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Abstract

Machine learning (ML) models, and Long Short-Term Memory (LSTM) networks in particular, have demonstrated remarkable

performance in streamflow prediction and are increasingly being used by the hydrological research community. However, most

of these applications do not include uncertainty quantification (UQ). ML models are data driven and may suffer from large

extrapolation errors when applied to changing climate/environmental conditions. UQ is required to ensure model trustworthi-

ness, improve understanding of data limits and model deficiencies, and avoid overconfident predictions in extrapolation. Here,

we propose a novel UQ method, called PI3NN, to quantify prediction uncertainty of ML models and integrate the method

with LSTM networks for streamflow prediction. PI3NN calculates Prediction Intervals by training 3 Neural Networks and uses

root-finding methods to determine the interval precisely. Additionally, PI3NN can identify out-of-distribution (OOD) data

in a nonstationary condition to avoid overconfident prediction. We apply the proposed PI3NN-LSTM method in both the

snow-dominant East River Watershed in the western US and the rain-driven Walker Branch Watershed in the southeastern

US. Results indicate that for the prediction data (which have similar features as the training data), PI3NN precisely quantifies

the prediction uncertainty with the desired confidence level; and for the OOD data where the LSTM network fails to make

accurate predictions, PI3NN produces a reasonably large uncertainty bound indicating the untrustworthy result to avoid over-

confidence. PI3NN is computationally efficient, reliable in training, and generalizable to various network structures and data

with no distributional assumptions. It can be broadly applied in ML-based hydrological simulations for credible prediction.
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Abstract16

Machine learning (ML) models, and Long Short-Term Memory (LSTM) networks in par-17

ticular, have demonstrated remarkable performance in streamflow prediction and are in-18

creasingly being used by the hydrological research community. However, most of these19

applications do not include uncertainty quantification (UQ). ML models are data driven20

and may suffer from large extrapolation errors when applied to changing climate/environmental21

conditions. UQ is required to ensure model trustworthiness, improve understanding of22

data limits and model deficiencies, and avoid overconfident predictions in extrapolation.23

Here, we propose a novel UQ method, called PI3NN, to quantify prediction uncertainty24

of ML models and integrate the method with LSTM networks for streamflow prediction.25

PI3NN calculates Prediction Intervals by training 3 Neural Networks and uses root-finding26

methods to determine the interval precisely. Additionally, PI3NN can identify out-of-27

distribution (OOD) data in a nonstationary condition to avoid overconfident prediction.28

We apply the proposed PI3NN-LSTM method in both the snow-dominant East River29

Watershed in the western US and the rain-driven Walker Branch Watershed in the south-30

eastern US. Results indicate that for the prediction data (which have similar features31

as the training data), PI3NN precisely quantifies the prediction uncertainty with the de-32

sired confidence level; and for the OOD data where the LSTM network fails to make ac-33

curate predictions, PI3NN produces a reasonably large uncertainty bound indicating the34

untrustworthy result to avoid overconfidence. PI3NN is computationally efficient, reli-35

able in training, and generalizable to various network structures and data with no dis-36

tributional assumptions. It can be broadly applied in ML-based hydrological simulations37

for credible prediction.38

1 Introduction39

Accurate prediction of streamflow is critical for short-term flood risk mitigation and40

long-term water resources management necessary to advance agricultural and economic41

development. Machine learning (ML) models demonstrate excellent performance in stream-42

flow prediction and are being used more often as a tool by the hydrological community43

(Rasouli et al., 2012; Shortridge et al., 2016; Tongal & Booij, 2018; Kratzert et al., 2018,44

2019; Feng et al., 2020; Shamshirband et al., 2020; Konapala et al., 2020; Xu & Liang,45

2021; Lu et al., 2021). However, most of these applications do not include uncertainty46

quantification (UQ) and generally only produce deterministic predictions. Uncertainty47

is inherent in all aspects of hydrological modeling, including data uncertainty, model struc-48

tural uncertainty, model parameter uncertainty, and prediction uncertainty. These un-49

certainties need to be characterized and quantified to ensure credible prediction, improve50

understanding of data limits and model deficiencies, and guide additional data collec-51

tion and further model development in order to advance model predictability. In tradi-52

tional, process-based hydrological modeling, significant efforts have been spent on un-53

certainty analysis (Vrugt et al., 2003; Pechlivanidis et al., 2011; Lu et al., 2012; sheng54

Zhan et al., 2013; Gan et al., 2014; Clark et al., 2016). Similar and even more extensive55

UQ efforts are required for ML simulation given its data-driven nature.56

Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997),57

a ML model specifically designed for time-series prediction, can learn rainfall-runoff dy-58

namic processes and hydrological system patterns from meteorological observations and59

streamflow data sequences. For example, when simulating daily streamflow, we use the60

previous several days of meteorological observations as inputs to predict streamflow on61

the current day. The observations contain noises/errors and this data uncertainty is prop-62

agated in the model learning and consequently affects streamflow predictions (Fang et63

al., 2020). Thus, it is important to understand how data quality influences ML model64

simulations and to quantify the confidence level of the prediction to assess trustworthi-65

ness. Additionally, the data-driven ML model usually produces reasonable predictions66

when the data in the unseen test period have similar features to those in the training67
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period and can suffer from large extrapolation errors when the test data differ from the68

training set. In hydrological modeling, available training data are typically insufficient69

to accurately represent heterogeneous hydrological systems and the dynamics in these70

systems are often non-stationary due to climate change, land use/land cover change, ex-71

treme events, and environmental disturbances. As a result, it is likely that the trained72

ML model will encounter extrapolation issues when applied to new geographic regions73

and future climate projections. Therefore, it is crucial to identify whether the predic-74

tion results are reliable and if the trained model is suitable for the new condition.75

UQ can help address the challenges of assessing the trustworthiness of ML model76

predictions and model reliability when applied to changing climate scenarios. For the77

training data, a well-calibrated UQ method can produce an uncertainty bound that pre-78

cisely encloses a specified portion of the data consistent with the desired confidence level,79

e.g., for a 90% confidence interval, the uncertainty bound must cover about 90% of the80

training data to consider the data uncertainty and assess the model prediction’s trust-81

worthiness. For the unseen test data where the predicted values are not groundtruthed,82

a high-quality UQ method can produce increasing prediction uncertainty as the data move83

further away in both time and space from the training set, indicating that the ML model84

is outside of the training support and its prediction may not be trusted to avoid over-85

confidence. Hence, when we apply the trained model for prediction and UQ and com-86

pare the prediction interval width (PIW) of the unseen test data with that of the train-87

ing data, we can infer the model’s reliability and evaluate the prediction’s trustworthi-88

ness. If the PIW of the test data is similar to that of the training data, it suggests that89

the test data are likely in-distribution (InD) and has similar features to the training data,90

and thus the trained ML model is reliable and suitable for the test set and its predic-91

tion can be trusted. The uncertainty bound additionally quantifies how trustworthy and92

likely the actual observations would be inside the bound to inform decision making. On93

the other hand, if the PIW of the test data is much larger than that of the training set,94

it suggests that the test data are out-of-distribution (OOD) and the trained model en-95

counters something new that has not been learned before, so the ML model may fail to96

produce a reasonable, realistic prediction. UQ of ML model prediction is important when97

projecting the learned rainfall-runoff relationship to a new condition where groundtruthed98

data are unavailable. The quantified uncertainty can serve as a prediction error indica-99

tor to identify whether the trained model is reliable and how credible it is. In this way,100

UQ not only enables trustworthy prediction, but also allows hydrological modelers to know101

how ML model prediction accuracy may degrade and allows stakeholders to abstain from102

decisions due to low confidence.103

However, UQ for ML model predictions is challenging and the development of a104

high-quality UQ method, which produces precise InD uncertainty and identifies OOD105

samples, is even more challenging. Generally speaking, there are two types of UQ-for-106

ML methods developed in the computational sciences community: prediction interval107

(PI) approaches which quantify uncertainty using intervals and non-PI approaches which108

quantify uncertainty using a distribution. The non-PI approaches can be further divided109

into Bayesian and non-Bayesian methods. Bayesian methods place priors on neural net-110

work (NN) weights and then infer predictive posterior distributions from the weights’111

distribution. The resulting posteriors are sensitive to the choice of the prior distributions.112

The Bayesian neural networks (BNNs) are usually solved by Markov Chain Monte Carlo113

sampling or some approximation methods such as variational inference (Lu et al., 2019)114

or Laplace approximation. BNNs have been criticized for slow training, overconfident115

predictions, and being computationally impractical for large-scale, deep-learning appli-116

cations (Gal & Ghahramani, 2016a). Non-Bayesian methods include evidential learning117

that places priors directly over the likelihood function (Amini et al., 2020) and some en-118

semble methods that do not use priors such as deep ensembles (Lakshminarayanan et119

al., 2017), Monte Carlo dropout (Gal & Ghahramani, 2016b), and anchored ensembling120

(Pearce et al., 2020). Recently, some methods used deterministic deep learning for un-121
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certainty estimation with some special NN architecture designs such as the spectral-normalized122

neural Gaussian process (J. Liu et al., 2020). These non-Bayesian methods usually in-123

volve a Gaussian assumption which might not be satisfied in hydrological applications124

where data noises are usually skewed and non-Gaussian (Schoups & Vrugt, 2010). These125

methods also may suffer from an overestimation of the uncertainty in training data caused126

by the symmetric uncertainty bound from the Gaussian assumption and result in an un-127

derestimation of the uncertainty in extrapolation (Zhang et al., 2021). Some of the non-128

PI methods have been applied in the hydrological modeling. For example, Zhu et al. (2020)129

combined Gaussian process with LSTM networks for probabilistic drought forecasting.130

Fang et al. (2020) used Monte Carlo dropout for soil moisture modeling and reported131

a tendency to underestimate uncertainty. Lu et al. (2021) also used Monte Carlo dropout132

to quantify streamflow predictive uncertainty in their application of LSTM networks for133

rainfall-runoff simulation. Recently, Klotz et al. (2022) established an uncertainty esti-134

mation benchmarking procedure and presented four ML baselines with one baseline be-135

ing the Monte Carlo dropout.136

The PI methods provide a lower and upper bound for a prediction such that the137

target falls between the bounds with a certain confidence level (e.g., 90%). PIs directly138

communicate uncertainty which provides understandable information for decision-making.139

Additionally, PI methods are computationally efficient and do not involve distributional140

assumptions, making them applicable to a wide range of scientific problems (Pearce et141

al., 2018a). Recently developed PI methods (Pearce et al., 2018a; Simhayev et al., 2020;142

Salem et al., 2020) tend to design sophisticated loss functions to obtain a well-calibrated143

interval. Although some studies have achieved promising results, their performance was144

sensitive to the unusual hyperparameters introduced into their customized loss functions.145

In practice, these hyperparameters usually require tedious fine tuning to achieve the de-146

sired performance, which makes these methods less practical and less robust when ap-147

plied to hydrological applications. Some other PI methods, such as quantile regression148

approaches (Tagasovska & Lopez-Paz, 2019), could suffer from crossing issues where the149

calculated 90% prediction interval is even larger than the 95% interval (Zhou et al., 2020).150

Additionally, current PI methods usually lack the capability for OOD identification, mak-151

ing them less effective in indicating the model’s reliability under the changing climate.152

In this effort, we propose a PI method and integrate it with LSTM networks for153

improving streamflow predictability with UQ. The method is called PI3NN, which cal-154

culates prediction intervals based on three independent neural networks (Zhang et al.,155

2021; S. Liu et al., 2021, 2022). The first NN calculates the mean prediction, and the156

following two NNs produce the upper and lower bounds of the interval. After the three157

NNs’ training, given a certain confidence level, PI3NN uses a root-finding algorithm to158

precisely determine the uncertainty bound that covers the desired portion of the data159

consistent with the confidence level. Additionally, PI3NN proposes a simple but effec-160

tive initialization scheme for OOD identification. PI3NN is computationally efficient with161

three networks training; and for a different given confidence level, it just needs to per-162

form the root finding step to calculate the shifting coefficients to precisely determine the163

corresponding interval and the calculated intervals do not suffer from the crossing issue.164

Additionally, PI3NN uses the standard mean squared loss and does not introduce ex-165

tra hyperparameters, which enables a robust prediction performance and mitigates te-166

dious parameter turning. Furthermore, PI3NN has an OOD identification capability which167

can produce a wider uncertainty for the predictions outside of the training data. Last168

but not the least, PI3NN is generalizable to various network structures and applicable169

to different data with no distributional assumptions, which makes it suitable for a wide170

range of ML-based hydrological applications.171

In our previous work (S. Liu et al., 2021, 2022), we have integrated PI3NN to fully-172

connected, multilayer perceptron (MLP) networks and demonstrated its superior per-173

formance against several baselines using a range of diverse datasets. In this effort, we174
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integrate our newly developed method with LSTM networks for streamflow prediction.175

LSTM has substantially different architectures from the MLP networks. In the imple-176

mentation, we first separate the recurrent layers and the fully-connected dense layers of177

the LSTM network as two sets of networks. For the first recurrent network, we extract178

the temporal feature information from its outputs and use these outputs as the inputs179

for the second fully-connected network. Then, we perform PI3NN on this second fully-180

connected network and treat it as a MLP problem. This design improves training reli-181

ability, reduces the computational costs, and most importantly, reduces the requirement182

of large training data. We apply the proposed PI3NN-LSTM method for streamflow pre-183

diction and UQ to two diverse watersheds, the snow-dominant East River Watershed (ERW)184

in the western United States (US) and the rain-driven Walker Branch Watershed (WBW)185

in the southeastern US. We investigate the method’s predictability of streamflow under186

different hydroclimatological conditions based on three components: prediction accuracy,187

quality and robustness of predictive uncertainty, and the OOD identification capability188

under a changing climate.189

The major contributions of this study are:190

• We develop a PI3NN method and integrate it into LSTM networks for improving stream-191

flow prediction accuracy and credibility.192

• PI3NN precisely quantifies the prediction uncertainty of the InD data with a desired193

confidence level and accurately identifies the OOD samples under a changing climate194

to avoid overconfident prediction.195

• We demonstrate the PI3NN-LSTM model’s prediction accuracy and UQ quality for196

streamflow predictions in both snow-dominant and rain-driven watersheds.197

This paper is organized as follows. In Section 2, we describe the UQ method used198

for ML-based robust time-series prediction. In Section 3, we introduce the study water-199

sheds and data used. Section 4 presents the results and discussion. Section 5 provides200

conclusions and recommendations for future research.201

2 PI3NN method for UQ of ML model predictions202

In this section, we introduce the PI3NN method to quantify ML model prediction203

uncertainty. We first describe the general procedure of PI3NN for a MLP dense network204

in a regression setting. Next, we discuss its capability of OOD identification. Lastly, we205

introduce the integration of PI3NN into the LSTM recurrent network for robust and cred-206

ible time-series prediction.207

2.1 Procedures of PI3NN for UQ208

For a regression problem y = f(x) + ε, we are interested in calculating the PIs209

to quantify the prediction uncertainty of the output y, where x ∈ Rd, y ∈ R, and ε is210

the random noise with no distributional assumptions. In this study using ML models for211

daily streamflow prediction, x represents previous t days of meteorological observations;212

y represents the streamflow on the current day and ε denotes the data noise. The func-213

tion f represents the LSTM network used to learn the rainfall-runoff relationship between214

x and y.215

Based on a set of training data Dtrain = {(xi, yi)}Ni=1, PI3NN estimates predic-216

tions and quantifies predictive uncertainty using three networks and is implemented in217

three steps. Roughly speaking, PI3NN first trains three networks separately, where net-218

work fω(x) is for mean prediction and networks uθ(x) and lξ(x) are for PI calculation.219

The PI3NN then uses root-finding methods to determine the upper bound U(x) and lower220

bound L(x) of the interval precisely for a given confidence level γ ∈ [0, 1]. Without a221

loss of generality, in the following we use basic MLP dense networks to explain the pro-222
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cedure and capability of PI3NN in Section 2.1 and 2.2 and then illustrate its integration223

into the recurrent network of LSTM in Section 2.3.224

Step 1: train fω(x) for mean prediction. This step follows a standard NN train-225

ing for the deterministic prediction. The trained fω(x) has two folds. First, the network226

outputs a mean prediction. Second, the differences (or residuals) between the prediction227

fω(x) and the observation y will be used to construct the training set for networks uθ(x),228

lξ(x) in the following Step 2.229

Step 2: train uθ(x), lξ(x) to quantify uncertainty. We first use the trained
fω(x) as a foundation to generate two positive data sets, Dupper and Dlower, which in-
clude training data above and below fω(x), respectively, i.e.,

Dupper =
{

(xi, yi − fω(xi))
∣∣ yi ≥ fω(xi), i = 1, . . . , N

}
,

Dlower =
{

(xi, fω(xi)− yi)
∣∣ yi < fω(xi), i = 1, . . . , N

}
.

(1)

Next, we use Dupper to train network uθ(x), and use Dlower to train network lξ(x). To
ensure the outputs of uθ(x) and lξ(x) are positive, we add the operation

√
(·)2 to the

output layer of both networks. The standard mean squared error (MSE) loss is used for
training, i.e.,

θ = argminθ
∑

(xi,yi)∈Dupper

(yi − fω(xi)− uθ(xi))
2,

ξ = argminξ
∑

(xi,yi)∈Dlower

(fω(xi)− yi − lξ(xi))
2.

(2)

Step 3: construct the PI precisely via root-finding methods. The outputs
of uθ(x) and lξ(x) approximate the positive and negative difference between the data
and the prediction of fω, respectively. The bound defined by [fω − lξ, fω + uθ] does
not accurately quantify the PI. To calculate the interval that precisely encloses the de-
sired portion of data consistent with the given confidence level, we additionally need to
compute two coefficients α and β such that the upper and lower bounds defined below
are a precise PI calculation.

U(x) = fω(x) + αuθ(x),

L(x) = fω(x)− βlξ(x).
(3)

For a given confidence level γ ∈ [0, 1], we use the bisection method to determine the
value of α and β by finding the roots of

Qupper(α) = 0, Qlower(β) = 0 (4)

where

Qupper(α) =
∑

(xi,yi)∈Dupper

1yi>U(xi)(xi, yi)−
N(1− γ)

2
,

Qlower(β) =
∑

(xi,yi)∈Dlower

1yi<L(xi)(xi, yi)−
N(1− γ)

2
.

(5)

In Eq. (5), N is the number of training data and 1(·) is the indicator function which counts230

how many training data points are outside the interval [L(x), U(x)]. When this root-231

finding problem is solved, the number of training data falling in [L(x), U(x)] = [fω −232

βlξ, fω+αuθ] will be exactly γN . Therefore, PI3NN produces an accurate uncertainty233

bound that precisely covers a specified portion of the data with a narrow-width inter-234

val. To make PI3NN work well, it is important to avoid overfitting in training fω(x) in235

Step 1. An overfitted network may result in imbalanced data sizes of Dupper and Dlower236

and a possible unreliable training of uθ(x) and lξ(x). The well-established regulariza-237

tion techniques such as L1 and L2 norm have been tested as a good penalty to avoid over-238

fitting (Lu et al., 2021).239
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PI3NN is computationally efficient because it only requires three networks’ train-240

ing, and for a different given confidence level, it only needs to perform Step 3 to deter-241

mine the corresponding PI without further training. The calculated intervals also do not242

suffer from the crossing issue. PI3NN is straightforward where the three networks are243

simple MLPs trained with a standard MSE loss. It does not introduce extra hyperpa-244

rameters, unlike the customized loss in the modern PI methods (Pearce et al., 2018b; Simhayev245

et al., 2021). This enables a robust prediction performance and mitigates tedious hyper-246

parameter turning. Additionally, PI3NN is generalizable to various network structures247

and applicable to different data with no distributional assumptions, which makes it suit-248

able for a wide range of real-world applications. In Section 2.3, we integrate PI3NN to249

the LSTM network on time-series data for streamflow prediction.250

2.2 OOD identification capability of PI3NN251

A good-quality UQ method should not only produce a well-calibrated PI for the252

InD data to accurately quantify the uncertainty but also be able to identify the OOD253

samples to avoid overconfident predictions in the novel condition. In this section, we in-254

troduce the OOD identification capability of PI3NN. An OOD sample is defined as those255

data having a different distribution from or on the low probability region in the distri-256

bution of the training data. For example, if the training data come from a humid, warmer257

area, the prediction data in the arid, colder region which has dramatically distinct land258

covers could be the OOD samples. If the training set consists of data from wet years,259

the prediction data from dry years could be the OOD samples. As the OOD samples pos-260

sess different features from the training set, it should be qualified with a large predic-261

tive uncertainty to show our low confidence when we use the trained model for extrap-262

olation. The more it differs from the training data, the higher its predictive uncertainty263

would be. Thus, when we use the uncertainty to identify the OOD samples to indicate264

the ML model’s reliability, the UQ method should be able to produce a larger predic-265

tion interval for the data further away from the training support.266

PI3NN achieves OOD identification by properly initializing the output layer biases267

of networks uθ and lξ. Specifically, we add the following operations into the Step 2 be-268

fore training uθ and lξ.269

• Initialize the networks uθ and lξ using the default option.270

• Compute the mean outputs µupper =
∑N

i=1 uθ(xi)/N and µlower =
∑N

i=1 lξ(xi)/N271

using the training set.272

• Modify the initialization of the output layer biases of uθ and lξ to c µupper and c µlower,273

where c is a relatively large number.274

• Follow the Step 2 to train uθ and lξ.275

Through above initialization strategy, outputs of networks uθ(x) and lξ(x) will be larger276

for the OOD samples than the InD data. Then after calculating the positive values of277

α and β in Step 3, it will correspondingly produce the larger uncertainty bounds [L(x), U(x)]278

for the OOD samples to indicate that their predictions are of low confidence.279

The key ingredient in this OOD identification strategy is the modification of the280

biases of the network output layer. It is known that a MLP dense network is formulated281

as a piece-wise linear function. The weights and biases of hidden layers define how the282

input space is partitioned into a set of linear regions; the weights of the output layer de-283

termine how those linear regions are combined; and the biases of the output layer act284

as a shifting parameter. These network weights and biases are usually initialized with285

some standard distributions, e.g., uniform U [0, 1] or Gaussian N [0, 1], as default options.286

Setting the output layer biases to cµupper and cµlower with a large value of c will signif-287

icantly lift up the initial outputs of uθ and lξ. During the training, the loss in Eq. (2)288

will encourage the decrease of uθ(x) and lξ(x) only for InD data (i.e., xi ∈ Dtrain), not289

for OOD samples. Therefore, after training, uθ(x) and lξ(x) will be larger in the OOD290
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region than in the InD region (see Figure 1 in S. Liu et al. (2021) for an illustration).291

Correspondingly, the PIW of the OOD samples will be larger compared to that of the292

training data, based on which we identify the data/domain shift and indicate the extrap-293

olation. Note that the exact value of c does not matter much, as long as it is a large pos-294

itive value, e.g., we use c = 100 in this study. For training data, PI3NN will produce295

prediction intervals precisely enclosing γ×100% portion of data for a given confidence296

level γ ∈ [0, 1] no matter how large the c values is, although a larger c in the network297

initialization may take a slightly longer training time for convergence. For the unseen298

test data, if they are InD with similar input features as the training set, PI3NN will pro-299

duce uncertainty bounds with a similar width as the training data despite the large c300

value. If the test data are OOD outside of the training support, PI3NN will produce a301

larger PIW than that of the training data. The larger the c value is, the wider the PIW.302

Then, by comparing the PIWs of the test data with those of the training data, we di-303

agnose whether the unseen test data are InD or OOD to quantify the trustworthiness304

of the ML model predictions. For OOD samples, we are not expected to accurately pre-305

dict them, due to data-driven ML model deficiency, but more importantly it is to iden-306

tify them to avoid overconfident predictions and provide a guidance for data collection307

to improve the predictability.308

2.3 PI3NN-LSTM for robust time-series prediction309

PI3NN can be generally applied to a wide range of network structures. It is straight-310

forward for MLP networks to follow the above three steps in Section 2.1. In this section,311

we introduce its integration into the LSTM network for credible time series predictions.312

We first introduce the standard LSTM network, then describe how to use PI3NN to quan-313

tify its prediction uncertainty, and lastly depict the implementation of PI3NN-LSTM in314

steps.315

LSTM is a special type of recurrent neural network to learn long-term dependence316

in time-series prediction, which makes it particularly suitable for daily streamflow sim-317

ulation where lag times between precipitation (including both rainfall and snow) and dis-318

charge can be up to months. LSTM learns to map the inputs over time to an output,319

thus it knows what observations seen previously are relevant and how they are relevant320

for predictions enabling dynamic learning of temporal dependence. In daily streamflow321

modeling, the LSTM network reads previous t days of meteorological observations as in-322

puts to predict streamflow on the current day. As shown in the bottom panel of Figure 1,323

each LSTM cell reads the input sequences xt one time step at a time and the output from324

the previous time step is fed into the next cell as another input along with the input at325

current time step to affect the prediction, and so on. The outputs from the chain of LSTM326

cells are saved in the hidden states ht , which dynamically add, forget, and store infor-327

mation from the meteorological input sequences. Lastly, the LSTM network uses fully-328

connected dense layers to map the information in ht to the quantity of interest yt and329

predicts the current streamflow.330

Essentially, the LSTM model consists of two subnets: a recurrent net and a MLP331

dense net. The recurrent subnet extracts input features and their temporal information332

and saves them in ht, i.e., [x1,x2, ....xt]→ ht. Subsequently, the dense subnet learns333

the input-output relationship from ht to yt, i.e., ht → yt. After the entire LSTM model334

is trained, the vector ht saves all the information of the meteorological input sequences.335

Then, we can use ht as a new set of inputs for the MLP network to predict the current336

streamflow of yt and quantify its predictive uncertainty, without considering the recur-337

rent subnet anymore. In this way, we successfully transform the UQ on the complex LSTM338

model into the UQ problem of the MLP network that we already know, which greatly339

simplifies the task.340

To summarize, we perform the following three steps to integrate PI3NN into LSTM341

for time-series prediction and predictive uncertainty quantification (Figure 1) :342
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Figure 1. The workflow of the PI3NN-LSTM method where a LSTM network is trained for

prediction and two MLP networks are trained for predictive uncertainty quantification.

• Step 1 Train a LSTM model to predict yt from multivariate input sequences of343

[x1,x2, ....xt] in a standard way;344

• Step 2 Extract values of hidden state variable ht as inputs and calculate the dif-345

ference between the LSTM model prediction and observation on yt as outputs to346

train two MLP dense nets for the PI calculation;347

• Step 3 Determine the PI of yt precisely by computing the coefficients of α and348

β via the root-finding method.349

In comparison to the three steps in Section 2.1, PI3NN-LSTM has the following350

similarities and differences. Step 1 is similar. Both train a ML model fω(x), either a MLP351

model or a LSTM model, in a standard way for deterministic prediction. Step 2 is dif-352

ferent, where the PI3NN-LSTM method here uses the hidden state variable ht as the353

inputs to train the two MLP networks uθ and lξ. The size of ht is equal to the number354

of LSTM cells. Step 3 is the same as in Section 2.1. By employing the techniques in Sec-355

tion 2.2, the PI3NN-LSTM method can also examine the OOD samples in the time-series356

simulation and characterize the possible data/domain shift to avoid overconfident pre-357

diction. This strategy of network decomposition can be generally applied to other net-358

work structures. For example, we can decompose a convolutional neural network (CNN)359

model into a convolutional net and a MLP dense net, and decompose a graph neural net-360

work (GNN) model into a graph net and a MLP dense net. The recurrent net, convo-361

lutional net, and graph net in the LSTM, CNN, and GNN model, respectively, perform362

like an encoder which extracts temporal, spatial, and graph information into a hidden/latent363

variable. Then, we implement PI3NN on these latent variables to simplify the UQ task364

into the MLP problem. In this way, PI3NN can be applied for a variety of ML models365

in a computationally efficient and straightforward way.366

3 Application of PI3NN to two diverse watersheds367

We apply the PI3NN-LSTM method for daily streamflow prediction and UQ from368

meteorological observations in the snow-dominant East River Watershed (ERW) and the369

rain-driven Walker Branch Watershed (WBW) in the western and southeastern US, re-370

spectively. The two watersheds are distinctly different in their climatological patterns371
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and hydrological dynamics. In the following, we first introduce the study area, data, and372

numerical experimental setup of each watershed and then we describe some prediction373

performance evaluation criteria.374

3.1 Snow-dominant East River Watershed (ERW)375

ERW is located in Colorado, US and it contains several headwater catchments in376

the Upper Colorado River basin. The watershed is about 300 km2 and has an average377

elevation of 3266 m above mean sea level, with 1420 m of topographic relief and pronounced378

gradients in hydrology, vegetation, geology, and weather. The area is defined as having379

a continental, subarctic climate with long, cold winters and short, cool summers. The380

watershed has a mean annual temperature of 0◦C, with average minimum and maximum381

temperatures of -9.2◦C and 9.8◦C, respectively; winter and growing seasons are distinct382

and greatly influence the hydrology. Annual average precipitation is approximately 1200 mm/yr383

and is mostly snow. River discharge is driven by snowmelt in late spring and early sum-384

mer and by monsoonal-pattern rainfall in summer (Hubbard et al., 2018).385

We consider data from two gauged stations, Quigley and Rock creek, both of which386

are headwater catchments with area of 576 acre and 800 acre, respectively. Each catch-387

ment includes four sequences of data: three input feature sequences of daily precipita-388

tion, maximum air temperature, and minimum air temperature, and one output sequence389

of daily streamflow. Quigley catchment has about two years of meteorological and stream-390

flow observations from 09/01/2014 to 10/13/2016 with 774 daily measurements. Rock391

creek catchment has about three years of observations from 08/31/2014 to 10/04/2017392

with 1131 daily measurements. In the LSTM simulation, we reserve the last year as un-393

seen test data for prediction performance evaluation and use the remaining data for train-394

ing. These two catchments have short records and it is a deliberate choice. As a new de-395

velopment of the PI3NN-LSTM method and the first application to the streamflow pre-396

diction, we want to first use a relatively small dataset for detailed analyses and deep un-397

derstanding. And then in the second case study of the Walker Branch Watershed, we398

work on a long record of data.399

Besides predicting streamflow, we also calculate its 90% prediction interval to quan-400

tify the predictive uncertainty. Additionally, we use PI3NN to investigate whether the401

unseen test data come from new climate conditions. If so, then the LSTM model pre-402

dictions cannot be trusted and PI3NN should show a larger PIW compared to the train-403

ing data. Specifically, for each catchment, following the procedure in Figure 1, we first404

use a standard LSTM model to predict streamflow from the meteorological observations.405

We then extract the hidden state information (ht) and construct two MLP dense net-406

works to calculate the PI. In this calculation, we initialize the bias of the output layers407

of these two MLP dense nets with a large constant of c for the OOD detection (we in-408

vestigate the influence of different c values on OOD identification capability in Section 4.1).409

In each network’s learning, we perform a hyperparameter tuning using 20% of the train-410

ing data. The network structures and the final hyperparameters used in the ERW sim-411

ulations are listed below.412

• For Quigley catchment: the LSTM network has a single recurrent layer with 128 nodes.413

The look-back window size is 45 days and the batch size is 64. Adam optimizer is used414

with a learning rate of 0.001. The two MLP dense nets for the PI calculation have a415

single layer with 10 nodes. To train the dense nets, we use the Adam optimizer with416

a learning rate of 0.001 and set the batch size to 32.417

• For Rock creek catchment: the LSTM network has a single recurrent layer with 128418

nodes. The look-back window size is 60 days and the batch size is 32. Adam optimizer419

is used with a learning rate of 0.001. The two MLP dense nets for the PI calculation420

have a single layer with 20 nodes. To train the dense nets, we use the Adam optimizer421

with a learning rate of 0.005 and set the batch size to 128.422
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In both catchments, log-transform of data is first applied and then the data are scaled423

to a range of [−1, 1] for learning. Note that the above hyperparameters are standard for424

NNs. Our PI3NN method does not introduce extra hyperparameters which saves the ef-425

fort of tedious tuning and more importantly promises reliable learning and stable pre-426

diction performance. Additionally, the dense networks used by PI3NN to quantify the427

LSTM prediction uncertainty have a simple structure which enables a data- and computationally-428

efficient training and UQ.429

3.2 Rain-driven Walker Branch Watershed (WBW)430

WBW is located in East Tennessee, US, and is part of the Clinch River which ul-431

timately drains into the Mississippi River (Curlin & Nelson, n.d.; Griffiths & Mulhol-432

land, 2021). WBW includes the West Fork and East Fork catchments, which are 38.4433

and 59.1 hectares in size, respectively. WBW has an average annual rainfall of 1350 mm434

and a mean annual temperature of 14.5 ◦C, which is consistent with a humid southern435

Appalachian region climate. The elevation ranges from 265 m to 351 m above mean sea436

level. Rain is the primary precipitation type in this region. Streamflow in both the West437

Fork and East Fork catchments is perennial and is fed by multiple springs (Johnson, 1989).438

We use data from the East Fork catchment in this study. The data consist of seven in-439

put sequences, including daily precipitation, maximum and minimum air temperature,440

maximum and minimum relative humidity, and maximum and minimum soil tempera-441

ture, and one output sequence of daily streamflow. We have 14 years of observations from442

01/01/1993 to 12/31/2006 with 5113 daily measurements. Given this long record of data,443

we reserve the last four years (2003-2006) as unseen test data for prediction performance444

evaluation and use the first ten years of data for training.445

Similar to the ERW case study, we use the LSTM model to predict streamflow in446

the East Fork catchment of WBW, as well as use PI3NN to calculate its 90% prediction447

interval and to identify the possible OOD samples in the unseen test data. As WBW is448

a rain-driven watershed which has different meteorological and hydrological dynamics449

from the snow-dominant ERW, we used these contrasting watersheds to investigate whether450

PI3NN-LSTM is able to provide consistently good predictions under different conditions.451

Again in the East Fork catchment, we use 20% of the training data to determine the net-452

work structure and the hyperparameter values. The LSTM network has a single recur-453

rent layer with 32 nodes. The look-back window size is 60 days and the batch size is 128.454

Adam optimizer is used with a learning rate of 0.001. The two MLP dense nets used by455

PI3NN to calculate the uncertainty have a single layer with 20 nodes, and the Adam op-456

timizer with a learning rate of 0.005 is used for training with a batch size of 128.457

3.3 Performance evaluation metrics458

We use the Nash-Sutcliffe-Efficiency (NSE) to assess model prediction accuracy,
and use the Prediction Interval Coverage Probability (PICP) and Prediction Interval Width
(PIW) jointly to evaluate the quality of the UQ. NSE is an established measure used in
the hydrological modeling to evaluate streamflow simulation accuracy based on the fol-
lowing equation:

NSE = 1−
∑N

i=1(yi
obs − yipred)2∑N

i=1 (yiobs − yobs)2
, (6)

where N is the total number of samples in evaluation, yi
pred represents predictions, yi

obs
459

and yi
obs are the observations and mean observations, respectively. The range of the NSE460

is (-inf, 1], where a value of 1 means a perfect simulation, a NSE of 0 means the simu-461

lation is as good as the mean of the observation and everything below zero means the462

simulation is worse compared to using the observed mean as a prediction. According to463

Moriasi et al. (2007), a NSE value greater than 0.50 is considered satisfactory, greater464

than 0.65 is considered good, and greater than 0.75 is very good.465
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PICP is defined as the ratio of samples that fall within their respective PIs. For
example, for a sample set {(xi, yi)}Ni=1, we use ki to indicate whether the sample yi is
enclosed in its PI [L,U ], i.e.,

ki =

{
1, if L(xi) ≤ yi ≤ U(xi),

0, otherwise
(7)

Then, the total number of samples within upper and lower bounds is counted as:

s =

N∑
i=1

ki. (8)

Consequently, the PICP is calculated as:

PICP =
s

N
× 100%. (9)

For each prediction data, the PIW is calculated as

PIW = U(x)− L(x) = αuθ(x) + βlξ(x). (10)

A high-quality UQ estimate should produce a PICP value close to its desired confidence466

level with a small PIW for InD data to demonstrate its accuracy and precision, and should467

be able to quantify uncertainty with a large PIW for the OOD data to avoid overcon-468

fident predictions.469

4 Results and discussion470

In this section, we evaluate the PI3NN-LSTM model’s prediction performance. We471

assess the prediction accuracy using the NSE score and by comparing the observed and472

simulated hydrographs. We investigate PI3NN’s UQ capability based on three aspects:473

the quality of the PI, the method’s reliability, and data-, computational-efficiency, and474

its capability in identification of OOD samples. A well-calibrated UQ estimate should475

produce a reasonable, informative uncertainty bound quantifying the desired confidence476

level, e.g., for a 90% confidence level, the prediction interval should cover about 90% of477

the training data with a narrow width. Also, a high-quality UQ method should present478

an error-consistent uncertainty, i.e., for data points where the ML model has a low pre-479

diction accuracy, the method should yield a large uncertainty showing low confidence.480

Thus, when groundtruthed data are unavailable, it is reasonable to use the uncertainty481

bound as an error indicator to quantify the trustworthiness of the model prediction. Ad-482

ditionally, when we use the UQ method for applied issues (e.g., water resource manage-483

ment), we expect it to be reliable by involving only a few problem-dependent hyperpa-484

rameters and being minimially constrained by the data distributional assumptions. More-485

over, the method should be data-efficient given that hydrological observations can be sparse486

and expensive to obtain, and should be computationally efficient especially for large-scale487

and real-time water management applications. Last but not least, the UQ method should488

be able to detect the data/domain shift caused by the climate and environmental change489

to avoid overconfident predictions. In the following, we first analyze the results from the490

two snow-dominant catchments in ERW with short records of streamflow observations491

and then move to rain-driven WBW with a relatively long record of data. We discuss492

the results in ERW in detail and briefly summarize the findings in WBW as an exten-493

sive demonstration.494

4.1 Streamflow prediction in snow-dominant ERW495

Figure 2 depicts the two years of data in Quigley catchment where the top panel496

shows the one year of training data and the bottom panel shows the following year of497
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unseen test data. This figure describes the rainfall-runoff dynamics of a typical snow-498

dominant watershed. Streamflow peaks in the spring/early summer and precipitation499

is highest in the winter from snowfall. The time lag between precipitation and stream-500

flow can be explained by snow accumulation in the winter months and subsequent snow501

melt in spring. The LSTM network is able to successfully simulate this rainfall-runoff502

relationship and its memory effects by producing the predicted streamflow close to the503

observations based only on the precipitation and temperature inputs. The NSE value504

for the training data is 0.94 and for the test data is 0.87, suggesting a high prediction505

accuracy. Moreover, a closer look at the figure shows that in both training and test pe-506

riods, the predicted hydrograph fits the general trends of the observation pretty well with507

a close peak flow timing and similar rising and falling limb shapes.508

Figure 2. Predicted (dashed blue line) and observed streamflow (solid red line) in the snow-

dominant Quigley catchment where the grey area quantifies the 90% predictive interval. Daily

precipitation is plotted upside down on the top associated with the right y-axis, where snow

(temperature below 0◦C and in snow-water equivalents) is highlighted in black.

In Figure 2, we can also see that PI3NN accurately quantifies the prediction un-509

certainty where the PICP value of 89% in training data is close to its desired confidence510

level of 90%. Furthermore, the uncertainty bound covers the observations with a nar-511

row width, demonstrating an informative UQ. Figure 3 summarizes the PIW for the train-512

ing and test data using boxplots. It can be seen that the largest PIW in the training set513

of Quigley catchment is about 0.5 in/d, and it happens in simulating the peak flow where514

the LSTM model shows a relatively large error (Figure 2(a)). For the data points with515
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accurate streamflow simulation, PI3NN produces a relatively narrow uncertainty bound516

with a small width interval, presenting realistically high confidence in line with the high517

accuracy. The similar PIW of the training and test data for Quigley shown in Figure 3518

indicates that no OOD samples have been detected in this catchment and that the LSTM519

model predictions in the test period can be trusted. Indeed, we observe a high predic-520

tion accuracy of the test data as validated by the observations in Figure 2(b) and its PICP521

value suggests that about 74% of the test data are enclosed in the uncertainty bound.522

Figure 3. Prediction interval width (PIW) of the training and test data for the Quigley and

Rock creek catchments in ERW. The similar PIW between the training and test data in Quigley

indicates that the prediction for the test period can be trusted. In contrast, the largely different

PIW between the training and test data in Rock creek suggests that its test period encounters

some new climates that have not been seen before in training and the ML predictions may not be

trusted.

This information is particularly useful in practice when the trained ML model is523

deployed for future projections or estimating the streamflow in ungauged catchments where524

no observation data are available. At this time, we need a prediction error indicator (which525

is usually calculated as the difference between the predictions and the observations) to526

indicate whether the ML model prediction can be trusted or not; after all, ML models527

are data driven and perform well when the unseen test data share similar properties with528

the training data. Hydrological dynamics are nonstationary due to multiple interacting529

drivers, such as climate change, land use, land cover, and other environmental changes.530

Without groundtruthed data, the uncertainty bound can serve as a prediction error in-531

dicator. When the PIW of the test data has a similar value to that of the training set,532

it suggests that the predictions can be trusted. When the PIW of the test data is much533

larger than the training data, this suggests that the model prediction accuracy is degrad-534

ing and inferences should not be drawn from the predicted data due to the low predic-535

tion confidence. In Quigley catchment, we demonstrate that the training and test sets536

have similar PIWs and we further validate that the model predictions can be trusted by537

presenting a high consistency with the streamflow observations. Also, the calculated un-538

certainty bound encloses most of the actual data. Note that, we do not expect the 90%539

PI to enclose the exact 90% of the test data. PI3NN is guaranteed to produce the ex-540

act coverage for the training data because of its root-finding strategy. But for the un-541

known test data, a different feature from the training set would cause a different predic-542

tion performance and predictive uncertainty coverage.543
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Figure 4. Predicted (dashed blue line) and observed streamflow (solid red line) in the snow-

dominant Rock creek catchment where the grey area quantifies the predictive uncertainty. Corre-

sponding daily precipitation is plotted upside down where snow (temperature below 0◦C and in

snow-water equivalents) is highlighted in black.

Figure 4 illustrates three years of data in Rock creek catchment where the top panel544

shows two years of training data and the bottom panel shows one year of test data. The545

test period of 2017 is a wet, cold year with unusually high precipitation (snow accumu-546

lation) in winter. Rock creek is a small headwater catchment and its streamflow is rather547

sensitive to the meteorological forcings, so the high precipitation in winter results in a548

correspondingly large peak flow in summer from snow melt, showing a data/domain shift549

relative to the training period of 2015-2016. In this case study, we want to investigate550

the LSTM model’s capability in predicting the OOD samples caused by the new climate551

condition and more importantly to examine whether PI3NN can identify the data/domain552

shift and produce a large uncertainty by showing low confidence based on these anoma-553

lies.554

Figure 3 clearly shows that the test data in Rock creek have a much larger PIW555

compared to the training set. This large difference in uncertainty bound indicates that556

the test samples contain some features that have not been learned before and they could557

fall outside of the training support. Thus, the model predictions cannot be trusted. Tak-558

ing a close look at the hydrograph in the test period of Figure 4(b), we observe that the559

uncertainty bound in the peak flow regions between the two green dashed lines are re-560

markably high, and indeed this highly uncertain region has a larger prediction error where561
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Figure 5. Projecting the training and test data of the input hidden state variable (ht) from

its original 128 dimensions to the 2-dimensional space using principal component analysis for vi-

sualization. The 21 points (highlighted in green triangles) of the test data are identified as OOD

samples, which suggests that their predicted streamflow cannot be trusted. These streamflow

predictions are located between the two green dashed lines in Figure 4(b) which indeed shows

poor prediction accuracy.

the model-predicted streamflow deviates from the observations the most. This under-562

estimation of peak flow is understandable because the ML model only saw relatively low563

precipitation in the training period. Importantly, PI3NN is able to identify this under-564

estimation by giving it a high uncertainty and a low confidence, suggesting that the model565

predictions on these data points should not be trusted, although the model has a good566

prediction performance in training. This information is very useful in real-world appli-567

cations where groundtruthed data are unavailable. It can avoid overconfident predictions568

and guide reasonable decision making.569

Note that, PI3NN identifies OOD samples based on their input features. If the data570

points are an anomaly in input space (e.g., extreme climates) then PI3NN can identify571

them and produce a high uncertainty in the output predictions (e.g., streamflow). How-572

ever, if some data points have input features similar to the training set, although their573

predictions are poor, PI3NN or any other UQ methods cannot assign them large pre-574

diction uncertainties. In Rock creek catchment, the input space of the two MLP dense575

networks used for calculating the PIs are the 128 hidden states (ht). We project the train-576

ing and test samples of ht from their original 128-dimensional space to the 2-dimensional577

space using principal component analysis for visualization. Figure 5 indicates that there578

are 21 test data, at the upper right corner highlighted in green, relatively far away from579

other points and can be identified as OOD samples. We find that these 21 input data580

result in the streamflow predictions between the two green dashed lines in Figure 4(b)581

where PI3NN gives them large prediction uncertainties. This analysis explains the OOD582

identification capability of PI3NN. It demonstrates that if new climates make the trained583

ML model fail to accurately predict streamflow, PI3NN can correctly identify these new584

conditions and reasonably reflect their influence on streamflow prediction by producing585

a large uncertainty.586
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Figure 6. Streamflow observations and predictions for different confidence levels (γ) in the

Quigley catchment. The 95% PI (γ=0.95) encloses 95% of the observations (PCIP=95%) and the

95% interval is wider than the 90% interval (γ=0.9) showing accuracy of the PI3NN method.

In the above analysis of ERW data, we demonstrate the PI3NN-LSTM’s predic-587

tion accuracy, predictive uncertainty quality, and OOD identification capability. In the588

following, we discuss its reliability and efficiency. First of all, PI3NN is computationally589

efficient. It produces prediction intervals using three networks’ training where the first590

network in this study is the standard LSTM for mean prediction, and the other two net-591

works are MLP dense nets for UQ. In both catchments, we use a single-layer dense net592

whose training only takes 10-20 seconds and the computational cost of the following root-593

finding step is negligible (less than 1 second). Furthermore, for a different confidence level,594

PI3NN just needs to perform the root-finding step to determine the corresponding un-595

certainty bounds without further network training, and the calculated intervals are well-596

calibrated and do not suffer from the crossing issue. As illustrated in Figure 6 where both597

the 90% and 95% prediction intervals are plotted, the 95% PI encloses 95% of training598

data (PICP=95%) and its width is wider than the 90% interval (i.e., no crossing). Also,599

the 95% interval is able to cover more test data with a reasonably wider bound. Note600

that, this accurate calculation of PIs on streamflow predictions for a range of confidence601

levels only takes about 20 seconds of PI3NN after the standard LSTM model training.602

Besides, PI3NN is data efficient. Attributed to the LSTM network decomposition strat-603

egy (Section 2.3), we are able to use rather simple MLP dense nets to compute the un-604

certainty bound; and the simple network structures enable a small number of training605

data for an accurate learning. Here, by using one year of training data in Quigley and606
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Figure 7. PIW of the training and test data for different output layer bias initialization in

training the two interval networks for the Rock creek catchment. A larger c value initializes the

bias to a larger value and the default c value usually draws a sample from a standard Gaussian

distribution. Different c values do not affect training and any large c values here can identify the

OOD samples with large PIWs, which indicates the reliability of PI3NN.

Figure 8. Scatter plots of absolute prediction errors VS. the PIW for both the training and

test data sets in Rock creek catchment. The prediction interval shows error-consistent uncer-

tainty where high uncertainties (i.e., large PIWs) correspond to large errors.

two years of training data in Rock creek, we are able to reasonably quantify the uncer-607

tainty and correctly identify the OOD samples.608

Additionally, PI3NN is assumption-free and reliable. It does not involve a Gaus-609

sian assumption of the data noise, which makes it practically applicable to hydrologi-610

cal observations and able to generate an asymmetric uncertainty bound to precisely quan-611

tify the desired confidence level with a narrow width. Furthermore, PI3NN does not in-612

troduce extra hyperparameters allowing for reliable training and stable deployment in613

comparison to other state-of-the-art UQ methods. The only nonstandard parameter that614

needs to be specified in PI3NN is the constant c in initializing the output layer bias when615
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using its OOD identification capability. In Figure 7, we demonstrate that as long as c616

is specified with a large positive value, PI3NN is able to detect the OOD samples by show-617

ing a larger PIW comparing to the training set. The exact value of c does not matter618

much and would barely affect the UQ quality. As we can see, with a different c, the PIWs619

of the training data are similar to each other and the specification of c does not affect620

the uncertainty coverage. For unseen test data, if OOD samples exists, a large c will lead621

to a large PIW enabling the identification of data/domain shift, although the larger the622

c value is, the more obvious the identification.623

PI3NN is also a robust uncertainty estimate which produces error-consistent con-624

fidence. Figure 8 visualizes the relationship between absolute prediction errors and the625

PIW for both the training and test data sets in the Rock creek catchment. A clear mono-626

tonic trend is observed where the PIW increases as the increase of the errors, exhibit-627

ing decreasing confidence with the degradation of the prediction accuracy. Moreover, the628

identified OOD samples which cannot be accurately predicted by the ML model show629

a large PIW and a large error at the upper right corner of Figure 8(b). This error-consistent630

UQ property enables us to confidently use PI3NN as a ML model trustworthiness quan-631

tifier to diagnose when the model predictions can be trusted and when the results may632

fail, thus where to collect the data for the uncertainty reduction and the model predic-633

tion improvement.634

4.2 Streamflow prediction in rain-driven WBW635

In this section, we summarize the results from applying the PI3NN-LSTM model636

for streamflow prediction in rain-driven WBW and analyze the model’s performance. Fig-637

ure 9 depicts ten years of training (top) and four years of test data (bottom) in the East638

Fork of WBW. In comparison to Figures 2 and 4 that depict snow-dominant hydrolog-639

ical dynamics, this rain-driven watershed has many fewer snow days and shows a faster640

runoff response after a precipitation event. The training and test periods have similar641

magnitudes of precipitation on both annual and an event scale. In fact, we find that all642

the meteorological forcing inputs are of a similar magnitude in the training and test sets.643

PI3NN does not identify OOD samples in this dataset.644

Figure 9 indicates that the LSTM network is able to simulate the streamflow rea-645

sonably well by showing a good fit to the observations. The overall NSE is 0.65 for the646

training data and 0.6 for the test data. Figure 10 plots each test year individually where647

both the predictive values and the 90% PI are depicted. Different years demonstrate dif-648

ferent prediction accuracies, e.g., the NSE in 2005 is up to 0.78 while the subsequent year649

(2006) has a relatively low NSE of 0.50. In all the four test years, the LSTM model ap-650

pears to underpredict peak flows, e.g., the observed peak flow is 617 L/s in 2003, but651

the predicted peak flow is 194 L/s; the observed peak flow is 274 L/s in 2004, and the652

predicted peak flow is 128 L/s. In this rain-driven watershed, peak flow happens dur-653

ing storms. It seems that the LSTM model has difficulties accurately predicting the mag-654

nitude of these event-triggered streamflows and the underprediction in peak flows results655

in the relatively low NSEs in most test years. Looking at the training period in Figure 9(a),656

it seems that even for the training data, LSTM has some underpredictions of the peak657

flows. To explore the reasons, we designed another numerical experiment where we used658

weighted mean squared errors as the loss function in training and the weight was pro-659

portional to the streamflow observations. Results indicate that the weighted mean squared660

error loss did not improve the underprediction of the peak flows. We think one possi-661

ble reason is that these peak flows are erratic events which have relatively small obser-662

vations compared to other streamflow data. ML models are data driven, and the small663

sets of data can deteriorate LSTM’s capability in learning the underlying mechanism caus-664

ing the high peak flows. Future investigations are needed to examine this possibility.665
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Figure 9. Predicted (dashed blue line) and observed streamflow (solid red line) in the East

Fork of rain-driven WBW. Corresponding daily precipitation is plotted upside down on the top

associated with the right y-axis, where snow (temperature below 0◦C) is highlighted in black.

On the other hand, the peak flow timing in the test years is accurately predicted.666

For example, peak flow in 2003 was observed on the 47th day of the year and was pre-667

dicted to occur on the 48th day. Peak flow was observed on the 37th day of 2004 and668

was predicted to happen on the 38th day. Both the observed and predicted peak flow669

happened on the 92nd day of 2005. Additionally, the LSTM model does a good job at670

predicting base flows. Zooming into the base flow regions by plotting the streamflow in671

logarithmic scale in Figure 10, we can see that the predicted base flows are close to the672

observations with a high consistency. Additionally, the predictive uncertainty in the test673

period can be precisely quantified by PI3NN, where the calculated PICP is close to the674

desired value of 90%. And most of the observed base flows are encompassed by the pre-675

diction intervals. PI3NN does not have a Gaussian distributional assumption on data676

so it can produce an asymmetric uncertainty bound to precisely cover the observations.677

For example, in August-October of 2003 where the model underpredicts streamflow, PI3NN678

produces a higher upper bound of the prediction interval to cover the observations. Note679

that, the predictive uncertainty associates with the prediction; if the predicted value greatly680

deviates from the observation and OOD samples are not detected, then we cannot ex-681

pect the uncertainty bound encloses the observations. However, it is interesting to see682

that although the prediction accuracy is not very high for some years, e.g., the NSE is683

0.5 in 2006, the prediction interval can cover the desired number of observations nicely684

with the PICP of 85%.685
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Figure 10. Predicted (dashed blue line) and observed streamflow (red dots) in the East Fork

of rain-driven WBW where the grey area quantifies the 90% prediction interval. Figures in the

left column have a linear scale on the y-axes to show the underprediction of peak flows while

figures on the right have a logarithmic scale on the y-axes to show the accurate prediction and

predictive uncertainty of base flows. Note that the y-axis range on each figure is different.

WBW has a complex geomorphological structure and interconnected hydrological686

processes (Griffiths & Mulholland, 2021). Many topographical, geological, soil, and eco-687

logical factors affect streamflow dynamics. However, in this model, we only consider a688

few meteorological variables as the inputs to simulate the streamflow, which may result689

in poor predictions due to the limited data and some missing information on important690

cause-effects. It is usually the case that the data, including the number of input vari-691

ables and the number of observations, are too few to enable the ML model to accurately692

capture the underlying mechanisms of complex hydrological dynamics in watersheds. UQ693

cannot address the lack of data and it is not a replacement for data acquisition, but in-694

stead, it can guide cost-effective data collection. Additionally, it is promising to see here695

that the reasonably quantified uncertainty from PI3NN can encompass the desired num-696

ber of observations despite the relatively poor fit.697
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5 Conclusions and future work698

In this study, we propose a PI3NN method to quantify ML model prediction un-699

certainty and to integrate it with LSTM networks for streamflow prediction. Applica-700

tion of the PI3NN-LSTM method to both snow-dominant and rain-driven watersheds701

demonstrates its prediction accuracy, high-quality predictive uncertainty quantification,702

and the method’s reliability, robustness, and both data- and computational-efficiency.703

For the test data which have similar features as the training data, PI3NN can precisely704

quantify prediction uncertainty with the desired confidence level; and for the OOD sam-705

ples where the LSTM model fails to make accurate predictions, PI3NN can produce a706

reasonably large uncertainty indicating that the results are not trustworthy. Addition-707

ally, PI3NN produces error-consistent uncertainties where the prediction interval width708

increases as the prediction accuracy decreases. Therefore, when we apply the ML model709

to predict streamflow under future climate and at ungauged catchments where no groundtruthed710

data are available, the uncertainty quantifies the model predictions’ trustworthiness, in-711

dicating whether the results should be trusted or further investigation needs to be con-712

ducted. PI3NN is computationally efficient, reliable in training, and generalizable to var-713

ious network structures and data with no distributional assumptions. It can be broadly714

applied in ML-based hydrological simulations for credible predictions.715

Although data are a key to improve ML model predictability, UQ is also crucial.716

From data we develop the data-driven ML model that is consistent with our knowledge,717

thus the model is more reliable under the changing climate and environmental conditions.718

On the other hand, UQ is significantly important for the trustworthiness of the predic-719

tions under these new conditions. Additionally, we can use UQ to guide the cost-effective720

data collection and to examine the model deficiency for further model development and721

improvement. In the future, we will apply PI3NN for streamflow prediction in multiple722

watersheds across the US and integrate it with different ML models for a variety of hy-723

drological applications.724
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