
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
22
48
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Modeling Intensity-Duration-Frequency curves for the whole range

of precipitation: A comparison of models

Abubakar Haruna1, Juliette Blanchet2, and Anne-Catherine Favre3
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Abstract

Intensity-Duration-Frequency curves are useful in water resources engineering for the planning and design of hydrological

structures. As opposed to the common use of only extreme data to build IDF curves, here, we use all the non-zero rainfall

intensities, thereby making efficient use of the available information. As a parametric model, we use the Extended Generalized

Pareto Distribution (EGPD) for the non-zero intensities. We consider three commonly used approaches to build the IDF curves.

The first approach is based on the scale-invariance property of rainfall, the second relies on the general IDF formulation of

Koutsoyiannis et al. (1998) while the last approach is purely data-driven (Overeem et al., 2008). Using these three approaches,

and some extensions around them, we build a total of 10 models for the IDF curves and then we compare them in a split-

sampling cross-validation framework. We consider a total of 81 stations at 10 min resolution in Switzerland. The results reveal

the model based on the data-driven approach as the best model. It is able to correctly model the observed intensities across

duration while being reliable and robust. It is also able to reproduce the space and time variability of extreme rainfall across

Switzerland.
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Key Points:6

• We build IDF curves using all the non-zero precipitation data and model the in-7

tensities with the Extended Generalized Pareto Distribution (EGPD).8

• We consider three approaches to building IDF curves: scale invariance, the gen-9

eral IDF formulation of Koutsoyiannis et al. (1998) and a data-driven method.10

• We compare and select the best model in a cross-validation framework.11
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Abstract12

Intensity-Duration-Frequency curves are useful in water resources engineering for the plan-13

ning and design of hydrological structures. As opposed to the common use of only ex-14

treme data to build IDF curves, here, we use all the non-zero rainfall intensities, thereby15

making efficient use of the available information. As a parametric model, we use the Ex-16

tended Generalized Pareto Distribution (EGPD) for the non-zero intensities. We con-17

sider three commonly used approaches to build the IDF curves. The first approach is18

based on the scale-invariance property of rainfall, the second relies on the general IDF19

formulation of Koutsoyiannis et al. (1998) while the last approach is purely data-driven20

(Overeem et al., 2008). Using these three approaches, and some extensions around them,21

we build a total of 10 models for the IDF curves and then we compare them in a split-22

sampling cross-validation framework. We consider a total of 81 stations at 10 min res-23

olution in Switzerland. The results reveal the model based on the data-driven approach24

as the best model. It is able to correctly model the observed intensities across duration25

while being reliable and robust. It is also able to reproduce the space and time variabil-26

ity of extreme rainfall across Switzerland.27

1 Introduction28

Intensity-Duration-Frequency (IDF) curves provide the link between precipitation29

intensity, duration, and non-exceedance frequency (or rather the return period). It is a30

very common and useful tool in the area of water resources engineering. IDF curves are31

practically used to infer high return levels of rainfall intensities for the hydrological de-32

signs of structures such as sewer lines, culverts, drains, dams, dykes, etc. They are also33

used to calibrate/validate stochastic weather generators (Willems, 2000; Ritschel et al.,34

2017).35

IDF curves are traditionally modeled by fitting a statistical model, e.g a Gumbel36

distribution, to extreme data of each duration separately, Secondly, selected return lev-37

els, e.g. 2, 5, 10 years are obtained for each duration using the fitted distribution. And38

lastly, the inferred return levels are linked to duration by some empirical formulation (e.g.39

Sherman, 1931; Bernard, 1932; Chow, 1962; Carreteras, 1987; Meylan et al., 2012). Al-40

though common and easy to implement, there are several drawbacks to this approach.41

The method lacks parsimony because several parameters have to be fitted (a set for each42

return period). It is not robust in the sense that IDF curves are only available for spe-43

cific return levels, each time a new return level is needed, the process has to be repeated.44

Another major drawback is that uncertainty in the return levels obtained at the initial45

steps is not taken into account in the last step. Lastly, there can be intersections between46

curves of different return levels that cannot be theoretically justified.47

To overcome the outlined limitations of the traditional parametric methods, novel48

approaches were considered to link the different durations together in IDF curves. In gen-49

eral, in spite of the approach, two choices have to be made: the specific form of the IDF50

curves and the parametric model for the rainfall intensities. Regarding the specific form51

of the IDF curves, many formulations that are based on different approaches have been52

proposed in the literature. Here we identify and focus on three major approaches.53

The first approach involves the general formulation of Koutsoyiannis et al. (1998),54

a generalization of the various empirical formulations for modeling IDF. This formula-55

tion has the key advantage of being a separable function of return levels and duration.56

It is also consistent with both probabilistic theories and the physical constraints of scal-57

ing across duration. Several application of this formulation to build IDF curves can be58

found in the literature (e.g. Koutsoyiannis et al., 1998; Van de Vyver & Demarée, 2010;59

Blanchet et al., 2016; Sane et al., 2018; Ulrich et al., 2020; Fauer et al., 2021; Roksv̊ag60

et al., 2021).61
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The second approach is based on scale invariance. It has been shown that rainfall62

exhibits this property within some scales (see Schertzer & Lovejoy, 1987; Gupta & Waymire,63

1990, 1993; Over, 1995; Harris et al., 1997; Lima, 1998; Molnar & Burlando, 2008; Veneziano64

& Lepore, 2012; Paschalis, 2013). This property provides the physical justification for65

modeling IDF, and thus the possibility of inferring return levels of interest across scales.66

This approach is arguably the most commonly used approach, possibly because of its rich67

theoretical background, physical basis, and ease of application in regions with scarce avail-68

ability of sub-daily rainfall series. IDF curves based on this approach can be found in69

several applications (Burlando & Rosso, 1996; Menabde et al., 1999; Willems, 2000; Van de70

Vyver & Demarée, 2010; Blanchet et al., 2016; Innocenti et al., 2017; Sane et al., 2018).71

The last approach is termed by Overeem et al. (2008) as data-driven. The method72

involves fitting a parametric model, for example, GEV, to data of each duration. A par-73

ticular regression model is then fitted for each parameter as a function of duration. As74

a consequence, the return level of any duration can be inferred from the inverse of the75

distribution, with parameters obtained from the regression model. This approach im-76

poses neither the assumption/existence of scaling nor the separability condition in the77

case of the general formulation of Koutsoyiannis et al. (1998). Interestingly, both approaches78

can be seen as data-driven approaches with particular functional relationships imposed79

on the parameters.80

There exists also nonparametric approaches, which rather than imposing a para-81

metric model on the intensities, use stochastic rainfall models to estimate the IDF curves82

(for a brief review, see Langousis & Veneziano, 2007; Veneziano et al., 2007; Tyralis &83

Langousis, 2019). Here, we focus on the class that uses parametric models for the inten-84

sities.85

Coming back to the choice of parametric model for the intensities, extreme value86

distributions are usually used. For example, Generalized Extreme Value (GEV) (e.g. Blanchet87

et al., 2016; Innocenti et al., 2017; Van de Vyver, 2018; Sane et al., 2018; Mélèse et al.,88

2018; Ulrich et al., 2020; Jurado et al., 2020; Fauer et al., 2021), Gumbel (Yu et al., 2004;89

Agbazo et al., 2016; Chang et al., 2016; Ghanmi et al., 2016) for annual maximum se-90

ries or Generalized Pareto Distribution (GPD) for the peaks over thresholds (e.g. Mad-91

sen et al., 1995; Ben-Zvi, 2009; Van de Vyver & Demarée, 2010).92

Although the use of these distributions is justified by the practical use of IDF, which93

is to infer high return levels for hydrological designs, there is however, a major drawback94

resulting from the poor utilization of already scarce data, and the delicate issue of thresh-95

old choice in the GPD case. To address these issues, Naveau et al. (2016) recently pro-96

posed the Extended Generalized Pareto Distribution (EGPD) to model all the non-zero97

precipitation. It has the advantage of using all the information present in the sample of98

non-zero rainfall data and not only one value per block (like GEV distribution) or only99

values above a given threshold (as in GPD distribution). It doesn’t require the choice100

of GPD threshold and has the advantage of being compliant with extreme value theory101

in both the lower and upper tails. It has been used recently in many applications (e.g.102

Evin et al., 2018; Blanchet et al., 2019; Tencaliec et al., 2020; Rivoire et al., 2021; Le Gall103

et al., 2022; Haruna et al., 2022). However, to the best of our knowledge, it has never104

been used for modeling IDF curves.105

The goal of this article is to use the EGPD to build IDF curves for the non-zero106

precipitation intensities, based on the three outlined approaches, i.e., scale-invariance,107

the general formulation of Koutsoyiannis et al. (1998) and the data-driven approach. We108

will compare and select the best model based on a split-sampling cross-validation frame-109

work.110

The rest of the paper is organized as follows: Section 2 introduces the data and the111

area understudy, and Section 3 presents the EGPD, the models for the IDF curves, and112
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the evaluation framework. Section 4 presents the results and discussion and finally Sec-113

tion 5 draws the conclusions and gives relevant perspectives.114

2 Data and area under study115

The study area is Switzerland, a small country by size with an area of 41,285 km2.116

It however presents a complex topography with elevations ranging from 191 m to 4127 m117

above mean sea level. Around 30% of the area is located above the elevation of 1500 m118

above sea level. This results in marked spatial variability both in intensity and occur-119

rence of precipitation.120

Point precipitation data from a total of 81 stations, with a minimum record length121

of 20 years, are available for this study. They are spread across Switzerland and their122

location is shown in Fig. 1. Out of this total, 71 stations belong to the SwissMetNet of123

the Swiss Federal Office for Meteorology and Climatology (MeteoSwiss) while 10 belong124

to the canton of Lucerne, a partner network of MeteoSwiss. The precipitation data is125

measured with a tipping-bucket gauge of 0.1 mm depth resolution at a sampling reso-126

lution of 10 minutes. The tipping gauge is heated in order to account for snow. The sam-127

ple data has a variable length ranging from a minimum of 20 years to a maximum of 40 years128

from 1981 to 2020. The stations are located at elevations ranging from a minimum of129

203 m, an average of 952.4 m, and a maximum of 3294 m.

20

25

30

35

40
Years

1000

2000

DEM

Figure 1. Map of Switzerland showing the location of the 81 stations. The color of the points

indicates the length of the precipitation data in years. The background color shows the elevation

above sea level in meters.

130

Due to the marked seasonality of precipitation in Switzerland, we divided the data131

into four seasons of three months each. Winter includes Dec-Jan-Feb, Spring Mar-Apr-132

May, Summer Jun-Jul-Aug while Autumn includes Sep-Oct-Nov. A similar seasonal ap-133

proach was used by Molnar and Burlando (2008); Fukutome et al. (2015); Evin et al. (2018);134

Haruna et al. (2022), in the study area.135
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3 Methodology136

In this section, we start by presenting the parametric model for the non-zero pre-137

cipitation intensities, then we present the various IDF models, and finally the inference138

strategy to estimate the parameters.139

3.1 Marginal distribution of non-zero precipitation intensities140

As our target is to model the IDF curves using all the non-zero precipitation in-141

tensities, we choose the EGPD of Naveau et al. (2016) as the parametric model. The model142

is compliant with extreme value theory in both its upper and lower tails while provid-143

ing a smooth transition in-between. It gives an alternative to the light-tailed distribu-144

tions such as Gamma, which underestimates extremes (Katz et al., 2002). Four para-145

metric families of this model have been proposed by Naveau et al. (2016) to model the146

transition, however, the simplest of the families is parsimonious and can adequately model147

precipitation intensities without the need for GPD threshold selection (see Evin et al.,148

2018; Le Gall et al., 2022; Haruna et al., 2022, for application in the study area). We,149

therefore, use it in our study.150

If I is a random variable representing non-zero daily precipitation intensity that151

is distributed according to the EGPD, then the cumulative distribution function (CDF)152

is given by:153

F (i) = P(I ≤ i) = G

[
Hξ

(
i

σ

)]
, (1)

where G is any CDF that ensures a smooth transition between the EVT compliant up-154

per and lower tails and satisfies the conditions given in Naveau et al. (2016), and:155

Hξ

(
i

σ

)
=

{
1− (1 + ξ i

σ )
−1/ξ
+ if ξ ̸= 0

1− exp (−i/σ) if ξ = 0
, (2)

with a+ = max(a, 0).156

For the parsimonious model we use, the function G is simply defined as G(v) =157

vk. Therefore the model is given as:158

F (x) =

[
Hξ

(
i

σ

)]k
(3)

The model thus has three parameters. k > 0 controls the lower tail, ξ ≥ 0 controls159

the upper tail, and σ > 0 is the scale parameter.160

3.2 IDF models161

We define the random variable Id as the average non-zero precipitation intensity162

over the duration d. It is described by the CDF, Fd(i), such that Fd(i) = P (Id < i).163

The exceedance frequency is defined as pd(i) = 1 − Fd(i). The return period of any164

non-zero intensity i, as a function of pd is given by T (Id ≥ i) = 1
pd×δd

, with δd the av-165

erage number of non-zero precipitation intensities per year. Conversely, the T -year re-166

turn level over duration d, i(T, d), is defined as the (1− 1
T×δd

) quantile of Fd.167

Accordingly, IDF is a mathematical function (T, d) 7→ i(T, d) that relates non-zero168

rainfall intensity i with its duration d, and the frequency of exceedance pd (or rather the169

return level T ). In this article, the CDF of Id, Fd(i) is defined by the EGPD presented170

in Section 3.1. All the different formulations considered here simply differ by how they171

define this mathematical relationship between i, T and d, while taking Fd(i) as an EGPD172

model.173

In the following subsections, we present the different IDF-EGPD models based on174

the three outlined approaches, i.e., scale-invariance, the general formulation of Koutsoyiannis175

–5–
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et al. (1998), and data-driven approaches. For sake of simplicity, we drop the ”EGPD”176

term and simply refer to the IDF models as IDFmodelname, where the subscript ”mod-177

elname” refers to the approach used to build the model.178

For all the models, the IDF curves, corresponding to the (1 − 1
T×δd

) quantile of179

the EGPD is defined in Eq. 4. The choice of the model determines whether each of the180

three parameters; κ, σ, and ξ depends on d or not, and the form of the relationship.181

i(T, d) =
σd

ξd


(
1−

[
1− 1

T × δd

] 1
κd

)−ξd

− 1

 (4)

We consider thirteen durations, i.e., d = 30 min, 40 min, 1, 2, 3, 6, 10, 12, 16, 18,182

24, 48 and 72 hours. We use a fixed window to aggregate the data from the gauge res-183

olution of 10 mins, to the various durations. For instance, the 24hr intensities correspond184

to amounts accumulated from 00h00 to 24h00 of every day, divided by 24.185

3.2.1 Scaling IDF186

Scale invariance in the strict sense of Gupta and Waymire (1990) refers to the prop-187

erty where the probability distribution of Id can be inferred from the distribution of Id0
188

at the reference duration d0 through:189

Id
dist
= CλId0

, (5)

where the parameter Cλ determines the type of scaling; simple-scaling or multi-scaling.190

A weaker assumption, the so-called ”wide sense scaling” (Gupta & Waymire, 1990),191

is when the scaling is in the moments according to:192

E [Iqd ] =

(
d

d0

)−k(q)

E
[
Iqd0

]
, (6)

where q is the order of the moment, k(q) is called the moment scaling function, d0 is the193

reference duration. Moment scaling analysis as described by Gupta and Waymire (1990)194

is used to determine the type of scaling.195

Strict sense simple-scaling occurs when the scale ratio Cλ in Eq. 5 is a scalar that196

depends only on the ratio of the scales as expressed in Eq. 7.197

Id
dist
=

(
d

d0

)−H

Id0
(7)

Wide sense simple-scaling is when the moment scaling function in Eq. 6 is linear198

in q, i.e. k(q) = Hq, as expressed in Eq. 8.199

E [Iqd ] =

(
d

d0

)−Hq

E
[
Iqd0

]
(8)

It can be shown that, under the strict sense simple-scaling, only one parameter of200

the EGPD is scaling, which is σ, whereas κ and ξ are independent of duration. For the201

rest of the paper, we drop the term ”strict-sense”, and simply use ”simple-scaling” for202

convenience.203

The simple-scaling EGPD model, IDFss, is defined such that: κd = κd0 , ξd =204

ξd0
, and σd is a power law given as:205

–6–
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σd =

(
d

d0

)−H

σd0
(9)

0.4
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σ
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(b)   ξ(d) in Summer
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Figure 2. Illustration of a) Break in scaling of the σ parameter in winter at a station, Robbia

in Graubünden. The points colored in black are the estimated σ for each duration separately. b)

Dependence of ξ on duration in summer at a station in Zurich. The black colored points are the

estimated ξ for each duration separately. The lines are the fitted linear models. The pink line is

the mean of the estimated ξ.

An important issue is the existence of multiple scaling regimes in precipitation. This206

means that different scaling behaviors (scaling exponents) exist for different ranges of207

duration. IDF then have to be modeled considering the existence of this change in scal-208

ing (e.g. Yu et al., 2004; Bougadis & Adamowski, 2006; Courty et al., 2019). An illus-209

tration of this behavior is given in Fig. 2a for the σ parameter in winter at a station,210

Robbia in Graubünden. Here, a single power law (log-log given in Eq. 9 ) in blue is not211

enough to explain the scaling. The two regime model (log-log TR in Eq. 10) in red is212

necessary.213

To account for this break in the scaling relationship, we define the two-regime simple-214

scaling EGPD IDF model, IDFss TR as:215

σd =


(

d
d0

)−H1

σd0 if d ≤ K,(
d
d0

)−H2

σd0
×KH2−H1 if d > K,

(10)

where K is the duration of the scaling break, and σ is continuous in d = K. The216

other parameters, H1 and H2 are the scaling exponents of the first and second regimes.217

The other two parameters, κ, and ξ remain independent of durations. Hence for this model,218

a total of six parameters have to be estimated, i.e., κd0 , σd0 , ξd0 , H1, H2 and K.219

Lastly, although the simple-scaling EGPD model imposes a constraint on the de-220

pendence of ξ with d, i.e, ξd = ξd0
, we however notice some of the stations to show ap-221

parent dependence of ξ with respect to d. To account for this, we impose a functional222

relationship of ξ with respect to duration through a linear-log form as expressed in Eq.223

11. Fig. 2b gives an example of the dependence of ξ on duration at a station in Zurich,224

and how the linear-log model fits correctly the points.225

ξd = aξ + bξ log (d) (11)

–7–



manuscript submitted to Water Resources Research

Where aξ and bξ are the intercepts and slopes respectively. This leads to two ad-226

ditional IDF models, with ξ = f(d), namely:227

• IDFss ξ(d): an extension of the basic simple-scaling model IDFss, to allow ξ to de-228

pend on d according to Eq. 11.229

• IDFss TR ξ(d): an extension of the two-regime simple-scaling model IDFss TR, to230

allow ξ to depend on d according to Eq. 11.231

3.2.2 General IDF formulation232

Koutsoyiannis et al. (1998) proposed a general formulation for the different tradi-233

tional formulations of the IDF curves in the literature. He showed that all of them can234

be simplified into the form:235

i(T, d) =
a(T )

b(d)
(12)

where b(d) = (d+ θ)H . The parameter θ is the duration offset, and H is the duration236

exponent. Both θ and H are non-negative constants. a(T) is the (1− 1
T ) quantile of the237

re-scaled intensities Idb(d). a(T) is independent of d and completely determined by the238

statistical model considered for Id, in our case, the EGPD.239

This formulation has the key advantage of being a separable function of return lev-240

els a(T), and duration b(d) that is consistent with both probabilistic theories and the241

physical constraints of scaling across duration. Menabde et al. (1999) showed that this242

formulation is the same as the scale-invariant model θ is set to zero.243

When applied to the EGPD, IDFkoust is defined such that: κd = κd0
σd =

(
d+θ
d0+θ

)−H

σd0
244

ξd = ξd0 . Five parameters, κ, σ, ξ, θ and H have to be inferred.245

Following the same arguments discussed in Section 3.2.1 regarding the existence246

of a break in the scaling relationship, and the dependence of ξ with d, we propose three247

extensions to this model:248

• IDFkoust TR: Allowing for a break in the scaling regime. This model is defined as:249

σd =


(

d+θ
d0+θ

)−H1

σd0 if d ≤ K(
d
d0

)−H2

σd0
×KH2−H1 if d > K

(13)

where κ and ξ are independent of duration.250

• IDFkoust ξ(d): an extension of the basic model IDFkoust, to allow ξ to depend on251

d according to Eq. 11.252

• IDFkoust TR ξ(d): an extension of the two-regime model IDFkoust TR, to allow ξ253

to depend on d according to Eq. 11.254

3.2.3 Data-Driven IDF255

The scaling theory and the specific form of Eq. 12 impose particular functions for256

the relation between the scale parameter, σ of the EGPD with respect to duration, d.257

However, in the case of the data-driven models, the expression of the relationship for each258

of the three EGPD parameters is entirely determined by the data itself. To guide our259

choice of the appropriate functional relationship, we inspected how each locally estimated260

parameter varies with duration. Fig. 2 gives an example for the σ and ξ parameters at261

two stations. We finally settled on the following functions to model the three parame-262

ters with respect to duration:263

–8–
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κd =

{
exp [aκ + b1,κ log (d)] if d ≤ Kκ

exp [aκ + b2,κ log (d) + (b1,κ − b2,κ) log (Kκ)] if d > Kκ
(14)

σd =

{
exp [aσ + b1,σ log (d)] if d ≤ Kσ

exp [aσ + b2,σ log (d) + (b1,σ − b2,σ) log (Kσ)] if d > Kσ
(15)

For the first two parameters, κ and σ, the function is a continuous two linear piece-264

wise model in log space. K∗ is the duration of the breakpoint (σ continuous for d = K).265

a∗, b1,∗,b2,∗ are the intercepts and slopes of the first and second lines respectively. In the266

case of xi, the function os given in Eq. 11.267

Note that, by keeping κ and σ independent of duration, and using either σd =
(

d
d0

)−H

σd0
268

or σd =
(

d+θ
d0+θ

)−H

σd0 , the simple-scaling or the general formulations of Koutsoyiannis269

et al. (1998) presented in Section 3.2.1 and 3.2.2 respectively can be obtained from this270

data-driven approach.271

We consider two IDF models in this class, both impose the same type of functional272

relationships (Eq. 14, 15, 11), but simply differ in the way the regression parameters are273

estimated. For the first model, we follow a two-step approach (as implemented by Overeem274

et al., 2008). First, we fit, for a given station, the EGPD on the data of each duration275

separately. Second, we fit for each fitted parameter, the chosen regression model as a func-276

tion of duration. We call this model IDFDDlocal
.277

The second model involves a one-step global fitting procedure. We pool all the data278

from the different durations to estimate the best EGPD with parameters from Eq. 14279

to 11), the duration being the covariate. We call this model IDFDDglobal
.280

Note again that both models have the same number of free parameters, i.e. 10, but281

differ in the inference strategy.282

The different models compared in this study are summarized in Table 1.283

Table 1. Summary of the IDF models that are compared in this study.

Model No. of Parameters Name of Approach Ref. Section

1 IDFss 4 Simple-scaling 3.2.1
2 IDFss TR 6 Simple-scaling 3.2.1
3 IDFss ξ(d) 5 Extension of Simple-scaling 3.2.1
4 IDFss TR ξ(d) 7 Extension of Simple-scaling 3.2.1

5 IDFkouts 5 Koutsoyiannis et al. (1998) 3.2.2
6 IDFkouts TR 7 Extension of Koutsoyiannis et al. (1998) 3.2.2
7 IDFkoust ξ(d) 6 Extension of Koutsoyiannis et al. (1998) 3.2.2
8 IDFkoust TR ξ(d) 8 Extension of Koutsoyiannis et al. (1998) 3.2.2

9 IDFDDlocal
10 Data-driven 3.2.3

10 IDFDDglobal
10 Data-driven 3.2.3

3.3 Inference284

For the models of Koutsoyiannis et al. (1998), the authors have proposed two dif-285

ferent estimation strategies; the so-called ’robust estimation’, and the ’one-step least square286

method’. The robust estimation is a two-step procedure that involves the estimation of287

the parameters of b(d), and then those of a(T ) (see Eq. 12), through the minimization288

of the Kruskal-Wallis statistic. The one-step least square method involves the joint es-289

timation of all the parameters of Eq. 12 that minimizes the squared error of the observed290
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and modeled quantiles from the IDF model. In the case of the simple-scaling models,291

a two-step procedure has been used (see Nhat et al., 2008; Panthou et al., 2014; Inno-292

centi et al., 2017) where the scaling exponent in Eq. 7 is first obtained through moment293

scaling analysis, then all re-scaled intensities from all the durations are used to fit the294

IDF model.295

In our case, however, we follow a global maximum likelihood estimation for all the296

models, as done by Blanchet et al. (2016). This involves pooling, for each station, all the297

data from the thirteen durations to estimate the model parameters. The duration d is298

used as a covariate. We note here that by pooling all the data, the dependence between299

the time steps and durations is neglected.300

The log-likelihood (ll) that is maximized here (given in Eq. 16) takes left censor-301

ing into account. The importance of using left censoring in fitting rainfall data by max-302

imum likelihood has been pointed out by Naveau et al. (2016), and he showed that bet-303

ter performance is obtained by taking it into account.304

llEGPD(κd, σd, ξd) = llcensored(κd, σd, ξd) + lluncensored(κd, σd, ξd), (16)

where llcensored and lluncensored are the contributions of the censored and uncen-305

sored data, given in Eq. 17 and 18 respectively, as306

llcensored(κd, σd, ξd) =
∑
d

∑
j:id<cd

κ log

[
1−

(
1 +

ξdcd
σd

)− 1
ξd

]
, (17)

lluncensored(κd, σd, ξd) =
∑
d

∑
j:id≥cd

log κd −
∑
d

∑
j:id≥cd

log σd −
∑
d

∑
j:id≥cd

[
1 +

ξdid,j
σd

][1+ 1
ξd

]
+

∑
d

∑
j:id≥cd

[
1−

((
1 +

ξdid,j
σd

)− 1
ξd

)][κd−1]

, (18)

where cd is the left censoring threshold applied to the data of duration d and the307

summation is done over the 13 durations. Many authors have taken this into account308

but they usually take a uniform threshold value for all the stations (e.g. Tencaliec et al.309

(2020) used 2 mm for daily rainfall). Here we didn’t find the use of a common thresh-310

old over the 81 stations sufficient. We had to select, for each station and duration, the311

lower threshold c that minimizes the Normalized Root Mean Square Error (NRMSE) of312

Eq. 19 in Section 3.4.313

In both Eq. 17 and 18, the choice of the IDF model specifies the function linking314

the EGPD parameters to duration. For instance, in the case of the simple-scaling , IDFDDss ,315

κd = κd0
σd =

(
d
d0

)−H

σd0
ξd = ξd0

.316

For the specific case where two linear models are fitted (see Eq. 10, 13, 14, 15, 11),317

we start by estimating the break-point, K, using the functions in the segmented I pack-318

age (Muggeo et al., 2008). The package implements the algorithm of Muggeo (2003) which,319

given the initial value of the break-point, estimates simultaneously the optimal break-320

point and the other parameters of the segmented linear model. The estimation is done321

through computational iteration of a reparameterized form of the standard segmented322

regression (see Muggeo, 2003, for details). We then plug the estimated value in the like-323

lihood functions to estimate the parameters.324
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Finally, in the case of the IDFDDlocal
, the parameters in Eq. 14 and 15 are estimated325

by segmented regression (described in the preceding paragraph), while those of Eq. 11326

by least-squares.327

3.4 Evaluation framework328

We evaluate the performance of the models in two aspects. First, in calibration,329

that is how well a given model predicts the data that was used in training it. Secondly,330

we evaluate their predictive performance in a cross-validation framework.331

3.4.1 Calibration332

To evaluate the performance of the models in calibration, we compute the NRMS.333

The normalization, which here is done by the mean, allows the comparison of intensi-334

ties of different duration across different stations.335

For each station s, and duration d, we compute the NRMSE over the non-zero pre-336

cipitation intensities as:337

NRMSEs(d) =

{
1

ns(d)

∑ns(d)
j=1

(
rs,Tj

(d)− r̂s,Tj
(d)
)2}1/2

rs(d)
(19)

where NRMSEs(d) denotes the score computed at station s, and duration d, ns(d)338

is the number of non-zero precipitation intensities for duration d , rs,Tj
(d) is the empir-339

ical quantile with return period Tj , r̂s,Tj
(d) is the corresponding Tj-year return level es-340

timated from the fitted model. The denominator is the average rainfall at site s and du-341

ration d, given as 1
ns(d)

∑ns(d)
j=1 rs,Tj

(d). The best model according to this criteria is the342

one with the lowest NRMSEs(d).343

3.4.2 Cross-validation344

We follow a split sampling procedure in a cross-validation framework. For each sta-345

tion s, we divide the 10 min precipitation intensities into two equal sub-samples of the346

same length but on different years that are randomly chosen. We then aggregate the data347

into intensities of various duration, d = 30 min, 40 min, 1,2, 3, 6, 10, 12, 16, 18, 24, 48,348

72 hours. Then we fit each of the 10 IDF models.349

We then evaluate the performance of the models fitted on sub-sample 1 on the ob-350

servations in sub-sample 2 and vice versa, by computing the relevant cross-validation cri-351

teria. We repeat this procedure 10 times.352

In the following, we present three different criteria we use to evaluate the models.353

These criteria have been used in several studies to evaluate and compare competing mod-354

els, (see Garavaglia et al., 2011; Renard et al., 2013; Blanchet et al., 2015; Evin et al.,355

2016; Haruna et al., 2022).356

• The Robustness criteria, SPAN, measures the stability of the estimate of a high357

return level when the training data is changed. It is computed as:358

SPANs,T (d) =
2
∣∣∣r̂(1)s,T (d)− r̂

(2)
s,T (d)

∣∣∣(
r̂
(1)
s,T (d) + r̂

(2)
s,T (d)

) (20)

where r̂
(1)
s,T (d) and r̂

(2)
s,T (d) are the T -year return levels estimated from sub-sample359

1 and 2 respectively at station s and duration d.360
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For each duration d, a regional score over all the N stations (N = 81) is computed361

as SPANreg,T (d) = 1 − 1
N

∑N
s=1 SPANs,T (d) and a perfect model in terms of362

robustness according to this criteria should have SPANreg,T (d) = 1.363

• The reliability of the model fitted on sub-sample 1 in predicting the maxima in364

sub-sample 2 and vice versa is measured by the FF criteria:365

FF(12)
s (d) =

[
F̂
(1)

s (d)
(
max(2)s (d)

)]n(2)
s (d)

(21)

where FF(12)
s (d) is the cross-validation criteria computed at station s, and dura-366

tion d, by predicting the probability of the maximum value in sub-sample 2, of sam-367

ple size n
(2)
s (d) using the model F̂

(1)

s (d) fitted on the sub-sample 1. FF(21)
s (d) is368

computed symmetrically.369

For a given duration, Renard et al. (2013) and Blanchet et al. (2015) showed that370

each FF
(12)
s (d) at a station should be a realization of a uniform distribution. So371

the difference in the area, diff between a theoretical uniform distribution and that372

of the N set of FF(12)
s (d) (computed over the N stations), should be close to zero.373

FFreg(d) at the regional scale, given as 1− diff , should therefore take a value374

of 1 for a reliable model; the lower the value the less reliable the model is.375

• The reliability/accuracy of the model in predicting the entire observations in cross-376

validation is measured by the NRMSE CV.377

NRMSE CV(12)
s (d) =

{
1

n
(2)
s (d)

∑n(2)
s (d)

j=1

(
r
(2)
s,Tj

(d)− r̂
(1)
s,Tj

(d)
)2}1/2

r
(2)
s (d)

(22)

where NRMSE CV12
s (d) is the score computed at station s, and duration d, n

(2)
s (d)378

is the sample size, r
(2)
s,Tj

(d) is the empirical quantile with return period Tj in sub-379

sample 2 , r̂
(1)
s,Tj

(d) is the corresponding Tj return level estimated from F̂
(1)

s (d). The380

denominator is the average daily rainfall in sub-sample 2 at site s given as381

1

n
(2)
s (d)

∑n(2)
s (d)

j=1 r
(2)
s,Tj

(d).382

Finally, for each duration d, the regional score computed over the N stations is383

given as: NRMSE CV
(12)
reg (d) = 1− 1

N

∑N
s=1 NRMSE CV(12)

s (d).384

NRMSE CV
(21)
reg (d) is computed in similar way. NRMSE CVreg = 1 means a per-385

fect model, and the closer the value is to 1, the more accurate the model is.386

4 Results and discussion387

We present the results in the following order: first we investigate the appropriate-388

ness of the EGPD to fit the data of each duration. Then we present the results of the389

comparison of the IDF models in calibration, and then in cross-validation. Finally, we390

show some IDF curves modeled with the best IDF.391

4.1 Assessment of EGPD goodness of fit392

The first issue is to investigate whether EGPD is an appropriate model for the pre-393

cipitation data at hand. To check this, we fitted the model at each station and for each394

duration, independently. We call this EGPD model fitted on each data separately as the395

”base” model. We then assess the quality of the resulting fits by computing the NRMSE396

given in Eq. 19. The seasonal boxplots of the score for each duration are shown in Fig.397

3. The higher the score, the better the model.398

In spring and summer, the quality of the fit is less good for durations lower than399

2 hours. In winter, on the other hand, the fit is less good for d = 48 and 72 hours. Over-400

–12–



manuscript submitted to Water Resources Research

0.5

0.6

0.7

0.8

0.9

1.0

30
m

in

40
m

in 1h 2h 3h 6h 10
h

12
h

16
h

18
h

24
h

48
h

72
h

Duration

1−
N

R
M

S
E

Winter

0.5

0.6

0.7

0.8

0.9

1.0

30
m

in

40
m

in 1h 2h 3h 6h 10
h

12
h

16
h

18
h

24
h

48
h

72
h

Duration

1−
N

R
M

S
E

Spring

0.5

0.6

0.7

0.8

0.9

1.0

30
m

in

40
m

in 1h 2h 3h 6h 10
h

12
h

16
h

18
h

24
h

48
h

72
h

Duration

1−
N

R
M

S
E

Summer

0.5

0.6

0.7

0.8

0.9

1.0

30
m

in

40
m

in 1h 2h 3h 6h 10
h

12
h

16
h

18
h

24
h

48
h

72
h

Duration

1−
N

R
M

S
E

Autumn

Figure 3. Boxplots of 1 − NRMSEs(d) versus duration for the base EGPD model, i.e., fitted

on data of each duration separately. Each boxplot contains 81 points, with each point corre-

sponding to one station.

all, more than 74% of the scores fall above 0.9 and 96% above 0.8. We, therefore, con-401

sider the EGPD to be a reasonable model for the data.402

The fitted shape parameter ξ with respect to duration is shown on Fig. 4. Each403

boxplot contains 81 values, one for each station. We can strong dependence this param-404

eter on duration, especially in summer. For this season, while 75% of the stations have405

a ξ > 0.17 for d = 1hr, only 25% have ξ > 0.06 at d = 24hr. In winter, however, the406

dependence is not very strong, as judged by the large variability of the boxplots.407

4.2 Comparison of models408

Results of the model comparison are presented under two frameworks, first in cal-409

ibration, and then secondly in cross-validation based on split sampling.410

4.2.1 Evaluation in calibration411

Figure 5 presents the seasonal boxplots of the 1-NRMSE for the 10 IDF models and412

the base model. Each of the boxplot contains 1053 points, summarizing the score over413

81 stations and 13 durations. In the case of the base model (in yellow), the scores are414

the same as those in Fig. 3, but here we merge the scores for all the durations together.415
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Figure 4. Boxplots of the fitted ξ versus duration obtained with the base model. Each box-

plot contains 81 points, with each point corresponding to one station. The closer to 1, the better

the model.

For all seasons, the two data-driven IDF models, IDFDDlocal
and IDFDDglobal

al-416

ways show the best performance compared to the others. When looking at the two, the417

IDFDDglobal
generally outperforms the IDFDDlocal

. This means that the global fitting418

of the model improves the estimation performance compared to the simple interpolation419

of the locally estimated parameters.420

Comparing the IDFss and the IDFkouts (white vs red boxplots), the results show421

that for all seasons, the IDFkouts has a better performance compared to the IDFss. Re-422

call that the two models differ by the additional parameter θ in the former to account423

for curvature for short durations.424

Allowing for ξ = f(d) increased the performance of the models mainly in sum-425

mer, where all the models without this addition showed very poor performance. For the426

other seasons, the gain in performance is not as pronounced.427

Lastly, the models allowing for scaling break (those with subscript TR), show im-428

proved performance compared to those with the single regime for all the seasons, except429

summer (e.g. IDFss vs IDFss TR, i.e. the white and violet boxplots).430
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Figure 5. Boxplots of the (1-NRMSE) in calibration. Each boxplot contains 1053 points, each

point corresponding to one station and duration.

4.2.2 Evaluation in cross-validation431

The split-sampling procedure allows for the comparison of the models in a cross-432

validation framework. We use three regional criteria: NRMSE CV, FF, and SPAN (see433

Section 3.4.2), to enable the comparison of the models based on their predictive capa-434

bilities. We want to select a model, which in addition to being able to fit the data used435

to train it, is able to perform reliably and robustly in the presence of new data.436

In the following, we present the results in three paragraphs, first according to the437

reliability/accuracy of the model in predicting all the observations as measured by NRMSE CV,438

then the reliability in predicting the maxima as measured by the FF criterion, and lastly,439

the robustness of the model in predicting the 100-year return level as measured by SPAN100.440

Figure 6 presents the results for the four seasons. For all the criteria, the model with a441

regional score equal to 1 is the best model.442

For all seasons, the NRMSE CV shows the data-driven models, specifically the IDFDDglobal
,443

to be the most accurate/reliable in predicting the entire observations compared to the444

other models. In winter, however, the difference in the performance of the models is not445

very clear. Looking at the summer results, the models without accounting for ξ = f(d)446

always have the worst performance.447
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Figure 6. Boxplots of the regional cross-validation criteria, NRMSE CV, FF, and SPAN. For

the first two criteria, each boxplot contains 2 × 130 points, corresponding to one regional score

for each of the 13 durations and 10 repetitions of the split-sampling. For the SPAN, each boxplot

contains 130 points. The optimal value for each criterion is equal to 1.

In terms of the FF criterion, the best performance in predicting the maxima in win-448

ter is shown by the IDFss TR model. In fact, all the models with no allowance for ξ =449

f(d) happens to be the most reliable models in this season. The converse is however true450

in the case of the remaining seasons. In summer, while IDFDDlocal
, is the best model,451

IDFss ξ(d) is the best in spring and autumn.452

The robustness criteria, SPAN100 shows the models with no allowance for ξ = f(d)453

to be the most robust models. An exception to this is in summer, where the IDFDDglobal
454

model is the most robust model. Also, higher robustness is found for the models not ac-455

counting for ξ = f(d) compared to their counterparts, for example IDFss vs IDFss ξ(d).456

This is despite the fact that the former performs poorly in calibration, and is the least457

performing according to the other cross-validation criteria of reliability. This confirms458

the previous comments of Garavaglia et al. (2011) that a robust model can completely459

fail to model/predict the data. Hence the robustness criteria should only be used along-460

side other reliability criteria, such that the most robust model is only selected among461

models of similar reliability.462

To summarize the results, the best IDF model should perform well in calibration,463

and should not be very sensitive to the data used to train it. In calibration, the data-464

–16–



manuscript submitted to Water Resources Research

driven model IDFDDglobal
showed the best performance compared to all the other nine465

models, it also remain accurate and reliable at predicting the entire observations in the466

split-sampling cross-validation (as measured by the NRMSE CV), especially in summer.467

This is an important feature since we are interested in the complete range of intensities.468

Finally, it generally showed more robustness compared to the other models of similar re-469

liability.470

4.3 IDF curves471

Figure 7a shows the IDF curves from two models, IDFss and IDFDDglobal
, in sum-472

mer, at a station in Zurich which is located in the Northeast of Switzerland. In this re-473

gion, summer is the main season of heavy rainfall. As a reminder, the IDFss allows scal-474

ing only in the scale parameter, σ of the EGPD, the other two parameters (κ and ξ), are475

independent of duration. The IDFDDglobal
on the other hand allows each of the three pa-476

rameters to vary with duration. The curves are for return periods T = 2, 5, 10, 40, and477

100 years, while points are the empirical levels for T = 2, 5, and 10 years.478

The IDFss performed poorly at predicting the empirical quantiles. The curves mod-479

eled by the IDFDDglobal
on the other hand are in agreement with the empirical levels.480

Similar IDF curves for autumn are shown in Fig. 7b for a station in Locarno which481

is located in the Ticino area in the south of Switzerland. The Ticino area is subject to482

the heaviest precipitation compared to the other regions in Switzerland. Again, the IDFDDglobal
483

was able to model empirical levels correctly both for the small and long durations.484

In Fig. 7, the curves of the simple-scaling model (IDFss) are not parallel. This be-485

havior resulted from the definition of IDF models for non-zero precipitation in Eq. 4. From486

this equation, we see that the T -year return level is defined as (1 − 1
T×δd

). The term487

δd, representing the average number of non-zero precipitation varies across the durations488

leading to a non-constant slope for the different curves.489

We finally show, in Fig 8 and 9 respectively, the seasonal 100-year return level maps490

for d = 1hr and 24h. The levels were obtained with the best performing model, i.e. IDFDDglobal
.491

Looking at the return levels for d = 1hr (Fig. 8), we see that the levels in winter are492

the lowest, with no specific spatial pattern or variability. In spring, the levels in the north493

and Ticino starts to increase. Summer has the highest levels, and similar levels are ob-494

tained all along the northern plateau. In autumn, while the levels in the north are com-495

parable to those in winter, those in Ticino are comparable to those in summer. A dif-496

ferent spatial pattern is however observed for the 100-year return level at d =24hr. Specif-497

ically for summer, the levels in the plateau are lower than those along the north regime.498

The exhibited spatial pattern of the levels produced by this model is similar to those ob-499

served in earlier studies (see Fukutome et al. (2015) for the hourly, and Haruna et al.500

(2022) for the 24hr precipitation).501

4.4 Discussion502

In the following paragraphs, we briefly discuss some of our choices in terms of the503

functional forms of the data-driven models, taking into account the varying shape pa-504

rameter with duration, and the issue of correlation in the data.505

First, for the the data-driven models, we limited our choice of the functional re-506

lationships to simple parametric models, specifically to piece-wise linear models. Other507

choices would be possible such as smooth regression splines (e.g. Youngman, 2019, 2020).508

This choice has its advantage and drawback. The advantage is that the splines are able509

to automatically adjust to fit any form of relationship. The main drawback is that it is510

inherently non-parametric, and so the mapping of the IDF models, to allow predictions511

at ungauged locations, is not directly possible. One can only map the three EGPD pa-512
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Figure 7. Simple-scaling (IDFss) and data-driven (IDFDDglobal) curves a) in summer at a

station in Zurich (North-east). b) in autumn at a station in Locarno (Ticino area in the south).

The curves are for the return periods T = 2, 5, 10, 40 and 100 years. The points are the empiri-

cal quantiles corresponding to T = 2, 5 and 10 years

rameters for a particular duration. For instance, for 13 durations, this means 3×13 =513

39 maps. For our choice of linear functions, 10 parameters are able to describe the IDF514

curves at each station, and hence 10 maps for the whole area under study.515

Regarding the variation of the shape parameter ξ with respect to duration d, some516

earlier studies did observed or discussed it e.g. Veneziano et al. (2007) and Fauer et al.517

(2021). They however did not model it, either due to the weak form of the relationship,518

or because the IDF model did not allow for it. Here, especially, in summer, we found very519

strong dependence, and the results have shown that taking it into account is invaluable.520

Finally it should be mentioned that throughout this work, we estimated the IDF521

models through the independence likelihood, thus omitting the correlation between dif-522
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Figure 8. Map of Switzerland showing the seasonal 100-year return level in mm/hr for d = 1

hr. Levels predicted with IDFDDglobal .
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Figure 9. Map of Switzerland showing the seasonal 100-year return level in mm/hr for d = 24

hr. Levels predicted with IDFDDglobal .
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ferent times and durations. Nadarajah et al. (1998) has modeled this using multivari-523

ate extreme value distributions (MEVD), and Tyralis and Langousis (2019) followed suit524

by using max-stable processes. Later, Jurado et al. (2020), investigated the impact of525

accounting for the dependence in extremes and showed that there is little gain in per-526

formance, in addition to the added complexity of using max-stable processes.527

5 Conclusions528

Our aim in this paper was to build IDF curves using all the non-zero precipitation529

data in Switzerland. To achieve this, we used the EGPD model as the parametric model530

for the precipitation intensities. The literature presents various approaches to link the531

different durations together in IDF curves. We considered three of these approaches to532

build the IDF curves while using the EGPD as the parametric model. The first is the533

data-driven approach, where each parameter can vary with duration. The form of the534

relationship is fully determined by the data at hand. The second approach is based on535

the scale invariance theory, here IDF curves are built based on the scaling behavior of536

precipitation. The last approach is based on the general IDF formulation of Koutsoyiannis537

et al. (1998), which generalizes the various traditional IDF formulations.538

We started from these three approaches and added some extensions to account for539

scaling break and varying shape parameter. We ended up with a total of ten IDF mod-540

els. We then compared them, first in calibration, and then in a split-sample cross-validation541

approach.542

The results showed that, given the EGPD as the parametric model, the data-driven543

IDF-EGPD, particularly the IDFDDglobal
, is the best model for the data at hand. This544

is despite being less parsimonious in terms of its number of free parameters. The IDF545

curves based on simple-scaling and the general formulation of Koutsoyiannis et al. (1998),546

did not perform as efficiently even with the added extensions in terms of scaling break547

and in the way the shape parameter varies with duration. The fact that the simple-scaling548

IDF models performed poorly in summer confirms the previous findings of Molnar and549

Burlando (2008) and (Paschalis, 2013) that in Switzerland, precipitation in summer shows550

multiscaling behavior.551

In terms of perspectives, it would be interesting to produce maps of the parame-552

ters to allow for predictions at ungauged sites. This could be achieved by simple inter-553

polation of the local IDF parameters as done by Blanchet et al. (2016), or through quan-554

tile regression methods (Ouali & Cannon, 2018), or by global estimation using spatial555

covariates (e.g. Ulrich et al., 2020). Another possibility is to use a regionalization tech-556

nique, such as the method of Hosking and Wallis (2005) and then interpolate the index557

flood to allow predictions at the ungauged sites (e.g. Mascaro, 2020).558

Lastly, consideration of the effect of climate change in building IDF curves is in-559

valuable. For instance, Cheng and AghaKouchak (2014) showed that by neglecting non-560

stationarity in modeling IDF curves, there could be up to 60% underestimation of ex-561

treme precipitation, especially for short durations. It would therefore be interesting to562

model the curves while accounting for a warmer climate (e.g. Mirhosseini et al., 2013;563

Cheng & AghaKouchak, 2014; Ragno et al., 2018; Ouarda et al., 2019; Kristvik et al.,564

2019).565
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