MCADAM: A continuous paleomagnetic dipole moment model for at least 3.7 billion years

Richard K. Bono¹, Greig Paterson², and Andrew Biggin²

¹Florida State University ²University of Liverpool

November 24, 2022

Abstract

Understanding the evolution of Earth's magnetic field can provide insights into core processes and can constrain plate tectonics and atmospheric shielding. The absolute paleointensity database PINT provides a curated repository of site mean, (i.e., cooling unit), estimates of the strength of the magnetic field. We present a minor update to the PINT database to version 8.1.0 by adding 248 records from 31 studies. The PINT database is used to define a continuous model of the dipole field, using an approach combining non-parametric and Monte Carlo resampling termed MCADAM. Three dipole field strength models spanning 50 ka to 3.7-4.2 Ga (MCADAM.1a-c) are presented, reflecting three tiers of increasingly more stringent data selection. The MCADAM models allow for the estimation of the magnetic standoff distance, constraining the shielding of Earth's atmosphere against solar wind erosion provided by the geodynamo.

MCADAM: A continuous paleomagnetic dipole moment model for at least 3.7 billion years

Richard K. Bono¹, Greig A. Paterson², and Andrew J. Biggin²

- ¹Department of Earth, Ocean and Atmospheric Science, Florida State University, FL 32304, USA
- 2 Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L697ZE, UK

Key Points:

1

2

3

5

6

7

8

• Continuous dip	pole moment models	for the past $3.7-4.2$	billion years are presented
------------------	--------------------	------------------------	-----------------------------

- Our model reproduces salient features of the paleomagnetic dipole field
- Paleomagnetosphere estimates suggest Precambrian atmospheric shielding was much
 weaker than present day

Corresponding author: Richard K. Bono, rbono@fsu.edu

11 Abstract

Understanding the evolution of Earth's magnetic field can provide insights into core pro-12 cesses and can constrain plate tectonics and atmospheric shielding. The absolute pale-13 ointensity database PINT provides a curated repository of site mean, (i.e., cooling unit), 14 estimates of the strength of the magnetic field. We present a minor update to the PINT 15 database to version 8.1.0 by adding 248 records from 31 studies. The PINT database is 16 used to define a continuous model of the dipole field, using an approach combining non-17 parametric and Monte Carlo resampling termed MCADAM. Three dipole field strength 18 models spanning 50 ka to 3.7-4.2 Ga (MCADAM.1a-c) are presented, reflecting three tiers 19 of increasingly more stringent data selection. The MCADAM models allow for the es-20 timation of the magnetic standoff distance, constraining the shielding of Earth's atmo-21 sphere against solar wind erosion provided by the geodynamo. 22

23

Plain Language Summary

The geomagnetic field is a long-lived feature that provides critical shielding of Earth's 24 atmosphere from solar wind erosion. Understanding changes in field strength can pro-25 vide insight into the evolution of Earth's core. Here we use an updated database of pa-26 leointensity estimates to develop new continuous models of the strength of Earth's mag-27 netic field. These models include plausible uncertainties, and capture variations in field 28 strength spanning 50 thousand to over 3.7 billion years ago. Using our models, we sug-29 gest that the atmospheric shielding provided by the field was about 60% the present-day 30 shielding for most of the Precambrian. 31

32 1 Introduction

The evolution of Earth's deep interior since core formation (Nimmo, 2015) > 4 bil-33 lion years ago (Ga) remains a topic of considerable study. Obtaining information of the 34 deep interior is generally restricted to present-day observations. Alternatively, insights 35 on processes occurring before the modern era require sampling geologic materials that 36 formed at, or were transported to, Earth's surface. However, the geomagnetic field is gen-37 erated in the liquid fraction of Earth's core through the geodynamo, and changes in the 38 morphology, strength and variability in the geodynamo may reflect the evolution of core 39 processes and the pattern of heat flux across the core-mantle boundary (CMB). The ge-40 omagnetic field is also a critical component for Earth's habitability (Rodríguez-Mozos 41

-2-

& Moya, 2017) due to the protective envelope provided by the magnetosphere against
atmospheric erosion by charged solar particles. It is speculated that changes in the paleomagnetosphere may have contributed to substantial changes in the evolution of life
(e.g., Meert et al., 2016).

Paleomagnetic studies offer the potential to help close this gap: when rocks bear-46 ing magnetic carriers form, the geomagnetic field imparts a remanent magnetization that 47 under ideal circumstances can be robustly preserved for billions of years. The strength 48 of the geodynamo can be described by the magnitude of the dipole moment, the first-49 degree spherical harmonic component of the field, which should reflect $\sim 90\%$ of the sur-50 face field signal. A fundamental question regarding Earth's dynamo is how the dipole 51 moment has changed over long timescales (\gg millions of years). Paleointensities mea-52 sured from the same geologic time (e.g., from the same cooling-unit, referred to as a "site") 53 can be related to paleointensities from other locations by transforming the paleointen-54 sity (B) into a virtual (axial) dipole moment (V(A)DM) using the following equation (Merrill 55 et al., 1996): 56

$$VDM = \frac{4\pi R_E{}^3}{2\mu_0} B(1 + 3\cos^2 I)^{0.5},$$
(1)

where R_E is Earth's radius, μ_0 is vacuum permeability, and I is the inclination of the site derived from paleomagnetic directional measurements (there is an equivalent transformation to VADM using site paleolatitude; Merrill et al., 1996). Virtual dipole moment transformations assert that the mean paleointensity measured at the site level can be entirely described by the dipole field, this simplification allows for comparisons of globally distributed observations of field strength.

Characterizing the time-varying paleomagnetic field can be approached using sev-63 eral different methods. On geologically recent timescales (< 100 thousand years, kyr), 64 spherical harmonic models describe the morphology and strength of the field (e.g., Panovska 65 et al., 2018). For the past 2 Myr, a continuous axial dipole moment model (Ziegler et 66 al., 2011) can be constructed using relative paleointensity data from stacked sedimen-67 tary records combined with absolute paleointensity estimates, generally from volcanic 68 sources. For longer timescales ($\gg 2$ million years), dipole moment descriptions are sub-69 stantially less well resolved. Tauxe and Staudigel (2004) report a mean value for the 0-70 300 Ma interval, whereas Ingham et al. (2014) and Kulakov et al. (2019) applied a more 71 complex reversible-jump Markov Chain Monte Carlo approach to define Mesozoic trends. 72

-3-

Other approaches, applied to the Precambrian field, include binned data (e.g., Biggin et al., 2015), a low-degree polynomial fit (e.g., Bono et al., 2019), or sliding window average (e.g., Tarduno et al., 2020). These meta-analyses have proven important in providing observational constraints on dynamo and core evolution models (e.g., Biggin et al., 2015; Driscoll, 2016; Bono et al., 2019) and time-averaged and time-varying field estimates (e.g., Selkin & Tauxe, 2000; Ziegler et al., 2011).

In this study, we provide a minor version update to the PINT database (http:// 79 www.pintdb.org/; Biggin et al., 2009; Bono et al., 2022) that we use as the basis for 80 a dipole moment evolution model (Section 2). In Section 3, we introduce a modeling frame-81 work, MCADAM (Monte Carlo Axial Dipole Average Model), that uses a combination 82 of non-parametric site resampling, Monte Carlo simulations, and time-adaptive locally-83 weighted smoothing to produce a posterior distribution of field strength estimates from 84 which a median dipole strength and associated predictive interval can be determined. 85 Using the MCADAM framework and three filtered datasets from the PINT database that 86 apply increasingly more stringent selection criteria, we present a suite of dipole moment 87 evolution models that yield continuous predictions of the time-average (paleomagnetic) 88 dipole moment extending back to the oldest paleomagnetic records from > 4 Ga, and 89 compare these models with other time-average descriptions of field strength in deep time 90 (Section 4) and the associated impact on the paleomagnetosphere (Section 5). 91

92

2 Updates to PINT v8.1.0

The PINT database, a curated repository of absolute paleointensity records derived 93 from volcanic sources and reported at the site mean level with associated meta-data, un-94 derwent a significant update to version 8.0.0, and we refer readers to Bono et al. (2022) 95 who describe the current structure of the database and broadly summarizes the distri-96 bution and quality of the paleointensity dataset. The most salient changes in PINT v8.0.0 97 with respect to prior versions of the PINT database (Biggin et al., 2015) are the inclu-98 sion of new paleointensity data published through the end of 2019, the removal of demonqq strably biased paleointensity records (so-called "auto-zeros"), and the integration of Q_{PI} as-100 sessments for over 90% of the database. Q_{PI} (Quality of Paleointensity; Biggin & Pa-101 terson, 2014) is a semi-quantitative framework to describe the reliability of a site mean 102 paleointensity record, and we again refer readers to Bono et al. (2022) for a complete de-103 scription of Q_{PI} implementation in PINT v8.0.0. 104

In this study, we include a minor version update of PINT to v8.1.0 (Figure 1) that 105 includes paleointensity records published in 2020 through July 2022. Included studies 106 are not exhaustive of entire paleointensity dataset published during this interval, how-107 ever, it represents a good-faith effort to identify as many relevant studies as possible. In 108 total, 248 new sites from 31 studies have been added to the PINT v8.1.0 database, in-109 creasing the total number of site mean records (N_{Sites}) to 4601. These data include con-110 tributions constraining the field during the Cambrian/Ediacaran (e.g., Thallner, Biggin, 111 & Halls, 2021; Thallner, Biggin, McCausland, & Fu, 2021; Thallner et al., 2022; Zhou 112 et al., 2022) and Neoproterozoic (e.g., Lloyd, Biggin, Halls, & Hill, 2021), which remain 113 under-sampled relative to other geologic intervals. 114

Figure 1. PINT v8.1.0 absolute paleointensity database. Colored circles show site mean records added since v8.0.0 (Bono et al., 2022); grey circles are data in v8.0.0. Symbol size and color shows Q_{PI} score. Top: Phanerozoic; bottom: Precambrian.

 Q_{PI} criteria allow for a semi-quantitative, objective definition of requirements to filter data from the PINT database, with the goal of improving the robustness of metaanalyses (Biggin & Paterson, 2014; Bono et al., 2022). Field strength estimates are in-

herently challenging to extract from the rock record. Paleointensity specimens may be 118 compromised by the presence of non-ideal magnetic recorders (e.g., multidomain grains) 119 and/or laboratory alteration. The potential for remanences to be reset by thermal or chem-120 ical over-printing after emplacement must also be excluded before accepting a measured 121 paleointensity as valid and meaningfully linked to the emplacement age. Since the data 122 may reflect some non-ideal paleointensity biases, some fraction of the site mean data should 123 be excluded from analyses in order to improve the robustness of any resulting conclu-124 sions drawn from using the PINT database. However, paleointensity data are sparse and 125 imperfect individual records may still yield meaningful inferences in aggregate. Thus it 126 is crucial to define selection criteria that balance data quality with data availability, specif-127 ically for the development of time-averaged and time-evolution field descriptions on million-128 to-billion-year timescales. Meta-analyses considering other topics will, of course, result 129 in different optimal selection criteria choice. 130

Three different selection criteria are employed for model development (previously 131 presented in Bono et al. (2022)). In addition to the following selection criteria, sites ex-132 plicitly described as having a transitional polarity were excluded from all datasets. The 133 first two filters are (a) all data (N_{Sites} : 4194) and (b) $Q_{PI} \geq 3$ (N_{Sites} : 2283). The third 134 filter (c), introduced by Kulakov et al. (2019), prioritizes records passing specific Q_{PI} cri-135 teria $(N_{Sites}: 976)$. We require evidence that the site age is well constrained and the pri-136 mary remanence is associated with the age estimate (QAGE) and there were experimen-137 tal controls to limit the influence of laboratory alteration (QALT) and non-ideal (i.e., 138 multidomain) magnetic carriers (QMD). We note that Smirnov et al. (2016) and Bono 139 et al. (2019) previously identified paleointensity data which potentially under (over) es-140 timate field strength by fitting the shallow (steep) components of two-slope or concave 141 Arai diagrams. Since this level of analysis was not applied to all records within PINT 142 v8.1.0, we have not excluded the identified sites a priori, however, we distinguish sites 143 that may be biased in Figure 2b and all but two sites are independently excluded using 144 our "strict" prioritized Q_{PI} selection criteria. 145

146

3 Time-varying paleofield models with uncertainties

Here, we consider whether a continuous time-varying dipole moment model can be realized for the entire paleointensity record. Ideally, this model should take several factors into consideration; we chose to focus on the following requirements:

1. Data selection should balance quality with availability of data. 150 2. Not be overly sensitive to any given data point due to the sparse and non-uniform 151 distribution of paleointensity site mean data. 152 3. Reflect the uncertainty of individual site mean estimates in both age and field strength. 153 4. Seek to average secular variation, taking into account the increasing sparsity of 154 data going further back into geologic time. 155 To meet these requirements, we employ a combination of techniques, which we re-156 fer to as a Monte Carlo Axial Dipole Average Model (MCADAM). The modeling frame-157 work was tested using a synthetic data set with a known "true" dipole moment and a 158 temporal distribution derived from PINT v8.1.0 (Supplementary Text S1, Supplemen-159 tary Fig. S1). The MCADAM time-varying model is constructed as follows: 160 1. Randomly resample the selected sites with replacement (similar to bootstrap sam-161 pling, following Efron and Tibshirani (1993)). A non-parametric resampling ap-162 proach is preferred since the temporal distribution of paleointensity records is highly 163 non-uniform. Unlike a formal bootstrap, duplicate samples are discarded, result-164 ing in a realization with the same or fewer records than the entire selected data 165 set. In this sense, we employ a conservative resampling technique. 166 2. For each resampled site mean, we use Monte Carlo (MC) resampling to generate 167 a new dipole moment and age constrained by the site mean and variance. Each 168 dipole moment realization is calculated from a random realization of inclination 169 (drawn from a Fisher distribution with k precision parameter from the PINT record) 170 and a site mean field intensity (B) drawn from a normal distribution with a mean 171 defined from the record. The variance for field strength, σ_B^2 , is determined from 172 the unbiased estimate of standard deviation (Holtzman, 1950). In cases where site 173 mean inclination is unavailable, the MC realization is drawn from a Fisher distri-174 bution with a mean inclination of 30.6° and k of 15, which describes a distribu-175 tion approximately covering the entire hemisphere. In cases where paleointensity 176 uncertainty is unavailable, σ_B is set to 20% of B (estimated from the median dBn(%)) 177 of the entire PINT database). Similarly, if there is no uncertainty in site mean age, 178 a standard deviation of 10% the site mean age is assigned (arbitrarily chosen based 179 on the upper uncertainty bound for QAGE). 180

-7-

3. A weighted average is found for each sample using the weighting kernel defined 181 below, based on a LOWESS averaging method (Cleveland (1979); also described 182 as a Savitzky and Golay (1964) filter). For each point in the resampled record, de-183 fine a weighting kernel: 184 • Kernel shape is defined using a tricube function where weights range from 0 to 185 1 centered on sample age with a prescribed bandwidth outside of which the weight 186 is 0. 187 • Bandwidth is defined as the minimum age interval that both samples at least 188 5 sites and the maximum of either 250 kyr or 2% of the age of the site (e.g., at 189 least 76 Myr at 3.7 Ga), up to a maximum of 500 Myr. If there are fewer than 190 5 sites within a 500 Myr interval, that point in the realization is dropped. 191 4. To ease compilation, since each realization will return different number and dis-192 tribution of time steps, a linear interpolated curve with uniform, high-resolution 193 time steps (here, 50 kyr) is determined from the weighted average for each real-194 ization. 195 5. Steps 1-4 are repeated a large number of times (e.g., 10^4). 196 6. Average statistics (mean, standard deviation, median, mode, 75% and 95% inter-197 vals) for each step in the set of interpolated curves are determined. 198

¹⁹⁹ 4 Comparing MCADAM to other compilations

Applying the MCADAM approach with the PINT v8.1 dataset restricted by the 200 three selection filters previously discussed (Section 2), the resulting time-varying mod-201 els (MCADAM.1a-c) are presented in Figure 2 and available for download in the Earth-202 Ref Data Archive (http://www.earthref.org/ERDA/2537/). Our preferred model is MCADAM.1b, 203 which uses a moderately restrictive data selection requiring that paleointensity site records 204 meet at least three of the Q_{PI} criteria. In general, these models reproduce several char-205 acteristic features previously observed in the paleofield (Figure 3 and Supplementary Fig-206 ures S2-S3), such as rise in field strength from the Matuyama to Brunhes chrons, inter-207 vals of high field strength during the Cretaceous Normal Superchron preceded by a weaker 208 field (cf. Kulakov et al., 2019), and a high field during the Kiaman Superchron (e.g., Cot-209 trell et al., 2008) preceded by sustained weak field during the Devonian (Hawkins et al., 210 2019). For the 50 kyr to 2 Ma interval, there is good agreement between our model and 211

Figure 2. MCADAM time-varying model of dipole strength for the past 3.7 to 4.2 billion years from PINT v8.1.0 data. White circles: selected site mean V(A)DMs; black points, Monte Carlo realizations; grey lines, individual interpolated realizations; orange line, median dipole moment with shaded 95% interval. a) MCADAM.1a, all non-transitional polarity data in PINT v8.1.0; b) MCADAM.1b, $Q_{PI} \ge 3$, blue circles mark sites that may be biased as identified by Smirnov et al. (2016) or Bono et al. (2019); c) MCADAM.1c, prioritized Q_{PI} .

that of PADM2M (Ziegler et al., 2011). Given the denser temporal sampling during the Phanerozoic, more variation in the field can be resolved with a smaller confidence interval for the resulting model relative to the Precambrian.

Figure 3. MCADAM.1b time-varying model of paleofield strength for the past 3.7 billion years from PINT v8.1.0 data meeting $Q_{PI} \geq -3$ criteria. In all panels, the orange line represents the median time-varying model from MCADAM.1b with shaded 95% interval. a) Quaternary; blue line shows PADM2M model (Ziegler et al., 2011); b) Mesozoic; blue line and field shows median and 95% interval estimates of (Kulakov et al., 2019); c) Precambrian; purple line shows polynomial fit of Bono et al. (2019), blue lines show bin medians with shaded 95% confidence intervals of Biggin et al. (2015).

The Paleozoic through the Precambrian poses the greatest challenge for charac-215 terizing the time-varying field due to large gaps in the PINT database. In our model, 216 we use a linear interpolation between sampling, however given that intervals spanning 217 ~ 100 Myr may not sample the field at all, it is almost certain there are field variations 218 that are not captured in our model. Given the combination of non-parametric resam-219 pling for site selection, the Monte Carlo resampler, and locally-weighted regression, there-220 fore, the MCADAM should represent an overly smoothed description of the time vary-221 ing field, particularly where the data are are sparse. Despite our best efforts, in inter-222

vals when data is particularly sparse the model may be susceptible to bias from anoma-223 lous data For example, in Figure 2, the difference between MCADAM.1b and MCADAM.1c 224 at ~ 680 Ma due to the contribution of a potentially biased record; the authors of the 225 study reporting the anomalous site mean paleointensity, Salminen et al. (2006), explic-226 itly acknowledge the potential for high-field bias in their data. We note that the oldest 227 field records of the Archean are dominated by the Thellier-Coe zircon experiments of Tarduno 228 et al. (2015, 2020), which due to their lack of orientation, represent a source of uncer-229 tainty in our model during the Eoarchean/Hadean. The fall and rise in field strength dur-230 ing the Mid- to Late- Proterozoic (as suggested by Biggin et al., 2015) is supported by 231 our model, as well as the drop in field strength at the end of the Proterozoic reported 232 in Bono et al. (2019). 233

There are some general differences in the analyses of Biggin et al. (2015), Bono et 234 al. (2019) and our study that can explain the apparent disagreement in estimated field 235 trends. First, there are differences in the data sets used between both analyses, as sum-236 marized by Bono et al. (2019). Second, Biggin et al. (2015) divided the data sets into 237 Early, Mid and Late Proterozoic bins and summarized the statistical properties each bin. 238 Bono et al. (2019) focused a priori on estimates from slow-cooling intrusives (or select 239 sites demonstrating time-averaged statistics) resulting in a substantially reduced data 240 set compared to either this study or Biggin et al. (2015), and from this restricted data 241 set fit a 2^{nd} degree polynomial trend. In this study, we forgo both dividing the data into 242 prescribed bins or focusing a priori on intrinsically time-averaged records. Our study 243 uses a broader dataset, supplemented by new data published since the prior studies, that 244 results in more variation in the interpreted dipole field strength relative to prior work. 245

246

5 Implications for the paleomagnetosphere

The geodynamo and the associated magnetic field extending into space provides 247 shielding of Earth's atmosphere and surface water from erosion due to solar wind (Tarduno 248 et al., 2014). In addition to increasing erosion of the atmosphere, reductions in magnetic 249 shielding can drive breakdown of atmospheric ozone, which limits penetration of UVB 250 radiation (Glassmeier & Vogt, 2010). Currently, modelling the paleomagnetosphere in 251 detail requires fully coupled dynamo and solar activity simulations beyond the scope of 252 what is available. However, a first-order approximation can be estimated using a series 253 of reasonable simplifications, chiefly that the field is axial dipole-dominated (Biggin et 254

-11-

Figure 4. Magnetopause standoff distance estimate using equation 2 and the MCADAM.1b modeled dipole moment curve with PINT v8.1.0 data meeting $Q_{PI} \ge 3$ criteria. Blue curve is the predicted median dipole moment and blue field is the 95% predicted interval. Contour lines show standoff distance relative to the present day dipole field. Red gradient shows standoff distance associated with the Halloween 2003 solar storm (Rosenqvist et al., 2005).

al., 2020) and that magnetic shielding can be approximated by the magnetic standoff distance, or magnetopause, where solar wind pressure is balanced by the repelling force of a dipole field (Siscoe & Sibeck, 1980). The present-day magnetopause is ~ 10 R_E (Earth radii) and will fluctuate on annual timescales as the magnetic pole moves about the spin axis (Shue et al., 1997).

Following the approach of Tarduno et al. (2010), the magnetic standoff distance, $R_s(t)$ for a given time t, can be estimated (Siscoe & Chen, 1975) by

$$R_s(t) = \left[\frac{\mu_0^2 f_0^2 M_E(t)^2}{4\pi^2 (2\mu_0 P_{SW}(t) + B_{IMF}^2)}\right]$$
(2)

where μ_0 is vacuum permeability, f_0 is a field shape parameter for the magnetosphere 262 (1.16 for present day Earth, Voigt (1995), held constant here), and B_{IMF} is the inter-263 planetary field (which is neglected in our calculations since it is small, $\ll 10$ nT). $M_E(t)$ 264 is the (paleo)magnetic dipole moment as a function of time. $P_{SW}(t)$ is the solar wind 265 ram pressure, which is dependent on the mass loss rate of the sun and velocity of solar 266 wind as a function of time. Extrapolating present day P_{SW} (~1.915 nPa; Shue et al., 267 1997) back through time can be done with power-law model $(t/t_0)^{-2.33}$ based on solar 268 analogs (e.g., Wood et al., 2005), at least until the young Hadean sun. 269

Using MCADAM the magnetic standoff distance from 50 ka to 3.7-4.2 Ga can be 270 estimated (Figure 4 and Supplementary Figures S4-S5). The magnetopause responds rapidly 271 to changes in either solar wind activity or the geomagnetic field and will vary by \sim 1-2 272 R_E during typical space weather (Voigt, 1995). Coronal mass ejections and solar flares 273 can suppress the standoff distance by half (e.g., the Halloween 2003 event was observed 274 to reduce the magnetopause to ~ 5 R_E ; Rosenqvist et al., 2005). While short term re-275 ductions (\ll millions of years) in magnetic shielding are unlikely to impact the biosphere 276 significantly, protracted intervals of reduced shielding may have affected evolutionary pro-277 cesses (e.g., Meert et al., 2016; van der Boon et al., 2022). Our analysis suggests that 278 for the Precambrian the combination of the generally weaker dipole field and the increased 279 solar wind associated with a younger, more active sun resulted in a long-term average 280 standoff of ~ 6 R_E , which is about 60% the present-day distance and consistent with 281 early Archean estimates (Tarduno et al., 2010). Individual time-averaged estimates (on 282 million-year or shorter timescales) suggest there were intervals with even further reduced 283 standoff distances (e.g., the Ediacaran or Devonian; Meert et al., 2016; van der Boon et 284 al., 2022). These values represent a baseline standoff distance, which could be further 285 reduced due to internal changes in the field (e.g., reduction or loss of dipolarity) or in-286 creases in solar wind activity (e.g., coronal mass ejections, solar flares). This implies that 287 during the Precambrian, atmospheric shielding by the magnetic field was potentially ten-288 uous despite the robust, albeit weaker than present day, dipole field. 289

²⁹⁰ 6 Conclusions

Using an updated PINT database, we have developed a new continuous dipole field modelling approach (MCADAM). Based on three approaches of selection data using Q_{PI} criteria, our MCADAM models can robustly recover the average dipole field strength and captures key features previously identified in the Quaternary, the Mesozoic, and the Precambrian.

Paleomagnetic standoff distance is estimated using our preferred model MCADAM.1b and suggests that following the earliest Archean, the Precambrian standoff distance was $\sim 6 R_E$. At the end of the Precambrian, the paleomagnetosphere experienced a protracted ($\sim 20-100$ Myr) minima during the Ediacaran, that was followed by a highly variable, generally (but not monotonically) increasing standoff distance in the Phanerozoic.

-13-

The MCADAM models produce a continuous description of the time-averaged paleomagnetic field strength, accompanied by plausible uncertainty bounds defined by the underlying data, spanning an interval starting 50 ka and extending into the earliest Archean. We envision that the MCADAM approach will help bridge the gap between discrete paleomagnetic observations and both geodynamical and paleomagnetospheric investigations that require predictive time series grounded in empirical datasets.

308 Acknowledgments

- ³⁰⁹ R.K.B. acknowledges support for The Leverhulme Trust Early Career Fellowship (ECF-
- ³¹⁰ 2020-617). G.A.P. is funded by a Natural Environment Research Council Independent
- Research Fellowship (NE/P017266/1). A.J.B acknowledges a Research Leadership Award
- (RLA-2016-080) provided by The Leverhulme Trust. We thank D. Thallner for assistance
- in merging site records from Eastern Europe.

³¹⁴ Open Research – Data Availability

PINT v8.1.0 is available at http://www.pintdb.org/. MCADAM.1a-c model outputs are available in the EarthRef Data Archive at http://www.earthref.org/ERDA/ 2537/.

318 References

- Abdulghafur, F., & Bowles, J. A. (2019). Absolute Paleointensity Study of Miocene Tiva Canyon Tuff, Yucca Mountain, Nevada: Role of Fine-Particle Grain-Size
 Variations. *Geochemistry, Geophysics, Geosystems, 20*(12), 5818–5830. doi: 10.1029/2019GC008728
- Asefaw, H., Tauxe, L., Koppers, A. a. P., & Staudigel, H. (2021). Four-Dimensional
 Paleomagnetic Dataset: Plio-Pleistocene Paleodirection and Paleointensity Re sults From the Erebus Volcanic Province, Antarctica. Journal of Geophysical
 Research: Solid Earth, 126(2), e2020JB020834. doi: 10.1029/2020JB020834
- Biggin, A. J., Bono, R. K., Meduri, D. G., Sprain, C. J., Davies, C. J., Holme, R., &
 Doubrovine, P. V. (2020). Quantitative estimates of average geomagnetic axial
 dipole dominance in deep geological time. *Nature Communications*, 11(1),
 6100. doi: 10.1038/s41467-020-19794-7
- Biggin, A. J., & Paterson, G. A. (2014). A new set of qualitative reliability cri-

332	teria to aid inferences on palaeomagnetic dipole moment variations through
333	geological time. Frontiers in Earth Science, 2. doi: 10.3389/feart.2014.00024
334	Biggin, A. J., Piispa, E. J., Pesonen, L. J., Holme, R., Paterson, G. A., Veikkolainen,
335	T., & Tauxe, L. (2015). Palaeomagnetic field intensity variations suggest
336	Mesoproterozoic inner-core nucleation. Nature, $526(7572)$, $245-248$. doi:
337	10.1038/nature 15523
338	Biggin, A. J., Strik, G. H. M. A., & Langereis, C. G. (2009). The intensity of the
339	geomagnetic field in the late-Archaean: New measurements and an analysis of
340	the updated IAGA palaeo intensity database. Earth, Planets and Space, $61(1)$,
341	9–22. doi: 10.1186/BF03352881
342	Bono, R. K., Paterson, G. A., van der Boon, A., Engbers, Y. A., Michael Grappone,
343	J., Handford, B., Biggin, A. J. (2022). The PINT database: A defini-
344	tive compilation of absolute palaeomagnetic intensity determinations since 4
345	billion years ago. Geophysical Journal International, $229(1)$, $522-545$. doi:
346	10.1093/gji/ggab490
347	Bono, R. K., Tarduno, J. A., Nimmo, F., & Cottrell, R. D. (2019). Young inner
348	core inferred from Ediacaran ultra-low geomagnetic field intensity. Nature Geo
349	science, $12(2)$, 143–147. doi: 10.1038/s41561-018-0288-0
350	Calvo-Rathert, M., Bógalo, M. F., Morales, J., Goguitchaichvili, A., Lebedev, V. A.,
351	Vashakidze, G., Herrero-Bervera, E. (2021). An Integrated Paleomag-
352	netic, Multimethod-Paleointensity, and Radiometric Study on Cretaceous and
353	Paleogene Lavas From the Lesser Caucasus: Geomagnetic and Tectonic Impli-
354	cations. Journal of Geophysical Research: Solid Earth, 126(2), e2020JB020019.
355	doi: 10.1029/2020JB020019
356	Cervantes-Solano, M., Goguitchaichvili, A., Sánchez Bettucci, L., Morales-Contreras,
357	J., Gogorza, C., & Núñez, P. (2020). An integrated paleomagnetic and mul-
358	tispecimen paleointensity study from the late Jurassic Zapicán dike swarm
359	(Uruguay). Journal of South American Earth Sciences, 104, 102815. doi:
360	10.1016/j.jsames.2020.102815
361	Chang, B., Kim, W., Doh, SJ., & Yu, Y. (2013). Paleointensity determination of
362	Late Cretaceous basalts in northwest South Korea: Implications for low and
363	stable paleofield strength in the Late Cretaceous. Earth, Planets and Space,
364	65(12), 1501-1513.doi: 10.5047/eps.2013.09.013

365	Chauvin, A., Roperch, P., & Levi, S. (2005). Reliability of geomagnetic paleoin-
366	tensity data: The effects of the NRM fraction and concave-up behavior on
367	paleointensity determinations by the Thellier method. Physics of the Earth
368	and Planetary Interiors, 150(4), 265–286. doi: 10.1016/j.pepi.2004.11.008
369	Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scat-
370	terplots. Journal of the American Statistical Association, 74(368), 829–836.
371	doi: 10.2307/2286407
372	Cottrell, R. D., Tarduno, J. A., & Roberts, J. (2008). The Kiaman Reversed Po-
373	larity Superchron at Kiama: Toward a field strength estimate based on single
374	silicate crystals. Physics of the Earth and Planetary Interiors, 169(1-4), 49–58.
375	doi: 10.1016/j.pepi.2008.07.041
376	Døssing, A., Muxworthy, A. R., Supakulopas, R., Riishuus, M. S., & Mac Niocaill,
377	C. (2016) . High northern geomagnetic field behavior and new constraints on
378	the Gilsá event: Paleomagnetic and 40Ar/39Ar results of ${\sim}0.5{-}3.1$ Ma basalts
379	from Jökuldalur, Iceland. Earth and Planetary Science Letters, 456, 98–111.
380	doi: 10.1016/j.epsl.2016.09.022
381	Driscoll, P. E. (2016). Simulating 2 Ga of geodynamo history. Geophysical Research
382	Letters, $43(11)$, 2016GL068858. doi: 10.1002/2016GL068858
383	Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York:
384	Chapman & Hall.
385	Eitel, M., Gilder, S. A., Spray, J., Thompson, L., & Pohl, J. (2016). A paleomag-
386	netic and rock magnetic study of the Manicouagan impact structure: Impli-
387	cations for crater formation and geodynamo effects. Journal of Geophysical
388	Research: Solid Earth, $121(2)$, $436-454$. doi: $10.1002/2015$ JB012577
389	Eliseev, A., Shcherbakova, V., Metelkin, D., Mikhaltsov, N., Zhidkov, G., Abashev,
390	V., & Rogov, A. (2021). Low Geomagnetic Field Paleointensity on the Per-
391	mian–Triassic Boundary from Study of the Kuznetsk Basin Traps (Southern
392	Siberia). Russian Geology and Geophysics. doi: 10.2113/RGG20204330
393	Engbers, Y. A., Grappone, J. M., Mark, D. F., & Biggin, A. J. (2022). Low Paleoin-
394	tensities and Ar/Ar Ages From Saint Helena Provide Evidence for Recurring
395	Magnetic Field Weaknesses in the South Atlantic. Journal of Geophysical
396	Research: Solid Earth, 127(3), e2021JB023358. doi: 10.1029/2021JB023358
397	Glassmeier, KH., & Vogt, J. (2010). Magnetic Polarity Transitions and Biospheric

398	Effects. Space Science Reviews, $155(1)$, $387-410$. doi: $10.1007/s11214-010-9659$
399	-6
400	Goguitchaichvili, A., Alva-Valdivia, L. M., Urrutia-Fucugauchi, J., Morales, J.,
401	& Ferrari, L. (2000). Absolute palaeointensity results from the Trans-
402	Mexican Volcanic Belt: Implications for the late Miocene geomagnetic
403	field strength. Geophysical Journal International, 143, 977–984. doi:
404	10.1046 / j.1365-246 X.2000.01301. x
405	Hawkins, L. M. A., Anwar, T., Shcherbakova, V. V., Biggin, A. J., Kravchinsky,
406	V. A., Shatsillo, A. V., & Pavlov, V. E. (2019). An exceptionally weak De-
407	vonian geomagnetic field recorded by the Viluy Traps, Siberia. Earth and
408	Planetary Science Letters, 506, 134–145. doi: 10.1016/j.epsl.2018.10.035
409	Hawkins, L. M. A., Grappone, J. M., Sprain, C. J., Saengduean, P., Sage, E. J.,
410	Thomas-Cunningham, S., Biggin, A. J. (2021). Intensity of the Earth's
411	magnetic field: Evidence for a Mid-Paleozoic dipole low. Proceedings of the
412	National Academy of Sciences, 118(34). doi: 10.1073/pnas.2017342118
413	Holtzman, W. H. (1950). The Unbiased Estimate of the Population Variance and
414	Standard Deviation. The American Journal of Psychology, 63(4), 615–617.
415	doi: 10.2307/1418879
416	Ingham, E., Heslop, D., Roberts, A. P., Hawkins, R., & Sambridge, M. (2014). Is
417	there a link between geomagnetic reversal frequency and paleointensity? A
418	Bayesian approach. Journal of Geophysical Research: Solid Earth, 119(7),
419	5290–5304. doi: 10.1002/2014JB010947
420	Kapawar, M. R., & Mamilla, V. (2021). Paleointensity of the Earth's mag-
421	netic field at ${\sim}117$ Ma determined from the Rajmahal and Sylhet Trap
422	Basalts, India. Journal of Earth System Science, 130(3), 154. doi:
423	10.1007/s12040-021-01652-9
424	Kulakov, E., Sprain, C., Doubrovine, P., Smirnov, A., Paterson, G., Hawkins, L.,
425	\ldots Biggin, A. (2019). Analysis of an updated paleo intensity database (Q $_{\rm PI}$
426	-PINT) for 65-200 Ma: Implications for the long-term history of dipole mo-
427	ment through the Mesozoic. Journal of Geophysical Research: Solid Earth,
428	2018 JB017287. doi: 10.1029/2018 JB017287
429	Lloyd, S. J., Biggin, A. J., Halls, H., & Hill, M. J. (2021). First palaeointen-
430	sity data from the cryogenian and their potential implications for inner core

431	nucleation age. $Geophysical Journal International, 226(1), 66-77.$ doi:
432	10.1093/gji/ggab090
433	Lloyd, S. J., Biggin, A. J., & Li, ZX. (2021). New Paleointensity Data Suggest
434	Possible Phanerozoic-Type Paleomagnetic Variations in the Precambrian. Geo -
435	chemistry, Geophysics, Geosystems, $22(10)$. doi: $10.1029/2021$ GC009990
436	Lloyd, S. J., Biggin, A. J., Paterson, G. A., & McCausland, P. J. A. (2022). Ex-
437	tremely weak early Cambrian dipole moment similar to Ediacaran: Evidence
438	for long-term trends in geomagnetic field behaviour? Earth and Planetary
439	Science Letters, 595, 117757. doi: 10.1016/j.epsl.2022.117757
440	Mahgoub, A. N., García-Amador, B. I., & Alva-Valdivia, L. M. (2021). Com-
441	prehensive palaeomagnetic study of San Borja and Jaraguay monogenetic
442	volcanic fields, Baja California (28–30°N): Considerations on latitudinal
443	corrections. Geophysical Journal International, 225(3), 1897–1919. doi:
444	10.1093/gji/ggab064
445	Meert, J. G., Levashova, N. M., Bazhenov, M. L., & Landing, E. (2016). Rapid
446	changes of magnetic Field polarity in the late Ediacaran: Linking the Cam-
447	brian evolutionary radiation and increased UV-B radiation. Gondwana Re-
448	search, 34, 149–157. doi: 10.1016/j.gr.2016.01.001
449	Meng, J., Lhuillier, F., Wang, C., Liu, H., Eid, B., & Li, Y. (2020). Paleomagnetism
450	of Paleocene-Maastrichtian (60–70 Ma) Lava Flows From Tian Shan (Cen
451	tral Asia): Directional Analysis and Paleointensities. Journal of Geophysical
452	Research: Solid Earth, 125(9). doi: 10.1029/2019JB018631
453	Merrill, R. T., McElhinny, M. W., & McFadden, P. L. (1996). The Magnetic Field
454	of the Earth: Paleomagnetism, the Core, and the Deep Mantle (Vol. 63). Aca-
455	demic Press.
456	Miki, M., Seki, H., Yamamoto, Y., Gouzu, C., Hyodo, H., Uno, K., & Otofuji, Yi.
457	(2020). Paleomagnetism, paleointensity and geochronology of a Proterozoic
458	dolerite dyke from southern West Greenland. Journal of Geodynamics, 139,
459	101752. doi: 10.1016/j.jog.2020.101752
460	Nimmo, F. (2015). 9.08 - Thermal and Compositional Evolution of the Core. In
461	G. Schubert (Ed.), Treatise on Geophysics (Second Edition) (pp. 201–219).
462	Oxford: Elsevier.
463	Panovska, S., Constable, C. G., & Korte, M. (2018). Extending Global Continu-

-18-

464	ous Geomagnetic Field Reconstructions on Timescales Beyond Human Civ-				
465	ilization. Geochemistry, Geophysics, Geosystems, $19(12)$, $4757-4772$. doi:				
466	10.1029/2018GC007966				
467	Radhakrishna, T., Asanulla, M. R., Venkateshwarlu, M., & Soumya, G. S. (2020).				
468	Low geomagnetic field strength during End-Cretaceous Deccan volcan-				
469	ism and whole mantle convection. Scientific Reports, $10(1)$, 10743. doi:				
470	10.1038/s41598-020-67245-6				
471	Rodríguez-Mozos, J. M., & Moya, A. (2017). Statistical-likelihood Exo-Planetary				
472	Habitability Index (SEPHI). Monthly Notices of the Royal Astronomical Soci-				
473	$ety,471(4),4628{-}4636.$ doi: 10.1093/mnras/stx1910				
474	Rosenqvist, L., Opgenoorth, H., Buchert, S., McCrea, I., Amm, O., & Lathuillere,				
475	C. (2005). Extreme solar-terrestrial events of October 2003: High-latitude				
476	and Cluster observations of the large geomagnetic disturbances on 30 Oc-				
477	tober. Journal of Geophysical Research: Space Physics, 110(A9). doi:				
478	10.1029/2004JA010927				
479	Salminen, J., Donadini, F., Pesonen, L. J., Masaitis, V. L., & Naumov, M. V.				
480	(2006). Paleomagnetism and petrophysics of the Jänisjärvi impact struc-				
481	ture, Russian Karelia. Meteoritics & Planetary Science, 41(12), 1853–1870.				
482	doi: $10.1111/j.1945-5100.2006.tb00456.x$				
483	Sánchez-Moreno, E. M., Calvo-Rathert, M., Goguitchaichvili, A., Tauxe, L.,				
484	Vashakidze, G. T., & Lebedev, V. A. (2020). Weak palaeointensity results over				
485	a Pliocene volcanic sequence from Lesser Caucasus (Georgia): Transitional				
486	record or time averaged field? Geophysical Journal International, 220(3),				
487	1604–1618. doi: $10.1093/gji/ggz533$				
488	Sánchez-Moreno, E. M., Calvo-Rathert, M., Goguitchaichvili, A., Vashakidze, G. T.,				
489	Camps, P., Morales-Contreras, J., Lebedev, V. A. (2021). Paleointen-				
490	sity Results From Pliocene Lavas of the Lesser Caucasus Obtained Using				
491	the Multispecimen Parallel Differential pTRM Method: A Comparison With				
492	Thellier-Thellier and IZZI Data. Journal of Geophysical Research: Solid Earth,				
493	126(4), e2020JB019682. doi: 10.1029/2020JB019682				
494	Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by				
495	Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639.				
496	doi: 10.1021/ac60214a047				

497	Schnepp, E., Arneitz, P., Ganerød, M., Scholger, R., Fritz, I., Egli, R., & Leonhardt,
498	R. (2021). Intermediate field directions recorded in Pliocene basalts in Styria
499	(Austria): Evidence for cryptochron C2r.2r-1. Earth, Planets and Space, 73(1),
500	182. doi: $10.1186/s40623-021-01518-w$
501	Selkin, P. A., & Tauxe, L. (2000). Long-term variations in palaeointensity.
502	Philosophical Transactions of the Royal Society of London. Series A: Math-
503	ematical, Physical and Engineering Sciences, 358(1768), 1065–1088. doi:
504	10.1098/rsta.2000.0574
505	Shcherbakova, V. V., Bakhmutov, V. G., Thallner, D., Shcherbakov, V. P., Zhidkov,
506	G. V., & Biggin, A. J. (2020). Ultra-low palaeointensities from East Euro-
507	pean Craton, Ukraine support a globally anomalous palaeomagnetic field in
508	the Ediacaran. Geophysical Journal International, $220(3)$, $1928-1946$. doi:
509	10.1093/gji/ggz566
510	Shue, JH., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., &
511	Singer, H. J. (1997). A new functional form to study the solar wind control
512	of the magnetopause size and shape. Journal of Geophysical Research: Space
513	<i>Physics</i> , $102(A5)$, 9497–9511. doi: 10.1029/97JA00196
514	Siscoe, G. L., & Chen, CK. (1975). The paleomagnetosphere. Journal of Geophysi-
515	cal Research, $80(34)$, 4675–4680. doi: 10.1029/JA080i034p04675
516	Siscoe, G. L., & Sibeck, D. G. (1980). Effects of nondipole components on auro-
517	ral zone configurations during weak dipole field epochs. Journal of Geophysical
518	Research: Solid Earth, $85(B7)$, $3549-3556$. doi: $10.1029/JB085iB07p03549$
519	Smirnov, A. V., Tarduno, J. A., Kulakov, E. V., McEnroe, S. A., & Bono, R. K.
520	(2016). Palaeointensity, core thermal conductivity and the unknown age of
521	the inner core. Geophysical Journal International, $205(2)$, 1190–1195. doi:
522	10.1093/gji/ggw080
523	Tarduno, J. A., Blackman, E. G., & Mamajek, E. E. (2014). Detecting the old-
524	est geodynamo and attendant shielding from the solar wind: Implications for
525	habitability. Physics of the Earth and Planetary Interiors, 233, 68–87. doi:
526	10.1016/j.pepi.2014.05.007
527	Tarduno, J. A., Cottrell, R. D., Bono, R. K., Oda, H., Davis, W. J., Fayek, M.,
528	Blackman, E. G. (2020). Paleomagnetism indicates that primary magnetite
529	in zircon records a strong Hadean geodynamo. Proceedings of the National

530	Academy of Sciences, 117(5), 2309–2318. doi: 10.1073/pnas.1916553117
531	Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F., & Bono, R. K. (2015). A
532	Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Sci
533	ence, $349(6247)$, $521-524$. doi: 10.1126/science.aaa9114
534	Tarduno, J. A., Cottrell, R. D., Watkeys, M. K., Hofmann, A., Doubrovine, P. V.,
535	Mamajek, E. E., Usui, Y. (2010). Geodynamo, Solar Wind, and Magne-
536	topause 3.4 to 3.45 Billion Years Ago. Science, $327(5970)$, 1238–1240. doi:
537	10.1126/science.1183445
538	Tauxe, L., & Staudigel, H. (2004). Strength of the geomagnetic field in the Cre-
539	taceous Normal Superchron: New data from submarine basaltic glass of the
540	Troodos Ophiolite: CRETACEOUS NORMAL SUPERCHRON. Geochemistry,
541	Geophysics, Geosystems, 5(2),n/a-n/a. doi: 10.1029/2003GC000635
542	Thallner, D., Biggin, A. J., & Halls, H. C. (2021). An extended period of extremely
543	weak geomagnetic field suggested by palaeointensities from the Ediacaran
544	Grenville dykes (SE Canada). Earth and Planetary Science Letters, 568,
545	117025. doi: 10.1016/j.epsl.2021.117025
546	Thallner, D., Biggin, A. J., McCausland, P. J. A., & Fu, R. R. (2021). New Pa-
547	leointensities From the Skinner Cove Formation, Newfoundland, Suggest
548	a Changing State of the Geomagnetic Field at the Ediacaran-Cambrian
549	Transition. Journal of Geophysical Research: Solid Earth, 126(9). doi:
550	10.1029/2021 JB022292
551	Thallner, D., Shcherbakova, V. V., Bakhmutov, V. G., Shcherbakov, V. P., Zhidkov,
552	G. V., Poliachenko, I. B., & Biggin, A. J. (2022). New palaeodirections and
553	palaeointensity data from extensive profiles through the Ediacaran section of
554	the Volyn Basalt Province (NW Ukraine). Geophysical Journal International,
555	231(1), 474-492.doi: 10.1093/gji/ggac186
556	van der Boon, A., Biggin, A. J., Thallner, D., Hounslow, M. W., Bono, R.,
557	Nawrocki, J., Da Silva, AC. (2022). A persistent non-uniformitarian
558	paleomagnetic field in the Devonian? Earth-Science Reviews, 231, 104073. doi:
559	10.1016/j.earscirev.2022.104073
560	Voigt, GH. (1995). Magnetospheric Configuration. In Handbook of Atmospheric
561	Electrodynamics (1st ed., Vol. 2, pp. 333–388). CRC Press. doi: $10.1201/$
562	9780203713297-11

563	Wood, B. E., Müller, HR., Zank, G. P., Linsky, J. L., & Redfield, S. (2005). New
564	Mass-Loss Measurements from Astrospheric Ly α Absorption. The Astrophysi-
565	cal Journal Letters, 628(2), L143. doi: 10.1086/432716
566	Yoshimura, Y., Yamazaki, T., Yamamoto, Y., Ahn, HS., Kidane, T., & Otofuji,
567	Yi. (2020). Geomagnetic Paleointensity Around 30 Ma Estimated From
568	Afro-Arabian Large Igneous Province. Geochemistry, Geophysics, Geosystems,
569	21(12). doi: 10.1029/2020GC009341
570	Zhang, Y., Swanson-Hysell, N. L., Avery, M. S., & Fu, R. R. (2022, July). High
571	geomagnetic field intensity recorded by anorthosite xenoliths requires a
572	strongly powered late Mesoproterozoic geodynamo. Proceedings of the National
573	Academy of Sciences of the United States of America, $119(29)$, e2202875119.
574	doi: 10.1073/pnas.2202875119
575	Zhou, T., Tarduno, J. A., Nimmo, F., Cottrell, R. D., Bono, R. K., Ibanez-Mejia,
576	M., Padgett, F. (2022, July). Early Cambrian renewal of the geodynamo
577	and the origin of inner core structure. Nature Communications, $13(1)$, 4161 .
578	doi: 10.1038/s41467-022-31677-7
579	Ziegler, L. B., Constable, C. G., Johnson, C. L., & Tauxe, L. (2011). PADM2M:
580	A penalized maximum likelihood model of the 0–2 Ma palaeomagnetic axial
581	dipole moment. Geophysical Journal International, $184(3)$, 1069–1089. doi:
582	10.1111/j.1365-246X.2010.04905.x

Supporting Information for "MCADAM: A continuous paleomagnetic dipole moment model for at least 3.7 billion years"

Richard K. Bono¹, Greig A. Paterson², and Andrew J. Biggin²

 $^1\mathrm{Department}$ of Earth, Ocean and Atmospheric Science, Florida State University, FL 32304, USA

 $^{2}\mathrm{Department}$ of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L697ZE, UK

Contents of this file

- 1. Text S1
- 2. Figures S1 to S5
- 3. Table S1

Additional Supporting Information (Files uploaded separately)

1. PINT v8.1.0 database. Available at http://www.pintdb.org, see website or Bono

et al. (2022) for complete description.

MCADAM.1a - MCADAM.1c. Available at http://www.earthref.org/ERDA/
 2537/.

Corresponding author: Richard K. Bono, Department of Earth, Ocean and Atmospheric Science, Florida State University, FL, USA (rbono@fsu.edu)

X - 2 BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA

Columns:

- (i) O...N: Time step index
- (ii) age : Age step realization (Ma)
- (iii) mean : MCADAM mean dipole (1e22 Am²)
- (iv) std : MCADAM dipole standard deviation (1e22 Am²)
- (v) mode : MCADAM dipole mode (1e22 Am²)
- (vi) 2.5%: MCADAM dipole 2.5% percentile (1e22 Am²)
- (vii) 25% : MCADAM dipole 25% percentile (1e22 Am²)
- (viii) 50% : MCADAM dipole 50% percentile (1e22 Am²)
- (ix) **75%** : MCADAM dipole 75% percentile (1e22 Am²)
- (x) 97.5% : MCADAM dipole 97.5% percentile (1e22 Am^2)

Text S1. MCADAM sensitivity testing

To test the ability for the MCADAM modeling approach to recover true temporal variation of the average paleomagnetic field, we conducted a series of synthetic tests exploring models sensitivity to sampling density and distribution, as well as the data uncertainty in site mean age and dipole moment. We first define a "true" time-varying dipole field, here a combination of sine waves with the variation of PADM2M (Ziegler et al., 2011) superimposed over the baselines signal. Site mean age distributions are defined to mimic the PINT v8.1.0 distribution of ages. Synthetic paleointensity samples are realized from this "true" mean trend using a Gaussian distribution with a mean corresponding to the mean field predicted by the true dipole moment and a σ inferred from PINT v8.1.0, this variation represents a combination of secular variation and measurement noise, and Gaussian draw for the site age with increasing age uncertainty from 100 kyr to 20 Myr depending on site age (< 1 Myr and > 1 Gyr, respectively). While the "true" mean field does not resemble the paleomagnetic field, and the variation is arbitrarily defined, visually this synthetic field record appears to share broadly similar features to the paleomagnetic record in the PINT v8.1.0 database such that we feel it represents a reasonably synthetic analogue for sensitivity testing. The MCADAM modelling approach is applied to this synthetic dataset, using the synthetic VDM realizations to estimate the mean dipole field strength.

The results of these sensitivity tests demonstrate that generally the modeling approach is capable of reproducing the "true" median field temporal trend within the 75-95% interval of time trends. The MCADAM-derived model was able to estimate the true field

X - 4 BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA

strength within the 95% predictive interval over 99% of the time, within the 75% predictive interval over 80% of the time, and yields a root-mean-square misfit of 1.7 ZAm². Visually, the MCADAM model's predictive interval reacts appropriately for the data density and distribution, with the predictive interval shrinking when the density of observations is high and enlarging when the density is low or the scatter is high.

References

- Abdulghafur, F., & Bowles, J. A. (2019). Absolute Paleointensity Study of Miocene Tiva Canyon Tuff, Yucca Mountain, Nevada: Role of Fine-Particle Grain-Size Variations. *Geochemistry, Geophysics, Geosystems, 20*(12), 5818–5830. doi: 10.1029/ 2019GC008728
- Asefaw, H., Tauxe, L., Koppers, A. a. P., & Staudigel, H. (2021). Four-Dimensional Paleomagnetic Dataset: Plio-Pleistocene Paleodirection and Paleointensity Results From the Erebus Volcanic Province, Antarctica. *Journal of Geophysical Research: Solid Earth*, 126(2), e2020JB020834. doi: 10.1029/2020JB020834
- Biggin, A. J., Piispa, E. J., Pesonen, L. J., Holme, R., Paterson, G. A., Veikkolainen, T.,
 & Tauxe, L. (2015). Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. *Nature*, 526(7572), 245–248. doi: 10.1038/nature15523
- Bono, R. K., Paterson, G. A., van der Boon, A., Engbers, Y. A., Michael Grappone, J.,
 Handford, B., ... Biggin, A. J. (2022). The PINT database: A definitive compilation of absolute palaeomagnetic intensity determinations since 4 billion years ago.
 Geophysical Journal International, 229(1), 522–545. doi: 10.1093/gji/ggab490
- Bono, R. K., Tarduno, J. A., Nimmo, F., & Cottrell, R. D. (2019). Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. *Nature Geoscience*, 12(2), 143–147. doi: 10.1038/s41561-018-0288-0
- Calvo-Rathert, M., Bógalo, M. F., Morales, J., Goguitchaichvili, A., Lebedev, V. A., Vashakidze, G., ... Herrero-Bervera, E. (2021). An Integrated Paleomagnetic, Multimethod-Paleointensity, and Radiometric Study on Cretaceous and Paleogene

Lavas From the Lesser Caucasus: Geomagnetic and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 126(2), e2020JB020019. doi: 10.1029/ 2020JB020019

- Cervantes-Solano, M., Goguitchaichvili, A., Sánchez Bettucci, L., Morales-Contreras, J., Gogorza, C., & Núñez, P. (2020). An integrated paleomagnetic and multispecimen paleointensity study from the late Jurassic Zapicán dike swarm (Uruguay). Journal of South American Earth Sciences, 104, 102815. doi: 10.1016/j.jsames.2020.102815
- Chang, B., Kim, W., Doh, S.-J., & Yu, Y. (2013). Paleointensity determination of Late Cretaceous basalts in northwest South Korea: Implications for low and stable paleofield strength in the Late Cretaceous. *Earth, Planets and Space*, 65(12), 1501– 1513. doi: 10.5047/eps.2013.09.013
- Chauvin, A., Roperch, P., & Levi, S. (2005). Reliability of geomagnetic paleointensity data: The effects of the NRM fraction and concave-up behavior on paleointensity determinations by the Thellier method. *Physics of the Earth and Planetary Interiors*, 150(4), 265–286. doi: 10.1016/j.pepi.2004.11.008
- Døssing, A., Muxworthy, A. R., Supakulopas, R., Riishuus, M. S., & Mac Niocaill, C. (2016). High northern geomagnetic field behavior and new constraints on the Gilsá event: Paleomagnetic and 40Ar/39Ar results of ~0.5–3.1 Ma basalts from Jökuldalur, Iceland. Earth and Planetary Science Letters, 456, 98–111. doi: 10.1016/j.epsl.2016 .09.022
- Eitel, M., Gilder, S. A., Spray, J., Thompson, L., & Pohl, J. (2016). A paleomagnetic and rock magnetic study of the Manicouagan impact structure: Implications for crater

BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA X - 7 formation and geodynamo effects. *Journal of Geophysical Research: Solid Earth*, 121(2), 436–454. doi: 10.1002/2015JB012577

- Eliseev, A., Shcherbakova, V., Metelkin, D., Mikhaltsov, N., Zhidkov, G., Abashev, V.,
 & Rogov, A. (2021). Low Geomagnetic Field Paleointensity on the Permian–Triassic
 Boundary from Study of the Kuznetsk Basin Traps (Southern Siberia). Russian
 Geology and Geophysics. doi: 10.2113/RGG20204330
- Engbers, Y. A., Grappone, J. M., Mark, D. F., & Biggin, A. J. (2022). Low Paleointensities and Ar/Ar Ages From Saint Helena Provide Evidence for Recurring Magnetic Field Weaknesses in the South Atlantic. *Journal of Geophysical Research: Solid Earth*, 127(3), e2021JB023358. doi: 10.1029/2021JB023358
- Goguitchaichvili, A., Alva-Valdivia, L. M., Urrutia-Fucugauchi, J., Morales, J., & Ferrari,
 L. (2000). Absolute palaeointensity results from the Trans-Mexican Volcanic Belt:
 Implications for the late Miocene geomagnetic field strength. *Geophysical Journal International*, 143, 977–984. doi: 10.1046/j.1365-246X.2000.01301.x
- Hawkins, L. M. A., Grappone, J. M., Sprain, C. J., Saengduean, P., Sage, E. J., Thomas-Cunningham, S., ... Biggin, A. J. (2021). Intensity of the Earth's magnetic field:
 Evidence for a Mid-Paleozoic dipole low. *Proceedings of the National Academy of Sciences*, 118(34). doi: 10.1073/pnas.2017342118
- Kapawar, M. R., & Mamilla, V. (2021). Paleointensity of the Earth's magnetic field at ~117 Ma determined from the Rajmahal and Sylhet Trap Basalts, India. Journal of Earth System Science, 130(3), 154. doi: 10.1007/s12040-021-01652-9

Kulakov, E., Sprain, C., Doubrovine, P., Smirnov, A., Paterson, G., Hawkins, L., ...

Biggin, A. (2019). Analysis of an updated paleointensity database (Q _{PI} -PINT)
for 65-200 Ma: Implications for the long-term history of dipole moment through
the Mesozoic. Journal of Geophysical Research: Solid Earth, 2018JB017287. doi:
10.1029/2018JB017287

- Lloyd, S. J., Biggin, A. J., Halls, H., & Hill, M. J. (2021). First palaeointensity data from the cryogenian and their potential implications for inner core nucleation age. *Geophysical Journal International*, 226(1), 66–77. doi: 10.1093/gji/ggab090
- Lloyd, S. J., Biggin, A. J., & Li, Z.-X. (2021). New Paleointensity Data Suggest Possible Phanerozoic-Type Paleomagnetic Variations in the Precambrian. *Geochemistry*, *Geophysics*, *Geosystems*, 22(10). doi: 10.1029/2021GC009990
- Lloyd, S. J., Biggin, A. J., Paterson, G. A., & McCausland, P. J. A. (2022). Extremely weak early Cambrian dipole moment similar to Ediacaran: Evidence for long-term trends in geomagnetic field behaviour? *Earth and Planetary Science Letters*, 595, 117757. doi: 10.1016/j.epsl.2022.117757
- Mahgoub, A. N., García-Amador, B. I., & Alva-Valdivia, L. M. (2021). Comprehensive palaeomagnetic study of San Borja and Jaraguay monogenetic volcanic fields, Baja California (28–30°N): Considerations on latitudinal corrections. *Geophysical Journal International*, 225(3), 1897–1919. doi: 10.1093/gji/ggab064
- Meng, J., Lhuillier, F., Wang, C., Liu, H., Eid, B., & Li, Y. (2020). Paleomagnetism of Paleocene-Maastrichtian (60–70 Ma) Lava Flows From Tian Shan (Central Asia): Directional Analysis and Paleointensities. Journal of Geophysical Research: Solid Earth, 125(9). doi: 10.1029/2019JB018631

- Miki, M., Seki, H., Yamamoto, Y., Gouzu, C., Hyodo, H., Uno, K., & Otofuji, Y.-i. (2020). Paleomagnetism, paleointensity and geochronology of a Proterozoic dolerite dyke from southern West Greenland. *Journal of Geodynamics*, 139, 101752. doi: 10.1016/j.jog.2020.101752
- Radhakrishna, T., Asanulla, M. R., Venkateshwarlu, M., & Soumya, G. S. (2020). Low geomagnetic field strength during End-Cretaceous Deccan volcanism and whole mantle convection. *Scientific Reports*, 10(1), 10743. doi: 10.1038/s41598-020-67245-6
- Rosenqvist, L., Opgenoorth, H., Buchert, S., McCrea, I., Amm, O., & Lathuillere, C. (2005). Extreme solar-terrestrial events of October 2003: High-latitude and Cluster observations of the large geomagnetic disturbances on 30 October. *Journal of Geophysical Research: Space Physics*, 110(A9). doi: 10.1029/2004JA010927
- Sánchez-Moreno, E. M., Calvo-Rathert, M., Goguitchaichvili, A., Tauxe, L., Vashakidze,
 G. T., & Lebedev, V. A. (2020). Weak palaeointensity results over a Pliocene volcanic sequence from Lesser Caucasus (Georgia): Transitional record or time averaged field?
 Geophysical Journal International, 220(3), 1604–1618. doi: 10.1093/gji/ggz533
- Sánchez-Moreno, E. M., Calvo-Rathert, M., Goguitchaichvili, A., Vashakidze, G. T., Camps, P., Morales-Contreras, J., ... Lebedev, V. A. (2021). Paleointensity Results From Pliocene Lavas of the Lesser Caucasus Obtained Using the Multispecimen Parallel Differential pTRM Method: A Comparison With Thellier-Thellier and IZZI Data. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB019682. doi: 10.1029/2020JB019682

Schnepp, E., Arneitz, P., Ganerød, M., Scholger, R., Fritz, I., Egli, R., & Leonhardt, R.

X - 10 BONO ET AL.: MCADAM: PALEOMAGNETIC DIPOLE MOMENT SINCE 3.7 GA
(2021). Intermediate field directions recorded in Pliocene basalts in Styria (Austria): Evidence for cryptochron C2r.2r-1. Earth, Planets and Space, 73(1), 182. doi: 10.1186/s40623-021-01518-w

- Shcherbakova, V. V., Bakhmutov, V. G., Thallner, D., Shcherbakov, V. P., Zhidkov,
 G. V., & Biggin, A. J. (2020). Ultra-low palaeointensities from East European
 Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran.
 Geophysical Journal International, 220(3), 1928–1946. doi: 10.1093/gji/ggz566
- Tarduno, J. A., Cottrell, R. D., Bono, R. K., Oda, H., Davis, W. J., Fayek, M., ... Blackman, E. G. (2020). Paleomagnetism indicates that primary magnetite in zircon records a strong Hadean geodynamo. *Proceedings of the National Academy of Sciences*, 117(5), 2309–2318. doi: 10.1073/pnas.1916553117
- Thallner, D., Biggin, A. J., & Halls, H. C. (2021). An extended period of extremely weak geomagnetic field suggested by palaeointensities from the Ediacaran Grenville dykes (SE Canada). Earth and Planetary Science Letters, 568, 117025. doi: 10.1016/ j.epsl.2021.117025
- Thallner, D., Biggin, A. J., McCausland, P. J. A., & Fu, R. R. (2021). New Paleointensities From the Skinner Cove Formation, Newfoundland, Suggest a Changing State of the Geomagnetic Field at the Ediacaran-Cambrian Transition. *Journal of Geophysical Research: Solid Earth*, 126(9). doi: 10.1029/2021JB022292
- Thallner, D., Shcherbakova, V. V., Bakhmutov, V. G., Shcherbakov, V. P., Zhidkov, G. V., Poliachenko, I. B., & Biggin, A. J. (2022). New palaeodirections and palaeointensity data from extensive profiles through the Ediacaran section of the Volyn Basalt

- Yoshimura, Y., Yamazaki, T., Yamamoto, Y., Ahn, H.-S., Kidane, T., & Otofuji, Y.-i. (2020). Geomagnetic Paleointensity Around 30 Ma Estimated From Afro-Arabian Large Igneous Province. *Geochemistry, Geophysics, Geosystems, 21*(12). doi: 10 .1029/2020GC009341
- Zhang, Y., Swanson-Hysell, N. L., Avery, M. S., & Fu, R. R. (2022, July). High geomagnetic field intensity recorded by anorthosite xenoliths requires a strongly powered late Mesoproterozoic geodynamo. *Proceedings of the National Academy of Sciences of the United States of America*, 119(29), e2202875119. doi: 10.1073/pnas.2202875119
- Zhou, T., Tarduno, J. A., Nimmo, F., Cottrell, R. D., Bono, R. K., Ibanez-Mejia, M., ... Padgett, F. (2022, July). Early Cambrian renewal of the geodynamo and the origin of inner core structure. *Nature Communications*, 13(1), 4161. doi: 10.1038/ s41467-022-31677-7
- Ziegler, L. B., Constable, C. G., Johnson, C. L., & Tauxe, L. (2011). PADM2M: A penalized maximum likelihood model of the 0–2 Ma palaeomagnetic axial dipole moment. *Geophysical Journal International*, 184(3), 1069–1089. doi: 10.1111/j.1365 -246X.2010.04905.x

Figure S1. Synthetic test of MCADAM using a known dipole mean field with realistic variation. Blue line: true mean dipole moment; grey circles: synthetic VDMs drawn from true mean dipole moment with plausible variance; orange line and field, MCADAM model median field strength estimate and 95% predictive interval.

Figure S2. MCADAM.1a time-varying model of paleofield strength for the past 3.7 billion years from all non-transitional sites in the PINT v8.1.0 database. In all panels, the orange line represents the median time-varying model from MCADAM.1b with shaded 95% interval. a) Quaternary; blue line shows PADM2M model (Ziegler et al., 2011); b) Mesozoic; blue line and field shows median and 95% interval of Q_{PI} binned following (Kulakov et al., 2019); c) Precambrian; purple line shows polynomial fit of Bono et al. (2019), blue lines show bin medians with shaded 95% confidence intervals of Biggin et al. (2015).

Figure S3. MCADAM.1c time-varying model of paleofield strength for the past 3.7 billion years from PINT v8.1.0 data meeting the prioritized Q_{PI} criteria: QAGE + QALT + QMD. In all panels, the orange line represents the median time-varying model from MCADAM.1b with shaded 95% interval. a) Quaternary; blue line shows PADM2M model (Ziegler et al., 2011); b) Mesozoic; blue line and field shows median and 95% interval of Q_{PI} binned following (Kulakov et al., 2019); c) Precambrian; purple line shows polynomial fit of Bono et al. (2019), blue lines show bin medians with shaded 95% confidence intervals of Biggin et al. (2015).

Figure S4. Magnetopause standoff distance estimate using equation 2 in the main text and the MCADAM.1a modeled dipole moment curve with from all non-transitional sites in the PINT v8.1.0 database. Blue curve is the predicted median dipole moment and blue field is the 95% predicted interval. Contour lines show standoff distance relative to the present day. Red gradient shows standoff distance associated with the Halloween 2003 solar storm (Rosenqvist et al., 2005).

Figure S5. Magnetopause standoff distance estimate using equation 2 in the main text and the MCADAM.1c modeled dipole moment curve with PINT v8.1.0 data meeting the prioritized Q_{PI} criteria: QAGE + QALT + QMD. Blue curve is the predicted median dipole moment and blue field is the 95% predicted interval. Contour lines show standoff distance relative to the present day. Red gradient shows standoff distance associated with the Halloween 2003 solar storm (Rosenqvist et al., 2005).

REF	Site Lat.	Site Long.	Age	N_{Sites}	V(A)DM	Q_{PI}	Author (Year)
745	36.8	-116.5	12.7	2	6.09	6.0	Abdulghafur and Bowles (2019)
746	41.4	43.3	3.6	8	3.89	4.6	Sánchez-Moreno et al. (2020)
747	-33.5	-55.9	157.6	3	9.79	3.0	Cervantes-Solano et al. (2020)
749	64.4	-51.4	1818.0	1	2.33	6.0	Miki et al. (2020)
750	51.5	26.0	568.5	4	0.90	7.8	Shcherbakova et al. (2020)
751	-26.2	117.0	3495.5	24	1.88	2.1	Tarduno et al. (2020)
752	13.3	37.9	30.1	11	4.19	3.9	Yoshimura et al. (2020)
753	40.2	75.3	63.6	4	6.13	6.5	Meng et al. (2020)
754	17.3	73.7	65.5	10	1.18	3.0	Radhakrishna, Asanulla, Venkateshwarlu, and
							Soumya (2020)
755	-78.0	164.9	1.9	26	4.36	5.6	Asefaw, Tauxe, Koppers, and Staudigel (2021)
756	41.4	44.0	67.4	6	5.26	4.5	Calvo-Rathert et al. (2021)
757	56.3	-3.0	366.4	14	2.48	6.8	Hawkins et al. (2021)
758	25.1	88.7	117.0	10	3.50	1.0	Kapawar and Mamilla (2021)
759	76.4	-77.1	723.0	11	1.00	6.5	Lloyd, Biggin, Halls, and Hill (2021)
760	41.4	43.3	3.5	18	4.36	7.1	Sánchez-Moreno et al. (2021)
761	46.0	279.3	589.8	7	0.92	7.4	Thallner, Biggin, and Halls (2021)
762	-23.8	116.1	912.0	6	3.89	7.5	Lloyd, Biggin, and Li (2021)
763	54.8	87.1	250.0	4	1.72	5.5	Eliseev et al. (2021)
764	49.5	301.9	550.0	8	1.40	6.8	Thallner, Biggin, McCausland, and Fu (2021)
765	-15.9	-5.7	9.2	5	2.33	7.8	Engbers, Grappone, Mark, and Biggin (2022)
767	-16.8	208.6	2.6	2	7.34	4.0	Chauvin, Roperch, and Levi (2005)
768	41.5	43.3	3.8	6	6.89	1.0	Goguitchaichvili, Alva-Valdivia, Urrutia-
							Fucugauchi, Morales, and Ferrari (2000)
769	38.0	127.4	73.1	5	3.10	4.0	Chang, Kim, Doh, and Yu (2013)
770	65.1	-15.5	1.5	6	5.97	4.2	Døssing, Muxworthy, Supakulopas, Riishuus, and
							Mac Niocaill (2016)
772	51.5	-68.9	214.0	1	4.90	5.0	Eitel, Gilder, Spray, Thompson, and Pohl (2016)
774	29.1	-114.1	7.4	9	5.34	6.4	Mahgoub, García-Amador, and Alva-Valdivia
							(2021)
775	46.9	15.9	2.3	9	5.37	4.0	Schnepp et al. (2021)
777	42.7	268.9	1091.8	7	8.31	6.0	Zhang, Swanson-Hysell, Avery, and Fu (2022)
778	34.8	-98.9	532.5	1	3.50	6.0	Zhou et al. (2022)
779	45.7	-74.6	531.4	1	0.94	9.0	Lloyd, Biggin, Paterson, and McCausland (2022)
780	51.7	24.7	571.0	17	0.81	6.8	Thallner et al. (2022)

Table S1.New entries to PINT v8.1.0

REF: study reference number in PINT v8.1.0; mean site location, Lat., Long. in degrees; mean site age in Ma; N_{Sites} : number of sites associated with the study; mean V(A)DM: virtual (axial) dipole moment, in 10^{22} Am²; Q_{PI} : mean Q_{PI} score of sites associated with the study.