for the minimum fluid pressure in the model domain and the vein 682 

length. The higher the resolution, the less the three ratios vary, indicating the convergence of 683 

the numerical results upon increasing numerical resolution. The evolution of the minimum 684 
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fluid pressure in the model domain with time is shown for different numerical resolutions 685 

(Fig. A1B). With larger numerical resolution, the temporal evolution of the minimum fluid 686 

pressure varies less, indicating again the convergence of the numerical results for increasing 687 

numerical resolution. Finally, the spatial distribution of fp  at a dimensionless time of 785 is 688 

displayed for three different resolutions (Fig. A1C to E). For a resolution of 150×150 the 689 

contours of fp  are jagged, confirming an insufficient numerical resolution (Fig. A1C). For 690 

numerical resolutions of 500×500 and 900×900 the contours of fp  are smooth and the 691 

colormaps of fp  cannot be distinguished by eye (Fig. A1D and E).The numerical resolution 692 

test shows that the applied numerical model provides results which converge for increasing 693 

numerical resolution and are, hence, not dependent on the numerical resolution.     694 



33 
 

 695 

References 696 

Aharonov, E., M. Spiegelman, and P. Kelemen (1997), Three-dimensional flow and reaction 697 

in porous media: Implications for the Earth's mantle and sedimentary basins, Journal of 698 

Geophysical Research-Solid Earth, 102(B7), 14821-14833, doi:10.1029/97jb00996. 699 

Aharonov, E., J. A. Whitehead, P. B. Kelemen, and M. Spiegelman (1995), Channeling 700 

instability of upwelling melt in the mantle, Journal of Geophysical Research-Solid Earth, 701 

100(B10), 20433-20450, doi:10.1029/95jb01307. 702 

Audet, P., M. G. Bostock, N. I. Christensen, and S. M. Peacock (2009), Seismic evidence for 703 

overpressured subducted oceanic crust and megathrust fault sealing, Nature, 457(7225), 76-704 

78, doi:10.1038/nature07650. 705 

Baltzell, C., E. M. Parmentier, Y. Liang, and S. Tirupathi (2015), A high-order numerical 706 

study of reactive dissolution in an upwelling heterogeneous mantle: 2. Effect of shear 707 

deformation, Geochemistry Geophysics Geosystems, 16(11), 3855-3869, 708 

doi:10.1002/2015gc006038. 709 

Bebout, G. E. (2014), Chemical and Isotopic Cycling in Subduction Zones, in Treatise on 710 

Geochemistry, edited by H. D. Holland and K. K. Turekian, pp. 703-747, Elsevier. 711 

Beinlich, A., T. John, J. Vrijmoed, M. Tominaga, T. Magna, and Y. Podladchikov (2020), 712 

Instantaneous rock transformations in the deep crust driven by reactive fluid flow, Nature 713 

Geoscience, 13(4), 307-311. 714 

Bessat, A., S. Pilet, Y. Y. Podladchikov, and S. M. Schmalholz (2022), Melt Migration and 715 

Chemical Differentiation by Reactive Porosity Waves, Geochemistry Geophysics 716 

Geosystems, 23(2), doi:10.1029/2021gc009963. 717 



34 
 

Bloch, W., T. John, J. Kummerow, P. Salazar, O. S. Krüger, and S. A. Shapiro (2018), 718 

Watching Dehydration: Seismic Indication for Transient Fluid Pathways in the Oceanic 719 

Mantle of the Subducting Nazca Slab, Geochemistry, Geophysics, Geosystems, 19(9), 3189-720 

3207, doi:https://doi.org/10.1029/2018GC007703. 721 

Brantut, N., J. Sulem, and A. Schubnel (2011), Effect of dehydration reactions on earthquake 722 

nucleation: Stable sliding, slow transients, and unstable slip, Journal of Geophysical 723 

Research: Solid Earth, 116(B5). 724 

Burlini, L., G. Di Toro, and P. Meredith (2009), Seismic tremor in subduction zones: Rock 725 

physics evidence, Geophysical Research Letters, 36, doi:10.1029/2009gl037735. 726 

Chernak, L. J., and G. Hirth (2010), Deformation of antigorite serpentinite at high temperature 727 

and pressure, Earth and Planetary Science Letters, 296(1-2), 23-33, 728 

doi:10.1016/j.epsl.2010.04.035. 729 

Connolly, J. (1997), Devolatilization‐generated fluid pressure and deformation‐propagated 730 

fluid flow during prograde regional metamorphism, Journal of Geophysical Research: Solid 731 

Earth, 102(B8), 18149-18173. 732 

Connolly, J. (2005), Computation of phase equilibria by linear programming: a tool for 733 

geodynamic modeling and its application to subduction zone decarbonation, Earth and 734 

Planetary Science Letters, 236(1-2), 524-541. 735 

Connolly, J. (2009), The geodynamic equation of state: What and how, Geochemistry 736 

Geophysics Geosystems, 10, doi:10.1029/2009gc002540. 737 

Cruz-Atienza, V. M., C. Villafuerte, and H. S. Bhat (2018), Rapid tremor migration and pore-738 

pressure waves in subduction zones, Nature Communications, 9(1), 2900, 739 

doi:10.1038/s41467-018-05150-3. 740 



35 
 

David, E. C., N. Brantut, L. N. Hansen, and T. M. Mitchell (2018), Absence of Stress-Induced 741 

Anisotropy During Brittle Deformation in Antigorite Serpentinite, Journal of Geophysical 742 

Research-Solid Earth, 123(12), 10616-10644, doi:10.1029/2018jb016255. 743 

Evans, O., M. Spiegelman, and P. B. Kelemen (2020), Phase‐Field Modeling of Reaction‐744 

Driven Cracking: Determining Conditions for Extensive Olivine Serpentinization, Journal of 745 

Geophysical Research: Solid Earth, 125(1), e2019JB018614. 746 

Fowler, A. C. (1985), A mathematical model of magma transport in the asthenosphere, 747 

Geophysical & Astrophysical Fluid Dynamics, 33(1-4), 63-96, 748 

doi:10.1080/03091928508245423. 749 

Frank, W. B., N. M. Shapiro, A. L. Husker, V. Kostoglodov, H. S. Bhat, and M. Carnpillo 750 

(2015), Along-fault pore-pressure evolution during a slow-slip event in Guerrero, Mexico, 751 

Earth and Planetary Science Letters, 413, 135-143, doi:10.1016/j.epsl.2014.12.051. 752 

Gerya, T. (2019), Introduction to numerical geodynamic modelling, Cambridge University 753 

Press. 754 

Gomberg, J., Cascadia, and B. W. Group (2010), Slow-slip phenomena in Cascadia from 755 

2007 and beyond: A review, Bulletin, 122(7-8), 963-978. 756 

Hacker, B. R., S. M. Peacock, G. A. Abers, and S. D. Holloway (2003), Subduction factory 2. 757 

Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration 758 

reactions?, Journal of Geophysical Research: Solid Earth, 108(B1). 759 

Hatakeyama, K., I. Katayama, K.-i. Hirauchi, and K. Michibayashi (2017), Mantle hydration 760 

along outer-rise faults inferred from serpentinite permeability, Scientific Reports, 7(1), 13870, 761 

doi:10.1038/s41598-017-14309-9. 762 



36 
 

Hebert, L. B., P. Antoshechkina, P. Asimow, and M. Gurnis (2009), Emergence of a low-763 

viscosity channel in subduction zones through the coupling of mantle flow and 764 

thermodynamics, Earth and Planetary Science Letters, 278(3-4), 243-256, 765 

doi:10.1016/j.epsl.2008.12.013. 766 

Hermann, J., O. Müntener, and M. Scambelluri (2000), The importance of serpentinite 767 

mylonites for subduction and exhumation of oceanic crust, Tectonophysics, 327(3-4), 225-768 

238. 769 

Hilairet, N., B. Reynard, Y. B. Wang, I. Daniel, S. Merkel, N. Nishiyama, and S. Petitgirard 770 

(2007), High-pressure creep of serpentine, interseismic deformation, and initiation of 771 

subduction, Science, 318(5858), 1910-1913, doi:10.1126/science.1148494. 772 

Hirauchi, K., I. Katayama, and Y. Kouketsu (2020), Semi-brittle deformation of antigorite 773 

serpentinite under forearc mantle wedge conditions, Journal of Structural Geology, 140, 774 

doi:10.1016/j.jsg.2020.104151. 775 

Holland, T., and R. Powell (1998), An internally consistent thermodynamic data set for 776 

phases of petrological interest, Journal of metamorphic Geology, 16(3), 309-343. 777 

Huber, K., J. C. Vrijmoed, and T. John (2022), Formation of Olivine Veins by Reactive Fluid 778 

Flow in a Dehydrating Serpentinite, Geochemistry, Geophysics, Geosystems, 23(6), 779 

e2021GC010267, doi:https://doi.org/10.1029/2021GC010267. 780 

John, T., N. Gussone, Y. Y. Podladchikov, G. E. Bebout, R. Dohmen, R. Halama, R. Klemd, 781 

T. Magna, and H. M. Seitz (2012), Volcanic arcs fed by rapid pulsed fluid flow through 782 

subducting slabs, Nature Geoscience, 5(7), 489-492, doi:10.1038/ngeo1482. 783 

Kato, A., et al. (2010), Variations of fluid pressure within the subducting oceanic crust and 784 

slow earthquakes, Geophysical Research Letters, 37, doi:10.1029/2010gl043723. 785 



37 
 

Kempf, E. D., J. Hermann, E. Reusser, L. P. Baumgartner, and P. Lanari (2020), The role of 786 

the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland) 787 

(vol 113, 16, 2020), Swiss Journal of Geosciences, 113(1), doi:10.1186/s00015-020-00377-z. 788 

Kolditz, O., H. Shao, W. Wang, and S. Bauer (2016), Thermo-hydro-mechanical chemical 789 

processes in fractured porous media: modelling and benchmarking, 313 pp., Springer, 790 

doi:10.1007/978-3-319-11894-9. 791 

Labrousse, L., G. Hetenyi, H. Raimbourg, L. Jolivet, and T. B. Andersen (2010), Initiation of 792 

crustal-scale thrusts triggered by metamorphic reactions at depth: Insights from a comparison 793 

between the Himalayas and Scandinavian Caledonides, Tectonics, 29, 794 

doi:10.1029/2009tc002602. 795 

Llana-Fúnez, S., J. Wheeler, and D. R. Faulkner (2012), Metamorphic reaction rate controlled 796 

by fluid pressure not confining pressure: implications of dehydration experiments with 797 

gypsum, Contributions to Mineralogy and Petrology, 164(1), 69-79, doi:10.1007/s00410-012-798 

0726-8. 799 

Malvoisin, B., Y. Y. Podladchikov, and A. V. Myasnikov (2021), Achieving complete 800 

reaction while the solid volume increases: Anumerical model applied to serpentinisation, 801 

Earth and Planetary Science Letters, 563, doi:10.1016/j.epsl.2021.116859. 802 

Matter, J. M., and P. B. Kelemen (2009), Permanent storage of carbon dioxide in geological 803 

reservoirs by mineral carbonation, Nature Geoscience, 2(12), 837-841, doi:10.1038/ngeo683. 804 

McKenzie, D. (1984), The generation and compaction of partially molten rock, J. Petrology, 805 

25, 713-765. 806 



38 
 

Moulas, E., S. M. Schmalholz, Y. Podladchikov, L. Tajčmanová, D. Kostopoulos, and L. 807 

Baumgartner (2019), Relation between mean stress, thermodynamic, and lithostatic pressure, 808 

Journal of metamorphic geology, 37(1), 1-14. 809 

Omlin, S., B. Malvoisin, and Y. Y. Podladchikov (2017), Pore fluid extraction by reactive 810 

solitary waves in 3‐D, Geophysical Research Letters, 44(18), 9267-9275. 811 

Pandey, S. N., V. Vishal, and A. Chaudhuri (2018), Geothermal reservoir modeling in a 812 

coupled thermo-hydro-mechanical-chemical approach: A review, Earth-Science Reviews, 813 

185, 1157-1169, doi:10.1016/j.earscirev.2018.09.004. 814 

Peacock, S. M. (1990), Fluid processes in subduction zones, Science, 248(4953), 329-337, 815 

doi:10.1126/science.248.4953.329. 816 

Peng, Z. G., and J. Gomberg (2010), An integrated perspective of the continuum between 817 

earthquakes and slow-slip phenomena, Nature Geoscience, 3(9), 599-607, 818 

doi:10.1038/ngeo940. 819 

Peters, D., T. Pettke, T. John, and M. Scambelluri (2020), The role of brucite in water and 820 

element cycling during serpentinite subduction – Insights from Erro Tobbio (Liguria, Italy), 821 

Lithos, 360-361, 105431, doi:https://doi.org/10.1016/j.lithos.2020.105431. 822 

Pettke, T., and A. Bretscher (2022), Fluid-mediated element cycling in subducted oceanic 823 

lithosphere: The orogenic serpentinite perspective, Earth-Science Reviews, 225, 824 

doi:10.1016/j.earscirev.2021.103896. 825 

Plümper, O., T. John, Y. Y. Podladchikov, J. C. Vrijmoed, and M. Scambelluri (2017), Fluid 826 

escape from subduction zones controlled by channel-forming reactive porosity, Nature 827 

Geoscience, 10(2), 150-156. 828 



39 
 

Poulet, T., A. Karrech, K. Regenauer-Lieb, L. Fisher, and P. Schaubs (2012), Thermal–829 

hydraulic–mechanical–chemical coupling with damage mechanics using ESCRIPTRT and 830 

ABAQUS, Tectonophysics, 526, 124-132. 831 

Poulet, T., M. Veveakis, M. Herwegh, T. Buckingham, and K. Regenauer-Lieb (2014), 832 

Modeling episodic fluid-release events in the ductile carbonates of the Glarus thrust, 833 

Geophysical Research Letters, 41(20), 7121-7128, doi:10.1002/2014gl061715. 834 

Rass, L., D. Kolyukhin, and A. Minakov (2019), Efficient parallel random field generator for 835 

large 3-D geophysical problems, Computers & Geosciences, 131, 158-169, 836 

doi:10.1016/j.cageo.2019.06.007. 837 

Reiner, M. (1964), The Deborah number, Physics Today, 17(1), 62. 838 

Rupke, L. H., J. P. Morgan, M. Hort, and J. A. D. Connolly (2004), Serpentine and the 839 

subduction zone water cycle, Earth and Planetary Science Letters, 223(1-2), 17-34, 840 

doi:10.1016/j.epsl.2004.04.018. 841 

Scambelluri, M., J. Fiebig, N. Malaspina, O. Muntener, and T. Pettke (2004), Serpentinite 842 

subduction: Implications for fluid processes and trace-element recycling, International 843 

Geology Review, 46(7), 595-613, doi:10.2747/0020-6814.46.7.595. 844 

Scambelluri, M., O. Muntener, J. Hermann, G. B. Piccardo, and V. Trommsdorff (1995), 845 

Subduction of water into the mantle - history of an Alpine peridotite, Geology, 23(5), 459-846 

462, doi:10.1130/0091-7613(1995)023<0459:Sowitm>2.3.Co;2. 847 

Scambelluri, M., E. H. H. Strating, G. B. Piccardo, R. L. M. Vissers, and E. Rampone (1991), 848 

Alpine olivine-bearing and titanium clinohumite-bearing assemblages in the Erro Tobbio 849 

peridotite (Voltri-massif, NW Italy), Journal of Metamorphic Geology, 9(1), 79-91, 850 

doi:10.1111/j.1525-1314.1991.tb00505.x. 851 



40 
 

Schiemenz, A., Y. Liang, and E. M. Parmentier (2011), A high-order numerical study of 852 

reactive dissolution in an upwelling heterogeneous mantle-I. Channelization, channel 853 

lithology and channel geometry, Geophysical Journal International, 186(2), 641-664, 854 

doi:10.1111/j.1365-246X.2011.05065.x. 855 

Schmalholz, S. M., E. Moulas, O. Plumper, A. V. Myasnikov, and Y. Y. Podladchikov 856 

(2020), 2D Hydro-Mechanical-Chemical Modeling of (De)hydration Reactions in Deforming 857 

Heterogeneous Rock: The Periclase-Brucite Model Reaction, Geochemistry Geophysics 858 

Geosystems, 21(11), doi:10.1029/2020gc009351. 859 

Schmalholz, S. M., and L. Räss (2022), PTsolvers/PseudoTransientHMC.jl: 860 

PseudoTransientHMC.jl 0.1.0 (v0.1.0), edited, Zenodo, 861 

doi:https://doi.org/10.5281/zenodo.6559431. 862 

Schmeling, H., J. P. Kruse, and G. Richard (2012), Effective shear and bulk viscosity of 863 

partially molten rock based on elastic moduli theory of a fluid filled poroelastic medium, 864 

Geophysical Journal International, 190(3), 1571-1578, doi:10.1111/j.1365-865 

246X.2012.05596.x. 866 

Shelly, D. R., G. C. Beroza, and S. Ide (2007), Non-volcanic tremor and low-frequency 867 

earthquake swarms, Nature, 446(7133), 305-307. 868 

Spitz, R., S. M. Schmalholz, B. J. Kaus, and A. A. Popov (2020), Quantification and 869 

visualization of finite strain in 3D viscous numerical models of folding and overthrusting, 870 

Journal of Structural Geology, 131, 103945. 871 

Sulem, J., and V. Famin (2009), Thermal decomposition of carbonates in fault zones: Slip‐872 

weakening and temperature‐limiting effects, Journal of Geophysical Research: Solid Earth, 873 

114(B3). 874 



41 
 

Taetz, S., T. John, M. Brocker, C. Spandler, and A. Stracke (2018), Fast intraslab fluid-flow 875 

events linked to pulses of high pore fluid pressure at the subducted plate interface, Earth and 876 

Planetary Science Letters, 482, 33-43, doi:10.1016/j.epsl.2017.10.044. 877 

Tarling, M. S., S. A. F. Smith, and J. M. Scott (2019), Fluid overpressure from chemical 878 

reactions in serpentinite within the source region of deep episodic tremor, Nature Geoscience, 879 

12(12), 1034-1042, doi:10.1038/s41561-019-0470-z. 880 

Ulmer, P., and V. Trommsdorff (1995), Serpentine Stability to Mantle Depths and 881 

Subduction-Related Magmatism, Science, 268(5212), 858-861, 882 

doi:doi:10.1126/science.268.5212.858. 883 

Van Avendonk, H. J. A., W. S. Holbrook, D. Lizarralde, M. M. Mora, S. Harder, A. D. 884 

Bullock, G. E. Alvarado, and C. J. Ramirez (2010), Seismic evidence for fluids in fault zones 885 

on top of the subducting Cocos Plate beneath Costa Rica, Geophysical Journal International, 886 

181(2), 997-1016, doi:10.1111/j.1365-246X.2010.04552.x. 887 

Wang, L. H., V. M. Yarushina, Y. Alkhimenkov, and Y. Podladchikov (2021), Physics-888 

inspired pseudo-transient method and its application in modelling focused fluid flow with 889 

geological complexity, Geophysical Journal International, 229(1), 1-20, 890 

doi:10.1093/gji/ggab426. 891 

Yarushina, V. M., and Y. Y. Podladchikov (2015), (De) compaction of porous 892 

viscoelastoplastic media: Model formulation, Journal of Geophysical Research: Solid Earth, 893 

120(6), 4146-4170.  894 



895 

896 

897 

898 

899 

900 

901 

902 

903 

904 

905 

906 

907 

 

Figures

Figure 1

Erro To

of olivin

diamete

serpenti

peridoti

differen

shear ba

the late 

 

s with capti

1. Natural e

obbio ultram

ne bearing v

er is 2.4 cm.

inised perid

ite, foliation

nt generation

ands dissect

stage serpe

ions 

xamples of 

mafic rocks, 

veins (with 

. B) Olivine

dotite. Detai

n is sub vert

ns of olivine

t serpentinit

entine veins 

 

f metamorph

Ligurian A

darker colo

e veins with

l of picture 

tical, extent 

e veins. An

te mylonite 

perpendicu

 

hic olivine v

Alps, Italy. A

or) in weakly

h characteris

in A). C) o

of veins is

n earlier set i

and olivine

ular to the fo

veins in anti

A) Overview

y deformed

stic spacing 

livine-beari

ca. 20 cm. D

is subparall

e veins. Top

oliation. 

igorite serp

w on the lim

d serpentiniz

and aspect 

ing veins in

D) Serpenti

lel to the fol

p-to-the-left 

entinite from

mited spatial

zed peridoti

ratios in 

n a serpentin

inite myloni

liation, youn

shear sense

42 

 

m the 

l extent 

ite. Coin 

nised 

ite with 

nger 

e. Note 



908 

909 

910 

911 

912 

913 

 

 

Figure 2

shear-dr

for deta

 

2. Simple sk

riven dehyd

ails). 

ketches illus

dration and o

 

strating the 

olivine vein

geodynami

n formation 

ic setting (A

in viscous 

A) and the h

serpentinite

hypothesis fo

e (B to D; se

43 

 

for 

ee text 



44 
 

 914 

 915 

Figure 3. Thermodynamic results obtained from Gibbs’ free energy minimization for the 916 

system antigorite + brucite = forsterite + water (see text for exact chemical formulas). Density 917 

fields of solid (A) and fluid (B) in thermodynamic pressure, P , and temperature, T , space. 918 

Corresponding profiles of solid and fluid densities (C) and mass fraction of MgO (D) as a 919 

function of fluid pressure at 500 °C. The circles in the three profiles in panels C) and D) are 920 

the results from Gibbs energy minimization and the corresponding solid lines are analytical 921 

approximations of these profiles (equation (16)), which are used in the numerical algorithm.  922 
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 931 

Figure 5. Representative evolution of a dehydration vein under simple shear for a simulation 932 

with  /def dift t  = 0.071 and /kin dift t  = 0.0025. Panels A) to D) show snapshots of solid density 933 

for four stages of the simulation, indicated by a dimensionless time (see text). The black 934 

contour lines in panels A) to D) indicated the contour for fp = 12.65 kbar ( fp  is smaller 935 

inside the contour), which is the thermodynamic pressure at the dehydration reaction (see Fig. 936 

3). Grey arrows indicate the solid velocities which are dominated by the applied simple shear. 937 

The red line connects the highest with the lowest point of the fluid pressure contours and the 938 

length of the red line is used as proxy to monitor the vein growth with time. Panels E) to H) 939 

show the porosity corresponding to the model times of panels A) to D). In panel E), the black 940 

line indicates the direction of the maximal principal stress, 1σ , and the blue line indicates the 941 

direction of the minimal principal stress, 3σ , at the location of the intersection of the two 942 

lines. The red contours indicate a porosity of 5% (outer contour) and 15% (inner contour).  943 
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 945 

Figure 6. Representative evolution of dehydration veins under simple shear for two 946 

simulations with  /def dift t  = 0.038 and /kin dift t  = 0.0025. Colomaps indicate the solid density. 947 

The simulation shown in panels A) to D) is purely viscous whereas for the simulation shown 948 

in E) to F) a von Mises yield stress of 150 MPa was applied and deformation is visco-plastic. 949 

In all panels, the black contour lines indicate the contour for fp = 12.65 kbar ( fp  is smaller 950 

inside the contour), the grey arrows indicate the solid velocities and the red contours indicate 951 

a porosity of 5% (outer contour) and 15% (inner contour). 952 

 953 
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 954 

Figure 7. Evolution of a dehydration vein under simple shear for a simulation (shown in Fig. 955 

5) with  /def dift t  = 0.071 and /kin dift t  = 0.0025 at four dimensionless times (see text). The 956 

colormaps show the dimensionless divergence of the solid velocity, the red arrows show the 957 

fluid velocity field and the blue arrows show the solid velocity field. The two red contours 958 

indicate fp = 12.65 (always the inner contour) and 12.7 kbar. The two blue contours indicate 959 

a porosity of 5% (outer contour) and 10% (inner contour). The two dashed grey contours 960 

indicate a solid density of 2565 kg/m3 (outer contour) and 2600 kg/m3 (inner contour). There 961 

are no solid density contours in panel A) because all densities are < 2565 kg/m3. 962 

 963 
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 964 

Figure 8. The three mechanisms (solid volumetric deformation, C, solid-density variation, D, 965 

and mass transfer, E) that control the temporal porosity variation (see equation (18)) for a 966 

simulation (shown in Fig. 5) with  /def dift t  = 0.071 and /kin dift t  = 0.0025 at a dimensionless 967 

time of 550. A) shows the colormap of the term displayed in the legend for A, B) shows the 968 

colormap of the term displayed in the legend for B, C) shows the colormap of the term 969 

displayed in the legend for C, D) shows the colormap of the term displayed in the legend for 970 

D and E) shows the colormap of the term displayed in the legend for E. All displayed terms 971 

represent dimensionless rates which can be made dimensionless by multiplying with the 972 

characteristic time, ct  (see text). 973 

 974 
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 975 

Figure 9. The three mechanisms (solid volumetric deformation, C, solid-density variation, D, 976 

and mass transfer, E) that control temporal porosity variation (see equation (18)) for a 977 

simulation with  /def dift t  = 0.071 and /kin dift t  = 0.022 at a dimensionless time of 800. A) 978 

shows the colormap of the term displayed in the legend for A, B) shows the colormap of the 979 

term displayed in the legend for B, C) shows the colormap of the term displayed in the legend 980 

for C, D) shows the colormap of the term displayed in the legend for D and E) shows the 981 

colormap of the term displayed in the legend for E. All displayed terms represent 982 

dimensionless rates which can be made dimensionless by multiplying with the characteristic 983 

time, ct  (see text).  984 
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 986 

Figure 10. The five mechanisms and quantities that control the distribution of fluid pressure 987 

(equation (19)) for a simulation (shown in Fig. 5) with  /def dift t  = 0.071 and /kin dift t  = 0.0025 988 

at a dimensionless time of 550. A) Colormap of fluid pressure which was calculated by the 989 

numerical simulation and B) fluid pressure which was post-processed from numerical results 990 

using equation (19). C) shows the total pressure and D) the deviatoric stress, IIτ , which was 991 

calculated by the numerical simulation. E) shows the contribution to the fluid pressure due to 992 

mass transfer (last term on right-hand side of equation (19)), F) due to porosity variation 993 

(third term on right-hand side of equation (19)), G) due to solid density variation (fourth term 994 

on right-hand side of equation (19)) and H) due to elastic deformation (second term on right-995 

hand side of equation (19)). All quantities displayed in E) to H) have been post-processed 996 

from numerical results.  997 

 998 
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Figure 11. Impact of far-field shearing rate (A to C) and kinetic reaction rate (B to F) on the 1000 

evolution of vein length (A and D), on the minimal value of the fluid pressure in the model 1001 

domain (B and E) and on the evolution of the maximal solid density in the model domain (C 1002 

and F). For the results displayed in panels A) to C) the ratio /kin dift t  = 0.0025 for all 1003 

simulations. For the results displayed in panels D) to F) the ratio /def dift t  = 0.071 for all 1004 

simulations. Results indicated with the dashed blue line are obtained by the same simulation 1005 

which provided results indicated by the solid blue line, but with a von Mises yield stress of 1006 

150 MPa (results of the two simulations are also displayed in Fig. 6). 1007 
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 1009 

Figure 12. Evolution of solid density (A to D) and corresponding porosity (E to H) for a 1010 

simulation with an initial random distribution of porosity (see Discussion).  1011 

 1012 

  1013 
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 1015 

Figure A1. Numerical resolution test for the simulation with /def dift t  = 0.071 and /kin dift t  = 1016 

0.0025 (see Fig. 5). A) For a dimensionless model time of 1.21, the ratio of the mean porosity 1017 

in the model domain divided by the mean porosity for a simulation with a resolution of 900 × 1018 

900 grid points is plotted versus the corresponding resolution for simulations with different 1019 

resolution. Similar ratios are plotted for the minimum fluid pressure in the model domain and 1020 

the vein length. The larger the resolution, the less the three ratios vary. B) Evolution of 1021 

minimum fluid pressure in the model domain with time for different numerical resolutions 1022 

(see legend). With larger resolution, the evolution of fluid pressure varies less. C) to D) At a 1023 

dimensionless model time of 1.0, the colormap of the fluid pressure is displayed for three 1024 

different resolutions (see numbers in panel titles). Two contour lines of fluid pressure are 1025 

displayed for better comparability. 1026 
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Table 1. Model variables and parameters. 1028 

Symbol Name / Definition Units 

kint  Kinetic time scale [ ]s  

dift  ( )2 3
0/f sr k Kη ϕ=  [ ]s  

deft  1/ xxD=  [ ]s  

fp  Fluid pressure [ ]Pa  
ϕ  Porosity [ ]  

0ϕ  Initial porosity [ ]  

sρ  Solid density 3kg m− ⋅ 
fρ  Fluid density 3kg m− ⋅ 
sX  Mass fraction MgO [ ]  

p  Total pressure [ ]Pa  
s
xv , s

yv  Solid velocities 1m s− ⋅   
f
xv , f

yv  Fluid velocities 1m s− ⋅   
fv  ( ) ( )2 2f f

x yv v= +  
1m s− ⋅   

xxτ , yyτ , xyτ  Deviatoric stresses [ ]Pa  

IIτ  2 2
xx xyτ τ= +  [ ]Pa  

k  Permeability 2m    
fη  Fluid viscosity [ ]Pa s⋅  

sη  Shear viscosity solid [ ]Pa s⋅  
λ  Bulk viscosity solid [ ]Pa s⋅  

sK   Bulk modulus solid [ ]Pa  

dK   Bulk modulus drained [ ]Pa  

inip   Initial ambient pressure [ ]Pa  

xxD   Far-field deformation rate 1s−     
r   Bandwidth of Gaussian [ ]m  
w   Model width [ ]m  
 1029 


