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Abstract

Understanding the evolution of Earth’s magnetic field can provide insights into core processes and can constrain plate tectonics

and atmospheric shielding. The absolute paleointensity database PINT provides a curated repository of site mean, (i.e., cooling

unit), estimates of the strength of the magnetic field. We present a minor update to the PINT database to version 8.1.0 by adding

248 records from 31 studies. The PINT database is used to define a continuous model of the dipole field, using an approach

combining non-parametric and Monte Carlo resampling termed MCADAM. Three dipole field strength models spanning 50 ka to

3.7-4.2 Ga (MCADAM.1a-c) are presented, reflecting three tiers of increasingly more stringent data selection. The MCADAM

models allow for the estimation of the magnetic standoff distance, constraining the shielding of Earth’s atmosphere against

solar wind erosion provided by the geodynamo.
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Key Points:6

• Continuous dipole moment models for the past 3.7-4.2 billion years are presented7

• Our model reproduces salient features of the paleomagnetic dipole field8

• Paleomagnetosphere estimates suggest Precambrian atmospheric shielding was much9

weaker than present day10
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Abstract11

Understanding the evolution of Earth’s magnetic field can provide insights into core pro-12

cesses and can constrain plate tectonics and atmospheric shielding. The absolute pale-13

ointensity database PINT provides a curated repository of site mean, (i.e., cooling unit),14

estimates of the strength of the magnetic field. We present a minor update to the PINT15

database to version 8.1.0 by adding 248 records from 31 studies. The PINT database is16

used to define a continuous model of the dipole field, using an approach combining non-17

parametric and Monte Carlo resampling termed MCADAM. Three dipole field strength18

models spanning 50 ka to 3.7-4.2 Ga (MCADAM.1a-c) are presented, reflecting three tiers19

of increasingly more stringent data selection. The MCADAM models allow for the es-20

timation of the magnetic standoff distance, constraining the shielding of Earth’s atmo-21

sphere against solar wind erosion provided by the geodynamo.22

Plain Language Summary23

The geomagnetic field is a long-lived feature that provides critical shielding of Earth’s24

atmosphere from solar wind erosion. Understanding changes in field strength can pro-25

vide insight into the evolution of Earth’s core. Here we use an updated database of pa-26

leointensity estimates to develop new continuous models of the strength of Earth’s mag-27

netic field. These models include plausible uncertainties, and capture variations in field28

strength spanning 50 thousand to over 3.7 billion years ago. Using our models, we sug-29

gest that the atmospheric shielding provided by the field was about 60% the present-day30

shielding for most of the Precambrian.31

1 Introduction32

The evolution of Earth’s deep interior since core formation (Nimmo, 2015) > 4 bil-33

lion years ago (Ga) remains a topic of considerable study. Obtaining information of the34

deep interior is generally restricted to present-day observations. Alternatively, insights35

on processes occurring before the modern era require sampling geologic materials that36

formed at, or were transported to, Earth’s surface. However, the geomagnetic field is gen-37

erated in the liquid fraction of Earth’s core through the geodynamo, and changes in the38

morphology, strength and variability in the geodynamo may reflect the evolution of core39

processes and the pattern of heat flux across the core-mantle boundary (CMB). The ge-40

omagnetic field is also a critical component for Earth’s habitability (Rodŕıguez-Mozos41
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& Moya, 2017) due to the protective envelope provided by the magnetosphere against42

atmospheric erosion by charged solar particles. It is speculated that changes in the pa-43

leomagnetosphere may have contributed to substantial changes in the evolution of life44

(e.g., Meert et al., 2016).45

Paleomagnetic studies offer the potential to help close this gap: when rocks bear-46

ing magnetic carriers form, the geomagnetic field imparts a remanent magnetization that47

under ideal circumstances can be robustly preserved for billions of years. The strength48

of the geodynamo can be described by the magnitude of the dipole moment, the first-49

degree spherical harmonic component of the field, which should reflect ∼ 90% of the sur-50

face field signal. A fundamental question regarding Earth’s dynamo is how the dipole51

moment has changed over long timescales (≫ millions of years). Paleointensities mea-52

sured from the same geologic time (e.g., from the same cooling-unit, referred to as a “site”)53

can be related to paleointensities from other locations by transforming the paleointen-54

sity (B) into a virtual (axial) dipole moment (V(A)DM) using the following equation (Merrill55

et al., 1996):56

V DM =
4πRE

3

2µ0
B(1 + 3cos2I)0.5, (1)

where RE is Earth’s radius, µ0 is vacuum permeability, and I is the inclination of the57

site derived from paleomagnetic directional measurements (there is an equivalent trans-58

formation to VADM using site paleolatitude; Merrill et al., 1996). Virtual dipole moment59

transformations assert that the mean paleointensity measured at the site level can be60

entirely described by the dipole field, this simplification allows for comparisons of glob-61

ally distributed observations of field strength.62

Characterizing the time-varying paleomagnetic field can be approached using sev-63

eral different methods. On geologically recent timescales (< 100 thousand years, kyr),64

spherical harmonic models describe the morphology and strength of the field (e.g., Panovska65

et al., 2018). For the past 2 Myr, a continuous axial dipole moment model (Ziegler et66

al., 2011) can be constructed using relative paleointensity data from stacked sedimen-67

tary records combined with absolute paleointensity estimates, generally from volcanic68

sources. For longer timescales (≫ 2 million years), dipole moment descriptions are sub-69

stantially less well resolved. Tauxe and Staudigel (2004) report a mean value for the 0-70

300 Ma interval, whereas Ingham et al. (2014) and Kulakov et al. (2019) applied a more71

complex reversible-jump Markov Chain Monte Carlo approach to define Mesozoic trends.72
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Other approaches, applied to the Precambrian field, include binned data (e.g., Biggin73

et al., 2015), a low-degree polynomial fit (e.g., Bono et al., 2019), or sliding window av-74

erage (e.g., Tarduno et al., 2020). These meta-analyses have proven important in pro-75

viding observational constraints on dynamo and core evolution models (e.g., Biggin et76

al., 2015; Driscoll, 2016; Bono et al., 2019) and time-averaged and time-varying field es-77

timates (e.g., Selkin & Tauxe, 2000; Ziegler et al., 2011).78

In this study, we provide a minor version update to the PINT database (http://79

www.pintdb.org/; Biggin et al., 2009; Bono et al., 2022) that we use as the basis for80

a dipole moment evolution model (Section 2). In Section 3, we introduce a modeling frame-81

work, MCADAM (Monte Carlo Axial Dipole Average Model), that uses a combination82

of non-parametric site resampling, Monte Carlo simulations, and time-adaptive locally-83

weighted smoothing to produce a posterior distribution of field strength estimates from84

which a median dipole strength and associated predictive interval can be determined.85

Using the MCADAM framework and three filtered datasets from the PINT database that86

apply increasingly more stringent selection criteria, we present a suite of dipole moment87

evolution models that yield continuous predictions of the time-average (paleomagnetic)88

dipole moment extending back to the oldest paleomagnetic records from > 4 Ga, and89

compare these models with other time-average descriptions of field strength in deep time90

(Section 4) and the associated impact on the paleomagnetosphere (Section 5).91

2 Updates to PINT v8.1.092

The PINT database, a curated repository of absolute paleointensity records derived93

from volcanic sources and reported at the site mean level with associated meta-data, un-94

derwent a significant update to version 8.0.0, and we refer readers to Bono et al. (2022)95

who describe the current structure of the database and broadly summarizes the distri-96

bution and quality of the paleointensity dataset. The most salient changes in PINT v8.0.097

with respect to prior versions of the PINT database (Biggin et al., 2015) are the inclu-98

sion of new paleointensity data published through the end of 2019, the removal of demon-99

strably biased paleointensity records (so-called “auto-zeros”), and the integration of QPI as-100

sessments for over 90% of the database. QPI (Quality of Paleointensity; Biggin & Pa-101

terson, 2014) is a semi-quantitative framework to describe the reliability of a site mean102

paleointensity record, and we again refer readers to Bono et al. (2022) for a complete de-103

scription of QPI implementation in PINT v8.0.0.104
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In this study, we include a minor version update of PINT to v8.1.0 (Figure 1) that105

includes paleointensity records published in 2020 through July 2022. Included studies106

are not exhaustive of entire paleointensity dataset published during this interval, how-107

ever, it represents a good-faith effort to identify as many relevant studies as possible. In108

total, 248 new sites from 31 studies have been added to the PINT v8.1.0 database, in-109

creasing the total number of site mean records (NSites) to 4601. These data include con-110

tributions constraining the field during the Cambrian/Ediacaran (e.g., Thallner, Biggin,111

& Halls, 2021; Thallner, Biggin, McCausland, & Fu, 2021; Thallner et al., 2022; Zhou112

et al., 2022) and Neoproterozoic (e.g., Lloyd, Biggin, Halls, & Hill, 2021), which remain113

under-sampled relative to other geologic intervals.114
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Figure 1. PINT v8.1.0 absolute paleointensity database. Colored circles show site mean

records added since v8.0.0 (Bono et al., 2022); grey circles are data in v8.0.0. Symbol size and

color shows QPI score. Top: Phanerozoic; bottom: Precambrian.

QPI criteria allow for a semi-quantitative, objective definition of requirements to115

filter data from the PINT database, with the goal of improving the robustness of meta-116

analyses (Biggin & Paterson, 2014; Bono et al., 2022). Field strength estimates are in-117
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herently challenging to extract from the rock record. Paleointensity specimens may be118

compromised by the presence of non-ideal magnetic recorders (e.g., multidomain grains)119

and/or laboratory alteration. The potential for remanences to be reset by thermal or chem-120

ical over-printing after emplacement must also be excluded before accepting a measured121

paleointensity as valid and meaningfully linked to the emplacement age. Since the data122

may reflect some non-ideal paleointensity biases, some fraction of the site mean data should123

be excluded from analyses in order to improve the robustness of any resulting conclu-124

sions drawn from using the PINT database. However, paleointensity data are sparse and125

imperfect individual records may still yield meaningful inferences in aggregate. Thus it126

is crucial to define selection criteria that balance data quality with data availability, specif-127

ically for the development of time-averaged and time-evolution field descriptions on million-128

to-billion-year timescales. Meta-analyses considering other topics will, of course, result129

in different optimal selection criteria choice.130

Three different selection criteria are employed for model development (previously131

presented in Bono et al. (2022)). In addition to the following selection criteria, sites ex-132

plicitly described as having a transitional polarity were excluded from all datasets. The133

first two filters are (a) all data (NSites: 4194) and (b) QPI ≥3 (NSites: 2283). The third134

filter (c), introduced by Kulakov et al. (2019), prioritizes records passing specific QPI cri-135

teria (NSites: 976). We require evidence that the site age is well constrained and the pri-136

mary remanence is associated with the age estimate (QAGE) and there were experimen-137

tal controls to limit the influence of laboratory alteration (QALT) and non-ideal (i.e.,138

multidomain) magnetic carriers (QMD). We note that Smirnov et al. (2016) and Bono139

et al. (2019) previously identified paleointensity data which potentially under (over) es-140

timate field strength by fitting the shallow (steep) components of two-slope or concave141

Arai diagrams. Since this level of analysis was not applied to all records within PINT142

v8.1.0, we have not excluded the identified sites a priori, however, we distinguish sites143

that may be biased in Figure 2b and all but two sites are independently excluded using144

our “strict” prioritized QPI selection criteria.145

3 Time-varying paleofield models with uncertainties146

Here, we consider whether a continuous time-varying dipole moment model can be147

realized for the entire paleointensity record. Ideally, this model should take several fac-148

tors into consideration; we chose to focus on the following requirements:149
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1. Data selection should balance quality with availability of data.150

2. Not be overly sensitive to any given data point due to the sparse and non-uniform151

distribution of paleointensity site mean data.152

3. Reflect the uncertainty of individual site mean estimates in both age and field strength.153

4. Seek to average secular variation, taking into account the increasing sparsity of154

data going further back into geologic time.155

To meet these requirements, we employ a combination of techniques, which we re-156

fer to as a Monte Carlo Axial Dipole Average Model (MCADAM). The modeling frame-157

work was tested using a synthetic data set with a known “true” dipole moment and a158

temporal distribution derived from PINT v8.1.0 (Supplementary Text S1, Supplemen-159

tary Fig. S1). The MCADAM time-varying model is constructed as follows:160

1. Randomly resample the selected sites with replacement (similar to bootstrap sam-161

pling, following Efron and Tibshirani (1993)). A non-parametric resampling ap-162

proach is preferred since the temporal distribution of paleointensity records is highly163

non-uniform. Unlike a formal bootstrap, duplicate samples are discarded, result-164

ing in a realization with the same or fewer records than the entire selected data165

set. In this sense, we employ a conservative resampling technique.166

2. For each resampled site mean, we use Monte Carlo (MC) resampling to generate167

a new dipole moment and age constrained by the site mean and variance. Each168

dipole moment realization is calculated from a random realization of inclination169

(drawn from a Fisher distribution with k precision parameter from the PINT record)170

and a site mean field intensity (B) drawn from a normal distribution with a mean171

defined from the record. The variance for field strength, σ2
B , is determined from172

the unbiased estimate of standard deviation (Holtzman, 1950). In cases where site173

mean inclination is unavailable, the MC realization is drawn from a Fisher distri-174

bution with a mean inclination of 30.6◦ and k of 15, which describes a distribu-175

tion approximately covering the entire hemisphere. In cases where paleointensity176

uncertainty is unavailable, σB is set to 20% of B (estimated from the median dBn(%)177

of the entire PINT database). Similarly, if there is no uncertainty in site mean age,178

a standard deviation of 10% the site mean age is assigned (arbitrarily chosen based179

on the upper uncertainty bound for QAGE).180
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3. A weighted average is found for each sample using the weighting kernel defined181

below, based on a LOWESS averaging method (Cleveland (1979); also described182

as a Savitzky and Golay (1964) filter). For each point in the resampled record, de-183

fine a weighting kernel:184

• Kernel shape is defined using a tricube function where weights range from 0 to185

1 centered on sample age with a prescribed bandwidth outside of which the weight186

is 0.187

• Bandwidth is defined as the minimum age interval that both samples at least188

5 sites and the maximum of either 250 kyr or 2% of the age of the site (e.g., at189

least 76 Myr at 3.7 Ga), up to a maximum of 500 Myr. If there are fewer than190

5 sites within a 500 Myr interval, that point in the realization is dropped.191

4. To ease compilation, since each realization will return different number and dis-192

tribution of time steps, a linear interpolated curve with uniform, high-resolution193

time steps (here, 50 kyr) is determined from the weighted average for each real-194

ization.195

5. Steps 1-4 are repeated a large number of times (e.g., 104).196

6. Average statistics (mean, standard deviation, median, mode, 75% and 95% inter-197

vals) for each step in the set of interpolated curves are determined.198

4 Comparing MCADAM to other compilations199

Applying the MCADAM approach with the PINT v8.1 dataset restricted by the200

three selection filters previously discussed (Section 2), the resulting time-varying mod-201

els (MCADAM.1a-c) are presented in Figure 2 and available for download in the Earth-202

Ref Data Archive (http://www.earthref.org/ERDA/2537/). Our preferred model is MCADAM.1b,203

which uses a moderately restrictive data selection requiring that paleointensity site records204

meet at least three of the QPI criteria. In general, these models reproduce several char-205

acteristic features previously observed in the paleofield (Figure 3 and Supplementary Fig-206

ures S2-S3), such as rise in field strength from the Matuyama to Brunhes chrons, inter-207

vals of high field strength during the Cretaceous Normal Superchron preceded by a weaker208

field (cf. Kulakov et al., 2019), and a high field during the Kiaman Superchron (e.g., Cot-209

trell et al., 2008) preceded by sustained weak field during the Devonian (Hawkins et al.,210

2019). For the 50 kyr to 2 Ma interval, there is good agreement between our model and211
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Figure 2. MCADAM time-varying model of dipole strength for the past 3.7 to 4.2 billion

years from PINT v8.1.0 data. White circles: selected site mean V(A)DMs; black points, Monte

Carlo realizations; grey lines, individual interpolated realizations; orange line, median dipole

moment with shaded 95% interval. a) MCADAM.1a, all non-transitional polarity data in PINT

v8.1.0; b) MCADAM.1b, QPI ≥3, blue circles mark sites that may be biased as identified by

Smirnov et al. (2016) or Bono et al. (2019); c) MCADAM.1c, prioritized QPI .
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that of PADM2M (Ziegler et al., 2011). Given the denser temporal sampling during the212

Phanerozoic, more variation in the field can be resolved with a smaller confidence inter-213

val for the resulting model relative to the Precambrian.214
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Figure 3. MCADAM.1b time-varying model of paleofield strength for the past 3.7 billion

years from PINT v8.1.0 data meeting QPI ≥ 3 criteria. In all panels, the orange line represents

the median time-varying model from MCADAM.1b with shaded 95% interval. a) Quaternary;

blue line shows PADM2M model (Ziegler et al., 2011); b) Mesozoic; blue line and field shows

median and 95% interval estimates of (Kulakov et al., 2019); c) Precambrian; purple line shows

polynomial fit of Bono et al. (2019), blue lines show bin medians with shaded 95% confidence

intervals of Biggin et al. (2015).

The Paleozoic through the Precambrian poses the greatest challenge for charac-215

terizing the time-varying field due to large gaps in the PINT database. In our model,216

we use a linear interpolation between sampling, however given that intervals spanning217

∼100 Myr may not sample the field at all, it is almost certain there are field variations218

that are not captured in our model. Given the combination of non-parametric resam-219

pling for site selection, the Monte Carlo resampler, and locally-weighted regression, there-220

fore, the MCADAM should represent an overly smoothed description of the time vary-221

ing field, particularly where the data are are sparse. Despite our best efforts, in inter-222
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vals when data is particularly sparse the model may be susceptible to bias from anoma-223

lous data For example, in Figure 2, the difference between MCADAM.1b and MCADAM.1c224

at ∼680 Ma due to the contribution of a potentially biased record; the authors of the225

study reporting the anomalous site mean paleointensity, Salminen et al. (2006), explic-226

itly acknowledge the potential for high-field bias in their data. We note that the oldest227

field records of the Archean are dominated by the Thellier-Coe zircon experiments of Tarduno228

et al. (2015, 2020), which due to their lack of orientation, represent a source of uncer-229

tainty in our model during the Eoarchean/Hadean. The fall and rise in field strength dur-230

ing the Mid- to Late- Proterozoic (as suggested by Biggin et al., 2015) is supported by231

our model, as well as the drop in field strength at the end of the Proterozoic reported232

in Bono et al. (2019).233

There are some general differences in the analyses of Biggin et al. (2015), Bono et234

al. (2019) and our study that can explain the apparent disagreement in estimated field235

trends. First, there are differences in the data sets used between both analyses, as sum-236

marized by Bono et al. (2019). Second, Biggin et al. (2015) divided the data sets into237

Early, Mid and Late Proterozoic bins and summarized the statistical properties each bin.238

Bono et al. (2019) focused a priori on estimates from slow-cooling intrusives (or select239

sites demonstrating time-averaged statistics) resulting in a substantially reduced data240

set compared to either this study or Biggin et al. (2015), and from this restricted data241

set fit a 2nd degree polynomial trend. In this study, we forgo both dividing the data into242

prescribed bins or focusing a priori on intrinsically time-averaged records. Our study243

uses a broader dataset, supplemented by new data published since the prior studies, that244

results in more variation in the interpreted dipole field strength relative to prior work.245

5 Implications for the paleomagnetosphere246

The geodynamo and the associated magnetic field extending into space provides247

shielding of Earth’s atmosphere and surface water from erosion due to solar wind (Tarduno248

et al., 2014). In addition to increasing erosion of the atmosphere, reductions in magnetic249

shielding can drive breakdown of atmospheric ozone, which limits penetration of UVB250

radiation (Glassmeier & Vogt, 2010). Currently, modelling the paleomagnetosphere in251

detail requires fully coupled dynamo and solar activity simulations beyond the scope of252

what is available. However, a first-order approximation can be estimated using a series253

of reasonable simplifications, chiefly that the field is axial dipole-dominated (Biggin et254
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Figure 4. Magnetopause standoff distance estimate using equation 2 and the MCADAM.1b

modeled dipole moment curve with PINT v8.1.0 data meeting QPI≥ 3 criteria. Blue curve is the

predicted median dipole moment and blue field is the 95% predicted interval. Contour lines show

standoff distance relative to the present day dipole field. Red gradient shows standoff distance

associated with the Halloween 2003 solar storm (Rosenqvist et al., 2005).

al., 2020) and that magnetic shielding can be approximated by the magnetic standoff dis-255

tance, or magnetopause, where solar wind pressure is balanced by the repelling force of256

a dipole field (Siscoe & Sibeck, 1980). The present-day magnetopause is ∼ 10 RE (Earth257

radii) and will fluctuate on annual timescales as the magnetic pole moves about the spin258

axis (Shue et al., 1997).259

Following the approach of Tarduno et al. (2010), the magnetic standoff distance,260

Rs(t) for a given time t, can be estimated (Siscoe & Chen, 1975) by261

Rs(t) =

[
µ2
0f

2
0ME(t)

2

4π2(2µ0PSW (t) +B2
IMF )

]
(2)

where µ0 is vacuum permeability, f0 is a field shape parameter for the magnetosphere262

(1.16 for present day Earth, Voigt (1995), held constant here), and BIMF is the inter-263

planetary field (which is neglected in our calculations since it is small, ≪ 10 nT). ME(t)264

is the (paleo)magnetic dipole moment as a function of time. PSW (t) is the solar wind265

ram pressure, which is dependent on the mass loss rate of the sun and velocity of solar266

wind as a function of time. Extrapolating present day PSW (∼1.915 nPa; Shue et al.,267

1997) back through time can be done with power-law model (t/t0)
−2.33 based on solar268

analogs (e.g., Wood et al., 2005), at least until the young Hadean sun.269
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Using MCADAM the magnetic standoff distance from 50 ka to 3.7-4.2 Ga can be270

estimated (Figure 4 and Supplementary Figures S4-S5). The magnetopause responds rapidly271

to changes in either solar wind activity or the geomagnetic field and will vary by ∼1-2272

RE during typical space weather (Voigt, 1995). Coronal mass ejections and solar flares273

can suppress the standoff distance by half (e.g., the Halloween 2003 event was observed274

to reduce the magnetopause to ∼ 5 RE ; Rosenqvist et al., 2005). While short term re-275

ductions (≪ millions of years) in magnetic shielding are unlikely to impact the biosphere276

significantly, protracted intervals of reduced shielding may have affected evolutionary pro-277

cesses (e.g., Meert et al., 2016; van der Boon et al., 2022). Our analysis suggests that278

for the Precambrian the combination of the generally weaker dipole field and the increased279

solar wind associated with a younger, more active sun resulted in a long-term average280

standoff of ∼ 6 RE , which is about 60% the present-day distance and consistent with281

early Archean estimates (Tarduno et al., 2010). Individual time-averaged estimates (on282

million-year or shorter timescales) suggest there were intervals with even further reduced283

standoff distances (e.g., the Ediacaran or Devonian; Meert et al., 2016; van der Boon et284

al., 2022). These values represent a baseline standoff distance, which could be further285

reduced due to internal changes in the field (e.g., reduction or loss of dipolarity) or in-286

creases in solar wind activity (e.g., coronal mass ejections, solar flares). This implies that287

during the Precambrian, atmospheric shielding by the magnetic field was potentially ten-288

uous despite the robust, albeit weaker than present day, dipole field.289

6 Conclusions290

Using an updated PINT database, we have developed a new continuous dipole field291

modelling approach (MCADAM). Based on three approaches of selection data using QPI cri-292

teria, our MCADAM models can robustly recover the average dipole field strength and293

captures key features previously identified in the Quaternary, the Mesozoic, and the Pre-294

cambrian.295

Paleomagnetic standoff distance is estimated using our preferred model MCADAM.1b296

and suggests that following the earliest Archean, the Precambrian standoff distance was297

∼ 6 RE . At the end of the Precambrian, the paleomagnetosphere experienced a pro-298

tracted (∼ 20−100 Myr) minima during the Ediacaran, that was followed by a highly299

variable, generally (but not monotonically) increasing standoff distance in the Phanero-300

zoic.301
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The MCADAM models produce a continuous description of the time-averaged pa-302

leomagnetic field strength, accompanied by plausible uncertainty bounds defined by the303

underlying data, spanning an interval starting 50 ka and extending into the earliest Archean.304

We envision that the MCADAM approach will help bridge the gap between discrete pa-305

leomagnetic observations and both geodynamical and paleomagnetospheric investigations306

that require predictive time series grounded in empirical datasets.307
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X - 2 BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA

Columns:

(i) 0..N : Time step index

(ii) age : Age step realization (Ma)

(iii) mean : MCADAM mean dipole (1e22 Am2)

(iv) std : MCADAM dipole standard deviation (1e22 Am2)

(v) mode : MCADAM dipole mode (1e22 Am2)

(vi) 2.5% : MCADAM dipole 2.5% percentile (1e22 Am2)

(vii) 25% : MCADAM dipole 25% percentile (1e22 Am2)

(viii) 50% : MCADAM dipole 50% percentile (1e22 Am2)

(ix) 75% : MCADAM dipole 75% percentile (1e22 Am2)

(x) 97.5% : MCADAM dipole 97.5% percentile (1e22 Am2)
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Text S1. MCADAM sensitivity testing

To test the ability for the MCADAM modeling approach to recover true temporal

variation of the average paleomagnetic field, we conducted a series of synthetic tests

exploring models sensitivity to sampling density and distribution, as well as the data

uncertainty in site mean age and dipole moment. We first define a “true” time-varying

dipole field, here a combination of sine waves with the variation of PADM2M (Ziegler et al.,

2011) superimposed over the baselines signal. Site mean age distributions are defined to

mimic the PINT v8.1.0 distribution of ages. Synthetic paleointensity samples are realized

from this “true” mean trend using a Gaussian distribution with a mean corresponding to

the mean field predicted by the true dipole moment and a σ inferred from PINT v8.1.0,

this variation represents a combination of secular variation and measurement noise, and

Gaussian draw for the site age with increasing age uncertainty from 100 kyr to 20 Myr

depending on site age (< 1 Myr and > 1 Gyr, respectively). While the “true” mean field

does not resemble the paleomagnetic field, and the variation is arbitrarily defined, visually

this synthetic field record appears to share broadly similar features to the paleomagnetic

record in the PINT v8.1.0 database such that we feel it represents a reasonably synthetic

analogue for sensitivity testing. The MCADAM modelling approach is applied to this

synthetic dataset, using the synthetic VDM realizations to estimate the mean dipole field

strength.

The results of these sensitivity tests demonstrate that generally the modeling approach

is capable of reproducing the “true” median field temporal trend within the 75-95% in-

terval of time trends. The MCADAM-derived model was able to estimate the true field
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strength within the 95% predictive interval over 99% of the time, within the 75% predictive

interval over 80% of the time, and yields a root-mean-square misfit of 1.7 ZAm2. Visually,

the MCADAM model’s predictive interval reacts appropriately for the data density and

distribution, with the predictive interval shrinking when the density of observations is

high and enlarging when the density is low or the scatter is high.
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Mahgoub, A. N., Garćıa-Amador, B. I., & Alva-Valdivia, L. M. (2021). Comprehensive

palaeomagnetic study of San Borja and Jaraguay monogenetic volcanic fields, Baja

California (28–30°N): Considerations on latitudinal corrections. Geophysical Journal

International , 225 (3), 1897–1919. doi: 10.1093/gji/ggab064

Meng, J., Lhuillier, F., Wang, C., Liu, H., Eid, B., & Li, Y. (2020). Paleomagnetism

of Paleocene-Maastrichtian (60–70 Ma) Lava Flows From Tian Shan (Central Asia):

Directional Analysis and Paleointensities. Journal of Geophysical Research: Solid

Earth, 125 (9). doi: 10.1029/2019JB018631

August 30, 2022, 8:03pm



BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA X - 9

Miki, M., Seki, H., Yamamoto, Y., Gouzu, C., Hyodo, H., Uno, K., & Otofuji, Y.-i.

(2020). Paleomagnetism, paleointensity and geochronology of a Proterozoic dolerite

dyke from southern West Greenland. Journal of Geodynamics , 139 , 101752. doi:

10.1016/j.jog.2020.101752

Radhakrishna, T., Asanulla, M. R., Venkateshwarlu, M., & Soumya, G. S. (2020). Low

geomagnetic field strength during End-Cretaceous Deccan volcanism and whole man-

tle convection. Scientific Reports , 10 (1), 10743. doi: 10.1038/s41598-020-67245-6

Rosenqvist, L., Opgenoorth, H., Buchert, S., McCrea, I., Amm, O., & Lathuillere, C.

(2005). Extreme solar-terrestrial events of October 2003: High-latitude and Clus-

ter observations of the large geomagnetic disturbances on 30 October. Journal of

Geophysical Research: Space Physics , 110 (A9). doi: 10.1029/2004JA010927

Sánchez-Moreno, E. M., Calvo-Rathert, M., Goguitchaichvili, A., Tauxe, L., Vashakidze,

G. T., & Lebedev, V. A. (2020). Weak palaeointensity results over a Pliocene volcanic

sequence from Lesser Caucasus (Georgia): Transitional record or time averaged field?

Geophysical Journal International , 220 (3), 1604–1618. doi: 10.1093/gji/ggz533

Sánchez-Moreno, E. M., Calvo-Rathert, M., Goguitchaichvili, A., Vashakidze, G. T.,

Camps, P., Morales-Contreras, J., . . . Lebedev, V. A. (2021). Paleointensity Results

From Pliocene Lavas of the Lesser Caucasus Obtained Using the Multispecimen

Parallel Differential pTRM Method: A Comparison With Thellier-Thellier and IZZI

Data. Journal of Geophysical Research: Solid Earth, 126 (4), e2020JB019682. doi:

10.1029/2020JB019682

Schnepp, E., Arneitz, P., Ganerød, M., Scholger, R., Fritz, I., Egli, R., & Leonhardt, R.

August 30, 2022, 8:03pm



X - 10 BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA

(2021). Intermediate field directions recorded in Pliocene basalts in Styria (Austria):

Evidence for cryptochron C2r.2r-1. Earth, Planets and Space, 73 (1), 182. doi:

10.1186/s40623-021-01518-w

Shcherbakova, V. V., Bakhmutov, V. G., Thallner, D., Shcherbakov, V. P., Zhidkov,

G. V., & Biggin, A. J. (2020). Ultra-low palaeointensities from East European

Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran.

Geophysical Journal International , 220 (3), 1928–1946. doi: 10.1093/gji/ggz566

Tarduno, J. A., Cottrell, R. D., Bono, R. K., Oda, H., Davis, W. J., Fayek, M., . . .

Blackman, E. G. (2020). Paleomagnetism indicates that primary magnetite in zir-

con records a strong Hadean geodynamo. Proceedings of the National Academy of

Sciences , 117 (5), 2309–2318. doi: 10.1073/pnas.1916553117

Thallner, D., Biggin, A. J., & Halls, H. C. (2021). An extended period of extremely weak

geomagnetic field suggested by palaeointensities from the Ediacaran Grenville dykes

(SE Canada). Earth and Planetary Science Letters , 568 , 117025. doi: 10.1016/

j.epsl.2021.117025

Thallner, D., Biggin, A. J., McCausland, P. J. A., & Fu, R. R. (2021). New Pale-

ointensities From the Skinner Cove Formation, Newfoundland, Suggest a Changing

State of the Geomagnetic Field at the Ediacaran-Cambrian Transition. Journal of

Geophysical Research: Solid Earth, 126 (9). doi: 10.1029/2021JB022292

Thallner, D., Shcherbakova, V. V., Bakhmutov, V. G., Shcherbakov, V. P., Zhidkov,

G. V., Poliachenko, I. B., & Biggin, A. J. (2022). New palaeodirections and palaeoin-

tensity data from extensive profiles through the Ediacaran section of the Volyn Basalt

August 30, 2022, 8:03pm



BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA X - 11

Province (NW Ukraine). Geophysical Journal International , 231 (1), 474–492. doi:

10.1093/gji/ggac186

Yoshimura, Y., Yamazaki, T., Yamamoto, Y., Ahn, H.-S., Kidane, T., & Otofuji, Y.-i.

(2020). Geomagnetic Paleointensity Around 30 Ma Estimated From Afro-Arabian

Large Igneous Province. Geochemistry, Geophysics, Geosystems , 21 (12). doi: 10

.1029/2020GC009341

Zhang, Y., Swanson-Hysell, N. L., Avery, M. S., & Fu, R. R. (2022, July). High geomag-

netic field intensity recorded by anorthosite xenoliths requires a strongly powered late

Mesoproterozoic geodynamo. Proceedings of the National Academy of Sciences of the

United States of America, 119 (29), e2202875119. doi: 10.1073/pnas.2202875119

Zhou, T., Tarduno, J. A., Nimmo, F., Cottrell, R. D., Bono, R. K., Ibanez-Mejia, M.,

. . . Padgett, F. (2022, July). Early Cambrian renewal of the geodynamo and the

origin of inner core structure. Nature Communications , 13 (1), 4161. doi: 10.1038/

s41467-022-31677-7

Ziegler, L. B., Constable, C. G., Johnson, C. L., & Tauxe, L. (2011). PADM2M: A

penalized maximum likelihood model of the 0–2 Ma palaeomagnetic axial dipole

moment. Geophysical Journal International , 184 (3), 1069–1089. doi: 10.1111/j.1365

-246X.2010.04905.x

August 30, 2022, 8:03pm



X - 12 BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA

0 500 1000 1500 2000 2500 3000 3500 4000
Age (Ma)

0

2

4

6

8

V
D

M
 (1

022
 A

m
2 )

True mean DM Synthetic VDMs MCADAM
median 95% interval

0 200 400
Age (Ma)

0

2

4

6

8

V
D

M
 (1

022
 A

m
2 )

2400 2500 2600 2700 2800
Age (Ma)

0

2

4

6

8

V
D

M
 (1

022
 A

m
2 )

3200 3300 3400 3500 3600
Age (Ma)

0

2

4

6

8
V

D
M

 (1
022

 A
m

2 )

Figure S1. Synthetic test of MCADAM using a known dipole mean field with realistic

variation. Blue line: true mean dipole moment; grey circles: synthetic VDMs drawn from

true mean dipole moment with plausible variance; orange line and field, MCADAM model

median field strength estimate and 95% predictive interval.
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Figure S2. MCADAM.1a time-varying model of paleofield strength for the past 3.7

billion years from all non-transitional sites in the PINT v8.1.0 database. In all panels, the

orange line represents the median time-varying model from MCADAM.1b with shaded

95% interval. a) Quaternary; blue line shows PADM2M model (Ziegler et al., 2011); b)

Mesozoic; blue line and field shows median and 95% interval of QPI binned following

(Kulakov et al., 2019); c) Precambrian; purple line shows polynomial fit of Bono et al.

(2019), blue lines show bin medians with shaded 95% confidence intervals of Biggin et al.

(2015).

August 30, 2022, 8:03pm



X - 14 BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

V
(A

)D
M

(1
022

 A
m

2 )
a) PADM2M

Ziegler et al. (2011)

50 75 100 125 150 175 200
0

5

10

15

b) QAGE+QALT+QMD
Kulakov et al. (2019)

500 1000 1500 2000 2500 3000 3500
Age (Ma)

0

5

10

15

V
(A

)D
M

(1
022

 A
m

2 )

c) Bono et al. (2019)
Biggin et al. (2015)

Figure S3. MCADAM.1c time-varying model of paleofield strength for the past 3.7

billion years from PINT v8.1.0 data meeting the prioritized QPI criteria: QAGE + QALT

+ QMD. In all panels, the orange line represents the median time-varying model from

MCADAM.1b with shaded 95% interval. a) Quaternary; blue line shows PADM2M model

(Ziegler et al., 2011); b) Mesozoic; blue line and field shows median and 95% interval of

QPI binned following (Kulakov et al., 2019); c) Precambrian; purple line shows polynomial

fit of Bono et al. (2019), blue lines show bin medians with shaded 95% confidence intervals

of Biggin et al. (2015).
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Figure S4. Magnetopause standoff distance estimate using equation 2 in the main text

and the MCADAM.1a modeled dipole moment curve with from all non-transitional sites

in the PINT v8.1.0 database. Blue curve is the predicted median dipole moment and blue

field is the 95% predicted interval. Contour lines show standoff distance relative to the

present day. Red gradient shows standoff distance associated with the Halloween 2003

solar storm (Rosenqvist et al., 2005).
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Figure S5. Magnetopause standoff distance estimate using equation 2 in the main text

and the MCADAM.1c modeled dipole moment curve with PINT v8.1.0 data meeting the

prioritized QPI criteria: QAGE + QALT + QMD. Blue curve is the predicted median

dipole moment and blue field is the 95% predicted interval. Contour lines show standoff

distance relative to the present day. Red gradient shows standoff distance associated with

the Halloween 2003 solar storm (Rosenqvist et al., 2005).
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Table S1. New entries to PINT v8.1.0
REF Site Lat. Site Long. Age NSites V(A)DM QPI Author (Year)

745 36.8 -116.5 12.7 2 6.09 6.0 Abdulghafur and Bowles (2019)

746 41.4 43.3 3.6 8 3.89 4.6 Sánchez-Moreno et al. (2020)

747 -33.5 -55.9 157.6 3 9.79 3.0 Cervantes-Solano et al. (2020)

749 64.4 -51.4 1818.0 1 2.33 6.0 Miki et al. (2020)

750 51.5 26.0 568.5 4 0.90 7.8 Shcherbakova et al. (2020)

751 -26.2 117.0 3495.5 24 1.88 2.1 Tarduno et al. (2020)

752 13.3 37.9 30.1 11 4.19 3.9 Yoshimura et al. (2020)

753 40.2 75.3 63.6 4 6.13 6.5 Meng et al. (2020)

754 17.3 73.7 65.5 10 1.18 3.0 Radhakrishna, Asanulla, Venkateshwarlu, and

Soumya (2020)

755 -78.0 164.9 1.9 26 4.36 5.6 Asefaw, Tauxe, Koppers, and Staudigel (2021)

756 41.4 44.0 67.4 6 5.26 4.5 Calvo-Rathert et al. (2021)

757 56.3 -3.0 366.4 14 2.48 6.8 Hawkins et al. (2021)

758 25.1 88.7 117.0 10 3.50 1.0 Kapawar and Mamilla (2021)

759 76.4 -77.1 723.0 11 1.00 6.5 Lloyd, Biggin, Halls, and Hill (2021)

760 41.4 43.3 3.5 18 4.36 7.1 Sánchez-Moreno et al. (2021)

761 46.0 279.3 589.8 7 0.92 7.4 Thallner, Biggin, and Halls (2021)

762 -23.8 116.1 912.0 6 3.89 7.5 Lloyd, Biggin, and Li (2021)

763 54.8 87.1 250.0 4 1.72 5.5 Eliseev et al. (2021)

764 49.5 301.9 550.0 8 1.40 6.8 Thallner, Biggin, McCausland, and Fu (2021)

765 -15.9 -5.7 9.2 5 2.33 7.8 Engbers, Grappone, Mark, and Biggin (2022)

767 -16.8 208.6 2.6 2 7.34 4.0 Chauvin, Roperch, and Levi (2005)

768 41.5 43.3 3.8 6 6.89 1.0 Goguitchaichvili, Alva-Valdivia, Urrutia-

Fucugauchi, Morales, and Ferrari (2000)

769 38.0 127.4 73.1 5 3.10 4.0 Chang, Kim, Doh, and Yu (2013)

770 65.1 -15.5 1.5 6 5.97 4.2 Døssing, Muxworthy, Supakulopas, Riishuus, and

Mac Niocaill (2016)

772 51.5 -68.9 214.0 1 4.90 5.0 Eitel, Gilder, Spray, Thompson, and Pohl (2016)

774 29.1 -114.1 7.4 9 5.34 6.4 Mahgoub, Garćıa-Amador, and Alva-Valdivia

(2021)

775 46.9 15.9 2.3 9 5.37 4.0 Schnepp et al. (2021)

777 42.7 268.9 1091.8 7 8.31 6.0 Zhang, Swanson-Hysell, Avery, and Fu (2022)

778 34.8 -98.9 532.5 1 3.50 6.0 Zhou et al. (2022)

779 45.7 -74.6 531.4 1 0.94 9.0 Lloyd, Biggin, Paterson, and McCausland (2022)

780 51.7 24.7 571.0 17 0.81 6.8 Thallner et al. (2022)

REF: study reference number in PINT v8.1.0; mean site location, Lat., Long. in degrees; mean site age in Ma; NSites:

number of sites associated with the study; mean V(A)DM: virtual (axial) dipole moment, in 1022 Am2; QPI : mean

QPI score of sites associated with the study.
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