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Abstract

A supervised neural network algorithm is used to categorize near-global satellite retrievals into three mesoscale cellular convective

(MCC) cloud morphology patterns. At constant cloud amount, morphology patterns differ in brightness associated with the

amount of optically-thin cloud features. Environmentally-driven transitions from closed MCC to other morphology patterns,

typically accompanied by more optically-thin cloud features, are used as a framework to quantify the morphology contribution

to the optical depth component of the shortwave cloud feedback. A marine heat wave is used as an out-of-sample test of closed

MCC occurrence predictions. Morphology shifts in optical depth between 65°S - 65°N under projected environmental changes

(i.e., from an abrupt quadrupling of CO2) assuming constant cloud cover contributes between 0.04-0.07 W/m2/K (aggregate

of 0.06) to the global mean cloud feedback.
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Key Points:14

• Mesoscale cloud morphology albedo varies with fraction of optically-thin cloud fea-15

tures16
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wave feedback of 0.04 - 0.07 W m−2 K−1
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Abstract21

A supervised neural network algorithm is used to categorize near-global satellite retrievals22

into three mesoscale cellular convective (MCC) cloud morphology patterns. At constant23

cloud amount, morphology patterns differ in brightness associated with the amount of24

optically-thin cloud features. Environmentally-driven transitions from closed MCC to25

other morphology patterns, typically accompanied by more optically-thin cloud features,26

are used as a framework to quantify the morphology contribution to the optical depth27

component of the shortwave cloud feedback. A marine heat wave is used as an out-of-28

sample test of closed MCC occurrence predictions. Morphology shifts in optical depth29

between 65◦S - 65◦N under projected environmental changes (i.e., from an abrupt qua-30

drupling of CO2) assuming constant cloud cover contributes between 0.04 - 0.07 W m−2 K−1
31

(aggregate of 0.06) to the global mean cloud feedback.32

Plain Language Summary33

Marine boundary layer clouds are essential to the energy balance of Earth, reflect-34

ing sunlight back to space and covering a large percentage of the globe. These clouds35

can organize into open, closed, and disorganized cellular structures. Cloud morphology36

patterns differ in their ability to reflect sunlight back to space. Closed cellular clouds tran-37

sition to open and disorganized clouds associated with changes in environmental factors38

(i.e., sea surface temperature and the stability of the lower atmosphere). This study ex-39

amines how a shift in cloud morphology with climate change will change the amount of40

sunlight reflected back to space: a shortwave cloud feedback. We predict the frequency41

of occurrence of closed cellular clouds based on changes in environmental factors esti-42

mated from global climate model simulations under climate change scenarios. An ob-43

served marine heat wave is used to test occurrence predictions. The change in reflected44

sunlight due to the shift between morphology types at fixed fractional cloud cover pro-45

duces a global feedback that ranges between 0.04 - 0.07 W m−2 K−1.46

1 Introduction47

The response of low clouds to global warming is one of the largest uncertainties in48

projections of climate change. Low clouds strongly affect the amount of shortwave ra-49

diation reflected back to space from Earth, but do not affect outgoing longwave radia-50

tion substantially (e.g., Hartmann & Short, 1980). How clouds alter reflected shortwave51

radiation in response to warming is termed the shortwave cloud feedback. It is uncer-52

tain how low clouds will respond to changes in the atmosphere in a warming world and53

contribute to this feedback (e.g., Zelinka et al., 2012a, 2012b, 2016, 2020; Ceppi et al.,54

2017). This uncertainty drives spread in the climate sensitivity predicted by global cli-55

mate models (GCMs) (e.g., Caldwell et al., 2016). Thus, improving our understanding56

of how low clouds will change in a warming world is critical to predicting 21st century57

warming (e.g., Bony et al., 2015; Sherwood et al., 2020).58

At zeroth order, the mean optical thickness and extent of low cloud strongly af-59

fect global albedo (Engstrom et al., 2015b). However, low clouds encompass different mor-60

phology patterns with regionally varied mesoscale features (e.g., large-scale structures61

O∼100 km of clouds with typical cell sizes O∼20-80 km, Wood & Hartmann, 2006; Zhou62

et al., 2021; Stevens et al., 2019). For example, open and closed mesoscale cellular con-63

vective (MCC) organization that dominate subtropical stratocumulus (Sc) cloud decks64

and marine cold-air outbreaks (Muhlbauer et al., 2014; I. L. McCoy et al., 2017; Mohrmann65

et al., 2021) are distinctly different from the more disorganized cumulus (Cu) cloud struc-66

tures in the tropical trade-winds (Stevens et al., 2019). The radiative properties of mesoscale67

morphology patterns differ even for the same cloud areal coverage (I. L. McCoy et al.,68

2017), indicating microphysical and macrophysical differences between organization struc-69

tures (consistent with Painemal et al., 2010; Wood, 2012; Terai et al., 2014; Muhlbauer70
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et al., 2014; Bretherton et al., 2019; Zhou et al., 2021; Watson-Parris et al., 2021; Kang71

et al., 2022). The occurrence of cloud morphology patterns is strongly connected to en-72

vironmental factors (e.g., Agee et al., 1973; Atkinson & Zhang, 1996; Wood, 2012; Muhlbauer73

et al., 2014; I. L. McCoy et al., 2017; Bony et al., 2020; Schulz et al., 2021; Eastman et74

al., 2021; Mohrmann et al., 2021; Narenpitak et al., 2021).75

Past literature has used changes in cloud horizontal extent (detectable cloud amount76

termed cloud fraction, CF) in response to warming to constrain changes in albedo (e.g.,77

Qu et al., 2015; Klein et al., 2017). Recent analyses have examined regional contribu-78

tions based on large-scale meteorology (Scott et al., 2020; Myers et al., 2021; Cesana &79

Del Genio, 2021) and, following a radiative kernel framework, dissected the change in80

cloud radiative properties into a CF component and a combined optical thickness and81

altitude component (Scott et al., 2020; Myers et al., 2021). The amount and optical depth82

components of the cloud radiative effect are likely to encapsulate some of the variation83

in cloud morphology radiative properties.84

State-of-the-art GCMs from phase 6 of the Coupled Model Intercomparison Project85

(CMIP6) do not capture the radiative properties of low clouds largely due to poorly rep-86

resenting cloud heterogeneity. GCMs’ inability to simulate optically-thin cloud features87

at lower CF is thought to be a contributor to this issue (Konsta et al., 2022). Optically-88

thin features are observed across mesoscale cloud morphologies (Leahy et al., 2012; Wood89

et al., 2018; O, Wood, & Bretherton, 2018; Mieslinger et al., 2021) and are likely asso-90

ciated with precipitation processes during cloud morphology development and transition91

(O, Wood, & Tseng, 2018). In addition to the so-called ”too few, too bright” bias (Nam92

et al., 2012; Engstrom et al., 2015a; Bender et al., 2017; Konsta et al., 2022), represen-93

tation of morphology and generation of optically-thin features may also effect GCM bi-94

ases in cyclone cold sectors (Bodas-Salcedo et al., 2014; Williams & Bodas-Salcedo, 2017)95

and simulated mean-state SST (e.g., coastal gradients, regional seasonal cycles) (Farneti96

et al., 2022; Hyder et al., 2018; Wang et al., 2022). These diagnosed model biases sug-97

gest that consideration of mesoscale cloud morphology will assist in improving mean-state98

cloud radiative properties and their subsequent environmental impacts in GCMs.99

In this study, we use a process-driven morphology lens to gain insight into how low100

clouds will change under climate change and feedback on the climate system. We cal-101

culate the optical depth component of the shortwave cloud feedback associated with shift-102

ing the partitioning of clouds between different morphologies in response to warming.103

We use a global, multi-year morphology identification dataset for three cloud patterns104

(Wood & Hartmann, 2006): open, closed, and cellular but disorganized MCC (Section 2.1).105

We examine the underlying reason behind differences in MCC radiative properties (Sec-106

tion 3.1) and develop relationships between morphology occurrence and environmental107

controls (Section 3.2), analogous to cloud-controlling factor analysis (e.g., Stevens & Bren-108

guier, 2009; Heintzenberg et al., 2009; Qu et al., 2015; Klein et al., 2017; Scott et al., 2020).109

We leverage this predictive relationship and cloud morphology radiative properties to110

quantify the morphology contribution to the shortwave cloud feedback (Section 3.3). We111

conclude with a discussion and summary of the results (Section 4, 5).112

2 Materials and Methods113

2.1 Mesoscale Cloud Morphology Classifications114

Wood and Hartmann (2006) (hereafter WH6) developed a supervised neural net-115

work algorithm that is applied to liquid water path (LWP) retrievals from the NASA Mod-116

erate Resolution Imaging Spectroradiometer (MODIS) (King et al., 1997; Platnick et al.,117

2003). This method uses the magnitude and spatial distribution of LWP to identify three118

types of marine cloud morphology patterns: open, closed, and cellular but disorganized119

MCC. Each identification is for a 256×256 km2 scene from a MODIS swath and each120
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scene is overlapped by 128 km across and along the swath to maximize data usage (Fig-121

ure 1a). Only scenes where clouds are majority liquid-topped (i.e., have a LWP retrieval),122

cloud top temperature is within 30 K of surface temperature (i.e., low clouds), and where123

sea surface temperature is above 275 K (i.e., avoiding sea ice, equating to ∼65◦N-65◦S)124

are used. We use an expanded, multi-year dataset from applying WH6 to MODIS col-125

lection 6.1 (Platnick et al., 2015) for 2003-2018. This dataset is referred to here as Mor-126

phology Identification Data Aggregated over the Satellite-era (MIDAS). WH6 has main-127

tained skill across satellite retrieval collections since a subset of these identifications (2007-128

2010) were confirmed to have the original 85-90% success rate as WH6 in cloud type iden-129

tifications (Eastman et al., 2021).130

The distribution of cloud morphological types in MIDAS is consistent with previ-131

ous MCC climatologies (Agee et al., 1973; Atkinson & Zhang, 1996; Muhlbauer et al.,132

2014) (Figure S1). Closed MCC contribute to the sub-tropical Sc decks (Klein & Hart-133

mann, 1993) to the west of continents and to the high latitudes (Figure S1a). Open MCC134

are the cloudy-edged cellular features seen downwind of the Sc decks and in the cold sec-135

tors of cyclones (or cold-air outbreaks) in the mid-latitudes (Figure S1b). The remain-136

ing low clouds across the globe, including trade Cu downwind of subtropical closed and137

open MCC and most organizational structures in the tropics (Rasp et al., 2020), are clas-138

sified in the third, expansive category of cellular but disorganized MCC (Figure S1c).139

2.2 Radiative Properties140

We look at two aspects of MCC radiative properties in this study. Albedo is es-141

timated for each MCC identified scene using Clouds and the Earth’s Radiant Energy Sys-142

tem (CERES) (Wielicki et al., 1996) top of atmosphere upwelling shortwave fluxes and143

solar insolation from the Single Scanner Footprint (SSF) daily 1×1◦ gridded product (NASA/LARC/SD/ASDC,144

2015). Each mean scene albedo is computed for data within a 128 km radius circle cen-145

tered on the MCC identification (I. L. McCoy et al., 2017).146

We also examine the amount of optically-thin cloud features that occur within each147

MCC identification scene. These features are approximately identified from MODIS Level148

2 cloud optical depth retrievals (Platnick et al., 2015) using the observation-based op-149

tical depth criteria: τ < 3 (O, Wood, & Tseng, 2018). For each identified scene, we gen-150

erate a PDF of cloud optical depth and estimate the fraction of optically-thin cloud (fthin)151

as the proportion that satisfy this criteria.152

Mean monthly incoming solar flux (SW ↓) over 2003-2018 from edition 4.1 of the153

CERES Energy Balanced and Filled Top of Atmosphere product (NASA/LARC/SD/ASDC,154

2019) is used to scale changes in shortwave reflection to energy units in Equations 5, 6.155

We also compute a mean monthly low cloud fraction over 2003-2018 assuming low cloud156

is overlapped (as in Scott et al., 2020) and using the cloud mask from the daily Level-157

3 MODIS Atmosphere Global COSP 1×1◦ gridded product (Pincus et al., 2020) (Fig-158

ure S2c).159

2.3 Environmental Controls160

Sea surface temperature (SST) and lower tropospheric stability (e.g., estimated in-161

version strength, EIS) are likely the dominant meteorological drivers of low cloud feed-162

back (Qu et al., 2015; Bretherton, 2015; Klein et al., 2017; Scott et al., 2020; Myers et163

al., 2021; Cesana & Del Genio, 2021; Ceppi & Nowack, 2021). We use European Cen-164

ter for Mid-range Weather Forecasting (ECMWF) ERA5 reanalysis data (Copernicus165

Climate Change Service, 2017) collocated to morphology identifications to capture the166

influence of these environmental controls on cloud morphology. In addition to SST, we167

use a measure of lower tropospheric stability with proved skill in predicting cloud mor-168

phology occurrence (I. L. McCoy et al., 2017), the marine cold-air outbreak index (Kolstad169
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& Bracegirdle, 2008):170

M = θSST − θ800hPa (1)

Because M is also a good predictor of boundary layer depth (Naud et al., 2018, 2020),171

using it as a predictor may implicitly factor in optically-thin feature occurrence (O, Wood,172

& Tseng, 2018). M can also be formulated as a combined measure of EIS and surface173

forcing (I. L. McCoy et al., 2017). See Text S1, S2 for details.174

2.4 Global Climate Models175

We use 11 GCMs participating in CMIP6 to estimate the changes in environmen-176

tal controls under climate change using the idealized abrupt quadrupling of CO2 exper-177

iment (which does not include changes in other forcers, e.g., aerosols): AWI-CM-1-1-MR,178

BCC-ESM1, CanESM5, CNRM-CM6-1, GFDL-CM4, GISS-E2-1-G, GISS-E2-1-H, HadGEM3-179

GC31-LL, IPSL-CM6A-LR, MIROC6, and MRI-ESM2-0. Changes in M and SST are180

estimated from the difference between piControl and abrupt4×CO2 simulations and181

reported per degree of global warming (∆T=4.69 K, the area weighted global mean change182

in 2-m air temperature). We use the multi-model mean ∆SST/∆T , ∆M/∆T (Figure S2a,183

b) in our calculations (see Text S1)(Qu et al., 2014b; Borchert et al., 2021; Carmo-Costa184

et al., 2022).185

3 Results186

3.1 Radiative Impact of Cloud Morphologies187

Open, closed, and disorganized MCC as identified by WH6 have distinct radiative188

(I. L. McCoy et al., 2017) and microphysical (Muhlbauer et al., 2014; Zhou et al., 2021;189

Danker et al., 2022) properties, consistent with other MCC studies (e.g., Painemal et190

al., 2010; Wood, 2012; Terai et al., 2014; Bretherton et al., 2019; Watson-Parris et al.,191

2021; Kang et al., 2022). We utilize the updated MIDAS dataset and CF vs. albedo di-192

agrams (following earlier studies Bender et al., 2011; Engstrom et al., 2015b; Feingold193

et al., 2016; Bender et al., 2017; I. L. McCoy et al., 2017; Feingold et al., 2017) to iso-194

late the cloud properties that contribute to distinction between morphologies. At con-195

stant CF, albedo differs significantly between cloud morphologies with closed MCC more196

effectively scattering sunlight than open (I. L. McCoy et al., 2017) and disorganized MCC197

(Figure 1b, c). The curvature of these relationships is consistent with Bender et al. (2017).198

MIDAS classifications capture low clouds at different stages in their Lagrangian199

evolution, which gives us insight into the relationship between process-driven cloud evo-200

lution and radiative properties. Closed MCC (e.g., Sc) tend to transition into open MCC201

or more disorganized clouds (e.g., trade Cu) in the subtropics (e.g., Wyant et al., 1997;202

Yamaguchi et al., 2017; Eastman et al., 2021, 2022). Similar transitions, associated with203

even stronger surface forcing in cold-air outbreaks, occur in the mid-latitudes (e.g., Agee204

& Dowell, 1973; I. L. McCoy et al., 2017; Tornow et al., 2021). Boundary-layer deepen-205

ing and increased precipitation are important in cloud morphology transitions in the mid-206

latitudes (and may be further modulated by mixed-phase processes, Tornow et al., 2021;207

Danker et al., 2022) and in the subtropics (Wyant et al., 1997; Yamaguchi et al., 2017;208

Sarkar et al., 2019; Smalley et al., 2022) although deeper boundary layers are not nec-209

essary (Eastman et al., 2022). In the subtropics, closed MCC tend to evolve to open MCC210

under heightened wind conditions, leading to increased boundary layer moisture and rain211

rates by increasing relative humidity or latent heat fluxes. In contrast, closed MCC tend212

to evolve to disorganized MCC under warmer SST conditions and increased entrainment213

of dry-air at cloud top (Eastman et al., 2022). In situ sampling in the northeast Pacific214

(NEP) Sc to Cu transition identified optically-thin cloud features at the detraining edges215

of broken clouds in the deeper boundary layers at the end of the transition (Wood et al.,216

2018; O, Wood, & Bretherton, 2018; Bretherton et al., 2019). The relationship between217

optically-thin features, precipitation removal of cloud droplets, and deeper boundary lay-218
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b) c)

d)

a)

f)

e)

Figure 1. a) Example identified scenes (256×256 km2) show typical cloud morphology pat-

terns within each MIDAS category. MIDAS scene cloud fraction, from MODIS cloud mask, vs.

b) CERES albedo and d) optically-thin cloud feature fraction from MODIS optical depth, fthin.

Corresponding PDFs for c) albedo, e) fthin, and f) CF with legends detailing median and 25-75th

percentiles. Morphology data is binned into 100 cloud fraction quantiles in b), d) and their me-

dian (dots) and 25-75th percentiles (shading) shown.
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ers is robust globally (O, Wood, & Tseng, 2018). Disorganized MCC encompasses many219

types of cloud patterns, from NEP Cu to more varied trade-wind structures (Stevens et220

al., 2019; Rasp et al., 2020). In the trades, cloud reflectivity is described well by cloud221

amount (Bony et al., 2020) but optically-thin features are also frequently observed (Leahy222

et al., 2012; Mieslinger et al., 2019, 2021). These include both small, suppressed clouds223

at the lifting condensation level (Mieslinger et al., 2019, 2021; Delgadillo et al., 2018) and224

detraining layers like in the NEP (Schulz et al., 2021) generated through deepening and225

moistening processes (Narenpitak et al., 2021; Vogel et al., 2021).226

Variation in the amount of optically-thin cloud features across mesoscale cloud mor-227

phologies contributes to the separation of their albedo curves. Optically-thin features228

act to increase cloud cover without a commensurate increase in cloud albedo. Indeed,229

CF vs. fthin curves have the opposite descending order (disorganized, open, closed) from230

the albedo curves (closed, open, disorganized) (Figure 1d, e). Predictions of scene albedo231

using both CF and fthin are more accurate than when only CF is used, showing the ra-232

diative importance of these features (Figure S7). We do not capture all of the variabil-233

ity in albedo with these two terms (Figure S7b), as expected. For example, aerosols are234

not considered here which generally influence cloud radiative properties and specifically235

influence optically-thin cloud feature development, often through modulating morphol-236

ogy transitions (e.g., Twomey, 1977; Albrecht, 1989; Zuidema et al., 2008; Carslaw et237

al., 2013; Yamaguchi et al., 2017; O, Wood, & Tseng, 2018; I. L. McCoy et al., 2021; East-238

man et al., 2021; Tornow et al., 2021; Wyant et al., 2022; Eastman et al., 2022).239

We hypothesize that variation in cloud evolution mechanisms lead to differences240

in the radiative properties of morphologies. Broadly, processes analogous to warming-241

deepening will support the transition to more disorganized cloud morphologies, possess-242

ing the largest fthin of the three WH6 morphology types (e.g., Wyant et al., 1997; East-243

man et al., 2022; Narenpitak et al., 2021). Processes analogous to precipitation-depletion244

will support the transition to morphologies with more detraining cloud features includ-245

ing open MCC, which has the second largest fthin of the WH6 categories (e.g., Wyant246

et al., 1997; Yamaguchi et al., 2017; Sarkar et al., 2019; Tornow et al., 2021; Vogel et al.,247

2021; Smalley et al., 2022; Eastman et al., 2022).248

The balance of different cloud controlling processes will likely change in an enhanced-249

CO2 climate, potentially manifesting in different proportions of morphologies. This is250

because morphology occurrence is dependent on environmental conditions (e.g., shown251

for WH6 in I. L. McCoy et al., 2017; Eastman et al., 2021, 2022). Utilizing our knowl-252

edge of present-day transitions between morphologies, we use the framework of transi-253

tions to/from closed MCC relative to open and disorganized MCC to predict how mor-254

phology will change associated with shifts in environmental controls under climate change.255

A climate-driven morphology occurrence shift will result in a change in optically-thin256

cloud feature amount, creating dimmer or brighter cloud scenes even for the same de-257

tected cloud amount. We estimate the magnitude of this change and its influence on top258

of atmosphere radiation in the remaining sections.259

3.2 Predicting Shifts in Cloud Morphology Occurrence from Changes260

in Environmental Controls261

We examine the relative frequency of occurrence for all MIDAS MCC categories262

in a simple environmental phase space: M and SST (Section 2.3). We find that the rel-263

ative frequency of closed MCC (fClosed) has an approximately linear relationship with264

M and SST, both over a base period (2003-2012, Figure 2a) and the complete MIDAS265

period (2003-2018, Figure S8). The base period is separated to facilitate out-of-sample266

testing. There are two broad tendencies of morphology frequency shift across M-SST space.267

Below SST ≈ 290 K, more frequent open MCC (fOpen) occurs with increasing M (greater268

instability) (Figure 2b). Above SST ≈ 290 K, fClosed tends toward more frequent dis-269

–7–
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a)

d) e) f)

b) c)

Figure 2. MIDAS relative occurrence frequency in the M-SST environmental phase space

over a base period (2003-2012) for a) closed, b) open, and c) cellular but disorganized MCC

(see Figure S8 for total MIDAS period, 2003-2018). Lines for SST=290 K (dashed) and closed

MCC observation number (contours) are included in a). Equation 3 is applied to the fClosed

composite in a), see Text S2. d) The resulting prediction is plotted vs. the original fClosed with

mean (dots) and 95% confidence bounds (lines) for each of the 100 observational quantile bins.

Quantile means are correlated with R2=0.99 at 95% confidence and have a linear regression slope

near unity (m=0.95). Out-of-sample MHW (Figure S2c) test results are shown in a, e-f). Yearly

anomalies are relative to the total MIDAS period. Yearly mean M, SST values for the MHW

region (grey line, points) are plotted in a) with maximum, minimum SST anomaly markers corre-

sponding to symbols in f). e) Yearly mean morphology frequency anomalies for fClosed vs. fOpen

and fDisorganized are shown with 2SE encompassing monthly, regional uncertainty. f) Observed

yearly fClosed anomalies vs. mean bootstrapped predictions from Equation 3. Years 2013-2018

(circles) are out-of-sample tests. Lines for 95% confidence (not visible) from the bootstrapped

coefficients applied to the regional, monthly prediction and 1:1 (grey) are included.
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organized cloud types (fDisorganized, Figure 2c). These behaviors are consistent with closed270

MCC undergoing Lagrangian transitions to disorganized at warmer SSTs (Eastman et271

al., 2022).272

Using the morphology transition framework proposed in Section 3.1, we focus on273

predicting fClosed. Utilizing the fClosed dependency in M-SST space, we use multiple lin-274

ear regression to develop two predictive models from Figure 2a fitting all data together:275

fClosed = atotal ·M + btotal · SST + ctotal (2)

and fitting SST > 290 K and SST ≤ 290 K data separately:276

fClosed =

{
a>290 ·M + b>290 · SST + c>290 : SST > 290K
a≤290 ·M + b≤290 · SST + c≤290 : SST ≤ 290K

(3)

The latter formulation accounts for the more pronounced dependence (stronger gradi-277

ent) of closed MCC on the environment over subtropical surface temperatures (SST >278

290 K) (Figure 2a). As M and SST increase in this regime, closed MCC tend to shift more279

toward disorganized than open MCC (the reverse of the SST ≤ 290 K regime) (Figure 2b,280

c). Equation 3 captures more of this behavior than Equation 2, which is reflected in the281

closer correspondence between its prediction and observed fClosed (the slope is closer to282

unity: m =0.95 in Figure 2d compared to m =0.88 in Figure S9). See Table S1 for co-283

efficients and Text S2 for expanded fit discussion (Qu et al., 2015; D. T. McCoy et al.,284

2022).285

Equation 3 captures the base period behavior well but will only be useful for our286

analysis if it can also reliably predict frequency changes under future climate scenarios287

(assuming it is robust under time-scale invariance, Klein et al., 2017). Following Myers288

et al. (2021), we utilize a subtropical marine heatwave (MHW) as an out-of-sample test289

of SST anomalies analogous to those associated with climate change. We examine a re-290

gion of the NEP (15-30◦N, 140-115◦W, Figure S2c) that was heavily influenced between291

November 2013-January 2016 by a MHW (driven and maintained by cloud changes, My-292

ers et al., 2018; Schmeisser et al., 2019). All three MCC types are prevalent in this re-293

gion (Figure S1). Yearly regional anomalies are computed relative to the full MIDAS pe-294

riod (2003-2018). The MHW affected 2015 the most (e.g., Myers et al., 2021) and yielded295

a ∼ 2σ event in yearly regional SST anomaly (shading in Figure 2a, e-f). In response296

to the MHW SST anomaly, fClosed was anomalously low while fOpen decreased slightly297

and fDisorganized increased significantly. Given the warm initial state of the region, the298

shift in relative occurrence frequency from fClosed toward fDisorganized more than fOpen299

(Figure 2e) is consistent with expectations (Eastman et al., 2022) and the shift in mean300

regional, yearly M, SST values toward regions of higher fDisorganized with increasingly301

positive SST anomalies (Figure 2a). Equation 3 robustly predicts yearly regional fClosed302

anomalies (R2 = 0.89), increasing our confidence in its ability to infer changes in mor-303

phology in response to changes in dominant large-scale environmental factors. Larger304

SST anomalies are harder to predict (as in Myers et al., 2021) and there are slight over305

and under predictions of ∆fClosed above and below SST anomalies of ≈ ±1.5 K.306

3.3 Predicting the Morphology Feedback307

Analogous to cloud-controlling factor analysis (e.g., Stevens & Brenguier, 2009; Heintzen-308

berg et al., 2009; Qu et al., 2015; Klein et al., 2017; Scott et al., 2020), we develop a pre-309

dictive equation for ∆fClosed to estimate the morphology feedback associated with changes310

in environmental controls under climate change:311

∆fClosed

∆T
= a

∆M

∆T
+ b

∆SST

∆T
(4)

We utilize the coefficients from Equation 3, which were tested using a MHW in Section312

3.2. Predictions using coefficients from Equation 2 are shown in Figure S10. See Section 2.4313

for ∆M/∆T and ∆SST/∆T estimation.314
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The respective patterns of ∆M/∆T and ∆SST/∆T combine to produce the pat-315

tern of ∆fClosed/∆T shown in Figure 3a. There are decreases in present-day regions of316

closed MCC (i.e., subtropical cloud decks, high latitudes, Figure S1a). Where closed MCC317

clouds persist ∆fClosed=0. fClosed also increases in poleward regions adjacent to the South-318

east Pacific, Southeast Atlantic, and Canarian cloud decks, and in the northern and east-319

ern Atlantic. Increasing fClosed corresponds to increasing stability (decreasing ∆M/∆T )320

and small ∆SST/∆T increases. Decreasing fClosed occurs for the opposite conditions321

(increasing ∆M/∆T , large ∆SST/∆T increases). Increases in stability do not outweigh322

the influence of surface warming in all instances.323

We estimate the optical depth component of the morphology feedback assuming324

that ∆fClosed shifts to a single cloud type, either ∆fOpen or ∆fDisorganized. In reality,325

shifts to/from closed MCC will likely be associated with a mixture of open MCC and326

disorganized clouds. However, we can use shifts to/from open MCC as a lower bound327

(smaller albedo difference from closed MCC at constant CF, Figure 1b) while shifts to/from328

disorganized will be an upper bound (larger albedo difference). To estimate the aggre-329

gate response, we calculate the feedback conditioning shifts based on the initial (i), mean330

state SST: closed to open MCC when SSTi ≤ 290 K, closed to disorganized when SSTi >331

290 K.332

In this study we are isolating the feedback associated with changes in the optical333

thickness of cloud due to morphology shifts. We hold boundary layer CF fixed. This is334

analogous to the calculation of the optical depth, amount, and altitude components of335

the cloud feedback while holding all other component changes constant (Zelinka et al.,336

2012b, 2012a, 2016). We formulate our feedback estimate per degree warming resulting337

from a shift between closed MCC and either open (Figure 3b) or disorganized MCC (Fig-338

ure 3c):339

FBC→O = SW ↓ · (αO − αC) ·
∆fClosed

∆T
(5)

340

FBC→D = SW ↓ · (αD − αC) ·
∆fClosed

∆T
(6)

Morphology albedos (αC , αO, αD) are estimated in Equations 5, 6 by applying their re-341

spective, global CF-albedo relationships (Figure 1b) to the monthly mean CF in each342

grid box (Section 2.2, Figure S2c). We multiply by monthly, grid ∆fClosed/∆T and mean343

solar flux (SW ↓, Section 2.2) values before computing the final feedback as the mean over344

all seasons. The aggregate closed to open, disorganized feedback uses Equations 5 or 6345

conditional on SSTi in each grid box (Figure 3d).346

The morphology feedback magnitude varies geographically, consistent with the ge-347

ographic pattern of ∆fClosed/∆T (increasing, constant, or decreasing ∆fClosed/∆T , Fig-348

ure 3a, leads to negative, null, or positive feedback, b-d). The area-averaged morphol-349

ogy feedback contribution between 65◦S - 65◦N to the global mean shortwave cloud feed-350

back is 0.04 W m−2 K−1 for closed to open MCC and 0.07 W m−2 K−1 for closed to dis-351

organized MCC. The more realistic aggregate estimate of closed MCC to open and dis-352

organized MCC conditional on initial SST is 0.06 W m−2 K−1. Equation 2 estimates are353

similar (0.04, 0.08, and 0.06 W m−2 K−1, respectively) with subtly different geographic354

distributions (Figure S10).355

4 Discussion356

The contribution of the optical depth component of the morphology feedback un-357

der abrupt CO2 quadrupling (Figure 3) to the global mean shortwave cloud feedback is358

0.04 - 0.07 W m−2 K−1 with an aggregate of 0.06 W m−2 K−1. To place this in context,359

the aggregate morphology feedback is the same order of magnitude as recent assessments360

of several cloud feedback components (e.g., mid-latitude marine low cloud amount, land361

cloud amount) and ∼15% of total cloud feedback (Sherwood et al., 2020). A global shift362
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a)

b)

c)

d)

Figure 3. a) Predicted ∆fClosed from CMIP6 simulated multi-model mean ∆SST/∆T (Fig-

ure S2a) and ∆M/∆T (Figure S2b) responses under an abrupt quadrupling of CO2. The optical

depth component of the morphology feedback per degree global temperature change is estimated

assuming closed MCC shifts to b) open MCC, c) cellular but disorganized MCC, or d) an aggre-

gate of open and disorganized MCC dependent on initial SST. Figure S10 shows estimates using

Equation 2 coefficients instead (Table S1).
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from closed to open MCC (0.04 W m−2 K−1, our lower bound) for one degree of global363

warming is four times larger (and the opposite sign) than the expected radiative pertur-364

bation from closing all pockets of open cells in closed MCC cloud decks in the present365

day (0.01 W m−2) (Watson-Parris et al., 2021). This magnitude difference is likely due366

in part to the higher frequency of open clouds in MIDAS, which includes both pockets367

of open cells (as in Watson-Parris et al., 2021) and open cell regions that span large ar-368

eas of ocean without closed cell presence. The aggregate is also comparable with vari-369

ous feedback estimates in Cesana and Del Genio (2021): the Sc and Cu feedback under370

historic trends, Cu under abrupt4 × CO2 and +4K, and low equilibrium climate sen-371

sitivity CMIP6 models. It is ∼30% of Myers et al. (2021) near-global marine cloud feed-372

back estimate (0.19 ± 0.12 W m−2 K−1) and ∼50% of the difference between CMIP5373

(0.09 W m−2 K−1) and CMIP6 (0.21) multi-model mean near-global net low cloud feed-374

back that was associated with an increase in CMIP6 equilibrium climate sensitivity (Zelinka375

et al., 2020).376

Consideration of changes in morphology occurrence under climate change may be377

helpful in predicting shortwave cloud feedback. Current models appear to poorly cap-378

ture cloud heterogeneity and associated radiative effect (Konsta et al., 2022). The ge-379

ographical pattern of the morphology feedback (Figure 3b-d) contributes regions of pos-380

itive and negative feedback that may be useful to consider in understanding patterns of381

radiative feedback. For example, in sub-tropical cloud decks the morphology feedback382

is largely negative, opposing positive cloud amount feedback (Qu et al., 2014a). MCC383

transitions may also contribute to observed variations in cloud optical depth as a func-384

tion of temperature (Terai et al., 2016; Wall, Storelvmo, et al., 2022). Future work will385

seek to quantify remaining morphology feedback components (i.e., cloud amount and al-386

titude), utilize observed morphology behaviors to constrain GCMs (e.g., Zelinka et al.,387

2022), and investigate aerosol influence separate from meteorological drivers (e.g., Zhang388

et al., 2022; Zhang & Feingold, 2022; Wall, Norris, et al., 2022) on morphology occur-389

rence, transitions, and radiative properties.390

Will sub-setting the broad ”cellular but disorganized” WH6 morphology category391

(e.g., by contrasting MIDAS with other classification methods, Stevens et al., 2019; Rasp392

et al., 2020; Denby, 2020; Yuan et al., 2020; Janssens et al., 2021) help improve the mor-393

phology feedback estimate in regions that this category dominates (e.g., the tropics)?394

It is likely that the development and production of optically-thin cloud features (and other395

characteristics impacting cloud radiative properties) varies across the sub-categories de-396

veloped in these studies (e.g., Mohrmann et al., 2021; Schulz et al., 2021; Narenpitak et397

al., 2021; Vogel et al., 2021). While including more morphological types may only add398

variation around our central estimate of the morphology feedback, it could help to de-399

velop a clearer global picture of cloud morphology evolution and their sensitivities to cli-400

mate change. Advances in process level understanding of cloud morphology evolution401

(e.g., in the ”disorganized” trade winds through the EUREC4A/ATOMIC field cam-402

paign, Stevens et al., 2021) will also assist in this effort.403

5 Summary404

Global cloud morphology patterns (large-scale structures O∼100 km of clouds with405

cell sizes O∼10-50 km, Figure 1a, S1) identified by a supervised neural network algorithm406

based on their liquid water path characteristics (i.e., closed, open, and disorganized mesoscale407

cellular convection (MCC), Wood & Hartmann, 2006) have distinct radiative properties408

over 65◦N-65◦S, 2003-2018 (Section 3.1). Closed MCC more effectively reflect sunlight409

than open and disorganized MCC for the same cloud coverage (Figure 1b). This is sig-410

nificantly influenced by differing preponderances of optically-thin cloud features (τ <411

3) between morphologies (Figure 1d, S7). Approximately, we can think of morphology412

transitions (i.e., from closed to open or disorganized MCC) as a shift in the fraction of413

optically-thin cloud features, which both contributes to radiative differences between mor-414
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phologies and are a diagnostic of the underlying processes driving morphological evolu-415

tion. An implication of this is that accurate prediction of future climate may require un-416

derstanding when and where different cloud morphologies occur.417

We utilize knowledge of present-day cloud morphology transitions to develop a frame-418

work for estimating the optical depth component of the shortwave cloud feedback asso-419

ciated with shifts in morphology responding to environmental changes under climate change420

(Section 3.3). The morphology feedback is estimated as the shift from closed MCC to421

open and/or disorganized MCC in response to changes in environmental controls while422

cloud amount is held fixed at present-day regional mean values. This allows us to ex-423

amine the contribution of morphology changes to cloud brightness separate from any ac-424

companying cloud amount changes (i.e., capturing the influence of optically-thin cloud425

features). This is analogous to the partitioning of cloud feedback between optical depth,426

amount, and altitude components in previous studies (e.g., Zelinka et al., 2012a). Shifts427

to open and disorganized MCC provide a lower and upper bound, respectively, while shift-428

ing to their aggregate provides a best estimate.429

We develop a predictive model based on multiple linear regression (Equation 3) for430

the relative occurrence frequency of closed MCC (fClosed) based on its dependence on431

sea surface temperature and M, a measure of lower tropospheric stability (Section 3.2,432

Figure 2a, d). Model predictive ability is tested with an out-of-sample case (i.e., a sub-433

tropical marine heatwave with SST anomalies analogous to climate change following My-434

ers et al., 2021) (Figure 2f). Mean changes in SST and M in response to an abrupt qua-435

drupling of CO2 are estimated from 11 models participating in phase 6 of the Coupled436

Model Intercomparison Project (CMIP6) and used to predict ∆fClosed under climate change437

(Figure 3a).438

Predictions of ∆fClosed based on GCM predictions of ∆SST/∆T and ∆M/∆T in-439

dicate that closed MCC occurrence will increase in the northern and eastern Atlantic,440

portions of southern hemisphere mid-latitudes, and pole-ward of southern hemisphere441

subtropical cloud decks. Using present day radiative properties (Figure 1b) and randomly442

overlapped cloud amount (Figure S2c), we use ∆fClosed to estimate the morphology feed-443

back resulting from a shift in morphology alone (Figure 3b-d). The contribution to global444

mean feedback varies by predicted morphology transition: closed to open MCC (0.04),445

to disorganized (0.07), or to an aggregate of open and disorganized (0.06 W m−2 K−1).446

Compared to other assessed cloud feedbacks (Sherwood et al., 2020), the optical depth447

component of the morphology feedback is non-trivial. Its geographic variations have the448

potential to modulate other feedback components. Our results emphasize the usefulness449

of applying a process-driven, morphological lens to interpretation and estimation of cloud450

feedback. This analysis also stresses the importance of developing an observational, process-451

based understanding of optically-thin cloud feature development across different cloud452

morphologies in the present climate in order to accurately estimate their climate impact453

in the future.454

6 Open Research455

Manuscript supporting data is available at https://doi.org/10.5281/zenodo.7311993456

(I. L. McCoy & Wood, 2022). CERES Single Scanner Footprint (SSF) daily 1deg prod-457

uct is available at https://asdc.larc.nasa.gov/project/CERES/CER SSF1deg-Hour458

Aqua-MODIS Edition4A (NASA/LARC/SD/ASDC, 2015). CERES Energy Balanced459

and Filled (EBAF) Top of Atmosphere (TOA) Monthly means are available at https://460

asdc.larc.nasa.gov/project/CERES/CERES EBAF-TOA Edition4.1 (NASA/LARC/SD/ASDC,461

2019). MODIS Collection 6.1 Level 2 data are available at https://ladsweb.modaps462

.eosdis.nasa.gov/archive/allData/61/MYD06 L2/ (Platnick et al., 2015). MODIS463

(Aqua/Terra) Cloud Properties Level 3 daily, 1x1 degree gridded data, including COSP464

cloud mask, is available at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/465

–13–



manuscript submitted to Geophysical Research Letters

62/MCD06COSP D3 MODIS/ (Pincus et al., 2020). CMIP6 piControl and abrupt4×CO2466

simulations used in this study are available at https://esgf-node.llnl.gov/projects/467

cmip6/. ECMWF ERA5 reanalysis products are available at https://confluence.ecmwf468

.int/display/CKB/ERA5%3A+data+documentation (Copernicus Climate Change Ser-469

vice, 2017).470
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Text S1. We can examine the predicted changes in CMIP6
models (Figure S2, S3) in more detail to determine if the
responses are i) consistent across models and ii) similar to
the large-scale changes estimated in previous studies. Indi-
vidual CMIP6 models behave similarly to each other (Fig-
ure S3, S4) with small multi-model standard deviations (Fig-
ure S5a, d) especially when scaled by their multi-model
mean (O∼0.5, Figure S5c, d). Small differences between
model responses in ∆M/∆T can be seen in regions where
the details of ocean-atmosphere interactions likely vary be-
tween models (Figure S5d). Similarly, ∆SST/∆T exhibits
the largest model differences in the region of the North At-
lantic subploar gyre (e.g., Borchert et al., 2021; Carmo-
Costa et al., 2022) (Figure S5c).

We can particularly contrast the CMIP6 tendencies from
this subset of GCMs with the CMIP5 abrupt4 × CO2 sim-
ulation results in Qu, Hall, Klein, and Caldwell (2014b).
Comparing to their Figure 9, we can look at the typical
behavior of temperature mediated (scaled by the change in
tropical air temperature) estimated inversion strength (EIS)
and surface temperature (SST) focusing on the early stage
(first 30 years) which experiences the largest response. We
can estimate EIS from M and ∆Tair−sea = SST − T2m

using the M ≈ ∆Tair−sea − EIS + constant relationship
from I. L. McCoy, Wood, and Fletcher (2017). In gen-
eral, the global increase in ∆EIS/∆T which is emphasized
in sub-tropical decks (Figure S6a) and the global increase
in ∆SST/∆T with larger increases at the high-latitudes
(Figure S2a) agrees with expected behavior under climate
change (e.g., Qu et al., 2014b). The regionally varying al-
though generally decreasing ∆M/∆T follows from this, with
the large North Atlantic decrease associated with strong
weakening of marine cold air outbreaks consistent with ex-
pectations (e.g., Kolstad & Bracegirdle, 2008) (Figure S2b).
We can also examine the expanded Klein-Hartmann boxes
(Klein & Hartmann, 1993; Qu et al., 2014a, 2015) in more
detail, which capture a range of MCC cloud morphologies
in key sub-tropical regions (Figure S1, S6a). Multi-model
changes are consistent in behavior with earlier studies (Qu
et al., 2014b). Individual models agree in sign across regions
and regional multi-model means are within 25-75% of each
other (Figure Sb-e).

Copyright 2022 by the American Geophysical Union.
0094-8276/22/$5.00

In summary, these investigations into the CMIP6 pre-
dictions under abrupt4×CO2 simulations indicate that the
changes in large-scale environment predicted by this set of 11
CMIP6 models are consistent with the behaviors expected
by prior studies. The multi-model mean values of ∆M/∆T
and ∆SST/∆T shown in Figure S2a, b are thus reasonable
to use in our analysis.
Text S2. The multiple linear regressions used in Equa-
tions 2 and 3 of the main text are weighted by the num-
ber of observations in each bin. For reliability, only bins
where there is a sufficient number of all MCC identifi-
cations (NTotal ≥ 500) and closed MCC identifications
(NClosed ≥ 100) are included in the fits. Because of the
split-fit formulation in Equation 3, it was also necessary to
apply bootstrapping for uncertainty estimation. Fits are
bootstrapped with replacement (×5000) from the original
∆fClosed-M-SST matrix from Figure 2a. The explained vari-
ance of both regressions is high (R2=0.99). Mean and stan-
dard deviation of coefficients (calculated over all 5000 boot-
strapped fits) for Equations 2, 3 are provided in Table S1.

We additionally checked for collinearity between predic-
tors (bins of M, SST where NTotal ≥ 500, NClosed ≥ 100)
and found that it was minimal as the correlation was very
low. For all input data (Equation 2), R2=0.034. For Equa-
tion 3, R2=0.04 for the data subset where SST > 290 K
and 0.03 for SST ≤ 290 K. All of these correlations are
well below the R2=0.9 threshold where predictor collinear-
ity becomes an issue (Qu et al., 2015; D. T. McCoy et al.,
2022).
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Table S1. Mean and Standard Deviations of Regression Coefficients for Equations 2 and 3a,b

Fit a (K−1) b (K−1) c

Total -0.0269±0.0003 -0.0161±0.0002 4.64±0.05
SST > 290 K -0.0230±0.0004 -0.0145±0.0004 4.19±0.12
SST ≤ 290 K -0.0322±0.0002 -0.0165±0.0002 4.69±0.05

a Fits of fClosed −M − SST data (Figure 2a) generally take the form: fClosed = a ·M + b · SST + c.
b Equation 2 uses coefficients from row 1, Equation 3 uses coefficients from rows 2 and 3.

a)

b)

c)

Figure S1. Annual mean MIDAS cloud morphology
relative occurrence frequencies for 2003-2018: a) closed,
b) open, and c) cellular but disorganized MCC.
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a)

b)

c)

Figure S2. CMIP6 simulated change from piControl
to abrupt4 × CO2 in a) sea surface temperature (SST)
and b) lower tropospheric stability (as measured by the
marine cold air outbreak index, M) per degree of global
warming (measured by area-weighted change in 2 m air
temperature, ∆T ). c) Annual mean estimate of random-
overlapped low cloud fraction from the MODIS cloud
mask (Pincus et al., 2020), following Scott et al. (2020).
The black box in c) shows the out-of-sample test region
(15-30◦N, 140-115◦W) where a marine heatwave was in-
fluential between November 2013-January 2016 (Myers et
al., 2018; Schmeisser et al., 2019; Myers et al., 2021).
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Figure S3. Simulated ∆SST/∆T for individual CMIP6
models contributing to the multi-model mean shown in
Figure S2a.
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Figure S4. Simulated ∆M/∆T for individual CMIP6
models contributing to the multi-model mean shown in
Figure S2b.
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a)

b)

c)

d)

Figure S5. Standard deviation across individual CMIP6
model means for a) ∆SST/∆T and c) ∆M/∆T . Ratio of
multi model standard deviation over multi-model mean
for b) ∆SST/∆T and d) ∆M/∆T .
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a)

b)

e)

c)

d)

Figure S6. CMIP6 simulated changes for a) key sub-
tropical regions in Qu et al. (2014a) for b) ∆SST/∆T ,
c) ∆M/∆T , d) ∆Tair−sea/∆T , and e) an approximate
estimate of ∆EIS/∆T using M ≈ ∆Tair−sea − EIS +
constant (I. L. McCoy et al., 2017). a) The multi-model
mean of the approximate ∆EIS/∆T , as in Figure S2. b-
e) Individual model means (shapes) are shown with the
multi-model mean (red circle), 5-95% (thin gray lines),
and 25-75% (thick grey lines) for separate regional boxes
in a) and the combined regional box behavior.
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a) b)

Figure S7. Predicting MIDAS identified scene albedo
from Figure 1 using multiple linear regressions with a) CF
and b) CF and fthin as predictors. Fit predicted albedo
is shown on the y-axis and the raw scene albedo is on
the x-axis. Combined total (black), closed MCC (blue),
open MCC (pink), and cellular but disorganized (orange)
identifications are fit separately. R2 and p values are
shown for the individual (Raw) points and for the mean
fitted albedo within 25 x-axis quantile bins (Bin). Thick
lines show 2SE and thin the 25-75% range within each
quantile. Slope (m) and intercept (c) are shown for the
linear fit applied to the quantile bins (line). A dashed 1:1
line is included for reference. Generally, the closer m is
to one and c is to zero, the better the prediction with the
regression model, suggesting b) captures more of albedo
behavior than a).

a) b) c)

Figure S8. As in Figure 2a-c but for the full MI-
DAS period (2003-2018): the MIDAS relative occurrence
frequency in the M-SST environmental phase space a)
closed, b) open, and c) disorganized MCC.
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Figure S9. As in Figure 2d but using Equation 2 to predict fClosed from Figure 1a.
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a)

b)

c)

d)

Figure S10. As in Figure 3 but predicted from Equa-
tion 4 using coefficients from the no-split model in Equa-
tion 2 instead of the split model in Equation 3. a)
∆fClosed/∆T with the optical depth component of the
morphology feedback per ∆T assuming closed MCC shift
to b) open MCC, c) cellular but disorganized MCC, or d)
an aggregate of open and disorganized MCC dependent
on initial SST.


