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Abstract

Multimodel ensembling has been widely used to improve climate model predictions, and the improvement strongly depends on

the ensembling scheme. In this work, we propose a Bayesian neural network (BNN) ensembling method, which combines climate

models within a Bayesian model averaging framework, to improve the predictive capability of model ensembles. Our proposed

BNN approach calculates spatiotemporally varying model weights and biases by leveraging individual models’ simulation skill,

calibrates the ensemble prediction against observations by considering observation data uncertainty, and quantifies epistemic

uncertainty when extrapolating to new conditions. More importantly, the BNN method provides interpretability about which

climate model contributes more to the ensemble prediction at which locations and times. Thus, beyond its predictive capability,

the method also brings insights and understanding of the models to guide further model and data development. In this study,

we apply the BNN weighting scheme to an ensemble of CMIP6 climate models for monthly precipitation prediction over the

conterminous United States. In both synthetic and real case studies, we demonstrate that BNN produces predictions of monthly

precipitation with higher accuracy than three baseline ensembling methods. BNN can correctly assign a larger weight to the

regions and seasons where the individual model fits the observation better. Moreover, its offered interpretability is consistent

with our understanding of localized climate model performance. Additionally, BNN shows an increasing uncertainty when the

prediction is farther away from the period with constrained data, which appropriately reflects our predictive confidence and

trustworthiness of the models in the changing climate.
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Key Points:6

• We develop a spatiotemporal-aware weighting scheme using Bayesian neural net-7

works for improving model ensemble predictions8

• The method calculates model skill-consistent weights, provides interpretability, and9

quantifies uncertainty10

• We demonstrate the method’s superior performance over three baseline ensem-11

bling methods in predicting precipitation in CONUS12
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Abstract14

Multimodel ensembling has been widely used to improve climate model predictions, and15

the improvement strongly depends on the ensembling scheme. In this work, we propose16

a Bayesian neural network (BNN) ensembling method, which combines climate models17

within a Bayesian model averaging framework, to improve the predictive capability of18

model ensembles. Our proposed BNN approach calculates spatiotemporally varying model19

weights and biases by leveraging individual models’ simulation skill, calibrates the en-20

semble prediction against observations by considering observation data uncertainty, and21

quantifies epistemic uncertainty when extrapolating to new conditions. More importantly,22

the BNN method provides interpretability about which climate model contributes more23

to the ensemble prediction at which locations and times. Thus, beyond its predictive ca-24

pability, the method also brings insights and understanding of the models to guide fur-25

ther model and data development. In this study, we apply the BNN weighting scheme26

to an ensemble of CMIP6 climate models for monthly precipitation prediction over the27

conterminous United States. In both synthetic and real case studies, we demonstrate that28

BNN produces predictions of monthly precipitation with higher accuracy than three base-29

line ensembling methods. BNN can correctly assign a larger weight to the regions and30

seasons where the individual model fits the observation better. Moreover, its offered in-31

terpretability is consistent with our understanding of localized climate model performance.32

Additionally, BNN shows an increasing uncertainty when the prediction is farther away33

from the period with constrained data, which appropriately reflects our predictive con-34

fidence and trustworthiness of the models in the changing climate.35

Plain Language Summary36

Precipitation is one of the key climatic factors affecting fluxes of water, energy, and37

biogeochemical cycles. Global climate models (GCMs) are usually used for improving38

precipitation prediction and advancing understanding of precipitation’s responses to cli-39

mate change. A large set of GCMs are available and they show large uncertainties in phys-40

ical process representations, varying prediction skills at different locations and times, and41

are usually not constrained by observations. Here, we propose a Bayesian neural network42

ensembling method to address these challenges and thus improve precipitation predictabil-43

ity by providing accurate and uncertainty-aware predictions.44

1 Introduction45

Precipitation is one of the key climatic factors affecting fluxes of water, energy, and46

biogeochemical cycles. It has been observed that climate change non-uniformly shifts re-47

gional and seasonal distributions of the precipitation, where dry regions/seasons get drier48

and wet regions/seasons get wetter (Stegall & Kunkel, 2019). This shift of precipitation49

patterns significantly affects natural ecosystem health and human society development50

(E. Martin, 2018; Greve et al., 2014). For instance, in humid regions, the heavy precip-51

itation can increase flood and landslide risks, degrade water quality for human consump-52

tion, and disrupt regional ecosystem balance. In arid regions, the decreased precipita-53

tion can exacerbate droughts, which leads to water shortages, agricultural production54

loss, and energy supply risks. Therefore, improving our ability to accurately predict cur-55

rent and future patterns in precipitation is vital for assessing the vulnerability of ecosys-56

tems, preparing for extreme precipitation events, and concurrently enhancing water re-57

sources management (Konapala et al., 2020).58

Global climate models (GCMs) have been used for improving precipitation predic-59

tion and advancing understanding of precipitation’s responses to climate change (Weigel60

et al., 2021; Demory et al., 2020). One of the most inclusive sets of GCMs is from the61

Coupled Model Intercomparison Project (CMIP), initialized by the Working Group on62

Coupled Modeling under the organization of the World Climate Research Program (Eyring63
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et al., 2016; Taylor et al., 2012). CMIP is now in its sixth phase. CMIP6 consists of about64

100 GCMs produced by 49 different modeling groups/institutes (Zelazowski et al., 2018).65

These GCMs have large uncertainties in physical process representations, show varying66

prediction skills at different locations and times, and are usually not constrained by ob-67

servations (Eyring et al., 2019). Each of these aforementioned factors affects the accu-68

rate prediction of precipitation at regional scales. One strategy that can improve the pre-69

cipitation prediction is a comprehensive multi-model ensembling approach that lever-70

ages each individual model’s spatiotemporally varying predictive skill, integrates obser-71

vations to reduce prediction bias, and quantifies predictive uncertainty using a formal72

calibration and uncertainty quantification (UQ) framework (Que et al., 2020; Fothering-73

ham et al., 2015).74

Several multi-model ensembling methods have been developed. Some approaches75

assume model independence and model democracy, in which each model is weighted equally.76

Although studies have demonstrated that under certain conditions equal-weight model77

averaging could produce better prediction performance than the individual models (Gleckler78

et al., 2008; Knutti et al., 2010; Pincus et al., 2008), the assumption on model indepen-79

dence and democracy is not true. Many GCMs in CMIP share components or are vari-80

ants of other models in the ensemble, and these models have large inconsistency in their81

skills at a given location and time (Alexander & Easterbrook, 2015; Abramowitz & Bishop,82

2015; Sanderson et al., 2015; Bishop & Abramowitz, 2013). Even an individual model83

shows considerably inconsistent skills in different locations and at different times. By rec-84

ognizing the distinct capabilities among the models, some studies assigned unequal weights85

to individual ensemble members (Amos et al., 2020; Brunner et al., 2019; Wenzel et al.,86

2016; Karpechko et al., 2013; Räisänen et al., 2010). One of the most frequently adopted87

ensemble weighting schemes was proposed by Sanderson et al. (2015). It calculates model88

weights by balancing the model skill and model uniqueness; the coefficient controlling89

the balance is determined subjectively, and its value could significantly impact the en-90

semble results (Knutti et al., 2017; Sanderson et al., 2017).91

Although some weighted average methods have been proposed, the unequal weights92

assigned to the individual models are mostly uncalibrated against the observations, an93

uniform weight is assigned to a model across the space and time, and the same weight94

is applied for future projections without UQ. Since the model skill varies at regional and95

seasonal scales, the spatiotemporally uniform weight does not fully leverage each indi-96

vidual model’s capability, resulting in the loss of information and possibly large biases97

in predicting the distribution of precipitation (G. M. Martin et al., 2017; Kumar et al.,98

2014). Stegall and Kunkel (2019) discovered that assigning unequal but spatiotempo-99

rally uniform weights to individual models can improve the mean prediction of the pre-100

cipitation, but the estimated regional precipitation distribution still had a large incon-101

sistency with the observations. Additionally, the model weights need to be calibrated against102

observations in each grid cell at each time step to reasonably reflect the individual model’s103

spatiotemporally varying skill in fitting the observed data and produce observationally104

constrained ensemble predictions. Studies have shown that many models contributing105

to CMIP yielded large discrepancies compared with observations, and these model bi-106

ases should be reduced by calibration before being used for prediction (Ukkola et al., 2020;107

Lorenz et al., 2018; Mueller & Seneviratne, 2014). Finally, UQ is required for the ensem-108

ble prediction to avoid overconfidence—especially when we project the precipitation in109

the future changing climate.110

In this work, we propose a Bayesian neural network (BNN) ensembling method to111

improve precipitation predictability by providing accurate and uncertainty-aware pre-112

dictions. The BNN ensembling approach combines GCMs within a Bayesian model av-113

eraging framework. It calculates spatiotemporally varying model weights and biases, cal-114

ibrates the weights and biases against observations, and accounts for the varying qual-115

ity of the observed data. Additionally, the BNN method quantifies epistemic uncertainty116
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when extrapolating the prediction to new conditions. More importantly, BNN also pro-117

vides interpretability about each individual model’s contribution to the ensemble pre-118

diction in different regions and at different times.119

The proposed BNN ensembling scheme overcomes the limitations of existing meth-120

ods by leveraging the power of machine learning (ML) in data analytics and predictive121

analytics. ML techniques have been applied for predicting precipitation (Jose et al., 2022;122

Heinze-Deml et al., 2021; Li et al., 2021; Ahmed et al., 2020). Most of these applications123

used ML methods either as a surrogate model of an individual GCM to reduce compu-124

tational costs in simulation or as a data-driven, black-box regression model to simulate125

the precipitation directly. The former application considers only a single GCM, and the126

latter regression model simulation lacks mechanical interpretation and process under-127

standing. Here, we use ML techniques in the context of multiple model analysis to cal-128

culate the model weights of an ensemble of GCMs. The proposed BNN weighting strat-129

egy sufficiently leverages each individual GCM’s diverse performance in heterogeneous130

geography and different seasons by calculating spatiotemporally varying model weights131

and biases. By fusing diverse GCMs, the BNN ensembling embeds our best physical knowl-132

edge; and by constraining the ensemble prediction with the observations, BNN enables133

accurate predictions that match the historical data. Additionally, the BNN method quan-134

tifies both aleatoric uncertainty from the data noise and epistemic uncertainty when pro-135

jecting to the unknown future. Furthermore, besides providing high-quality ensemble pre-136

dictions with UQ, our method also brings insights and understanding of the climate model137

performance to guide further model development and prioritize data collection.138

We apply the BNN ensembling method for monthly precipitation prediction over139

the conterminous United States (CONUS). We consider an ensemble of GCMs from CMIP6140

and use the European Centre Reanalysis Data (ERA5) as “observations” for model cal-141

ibration and performance evaluation. We perform both synthetic and real case studies142

to verify, evaluate, and demonstrate the method’s capability with respect to prediction143

accuracy, interpretability, and UQ. The main contributions of this effort are as follows.144

145

• We propose a BNN ensembling approach for precipitation prediction by leveraging146

individual GCM’s spatiotemporally varying skill and calibrating the model weights147

and biases against the observations.148

• We demonstrate the superior prediction performance of the proposed method in com-149

parison with three widely used ensembling approaches on GCMs from CMIP6 and150

additionally show that BNN can reasonably calculate the epistemic uncertainty in151

extrapolation to avoid overconfident projections.152

• We investigate the interpretability of the BNN method in terms of which GCMs con-153

tribute more to the ensemble prediction at which locations and times and demonstrate154

that the calculated spatiotemporally varying weights are consistent with the GCMs’155

simulation skill.156

2 Methods and Data157

In this section, we introduce the BNN ensembling method and describe the climate158

models and the precipitation data. Next, we briefly introduce three state-of-the-art en-159

sembling schemes with which we compare the BNN for performance evaluation. Lastly,160

we discuss some evaluation metrics.161

2.1 Bayesian Neural Networks for Ensemble Model Predictions162

We assume that observations y(x, t) at a given location x and time t can be rep-
resented as a sum over an ensemble of m GCM predictions Mi(x, t) weighted by their
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respective weights αi(x, t), a bias term β(x, t), and a data noise term ε(x, t):

y(x, t) =

m∑
i=1

αi(x, t)Mi(x, t) + β(x, t) + ε(x, t). (1)

The model weights are positive and their sum over the ensemble models is one: αi(x, t) >163

0, and
∑m

i=1 αi(x, t) = 1. The model bias β(x, t) represents the discrepancy of the weighted164

ensemble model simulations from the observation. The data noise ε(x, t) considers the165

observation quality varying across the location and time, which is assumed following a166

Gaussian distribution with a zero mean and a heteroscedastic standard deviation σ(x, t).167

The combination of the first two terms at the right-hand side of Eq. (1) forms the BNN168

ensemble model prediction: ŷ(x, t) =
∑m

i=1 αi(x, t)Mi(x, t) +β(x, t). This ensembling169

scheme expresses the model weights as a function of location and time to leverage in-170

dividual models’ spatiotemporally varying simulation skills. The ensemble prediction ad-171

ditionally considers a bias term that is also a function of space and time. Incorporat-172

ing the bias term in ensembling is crucial, especially when all the individual models have173

an over- or under-prediction. In this situation, the weighted ensemble model simulations174 ∑m
i=1 αi(x, t)Mi(x, t) would not perform better than the best-performing individual model,175

no matter what their weights are. Incorporating the spatiotemporally varying model bias176

into the ensemble prediction reflects the ensemble model deficiency.177

Figure 1. Architecture of the proposed Bayesian neural networks (BNNs).

In implementation, BNN reads the data location (x) and time (t) as inputs and es-
timates the model weights, biases, and data noises at the given (x, t) by calibrating the
ensemble prediction against the observations. As illustrated in Figure 1, BNN first uses
a set of dense layers to extract common information of the model weights, biases, and
data noises. Then, three sets of dense layers are designed to learn the information spe-
cific to each component. Next, BNN incorporates the multiple GCM predictions Mi(x, t)
and combines them with the estimated model weights, biases, and data noises in the loss
function for optimization. The weights, biases, and noises are calibrated as probabilis-
tic functions by specifying distributions over the parameters of the neural networks (NNs)
(i.e., we perform the optimization in the Bayesian context). For computational efficiency,
we train the BNN using the randomized maximum a posteriori (MAP) sampling (Pearce
et al., 2018) instead of the computationally intractable full Bayesian inference, which may
require Markov chain Monte Carlo simulation. The MAP sampling approach uses mul-
tiple NNs to quantify the ML model parameter uncertainty. Specifically, for the j-th net-
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work, we draw a sample from the prior distribution over the network parameters (assumed
Gaussian) θanc,j ∼ N(µprior,Σprior), and compute the MAP estimate corresponding
to a prior re-centered at θanc,j . When we consider a dataset of N observations yk where
k = 1, ..., N and specify the data likelihood by assuming a Gaussian noise with the het-
eroscedastic standard deviation of σ(xk, tk), the calculation of the MAP estimate is equiv-
alent to minimize the following loss function for the j-th network:

Lossj =

N∑
k=1

(yk − ŷj(xk, tk))2

σ2
j (xk, tk)

+

N∑
k=1

log(σ2
j (xk, tk)) + ||Σ−1/2prior(θj − θanc,j)||22. (2)

After training, the output of an ensemble of ne such networks is thus a mixture of ne178

Gaussians, N(ŷj(xk, tk), σ2
j (xk, tk)). Then, the mean prediction of these networks 1

ne

∑
j ŷj179

is the BNN prediction result. The variance 1
ne

∑
j σ

2
j + 1

ne

∑
j ŷ

2
j−( 1

ne

∑
j ŷj)

2 quanti-180

fies predictive uncertainty where the first term quantifies aleatoric data uncertainty, and181

the combination of the second and third terms quantifies the epistemic uncertainty de-182

scribing the model’s ignorance about the conditions outside the observational records.183

Attributed to this special NN design and Bayesian training, the ensembling strat-184

egy of BNN not only calculates spatiotemporally varying model weights and biases, but185

it also calibrates the weights and biases against observations to fully leverage each in-186

dividual model’s simulation capability, allowing for more accurate and observationally187

constrained predictions. Furthermore, we trained the BNN using the computationally188

efficient randomized MAP sampling, which enables rapid quantification of the aleatoric189

and epistemic uncertainty. Last but not the least, a key strength of this BNN approach190

is the models interpretability, which can explain which models perform well in which lo-191

cations at which times. This interpretability extends the usage of ML techniques beyond192

its predictive capabilities to bring insight and understanding to the climate models.193

To enable the BNN to produce physically consistent results, we encoded our do-194

main knowledge into the network design and network training. First, in terms of net-195

work design, we chose tanh activations for the hidden layers in Figure 1 because their196

mean output is zero-centered, which stabilizes the training. Furthermore, the tanh ac-197

tivations result in a predictably flat extrapolation outside the training set, which ensures198

a realistic estimation of the model bias and data noise. For the set of dense layers in sim-199

ulating the model weights, we use a softmax layer at the end to ensure that the model200

weights sum to unity. Additionally, in terms of network training, we first transform lat-201

itude, longitude, and time of each data point to a 6 dimensional space-time input. In a202

climate model, we usually use latitude and longitude to represent a location and use a203

scalar of t to represent the time (no matter what the unit is). However, directly inputting204

the three numbers—latitude (lat), longitude (lon), and time (t)—to the BNN would be205

problematic because the model weights, biases, and data noises generated by such a net-206

work would be discontinuous and would not respect seasonality. To address this prob-207

lem, we first represent the location input x by its Euclidean coordinate [cos(lat)sin(lon),208

cos(lat)cos(lon), sin(lat)] and warp the time input t onto a 3D helix [cos(2πt/T ), sin(2πt/T ),209

t], where T is the time scale of the climate model simulation (here T = 1 month). This210

transformation of the time variable makes the network generate model weights and bi-211

ases with both a strong monthly periodicity and a slow variation over the year, which212

is more consistent with reality. Next, we rescale each column of space-time inputs to the213

range [−a, a] to appropriately represent the varying frequency of the model weights and214

biases across the space and time. A larger value of a results in a higher changing frequency.215

In this study, the spatial coordinates are scaled into the [−2, 2] range, and the tempo-216

ral coordinates are scaled into the [−1, 1] range. The network complexity (e.g., the num-217

ber of layers and the number of nodes in each layer) and the number of networks for Bayesian218

training are problem specific, depending on the GCM resolution, the model ensemble size,219

and affordable computing resources. Generally speaking, a large number of complex NNs220

is needed for an ensemble analysis of many high-resolution GCMs to calculate the spa-221

tiotemporally varying weights and quantify the uncertainty, which meanwhile requires222
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a high computational cost. In this study, we use an NN structure in which each set of223

dense layers in Figure 1 has a single hidden layer with 100 nodes, and we use 50 such224

NNs for UQ.225

2.2 Precipitation Data and Models226

We apply the BNN ensembling method for precipitation prediction based on the227

GCMs from CMIP6. The simulated precipitation data from the CMIP6-GCMs are down-228

loaded from the Earth System Grid Federation (ESGF) archives (https://esgf-node.llnl.gov/search/cmip6).229

We consider monthly data from 53 GCMs during the period of 1980–2014, and our anal-230

yses focus on the CONUS area. The details of these models are listed in Table 1. We231

use the European Centre for Medium-Range Weather Forecasts (ERA5) reanalysis data232

from the same periods and regions as the reference or “observations” for model calibra-233

tion and performance evaluation (Muñoz-Sabater et al., 2021). The original ERA5 data234

are at 33 km horizontal grid spacing and the hourly scale. We aggregate the data to the235

monthly scale to be consistent with the GCMs simulation data. Both the simulation and236

reference data are remapped to a common 1◦ latitude–longitude grid using the bilinear237

interpolation method.238

2.3 Three Widely Used Ensembling Schemes239

In this section, we introduce three state-of-the-art ensembling schemes, which serve240

as baselines to evaluate the BNN’s prediction performance. The simple average method241

is straightforward and normally used for multiple model analysis. The weighted aver-242

age (Knutti et al., 2017) and spatially weighted average methods (Amos et al., 2020) have243

an increasing application because of their consideration of model skills and model inde-244

pendence and their good prediction performance. In the following, we briefly describe245

these three methods where the symbols are consistent with those in Section 2.1.246

Simple Average The simple average method performs weighted averaging by as-
signing individual models with equal weights. The ensemble prediction is calculated as

ŷ(x, t) =
1

m

m∑
i=1

Mi(x, t). (3)

Weighted Average The weighted average method was introduced by Knutti et
al. (2017), who used model ensembles to project the future sea ice change in the Arc-
tic. This weighted average considered model skill and model independence in calculat-
ing the weights. For an ensemble of m models, the weight wi for model i is calculated
as

wi = exp
(
− D2

i

σ2
D

)/
(
1 +

m∑
j 6=i

exp
(
−
S2
ij

σ2
S

)), (4)

where D2
i represents the discrepancy between the model i and the observation, and S2

ij247

describes the difference of the model i from the model j. Here, the model outputs and248

observations in calculation of D2
i and S2

ij are an averaged value over space and time. This249

method uses D2
i and S2

ij to consider model skill and model uniqueness. It also introduces250

two constants, σD and σS , to control the influence of the model skill and uniqueness on251

the weights calculation and, consequently, on the ensemble predictions. For example, when252

σD is assigned a small value, only a small number of models obtain weights, whereas when253

σD is assigned a large value, this weighted average converges to the simple average with254

equal weights. Although the values of σD and σS significantly affect the ensemble pre-255

dictions, it is unknown how to assign an appropriate value for a specific problem; cur-256

rently, the values are determined in a heuristic way. Additionally, although this weight-257

ing method considers model skill and independence, it does not consider the model’s spa-258

tiotemporally varying skill and assigns a uniform weight across space and time.259
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Table 1. The 53 GCMs from 28 institutes in CMIP6 are considered in this study. The 28 mod-

els in bold from each institute are used for ensembling in the real case application in Section 3.3.

Country Research institute Model name

Australia Commonwealth Scientific and Industrial
Research Organization

ACCESS-ESM1-5 ACCESS-
CM2

Canada Canadian Centre for Climate Modelling and
Analysis

CanESM5 CanESM5-CanOE

China Beijing Climate Center BCC-ESM1 BCC-CSM2-MR
Chinese Academy of Meteorological Sciences CAMS-CSM1-0
Chinese Academy of Sciences CAS-ESM2-0
The State Key Laboratory of Numerical
Modeling for LASG

FGOALS-g3 FGOALS-f3-L

Nanjing University NESM3
Research Center for Environmental Changes TaiESM1
The First Institute of Oceanography, SOA FIO-ESM-2-0

France Institut Pierre Simon Laplace IPSL-CM6A-LR
Centre National de Recherches Meteo-
rologiques

CNRM-CM6-1 CNRM-CM6-
1-HR CNRM-ESM2-1

Germany The Alfred Wegener Institute Helmholtz
Centre for Polar and Marine Research

AWI-ESM-1-1-LR AWI-CM-
1-1-MR

Max Planck Institute for Meteorology MPI-ESM1-2-LR MPI-ESM-
1-2-HAM MPI-ESM1-2-HR

Japan The University of Tokyo, National Insti-
tute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Tech-
nology

MIROC-ES2L MIROC6

Meteorological Research Institute MRI-ESM2-0
Italy Fondazione Centro Euro-Mediterraneo sui

Cambiamenti Climatici
CMCC-CM2-HR4 CMCC-
CM2-SR5

Korea Korea Meteorological Administration KACE-1-0-G
Seoul National University SAM0-UNICON

Netherlands
/Ireland

EC-EARTH consortium published at Irish
Centre for High-End Computing

EC-Earth3-Veg-LR EC-
Earth3-Veg EC-Earth3

Norway Bjerknes Centre for Climate Research, Nor-
wegian Meteorological Institute

NorESM2-MM NorESM2-LM
NorCPM1

Russia Institute of Numerical Mathematics INM-CM4-8 INM-CM5-0
UK Met Office Hadley Center HadGEM3-GC31-LL

HadGEM3-GC31-MM
Natural Environment Research Council UKESM1-0-LL

USA National Center for Atmospheric Research CESM2-WACCM-FV2
CESM2 CESM2-FV2 CESM2-
WACCM

Geophysical Fluid Dynamics Laboratory GFDL-CM4 GFDL-ESM4
University of Arizona MCM-UA-1-0
NASA/GISS (Goddard Institute for Space
Studies)

GISS-E2-1-G GISS-E2-1-G-
CC GISS-E2-1-H

Department of Energy E3SM-1-0 E3SM-1-1 E3SM-1-
1-ECA
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Spatially Weighted Average Recognizing that the calculation of D2
i and S2

ij in
Eq. (4) did not consider the difference in space and time, Amos et al. (2020) proposed
a spatially weighted average method that calculates D2

i and S2
ij as a function of loca-

tion x and time t. Specifically, for an ensemble of m models, the spatially weighed av-
erage is defined by

wi = exp
(
− D2

i (x, t)

nσ2
D

)/
(
1 +

m∑
j 6=i

exp
(
−
S2
ij(x, t)

nσ2
S

)), (5)

where n is the number of data in calculating D2
i (x, t) and S2

ij(x, t). Although this method260

considers model–observation discrepancy and model–model difference across space and261

time in computing the model weights, it still assigns a uniform weight wi to an individ-262

ual model i.263

2.4 Evaluation Metrics of Prediction Performance264

We used several statistics and visualization tools to evaluate the prediction per-265

formance. For assessing the overall performance, we used root mean square error (RMSE),266

density plots, and box plots. A better performing ensembling method would have a smaller267

RMSE value, a closer density/box plot to that of the reference. To evaluate the perfor-268

mance in each grid cell, we present the prediction error across the simulation domain.269

Additionally, we evaluate the BNN’s spatiotemporal-aware weighting scheme by plot-270

ting the weights over the spatial domain, in specific regions, and along the simulation271

time.272

3 Results and Discussions273

To validate and evaluate our proposed BNN ensembling scheme, we applied it to274

three case studies and compare its prediction performance and weight calculation with275

the three state-of-the-art methods introduced in Section 2.3. First, we designed a sim-276

ple numerical experiment in which we know the ground truth to evaluate whether the277

BNN can accurately calculate the model weights reflecting the individual model’s spa-278

tiotemporally varying skill. Secondly, we designed a synthetic study where the “obser-279

vations” come from one of the CMIP6 GCMs to further validate the BNN’s capability.280

In the last real case study, we applied the BNN for ensemble precipitation prediction us-281

ing 28 CMIP6 GCMs from different institutes and use the ERA5 reanalysis data for cal-282

ibration and evaluation. We analyze the results from three aspects: prediction perfor-283

mance, interpretability, and UQ.284

3.1 A Simple Numerical Experiment285

In the simple numerical experiment, we used 35 years of monthly ERA5 reanaly-286

sis data over CONUS in 1980–2014 as the ground truth, based on which we designed four287

individual models for ensemble analysis. Figure 2(a) shows the averaged ERA5 precip-288

itation data over the 35 years. We divided the simulation domain into four equal regions:289

region I, II, III, and IV. Model i has the ground truth data in region i (where i repre-290

sents I, II, III, and IV) and has random noises in the other three regions. We generated291

the random noise from the uniform distribution in the [10, 15] range, which is beyond292

the ground truth, having the maximum average value of 8 mm/d. We trained the BNN293

using the first 20 years of data and evaluated its performance on the remaining 15 years.294

295

After training, the BNN calculates the model weights for each grid cell at each month.296

Figure 2(b) summarizes its averaged model weights over the 15 years of the unseen test297

period for the four individual models in the entire domain. We observed that the BNN298

successfully recovered the expected model weights; it assigns weights of 1.0 to the regions299
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Figure 2. (a) The ERA5 precipitation data used as a ground truth in the numerical exper-

iment, in which we divide the domain into four regions to design four individual models for the

ensemble analysis; (b) The BNN ensembling scheme accurately assigns the weight of 1.0 to the

regions where the model is accurate and assign the weight of 0.0 to the regions where the model

produces random noise.

where the individual model is accurate and weights of 0.0 to those regions where the model300

produces random noises. Because our BNN reasonably leverages each individual model’s301

prediction skill by accurately calculating the spatially varying weights, its ensemble pre-302

dictions have a great agreement with the ground truth. As shown in Figure 3, the prob-303

ability density function (PDF) of the BNN prediction for the out-of-sample test period304

closely overlaps with the PDF of the ground truth. In contrast, the prediction from the305

simple average differs dramatically from the truth by assigning equal weights to the mod-306

els and uniform weights to the entire domain. This numerical example validates this BNN’s307

capability in successfully capturing individual model’s spatiotemporally varying skill and308

demonstrates its competence in accurate ensemble predictions.309

Figure 3. Probability density functions (PDFs) of the precipitation over the entire domain in

the out-of-sample test period estimated by the simple average and BNN ensembling approaches,

along with the data from the four individual models and the ground truth in the same period.

3.2 A Synthetic Study310

In this second synthetic case study, we purposely selected seven CMIP6 GCMs from311

Table 1 to investigate the BNN’s capability. Those seven GCMs are the Alfred Wegener312

Institute Climate Model (AWI-CM-1-1-MR), Manabe Climate Model v1.0 - University313
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of Arizona (MCM-UA-1-0), Community Earth System Model Version 2 (CESM2, CESM2-314

WACCM), and Energy Exascale Earth System Model (E3SM-1-0, E3SM-1-1, E3SM-1-315

1-ECA). We chose the simulation data of model CESM2-WACCM as the synthetic truth316

to calibrate the BNN in the training period and evaluate the BNN’s ensemble predic-317

tion in the test period. Figure 4(a) shows the precipitation data of model CESM2-WACCM318

in CONUS averaged over the 35 years, and Figure 4(b) summarizes the PDFs of the pre-319

cipitation from the synthetic truth and the six models for ensemble analysis. We can see320

that models AWI-CM-1-1-MR, MCM-UA-1-0, and CESM2 produce close predictions to321

the synthetic truth, and the three E3SM models show similar performance, all perform-322

ing differently from the other four models. In this selection of the individual models and323

the synthetic truth, we expect that a good-performing ensembling scheme should assign324

a large weight to those three models, AWI-CM-1-1-MR, MCM-UA-1-0, and CESM2, which325

produce similar precipitation simulations with the synthetic truth, and assign a small326

weight to the three E3SM models which have a relatively large discrepancy from the “truth”.327

To further investigate the BNN’s capability in generating reasonable spatiotemporally328

varying weights, we divided the simulation domain into four regions—North, East, South,329

and West (Figure 4(a))—to evaluate whether its regional weights reflect the individual330

model’s simulation skill locally. We used the first 20 years of data for training and the331

last 15 years for out-of-sample testing.332

Figure 4. (a) Precipitation data of the synthetic truth averaged over 35 years; (b) The PDFs

of the precipitation data from the synthetic truth and the six GCMs for ensemble analysis in the

synthetic case study.

In the following, we analyze the ensemble prediction results. We first discuss the333

ensemble prediction accuracy and compare the BNN performance with the three state-334

of-the-art baselines. Next, we analyze the BNN’s weighting scheme in detail by looking335

at its weights spatially and temporally and investigate the influence of the calculated model336

biases on prediction performance. In the analysis, we additionally demonstrate the BNN’s337

interpretability. Lastly, we explore the BNN’s capability in UQ.338

Figure 5 shows the absolute prediction errors of the four ensembling approaches339

averaged over the test period. The figure indicates that BNN produces more accurate340

ensemble predictions than the other three methods by showing smaller prediction errors341

in the simulation domain. Figure 6(a) summarizes the predictions of the six individual342

models and the four ensembling methods in box plots. The box plots again demonstrate343

that the ensemble predictions of BNN are closer to the synthetic truth, with similar me-344

dian and quantiles. On the other hand, the three baseline ensembling methods produce345

quite similar results, all showing a relatively large difference from the synthetic truth.346

In this case study, we fine-tuned the hyperparameters of σD and σS in the weighted av-347

erage and spatially weighted average methods and show here the best prediction results348

we obtained after fine-tuning. However, the resulting ensemble predictions from these349

two weighting schemes do not seem to bring much improvement from the simple aver-350

age. Their RMSEs are close to each other, with values of 1.44, 1.44 and 1.45 for simple351
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Figure 5. Absolute precipitation errors of the four ensembling methods averaged over the test

period in the synthetic study.

average, weighed average and spatially weighted average method, respectively. Due to352

the computational costs, we do not perform hyperparameter tuning for the BNN in this353

work. However, the current BNN architecture and the set of hyperparameters already354

show a great improvement in prediction accuracy compared to the three ensembling base-355

lines and the individual models. A higher improvement of BNN is expected after its hy-356

perparameter tuning and architecture optimization.357

Figure 6. (a) Boxplot of the precipitation data in the test period for the six GCMs and the

four ensemble predictions in the synthetic study; (b) Temporally averaged model weights over the

test period for the six GCMs.

The superior prediction performance of our BNN is partially attributed to its spa-358

tiotemporally varying weights. Figure 6(b) presents the temporally averaged weights over359

the test period for the six individual GCMs in CONUS. We can see that the three top-360

performing models—AWI-CM-1-1-MR, MCM-UA-1-0, and CESM2—receive higher weights361

than the others overall, and the weights in each individual GCM vary spatially. We then362

divided the simulation domain into four regions (see Figure 4(a)) to closely examine the363

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems

BNN’s spatial weighting and investigate whether its weighting aligns with the GCM’s364

skill. Figure 7(a) summarizes the temporally averaged weights in the four regions and365

the entire CONUS domain for the six individual models, and it also presents the equal366

weights as a baseline. The figure indicates that although models MCM-UA-1-0 and CESM2367

have the highest weights overall in CONUS, MCM-UA-1-0 contributes highly in the West,368

and CESM2 is the dominant GCM in the North and East. This spatially varying weight369

aligns well with each individual model’s spatially varying skill. Take the West region,370

for example: Figure 7(b) indicates that model MCM-UA-1-0 performs better than E3SM-371

1-0 with smaller prediction errors in the West, and the BNN also assigns a higher weight372

to MCM-UA-1-0 in this region. This suggests that the BNN’s spatially varying weight-373

ing reasonably reflects GCMs’ geographically heterogeneous prediction skill. Addition-374

ally, we investigate the BNN’s temporally varying weights. Figure 8(a) plots the spatially375

averaged weights of the 20 years for the six individual models. The figure indicates that376

all the models present a seasonally changing weight, and no individual model performs377

the best all the time. This suggests the importance of calculating temporally varying weights378

in the ensembling. We picked a timestamp, August 1991, for a detailed analysis and present379

the absolute prediction errors of model CESM2 and MCM-UA-1-0 at this specific time380

in Figure 8(b). The figure indicates that model CESM2 predicts more accurate precip-381

itation in August 1991 than MCM-UA-1-0 by producing smaller prediction errors. More-382

over, the BNN accurately estimates the temporal-aware weights by assigning a larger value383

to model CESM2 at this time step, which reasonably leverages the model’s seasonally384

distinct skill.385

Figure 7. (a) Temporally averaged model weights over the test period in CONUS and the

four sub-regions (see Figure 4(a)) for the six GCMs in the synthetic study; (b) Prediction errors

and model weights of model MCM-UA-1-0 and E3SM-1-0 in the West region.

By calculating the spatiotemporally varying weights that accurately reflect the in-386

dividual model’s diverse skill across space and time, our BNN provides interpretability387

about which model contributes more to the ensemble prediction in which region and at388

which time. This scientific insight improves our understanding of each GCM’s predic-389
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Figure 8. (a) Spatially averaged model weights over the simulation domain in the 20 year

period for the six GCMs in the synthetic study; (b) Prediction errors of model CESM2 and

MCM-UA-1-0 in the timestamp of August 1991 as highlighted in the black line of (a)

tive performance and help the model development by leveraging each model’s merits. For390

example, BNN identified that the model MCM-UA-1-0 is more accurate in predicting391

the precipitation in the West region of CONUS, and CESM2 performs better in the Sum-392

mer season. Then we can go back to explore the mechanisms of the two models to in-393

vestigate why they yield better performance in the specific region at the specific time.394

On the other hand, we can also examine why a certain model performs poorly in a cer-395

tain region at a certain time. Combining this comprehensive analysis, we can take ad-396

vantage of each individual model’s strength to build a more powerful GCM for precip-397

itation prediction. And we can also explain that the BNN results in the superior ensem-398

ble predictions because it assigns higher weights to the regions and times where the model399

performs better. In essence, we are confident in that we are getting right answers for the400

right reasons.401

Besides the smart weighting scheme, the spatially varying bias term in the BNN402

ensembling also plays an important role for accurate precipitation prediction. As shown403

in Figure 9(a), which presents the weighted prediction errors of the six GCMs, the north-404

west region has a relatively large positive prediction error. To compensate for the error405

and make the ensemble prediction fit the calibration data well, the BNN estimates the406

bias with a relatively large negative value in the region, as depicted in Figure 9(b). This407

bias compensation scheme is particularly important when all the individual GCMs gen-408

erate overestimation or underestimation, in which case the ensemble prediction will hardly409

perform better than the best-performing individual GCMs despite the ensembling schemes.410

In this situation, by introducing the bias term and calibrating its value against the data,411

we can improve the ensemble predictions. Additionally, this bias term is a function of412

space and time, so its calculation reflects the spatiotemporally varying model skill.413

The BNN performs ensemble prediction in the Bayesian context, so it can quan-414

tify the data uncertainty to consider the data noise and quantify the epistemic uncer-415

tainty to consider the extrapolation error. Because the “observations” come from model416
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Figure 9. (a) Weighted precipitation errors (mm/d) of the six GCMs in the synthetic study;

(b) The estimated bias (mm/d) (β in Figure 1) of BNN to compensate the weighted precipitation

errors to enable a better ensemble prediction.

simulation data in this synthetic study, we do not have data noise. We focus more on417

the epistemic uncertainty discussion. Figure 10 shows the cumulative density function418

(CDF) of the epistemic uncertainty for the training and out-of-sample test data. The419

figure indicates that the BNN can reasonably quantify the uncertainty, where the epis-420

temic uncertainty of the test data in the extrapolation regime is greater than that of the421

training data. This is highly desirable behavior and crucial in practice to prevent over-422

confident projection in the future climate.423

Figure 10. Epistemic uncertainty of the training and out-of-sample test data calculated by

BNN in the synthetic study.

In this synthetic study, we demonstrate that our BNN produces superior predic-424

tion performance compared to that of the three state-of-the-art ensembling methods. BNN425

can accurately calculate the spatiotemporally varying model weights and biases, which426

can be justified by the model’s prediction skill. This spatiotemporal-aware weighting scheme427

meanwhile provides the interpretability of the BNN to help us understand which mod-428

els contribute more to the ensemble prediction at which locations and times. Addition-429

ally, we demonstrate that the BNN can reasonably quantify the epistemic uncertainty430

by producing a larger uncertainty bound in the extrapolation regime to avoid overcon-431

fident predictions.432

3.3 A Real Case Application433

After verification and validation of the BNN method, we applied it to a real case434

study for precipitation prediction where the “observations” come from the ERA5 reanal-435

ysis data. We considered the 53 GCMs from CMIP6 as the model set; these are described436
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in Section 2.2. The 53 GCMs are from 28 institutes. Given that the models from the same437

institute have strong dependence/similarities, we first performed data screening by se-438

lecting one model from one institute to roughly consider the model independence before439

the ensemble analysis (Leduc et al., 2016; Ashfaq et al., 2022). For the models in the same440

institute, we chose the one with the smallest RMSE compared to the ERA5 reference441

data. The final selected 28 models are highlighted in bold in Table 1. Figure 11 shows442

the PDFs of the precipitation data for the 28 GCMs and the ERA5 reference. As shown,443

the 28 GCMs produce different precipitation simulations, and the major difference hap-444

pens at the small precipitation values (≤ 2mm/d). Some GCMs have close PDFs to the445

“observations,” and some others deviate significantly from the reference.446

We applied the BNN to the 28 GCMs for ensemble predictions and investigated447

whether our model can leverage each individual model’s spatiotemporally varying skill448

to produce an accurate prediction—and meanwhile reasonably quantify the predictive449

uncertainty. We used the first 20 years of data for training and the remaining 15 years450

for out-of-sample testing. In the training, we used the ERA5 data for model calibration;451

in the testing, the ERA5 data were used as reference to evaluate the prediction perfor-452

mance. In the following results discussion, we first evaluate the BNN’s prediction accu-453

racy in comparison with the three baseline ensembling methods. Next, we analyze the454

BNN’s model weights across the space and time and examine its interpretability. Lastly,455

we present the UQ results and discuss the computational costs.456

Figure 11. The PDFs of the precipitation data from the 28 GCMs for ensemble analysis and

the reference data from the ERA5 reanalysis product.

Table 2 summarizes the RMSEs of the 15 years’ test data in the entire simulation457

domain and the four regions for the four ensembling methods, where the four regions are458

divided in the same manner as shown in Figure 4(a). The BNN produces the smallest459

RMSEs in CONUS and in the West, North, and South regions, demonstrating the best460

prediction performance. Additionally, the BNN produced consistently smaller predic-461

tion errors than the simple average method, whereas in some cases, the advanced weighted462

average and spatially weighted average even produced larger RMSEs than the simple av-463

erage. Please note that the ensembling results of the weighted average and spatially weighted464

average methods come from a fine-tuning of their hyperparameters, whereas for the BNN465

approach, we did not perform a hyperparameter and architecture optimization. A fur-466

ther improvement in the BNN prediction performance is expected after a better choice467

of its hyperparameters and network architectures.468
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Table 2. The RMSEs of the 15 years’ precipitation data (mm/d) in the test period at CONUS

and the four sub-regions (Figure 4(a)) for the four ensembling methods.

Simple average Weighted average Spatially weighted
average

BNN

CONUS 1.48 1.48 1.51 1.45
West 0.71 0.68 0.67 0.57
North 0.25 0.27 0.28 0.23
South 0.50 0.48 0.49 0.43
East 0.46 0.44 0.43 0.44

The superior prediction performance of the BNN benefits from its spatiotemporal-469

aware weighting scheme. Figure 12 shows the temporally averaged model weights in CONUS470

for the 28 GCMs. We organized the models from the largest weights to the smallest weights471

in row-wise order. Each GCM presents geographically heterogeneous weights. Overall,472

model KACE-1-0-G, HadGEM3-GC31-LL, and NorESM2-MM in the top row gain the473

highest weights, and model MIROC-ES2L, CESM2-WACCM-FV2, and BCC-ESM1 on474

the bottom row obtain the lowest weights. However, the model’s overall higher weight475

does not necessarily show a uniform higher weight across the domain at each grid cell.476

For example, in the second column of Figure 12, although model SAM0-UNICON has477

a smaller weight than MRI-ESM2-0 in most areas, it shows a higher weight in the West478

region.479

Figure 13(a) summarizes the temporally averaged model weights in CONUS and480

the four regions for the 28 GCMs. We can clearly see that the models present region-481

ally varying weights. Ten models have a higher weight than the equal value (i.e., 1/28).482

For some models whose overall weights are below the equal weight, they could still show483

a higher weight in a certain region. For example, model SAM0-UNICON presents a larger484

weight in the West region than MRI-ESM2-0, although its overall weight in CONUS is485

smaller than the latter. This spatially varying weight assignment is consistent with the486

individual model’s prediction skill. As shown in Figure 13(b), model SAM0-UNICON487

shows a smaller prediction error than MRI-ESM2-0 in the West, where the RMSEs of488

SAM0-UNICON and MRI-ESM2-0 are 0.7 and 1.2, respectively; we also observe a higher489

spatial weight of SAM0-UNICON in this region. Additionally, Figure 13(c) illustrates490

that model KACE-1-0-G and NorESM2-MM have similar weights in the West region,491

and these two models indeed show similar prediction performance: the RMSE of KACE-492

1-0-G is 0.65 close to that of the NorESM2-MM value of 0.63.493

The BNN not only gives reasonable spatially aware weights that accurately reflect494

the individual model’s spatially varying skill, but it also produces skill-consistent weights495

in the temporal dimension. To avoid a busy figure and for a better demonstration, Fig-496

ure 14(a) plots the spatially averaged model weights in the out-of-sample test period for497

three GCMs, which show the top prediction performance and have the highest spatial498

weights. All of the three models demonstrate a seasonally changing weight, and none of499

them obtain the highest weights all the time. The weights of model KACE-1-0-G show500

a decreasing annual trend regardless of the seasonality, the weights of model NorESM2-501

MM present an increasing annual trend, and there is no much annual change in the weights502

of model HadGEM3-GC31-LL. We picked two timestamps—at the beginning and at the503

end of the test period—to analyze the weights of model KACE-1-0-G and NorESM2-MM504

in detail. Figure 14(b) shows that KACE-1-0-G has a smaller prediction error than NorESM2-505

MM in February 2000, which justifies its higher model weights at this time. Addition-506

ally, the lower weight of KACE-1-0-G in July 2014 once again aligns with its relatively507

higher prediction errors at this time.508
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Figure 12. Temporally averaged model weights over the 15 years of the test period in

CONUS for the 28 GCMs in the real case application.

The BNN accurately calculates the model weights for each individual model in each509

grid cell at each time step. Its weighting scheme sufficiently leverages models’ predic-510

tion skill and produces skill-consistent weights. This smart weighting not only improves511

model prediction accuracy, but it also provides interpretability about each GCM’s con-512

tribution to the ensemble prediction. Please note that all the results and weights anal-513

ysis presented in this real case application are based on the out-of-sample test data, so514

when deploying the BNN method in practice for future projection where the ground truth515

is unknown, its verified interpretable and skill-consistent weights increase our confidence516

in the BNN’s ensemble prediction. Certainly, when projecting to the future unknown con-517

ditions, besides the point estimate, we are also interested in the predictive uncertainty.518

BNN can reasonably quantify the epistemic uncertainty caused by the model ignorance519

and data shortage. Figure 15 shows the CDFs of the epistemic uncertainty for the train-520

ing and out-of-sample test data. The figure indicates that BNN produces a larger epis-521

temic uncertainty of the test data than that of the training data, accurately reflecting522

our lesser confidence in the unknown conditions and thus preventing overconfident ex-523

trapolation.524

In this real case application, we successfully apply the BNN ensembling method525

to 28 GCMs from CMIP6 for precipitation predictions in CONUS. We demonstrate BNN’s526

superior prediction performance regionally and locally in comparison to the three base-527

line methods. We investigate BNN’s spatiotemporal-aware weighting scheme, verify its528
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Figure 13. (a) Temporally averaged weights over the test period in CONUS and the four

regions (see Figure 12) for the 28 GCMs considered in the real case application; (b) Prediction

errors and model weights of model MRI-ESM2-0 and SAM0-UNICON in the West region; (c)

Prediction errors and model weights of model KACE-1-0-G and NorESM2-MM in the West

region.

weight’s consistency with the model prediction skill, and interpret the individual mod-529

els’ contribution to the ensemble prediction spatially and temporally. Lastly, we analyze530

the reasonableness of BNN’s UQ capability.531

One possible limitation of the BNN ensembling scheme is the high computational532

cost. In this work, all the training ends at 1000 epochs when the loss function shows marginal533

decay. In the synthetic study in which six GCMs are considered, it takes about 35 min-534

utes to train one NN and 29.17 hours to finish the training of 50 NNs in the BNN en-535

sembling. For the real case application where 28 GCMs are analyzed, it takes about 40536
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Figure 14. (a) Spatially averaged weights in the 15 years of test period for the three top per-

forming GCMs in the real case application; (b) Prediction errors (mm/d) of model KACE-1-0-G

and NorESM2-MM in February 2000 and July 2014.

Figure 15. Epistemic uncertainty of the training and out-of-sample test data calculated by

BNN in the real case application.

minutes to train one NN and 33.33 hours to train the 50 NNs. All the experiments were537

performed on a 2.3 GHz Quad-Core Intel Core i7 CPU. Roughly speaking, the compu-538
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tational cost increases with increasing numbers of networks in BNN training and ensem-539

ble GCMs, as well as with the resolution of the GCMs; this is because the BNN calcu-540

lates weights at each time step in each grid cell. In spite of the relatively high compu-541

tational cost of the BNN compared to other ensembling schemes, the cost is affordable542

(e.g., within one or two days); more importantly, the BNN provides better prediction per-543

formance, interpretable ensembling results, and UQ.544

4 Conclusions and Future Work545

In this work, we propose a BNN ensembling method for multiple model analysis546

to enhance the predictive capability. The method improves prediction accuracy by learn-547

ing spatiotemporally varying model weights and biases based on the individual models’548

skill in simulating the observations across space and time. Additionally, the BNN method549

accounts for the varying quality of the observations by incorporating their aleatoric un-550

certainty and avoids overconfident extrapolating predictions by quantifying the epistemic551

uncertainty. More importantly, the method offers interpretability about which models552

contribute more to the ensemble prediction at which locations and seasons. This insight553

advances predictive understanding, guides process-based model development, and pri-554

oritizes data collection.555

We apply the BNN ensembling method for precipitation prediction in CONUS based556

on the GCMs from CMIP6. In both synthetic and real case studies, we demonstrate that557

the BNN produces a better prediction performance than the three baseline ensembling558

approaches; it can correctly assign a higher weight to the regions and the seasons where559

the individual GCM fits the “observations” better; and it gives a reasonable bias value560

to compensate for the error of the weighted average to enable a better ensemble predic-561

tion than the individual models. Additionally, we verify that the proposed BNN’s inter-562

pretability is consistent with our prior knowledge in the synthetic design and with our563

understanding of localized GCM performance in the real case application. Finally, the564

BNN shows an increasing uncertainty when the prediction is farther away from the pe-565

riod with constrained data, which appropriately reflects our predictive confidence and566

the trustworthiness of the models in the changing climate. Although the BNN ensem-567

bling method produces high-quality, interpretable, and uncertainty-aware predictions at568

the expense of high computational costs in calculating the grid-specific and time-specific569

model weights and biases, the cost is affordable: for example, about 33 hours are spent570

in application of the 28 GCMs. More importantly, the provided high predictive accuracy571

and the insights of the model performance are significant. In the future, we will apply572

the BNN ensembling technique for other Earth system modeling problems, including pre-573

dictions of other response variables from the GCMs and problems in other disciplines574

such as hydrology and ecology.575
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