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Abstract

Monitoring changes in greenhouse gas (GHG) emission is critical for assessing climate mitigation efforts towards the Paris

Agreement goal. A crucial aspect of science-based GHG monitoring is to provide objective information for quality assurance

and uncertainty assessment of the reported emissions. Emission estimates from combustion events (gas flaring and biomass

burning) are often calculated based on activity data (AD) from satellite observations, such as those detected from the Visible

Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi-NPP and NOAA-20 satellites. These estimates are often

incorporated into carbon models for calculating emissions and removals. Consequently, errors and uncertainties associated with

AD propagate into these models and impact emission estimates. Deriving uncertainty of AD is therefore crucial for transparency

of emission estimates but remains a challenge due to the lack of evaluation data or alternate estimates. This work proposes a

new approach using machine learning (ML) for combustion detection from NASA’s Black Marble product suite and explores

the assessment of potential uncertainties through comparison with existing datasets. We jointly characterize combustion using

thermal and light emission signals, with the latter improving detection of probable weaker combustion with less distinct thermal

signatures. Being methodologically independent, the differences in ML-derived estimates with existing approaches can indicate

the potential uncertainties in detection. The approach was applied to detect gas flaring activities over the Eagle Ford Shale,

Texas. We analyzed the spatio-temporal variations in detections and found that approximately 79.04% and 72.14% of the light

emission-based detections are missed by ML-derived detections from VIIRS thermal bands and existing datasets, respectively.

The region was impacted by the winter storm Uri which resulted in a significant reduction of flaring activities followed by a

post-storm resumption. Our method is extendible to combustion events, such as biomass and waste burning, and can be scaled

globally for transparent emission estimate reporting.
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Abstract 13 
Monitoring changes in greenhouse gas (GHG) emission is critical for assessing climate mitigation efforts 14 
towards the Paris Agreement goal. A crucial aspect of science-based GHG monitoring is to provide 15 
objective information for quality assurance and uncertainty assessment of the reported emissions. Emission 16 
estimates from combustion events (gas flaring and biomass burning) are often calculated based on activity 17 
data (AD) from satellite observations, such as those detected from the Visible Infrared Imaging Radiometer 18 
Suite (VIIRS) onboard the Suomi-NPP and NOAA-20 satellites. These estimates are often incorporated 19 
into carbon models for calculating emissions and removals. Consequently, errors and uncertainties 20 
associated with AD propagate into these models and impact emission estimates. Deriving uncertainty of 21 
AD is therefore crucial for transparency of emission estimates but remains a challenge due to the lack of 22 
evaluation data or alternate estimates. This work proposes a new approach using machine learning (ML) 23 
for combustion detection from NASA’s Black Marble product suite and explores the assessment of potential 24 
uncertainties through comparison with existing datasets. We jointly characterize combustion using thermal 25 
and light emission signals, with the latter improving detection of probable weaker combustion with less 26 
distinct thermal signatures. Being methodologically independent, the differences in ML-derived estimates 27 
with existing approaches can indicate the potential uncertainties in detection. The approach was applied to 28 
detect gas flaring activities over the Eagle Ford Shale, Texas. We analyzed the spatio-temporal variations 29 
in detections and found that approximately 79.04% and 72.14% of the light emission-based detections are 30 
missed by ML-derived detections from VIIRS thermal bands and existing datasets, respectively. The region 31 
was impacted by the winter storm Uri which resulted in a significant reduction of flaring activities followed 32 
by a post-storm resumption. Our method is extendible to combustion events, such as biomass and waste 33 
burning, and can be scaled globally for transparent emission estimate reporting.   34 
 35 
Keywords: NASA Black Marble, gas flaring, anomaly detection 36 
 37 
1. Introduction 38 
Monitoring changes in greenhouse gas (GHG) emissions and resulting levels of atmospheric carbon dioxide 39 
(CO2) is critical for assessing climate mitigation effort towards the 1.5C goal under the Paris Climate 40 
Agreement (https://www.un.org/en/climatechange/paris-agreement). The science research community has 41 
developed novel approaches to detect atmospheric CO2 changes for climate monitoring by utilizing 42 
observations and modeling (e.g. Weir et al. 2021; Zeng et al. 2021).  43 
 44 
From among a variety of carbon emission sources, emissions from combustion are relatively uncertain 45 
compared to other emissions from the energy sector, although these are calculated from the same bottom-46 
up approach (IPCC 2006) as  47 
 48 
Emissions = Activity data (AD) x Emission Factor (EF). 49 
 50 



For CO2 from fossil fuel combustion, AD and EF for the energy sector are highly constrained for the system 51 
boundary (IPCC 2006; Oda et al. 2021a). AD for energy production is also reported with high precision 52 
(5% 2 sigma reported uncertainty) for fuel consumed. On the other hand, AD for combustion events, such 53 
as gas flares and biomass burning, are often based on estimates (e.g., gas flare, fire counts) and the total 54 
fuel amount consumed within the system. Moreover, EF for biomass burning is highly uncertain (Akagi et 55 
al. 2011), while EF for fossil fuels is uncertain unless the chemical composition is known. Combustion 56 
emissions are incorporated in carbon modeling for estimating emissions and removals (Crowell et al. 2019) 57 
causing errors and uncertainties from combustion events to potentially alias final emission estimates. 58 
Reducing these errors is crucial for maturing carbon monitoring systems (CMS), especially ones based on 59 
atmospheric inversions (Oda et al. 2019, 2021b).  60 
 61 
A challenge for evaluating emissions from combustion is the lack of fiducial reference data, particularly 62 
with gridded emission estimate reports (Andres et al. 2016, Oda et al. 2018, 2019). This has been tackled 63 
by intercomparing emission estimates and using differences as a proxy for errors and uncertainties (Oda et 64 
al. 2015, 2018, 2019, Andres et al. 2016, Pan et al. 2019). As these differences are attributable to underlying 65 
computation and datasets used, intercomparisons allow the characterization of emission differences and its 66 
drivers (Oda et al. 2019, Pan et al. 2019). This contributes to quality assurance and uncertainty analysis 67 
recommended by the IPCC guidelines and is essential for robust and transparent emission reporting. When 68 
the methodologies and underlying datasets are shared by different estimates, the process of assigning and 69 
propagating uncertainties is often iterative in nature and is generally not performed systematically. For 70 
example, satellite-derived estimates of fire emissions are often based on AD from sensors such as the 71 
Visible Infrared Imaging Radiometer Suite (VIIRS) (Justice et al., 2013). This is exacerbated in cases where 72 
detections from one dataset solely, such as VIIRS Nightfire (VNF) (Elvidge et al.  2013, 2019), is used as 73 
the primary basis for gas flaring estimates. 74 
 75 
This study proposes a machine learning (ML) approach for detecting combustion by utilizing VIIRS 76 
thermal band and nighttime light (NTL) observations from NASA’s Black Marble product suite (VNP46, 77 
Román et al. 2018) by jointly characterizing its day/night visible and thermal emission. The approach is 78 
data-driven, and methodologically independent of existing techniques, such as the VNF algorithm, and 79 
leverages the orthogonal information embedded in VIIRS observations. Most importantly, our 80 
approach generates an independent detection set and can be used to assess uncertainty in VIIRS-derived 81 
combustion estimates. We applied the approach for gas flare detection in the Eagle Ford Shale, Texas, US, 82 
explored the role of light emission signals in improving detection, and examined the differences with legacy 83 
methods (VNF) to generate a potential detection uncertainty.  84 
 85 
2 Combustion Detection  86 
 87 
2.1 Gas flare detection  88 

While the global share is less than 1 % of the total fossil fuel emissions (Gilfillan et al. 2021), flaring 89 
associated with oil and natural gas production contributes to regional and local GHG and air pollution 90 
emissions with severe impacts on the environment and Earth’s climate (Allen et al. 2013, Zhang et al. 2019,  91 
Caseiro et al. 2019, Fisher and Wooster 2019, Faruolo et al. 2020, Cushing et al. 2021). Monitoring these 92 
events is essential for tracking adherence to mitigation policies, such as Zero Routine Flaring by 2030 (The 93 
World Bank, 2019) and progress towards the Paris Climate Agreement Goal (IPCC 2006, Falkner 2016, 94 
Zhang et al. 2019).  95 
   Daily nighttime satellite observations are used for detecting combustion from flaring and fires on a global 96 
scale. These approaches commonly utilize the VIIRS thermal bands for detection (Csiszar et al. 2014, 97 
Schroeder et al. 2014, Schroeder and Giglio 2018, Elvidge et al. 2013, 2019, Zhang et al. 2015, Liu et al. 98 

2018, Lu et al. 2020, Zhizhin et al. 2021). Flares detected by VNF (Elvidge et al. 2013, 2019) have been 99 
used to assess resulting emissions and its environmental impact (Deetz and Vogel 2017, Zhang et al. 2019, 100 



Sun et al. 2020, Franklin et al. 2019, Cushing et al. 2021). VNF has also been utilized for determining and 101 
mapping gas flare emissions in a widely used gridded inventory (Janssens-Maenhout et al. 2019), leaving 102 
scope for errors and uncertainties in VNF to impact such derived analysis.  103 
 104 
2.2 Proposed Methodology  105 
 106 

Table 1: VNP46A1 Dataset 107 

Dataset Bands Wavelength (𝜇𝑚) Emission Signal 

 

 

VNP46A1 

15 arc second, daily 

(Román et al. 2018) 

DNB 0.5-0.9 Light  

M-10 1.58-1.64  

 

Thermal  

M-11 2.23-2.28 

M-12 3.61-3.79 

M-13 3.97-4.93 

M-15 10.26-11.26 

M-16 11.54-12.49 

 108 
We propose an anomaly detection approach utilizing the top-of-atmosphere Day/Night Band (DNB) and 109 
moderate band (M-band) observations from Black Marble VNP46A1 to characterize the anomalous light 110 
and thermal emission of flares. Table 1 shows the VNP46A1 dataset consisting of a set of M-bands and the 111 
DNB acquired by the VIIRS instrument. We derive a high confidence set with both thermal and light 112 
response, a moderate confidence urban-masked, light-only response set, which are merged to derive daily 113 
detections.  114 
   Increased adoption of ML in combustion and emission monitoring has been observed to detect power 115 
plant activities from visible images (Couture et al. 2020), emissions from combustion (Finch et al. 2022), 116 
and fire using thermal bands (Wang et al. 2021a). We explore its applicability in extracting multispectral 117 
thermal and light emission properties of VIIRS-based combustion. Although DNB has improved flare and 118 
fire detection (Polivka et al. 2016, Elvidge et al. 2019), it is used as a confirmatory feature only, while 119 
nightlight-only images have been used to detect offshore drilling (Lu et al. 2020, Wang et al. 2021b). The 120 
DNB lies in the visible/Near-Infrared region and has a large dynamic range (0.5 to 0.9 μm) that captures 121 
the light emission from combustion. The DNB is sensitive to weaker anomalies, especially with a small 122 
source area (Elvidge et al. 2019), and allows fire phase estimation (Wang et al. 2020). We also include 123 
light-emission-only signals from the DNB and examine its role in enabling weak combustion detection.  124 
   Our approach is based on learning a multispectral model of the non-anomalous thermal and light signal 125 
of the background and monitoring subsequent observations for deviations (See SI: Methodology). As flares 126 
cause high thermal and light emissions, these deviations show pixel-based anomaly scores. The models are 127 
learned from a small volume of data from the region. The study duration consists of 𝐾 = 38 observations 128 
that are divided for training 𝐷𝑇 = [𝑋1, 𝑋2, . . , 𝑋𝑡] to learn background models, and test 𝐷𝑎 =129 
[𝑋𝑡+1, 𝑋𝑡+2, . . , 𝑋𝐾], when the trained models are applied to new observations. 𝑋𝑘 is a multispectral image 130 
where pixel 𝑖 forms 𝑥𝑘,𝑖 ∈ 𝑋𝑘, a 7-dimensional vector 𝑥𝑘,𝑖 = [𝑥𝑘,𝑖

𝑀 , 𝑥𝑘,𝑖
𝐷𝑁𝐵 ], with 𝑀 representing all M-131 

bands. 𝐷𝑇 is divided into training and validation subsets, with the former used for learning background 132 
distribution and the latter used for hyperparameter tuning. 133 
 134 
Training and Validation: 135 
M-band background model (Thermal Emission): We characterize the non-anomalous multispectral 136 
thermal (M-10 to M-16) properties of the background using an autoencoder (Hinton and Salakhutdinov 137 
2006; Baldi 2012) by training it on clear M-band spectra from the training subset. Anomalies in the 138 
validation subset are detected from the deviation of a pixel’s spectra from the autoencoder’s reconstruction 139 
and denoted as anomaly score. As thermal emissions have a high response in M-10 and M-11, we also apply 140 
the Reed-Xiaoli (RX) detector (Chang and Chiang 2002) and learn the background distribution in these 141 



bands to detect anomalies from the deviation from daily background statistics. These approaches jointly 142 
model thermal bands and reduce single-band spurious detections.  143 
 144 
DNB Background Model (Light Emission): We characterize the DNB background signal to analyze a 145 
pixel’s deviation and factor in its immediate spatial neighbors to detect light emission. We partition the 146 
scene radiance from the training subset into clusters using a Gaussian mixture model (GMM). For each 147 
cluster, we derive a spatial relationship that predicts the central pixel’s radiance as a function of its spatial 148 
neighbors using an elastic net (Zou and Hastie, 2005). In the validation subset, the trained GMM assigns 149 
each pixel to a cluster, and the elastic net is applied to its neighbors to determine its high radiance likelihood 150 
or anomaly score using a daily variance-based threshold.  151 
 152 
Both M-band and DNB are impacted by clouds and require masking. The standard VIIRS cloud mask 153 
(VNP35) (Kopp et al. 2014) is known to mislabel nighttime clouds (Wang et al. 2021c) and flags thermal 154 
anomalies as ‘cloudy’ (Elvidge et. al. 2013). To minimize these errors, we train a cloud model from M-12 155 
to M-16 using principal component analysis (PCA) to project the spectra onto a 2-D space and learn the 156 
distance at which cloudy pixels lie from the projection median. For new observations, we apply the PCA 157 
model and assign cloud labels based on a pixel’s proximity to training day cloud projections. Cloudy pixels 158 
with high thermal anomaly scores are flagged as contaminations. During high lunar illumination, clouds 159 
contaminate DNB while light emission may appear through clouds. We apply the anomalous light-emission 160 
detector over clouds, which sets clouds as background to remove such contaminations but retains 161 
anomalous DNB radiance appearing through clouds.   162 
 163 
Test: 164 
We apply the trained models to the dataset as shown in Figure 1 to detect thermal and light anomalies. We 165 
predict cloud labels by applying PCA-distancing on each pixel. The detectors are then applied to extract 166 
candidate anomalies. The thermal anomalies are obtained from autoencoder and RX deviations, with 167 
thresholds determined from daily variance. High anomaly scores form the detected set after removal of 168 
cloud and water pixels. We compute the DNB anomaly score, identify pixels exceeding the daily threshold 169 
and suppress visible clouds under high lunar illumination. We then use per-pixel urban settlement 170 
information from World Settlement Footprint (WSF) (Marconcini et al. 2020) and retain pixels with no 171 
urban signal to obtain anomalous light emissions. 172 
 173 
Detection Sets: The anomalous thermal and light emissions are utilized to form the daily combined, DNB-174 
only, and joint detection sets as shown in Figure 1. The combined set consists of pixels with both anomalous 175 
thermal and light emissions. Anomalous light emissions are filtered further to increase decision confidence 176 
by retaining pixels i) that lie in a neighborhood with negligible WSF score, and ii) with at least one band 177 
(M-10 to M-13) deviating positively above the background to minimize interference from unlikely 178 
combustion signals, such as electric lighting. This forms the DNB-only set capturing anomalous light 179 
emission, including those from weaker anomalies with less distinct thermal signals. The joint detection set 180 
consists of total detections from combined and DNB-only sets. 181 
 182 



 183 
Figure 1: Workflow of proposed flaring detection from VNP46A1 and derived detection sets.   184 
 185 
2.3 Experimental Details 187 
We applied the detectors over the densely-welled Eagle Ford Shale (Wolaver et al. 2018, boundary from 189 
EIA) to assess detection performance. Our study area (26.9375N to 29.8542N and -97.0167W to -190 

99.9394W) corresponds to a 700x700 gridded block during 01/22/2021–02/28/2021 with 12 observations 191 

in the training set (See SI: Experimental details). The duration was selected to encompass the lunar cycle 192 
and examine performance under varying lunar illumination and cloud cover. This also includes the winter 193 
storm Uri that affected natural gas production (Doss-Gollin et al. 2021) and allows assessment of flaring 194 
activity variations.   195 

 196 
3. Results 197 
 198 
3.1 Evaluating and interpreting detections 199 
The average number of anomalies detected by the methods under clear and cloudy conditions is shown in 200 
Figure 2, with the DNB-only set detecting approximately four times more anomalous pixels than the 201 
combined set. The increased detection with DNB can be attributed to its higher sensitivity to light emission 202 
from weaker thermal anomalies over clear and cloudy nights during all lunar cycle phases. As the spatial 203 
extent of flaring signal can vary between M-bands and DNB, we consider the combined method to have 204 
matched a DNB-only detection, if there is at least one combined detection within a 3x3 grid centering a 205 
DNB-only detection. We found that 79.04±2.23% of the DNB-only detections were missed by the 206 
combined method. We examine the nature of DNB-only and combined detections in the next sections. 207 
   The lack of ground truth combustion data hinders validation, especially for the DNB-only detections, 208 
which lack confirmation from thermal bands. Accurate flare labeling in the DNB is infeasible by experts 209 
given its spatial footprint and daily variation. This is further compounded by cloud contamination under 210 
high lunar illumination, DNB signal leakage around urban areas (Wang et al. 2021c), and unsuppressed 211 
features in the WSF layer. We assessed the likelihood of the detections being associated with flares and 212 
flaring sites by contrasting the multispectral signal of detections with the background and examining visible 213 
features in higher resolution imagery after removing contaminations from false positives (FP). We 214 
calculated the fraction of FP as 𝑛(𝐹𝑃)/𝑛(𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎), where 𝑛(.) is the number of pixels. For 215 
𝑛(𝐹𝑃) we outline the errors due to unremoved visible clouds and urban leakage around cities using 216 
LabelMe (Kentaro 2016). Throughout the study duration, this fraction is 0.00282±0.00101, and 217 



0.0117±0.002 in the block and Eagle Ford area respectively, while no FP were observed in the combined 218 
set. Thus, contaminations are negligible due to the use of daily variance-based thresholds and masking and 219 
show the detectors’ potential at monitoring daily combustion activity. 220 
 221 

 222 
Figure 2: Average number of detections during the study period in Eagle Ford using the (a) DNB-only 223 
and (b) combined methods during clear and cloudy nights. 224 

 225 
   The detections were analyzed using the following approaches: 226 
 227 
 Multispectral profile: We calculated the ratio of the average signal from the detections to that from the 228 
background in each band as shown in Table 2 (See Table SI-2). This ratio (and difference in M-12 and M-229 
13) is high in each band for the combined detections, indicating these are very likely anomalies. The DNB-230 

only detections showed a high deviation from background in DNB, M-10, and M-11. The higher M-10 and 231 
M-11 signals of the DNB-only set, where gas flaring peaks indicate that these detections are likely thermal 232 
anomalies that are relatively weaker than combined detections.  233 
 234 
Table 2: Ratio of Clear Night Detection Signal against the Background in the Eagle Ford area. 235 

Detection, 

Bands 

DNB M-10 M-11 M-12 (difference (K)) M-13 (difference (K)) 

DNB-only 13.04 222 119.16 1.003 (0.89) 1.002 (0.59) 

Combined 48.09 1055.4 150.55 1.011 (3.01) 1.005 (1.3) 

 236 
 238 
Co-location with flaring sites: We compared the spatio-temporal aggregate of the detections over the Eagle 240 
Ford area with indicators of flaring infrastructure to examine their co-location. We resampled an openly 241 
available flaring well dataset of the region from 2015 from The Texas Railroad Commission, (ArcGIS) to 242 
15 arc seconds. At least one flaring site was found in a 7x7 grid centering 73.92%, 71.04%, and 74.91% of 243 
the DNB-only, combined, and VNF detections respectively, indicating that VIIRS-derived estimates 244 
showed comparable co-location with the well dataset. We also compared the DNB-only detections with a 245 
regional Landsat-8 composite (Gorelick et al. 2017) and confirmed by visual analysis that well pads are co-246 
located with our detections (Figure 3 a, b, and c). On examining the DNB-only and combined detections 247 
non-co-located with the well dataset, we observed 74.61% and 89.22% of the detections overlap with these 248 



visible features in the composite, respectively. The increased co-location with well pads is likely due to the 249 
composite’s acquisition dates matching closely with the study duration. Although ground truth combustion 250 
information is unavailable, high co-location indicates that DNB-only detections are associated with flaring 251 
sites and minimally contaminated by non-flaring sites. Here, we selected the minimum grid size that also 252 
makes the co-location analysis feasible. 253 
 254 

 255 

Figure 3: a) Aggregate of DNB-only detections over the study area. b) and c) shows examples of the light 256 
emission-only detections co-located with visible well pads in a Landsat-8 composite. 257 

   This indicates that DNB-only detections have weaker thermal signals and are probable flares missed by 258 
the thermal bands, while the combined set consists of high confidence detections. The sets together capture 259 
possible daily flaring activity at emission sites and provide a more accurate representation of flaring.  260 
 261 
We examined the degree of flaring activity persistence by comparing the detections with the annual Black 262 
Marble product suite NTL product (VNP46A4) from 2020. Persistence indicates consistent gas flaring and 263 
is important for monitoring changes at these sites. We observe 62.47±0.32% and 82.43±0.34% overlap 264 
between DNB-only and combined detections with the composite, showing persistent flaring at these 265 
locations.  266 
 267 
3.2. Comparison with VNF 268 



   We compare our daily detections (𝑀𝐿𝑘) with VNF (𝑉𝑁𝐹𝑘) to evaluate the overlap and increase in 269 
detection from the ML-based multispectral interpretation of flaring. For a VNF detection, a larger number 270 
of adjacent pixels are detected by the methods. If we observe at least one detection within a 5X5 grid 271 
centering a VNF detection, such flares are considered to have overlapped. This is expressed as  272 
𝑜 = (𝑉𝑁𝐹𝑘 ∩ 𝑀𝐿𝑘)/|𝑉𝑁𝐹𝑘|. 273 
 274 
We observe comparable overlap between VNF and the proposed approaches as shown in Table 3, showing 275 
that the methods effectively extract flaring signatures. The combined detections overlap with confirmed 276 
VNF detections. Approximately 87.0648% of the non-overlaps correspond to non-confirmed VNF events, 277 
which may include spurious detections. DNB-only detections show an increased overlap with VNF. The 278 
joint set shows a high overlap with VNF. We found four observations with ML detections that are missed 279 
by VNF, and overlap is thus reported for 34 observations. Unlike VNF detections where M-bands are 280 
separately analyzed, the autoencoder and RX jointly learn a multispectral distribution of the M-bands. This 281 
lowers the chance of spurious detections in the combined set that are seen in confirmed (A2021057) and 282 
non-confirmed (A2021041) VNF detections.  283 
 284 
   ML-enabled detections that do not appear in VNF are indicated through detections missed by VNF as 285 
 286 
𝑑𝑚 = (𝑀𝐿𝑘\𝑉𝑁𝐹𝑘)/|𝑀𝐿𝑘|. 287 
 288 
  We compute 𝑑𝑚 for pixels in 𝑀𝐿𝑘 for which at least one detection is not recorded in 𝑉𝑁𝐹𝑘 within a 5x5 289 
grid centering the ML detection. Table 3 lists all metrics showing increased detection with 𝑀𝐿𝑘. For the 290 
DNB-only set 𝑑𝑚 is computed over detections that overlap with well pads in the Landsat composite. We 291 
hand-label persistent DNB detection locations that do not show spatial overlap with visible well-pads in 292 
Landsat imagery to exclude such detections and these have been masked to the best of our knowledge. The 293 
inclusion of urban-masked DNB as a feature extracts weak thermal anomalies and lowers the detection 294 
threshold without increasing FP errors.  295 
 296 

Table 3: Comparison of Proposed Approaches with VNF  297 

Detection (𝑀𝐿𝑘), Metric 𝑜 (%)  𝑑𝑚 (%) 

Combined  74.74±3.19, 

*96.73 

16.70 ±3.32 

DNB-only  78.67±3.65 72.14±4.16 

Joint  90.5±2.83 67.94±3.53 

*compared with confirmed VNF detections. 298 
 299 
3.3. Temporal Variation in Gas Flaring Activity  300 
Figure 4 shows daily detection counts from the methods and VNF. Winter storm Uri, (Day of Year 44, 301 
2021- 48, 2021) reduced natural gas production in the region (Doss-Gollin et al. 2021) and corresponds to 302 
reduced DNB-only and combined detections. The reduction observed even in the DNB, which is more 303 
sensitive to weaker or cloud-obscured flares, indicates a possible reduction in flaring activity. Minimum 304 
activity is observed on February 15, 2021 and is lower than the expected detection levels under cloudy 305 
conditions noted during earlier phases. This may be caused by clouds (signal attenuation) and reduction in 306 
flaring activity. The number of active pixels increases at the end of this phase showing recovery to pre-307 
storm flaring levels. All methods show similar flaring trends throughout the study duration.   308 



 309 
Figure 4. Detections in the Eagle Ford area using combined and DNB-only (filtered implies overlapping 310 
combined detections are removed) sets and VNF. Reduction in detections is caused by clouds, while the 311 
sustained drop from Feb 13, 2021 is associated with thick cloud cover and reduction in flaring. 312 
 313 
3.4 Impact of VIIRS-Derived Estimates of Flaring Activity 314 
 315 
The proposed method is expected to impact VIIRS-derived flaring estimates. Figure 5 compares the 316 
binarized average clear night spatio-temporal distribution of flaring between the detection sets, with DNB 317 
improving the spatial distribution and temporal persistence estimates as seen from detection intensities.  318 
   Independently derived estimates can allow intercomparison of datasets to assess detection error. Figure 6 319 
(a) and (b) shows the binarized average clear night spatio-temporal distribution of flaring from ML-based 320 
detections and VNF. Figure 6 (c) highlights the difference in both spatial distribution and temporal 321 
persistence of flaring activity, with approximately 72% of the difference arising from light emission. Given 322 
the lack of complete validation of VIIRS-derived flares, intercomparison of detections can allow assessment 323 
of potential uncertainty in existing gridded emission maps such as Emissions Database for Global 324 

Atmospheric Research (EDGAR) (Janssens-Maenhout et al. 2019). 325 
 326 



 327 
Figure 5. Average spatial distribution and temporal persistence of flaring from a) combined, b) DNB-only, 328 
and (c) joint sets at 30 arc second, showing the improvement due to DNB signal, which is expected to 329 
enhance combustion attribution (spatial) and tracking (temporal).  330 
 331 

 332 
Figure 6. Average spatial distribution and temporal persistence of flaring from a) proposed approach, b) 333 
VNF at 30 arc second, and c) difference signal between (a) and (b). 334 
 335 
4. Discussion 336 
Our proposed approach improves nighttime flare detection by jointly considering all VNP46A1 bands and 337 
the urban-masked DNB-only signal, allowing detection of likely weaker anomalies. The approach 338 
consistently captures a more accurate representation of daily flaring and is expected to improve attribution 339 
and tracking of emission-causing activity. We also created an independent, data-driven methodology to 340 
detect flares. Although an estimate, the difference of the detections with existing datasets can highlight 341 
detection error and uncertainty as demonstrated. 342 
   This study shares the limitation of the lack of evaluation data with other studies and highlights the need 343 
for collecting evaluation data for improving the accuracy of estimates. A limitation of the light-emission-344 
only set is that its co-occurrence with non-flaring light signals, such as electric lighting, cannot be 345 
decoupled. However, retaining urban-masked DNB-only detections with positive deviation from the 346 
background in at least one M-band minimizes the scope of such contaminations in the detections. The 347 
performance is also dependent on ancillary layers such as the WSF and the cloud mask.     348 
   Our approach is agnostic to combustion type and can be extended to detect biomass and waste burning. 349 
Biomass burning emissions are prescribed in carbon flux inversions, and the differences among estimates 350 
should have a significant impact on carbon flux estimation, especially, the estimation of carbon removals. 351 
The IPCC guideline uses burned area estimates from satellite-derived AD and requires quality assurance 352 



and uncertainty analysis that is currently unreported. Our approach should allow localizing sources of 353 
uncertainties in AD and examining errors in model representation and computation.   354 
   Lastly, we note that this is a step towards multifaceted Black Marble-based emission mapping that is 355 
ideally suited for CMS studies, given its extensive quality and uncertainty assessment (Wang et al. 2021c). 356 
NTL-derived estimates of human-caused emission (Oda and Maksyutov 2011, Oda et al. 2018) and city-357 
level CO2 emissions have been improved by leveraging Black Marble (Oda et al. 2021b). Being a physical 358 
measurement, satellite-derived NTL can create derived, value-added carbon products with science 359 
traceability through error and uncertainty estimates.  360 
    361 
5. Conclusion  362 
This study proposed and developed a machine learning-based nighttime gas flare detector using NASA’s 363 
Black Marble product suite by jointly modeling the thermal and light emission signals. Our approach 364 
generates an independent flaring activity estimate and provides an opportunity for assessing uncertainty 365 
associated with VIIRS-based flaring estimates through comparison with existing combustion datasets. We 366 
applied the detector over the Eagle Ford Shale and showed the urban-masked light emission signal to be 367 
sensitive to probable weak flares and should improve its detection compared to thermal bands. Our 368 
approach is agnostic to combustion type and is extendible to events such as biomass and waste burning. 369 
Future studies will explore generalization techniques to scale our approach globally for contributing to 370 
transparent emission reporting.   371 
 372 
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 543 

Methodology:  544 
Autoencoder: The background model is learned from the non-anomalous pixel-level brightness 545 
temperature, 𝑥𝑘,𝑖

𝑀  from cloud-free observations in the training subset by minimizing multispectral 546 

reconstruction error. This is applied on the validation subset to detect pixel deviations of the input with its 547 

reconstruction 𝑥𝑘,𝑖
𝑀  as 𝐴(𝑥𝑘,𝑖

𝑀 ) = |𝑥𝑘,𝑖
𝑀 − 𝑥𝑘,𝑖

𝑀 |, where A(.)is the anomaly score. 548 

 549 

RX: For the RX detector the anomaly score in M-10 and M-11 11 (𝑀′) bands are obtained using 𝐴(𝑥𝑘,𝑖
𝑀′) =550 

(𝑥𝑘,𝑖
𝑀′

− 𝜇𝑘
𝑀′

)
𝑇

Σ𝑘
−1(𝑥𝑘,𝑖

𝑀′
− 𝜇𝑘

𝑀′
). Here 𝜇𝑘

𝑀′
and Σ𝑘

−1 are derived from the daily observations and describe the 551 

background. 552 
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Anomalous Light Emission Detector (DNB): A Gaussian mixture model divides the scene from the training 553 
subset 𝐷𝑡 into 𝐶 clusters from selected cloudy and clear observations. Elastic nets are trained on each cluster 554 

that predicts the central pixel radiance 𝑥𝑖
𝐷𝑁𝐵as a function of its neighbors 𝑥𝑛, as 𝑥𝑖

𝐷𝑁𝐵=𝑤0,𝑐+∑ 𝑤𝑛,𝑐𝑛 𝑥𝑛, 555 

where 𝑊𝑐: 𝑤𝑛,𝑐 represents the regression coefficients of cluster 𝐶 over a 3x3 neighborhood. In the validation 556 

subset, clustering assigns each pixel 𝑥𝑖
𝐷𝑁𝐵 into a radiance cluster 𝐶. The final high radiance prediction of 557 

this pixel, 𝑥𝑖
𝐷𝑁𝐵 is obtained by applying its cluster regression weights on its neighbors 𝑥𝑖

𝐷𝑁𝐵 = 𝑊𝑛,𝑐𝑥𝑘,𝑛. 558 

High radiance pixels are detected using 𝐴(𝑥𝑘,𝑖
𝐷𝑁𝐵): 𝑥𝑖

𝐷𝑁𝐵 > 𝜏𝑘
𝐷𝑁𝐵.  559 

 560 
Cloud: We learn the cloud model from M-12 to M-16 by deriving the principal components by projecting 561 

each pixel in 𝐷𝑡 to a 2-D space to obtain the projections 𝑝(𝑥𝑡,𝑖).The Manhattan distance 𝑑(𝑝(𝑥𝑡,𝑖), 𝑚𝑡) of 562 

the pixel projections from the projection median 𝑚𝑡 is computed. We then use LabelMe to outline the 563 
clouds and form a one-class model describing the eigenspace distance of cloudy pixels. The distance is 564 
compared against a threshold 𝜏𝐶 to derive labels cloudy when  𝑑𝑐𝑙𝑜𝑢𝑑𝑦(. ) < 𝜏𝐶and clear when  𝑑(. ) > 𝜏𝐶.  565 

 566 
For anomaly decision making, the following tests are performed: 567 

a) Autoencoder: 𝐴(𝑥𝑘,𝑖
𝑀 ) > 𝜏𝑘

𝑀, where  𝜏𝑘
𝑀=𝜇 (𝐴(𝑥𝑘,𝑖

𝑀 )) + 𝑐𝑀𝜎 (𝐴(𝑥𝑘,𝑖
𝑀 )) ,  𝑐𝑀=2. Before 568 

computing 𝜏𝑘
𝑀 , we retain 𝑥𝑘,𝑖

𝑀  if it is a clear land pixel with less than 5% cloud cover within a 7x7 569 

spatial grid. 570 

b) RX: 𝐴(𝑥𝑘,𝑖
𝑀′) > 𝜏𝑀′, where 𝜏𝑀′=𝜇 (𝐴(𝑥𝑡,𝑖

𝑀′)) + 𝑐𝑀′𝜎 (𝐴(𝑥𝑡,𝑖
𝑀′)) ,  𝑐𝑀′=1 571 

c) DNB: 𝐴(𝑥𝑘,𝑖
𝐷𝑁𝐵):  𝑥𝑘,𝑖

𝐷𝑁𝐵 >  𝜏𝑘
𝐷𝑁𝐵, where  𝜏𝑘

𝐷𝑁𝐵=𝜇 (𝐴(𝑥𝑘,𝑖
𝐷𝑁𝐵)) + 𝑙. 𝜎 (𝐴(𝑥𝑘,𝑖

𝐷𝑁𝐵)) ,  𝑙=0.5. For 572 

filtering clouds, the same test is performed with 𝑙=2 over cloudy pixels on nights with lunar 573 
illumination higher than 10%. To get DNB-only detections, we create a binarized WSF mask 574 
𝑊𝑆𝐹𝑛𝑒𝑡, and derive the net urban response across a local grid and retain anomalous pixels that 575 
are with negligibly impacted by urban signal from neighboring pixels. This is done by retaining 576 
𝑥𝑖 when  𝑥𝑊𝑆𝐹−𝑛𝑒𝑡,𝑖 < 10% in a 7x7 grid and at least one band in M-10 to M-13 is two standard 577 
deviations above the background mean. 578 

d)  Clouds: 𝑑(𝑝(𝑥𝑡,𝑖
𝑀𝑐  ,  𝑚𝑡)) < 𝜏𝐶, where 𝜏𝐶  =𝜇 (𝑑(𝑝(𝑥𝑡,𝑖

𝑀𝑐  ,  𝑚𝑡)) + 1.5𝜎 (𝑑(𝑝(𝑥𝑡,𝑖
𝑀𝑐  ,  𝑚𝑡)).  579 

Here 𝜇(.) and 𝜎(. ) implies mean and standard deviation. 𝑐𝑀, 𝑐𝑀′ ,  𝑙, 𝜏𝐶 are determined from validation 580 
subset.  581 

The anomaly score is indicative of the degree of anomaly and its maxima can be used to localize flares. 582 
 583 
Experimental Details: 584 
The autoencoder model is trained on a 200 x 200 block in the study area, while the RX and DNB models 585 
are trained across the study area (700 x 700 pixel block). The autoencoder is trained over 100 epochs, with 586 
a batch size of 512 using exponential linear unit activations and Adam optimization over 40000x2 pixels 587 
by minimizing the mean absolute error loss with 20% of the data as the validation subset. 588 
Autoencoder layers:   589 
Encoder: Input (6), Dense (8), Dense (4), Dense (2);  590 
Decoder: Dense (4), Dense (8), Dense (6): Reconstruction 591 
Each layer is l2 regularized to reduce overfitting.  592 
 593 
The DNB cluster number is determined from Akaike Information criterion and set to 5. For the elastic net 594 
we set 𝛼=1, 𝑙1-ratio=0.3.  595 
 596 



𝐷𝑇 consists of 12 (A2021022-A2021033) observations and we select a subset of observations for training 597 
(Table SI-1) and the rest are used in the validation subset. 598 
 599 
Table SI-1: Training Subsets 600 

Method Training set observations 

Autoencoder A2021032 (clear), A2021033 (clear) 

RX A2021022, A2021024, A2021031, A2021032 

DNB A2021022 (almost clear), A2021023 (almost clear), A2021031 (clear) 

 601 
 602 
Table SI-2: Clear Night DNB-only and Combined Detection Signal with respect to Background in the 604 
Eagle Ford area. 605 

Bands, 

Detection Set 

Active DNB-

only 

Active Combined  Background DNB-

only 

Background 

Combined 

DNB  

(nWcm-2 sr-1) 

46.55±4.11 186.12±17.65 3.57 ± 0.56 3.87 ± 0.55 

M-10 

(Wm-2m-1 sr-1) 
4.44 x 10−2 ± 

0.0161 

9.52 x 10−2 ± 

0.01 

-2 x 10−4 ± 0.001 9.02 x 10−5 ±   0.001 

M-11 

(Wm-2m-1 sr-1) 
2.3832 x 10−2 ± 

0.0074 

6.82 x10−2  
±0.0074 

2 x 10−4 ± 0.0004 4.53 x 10−4  ±    

0.0004 

M-12 (K) 279.91±0.78 282.03 ±0.71 279.02 ± 0.86 279.03 ± 0.86 

M-13 (K) 277.36±0.62 278.07±0.59 276.77 ± 0.71 276.77 ± 0.71 

 606 


