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Abstract

Uncertainty in Arctic top-of-atmosphere (TOA) radiative flux observations stems from the low sun angles and the heterogeneous

scenes. Advancing our understanding of the Arctic climate system requires improved TOA radiative fluxes. We compare Cloud

and Earth’s Radiant Energy System (CERES) TOA radiative fluxes with Arctic Radiation-IceBridge Sea and Ice Experiment

(ARISE) airborne measurements using two approaches: grid box averages and instantaneously-matched footprints. Both

approaches indicate excellent agreement in the longwave and good agreement in the shortwave, within 2 uncertainty considering

all error sources (CERES and airborne radiometer calibration, inversion, and sampling). While the SW differences are within

2 uncertainty, both approaches show a ˜-10 W m-2 average CERES-aircraft flux difference. Investigating the source of this

negative difference, we find a substantial sensitivity of the flux differences to the sea ice concentration dataset. Switching from

imager-based to passive microwave-based sea ice data in the CERES inversion process reduces the differences in the grid box

average fluxes and in the sea ice partly cloudy scene anisotropy in the matched footprints. In the long-term, more accurate sea

ice concentration data are needed to reduce CERES TOA SW flux uncertainties. Switching from imager to passive microwave

sea ice data, in the short-term, could improve CERES TOA SW fluxes in polar regions, additional testing is required. Our

analysis indicates that calibration and sampling uncertainty limit the ability to place strong constraints (<±7%) on CERES

TOA fluxes with aircraft measurements.
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Abstract 24 

Uncertainty in Arctic top-of-atmosphere (TOA) radiative flux observations stems from the low 25 

sun angles and the heterogeneous scenes. Advancing our understanding of the Arctic climate 26 

system requires improved TOA radiative fluxes. We compare Cloud and Earth’s Radiant Energy 27 

System (CERES) TOA radiative fluxes with Arctic Radiation-IceBridge Sea and Ice Experiment 28 

(ARISE) airborne measurements using two approaches: grid box averages and instantaneously-29 

matched footprints. Both approaches indicate excellent agreement in the longwave and good 30 

agreement in the shortwave, within 2𝜎 uncertainty considering all error sources (CERES and 31 

airborne radiometer calibration, inversion, and sampling). While the SW differences are within 2𝜎 32 

uncertainty, both approaches show a ~-10 W m-2 average CERES-aircraft flux difference. 33 

Investigating the source of this negative difference, we find a substantial sensitivity of the flux 34 

differences to the sea ice concentration dataset. Switching from imager-based to passive 35 

microwave-based sea ice data in the CERES inversion process reduces the differences in the grid 36 

box average fluxes and in the sea ice partly cloudy scene anisotropy in the matched footprints. In 37 

the long-term, more accurate sea ice concentration data are needed to reduce CERES TOA SW 38 

flux uncertainties. Switching from imager to passive microwave sea ice data, in the short-term, 39 

could improve CERES TOA SW fluxes in polar regions, additional testing is required. Our 40 

analysis indicates that calibration and sampling uncertainty limit the ability to place strong 41 

constraints (<±7%) on CERES TOA fluxes with aircraft measurements. 42 

43 
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1. Introduction 44 

The Arctic is one of the most rapidly changing regions on the planet. The ongoing changes 45 

span the full complement of Arctic climate sub-systems: the atmosphere, ocean, cryosphere, land, 46 

and ecosystems (e.g., Taylor et al. 2017). The energy exchanges between these subsystems may 47 

also be changing, affecting Arctic climate system evolution. Thus, measuring the energy flows is 48 

critical for advancing our understanding of the Arctic climate system by enabling the diagnosis of 49 

the factors driving system change. Using available observations and meteorological reanalysis 50 

output, recent research indicates that the energy flows within the Arctic climate system have 51 

changed (e.g., Riihelä et al. 2013; Duncan et al. 2020) and will continue to change (e.g., Boeke et 52 

al. 2021). However, obtaining accurate energy flux data is a challenge. 53 

Top-of-atmosphere (TOA) energy budget data from the Clouds and Earth’s Radiant Energy 54 

System (CERES; Wielicki et al. 1996; Loeb et al. 2018) has been instrumental in quantifying 55 

Arctic energy changes (e.g., Riihelä et al. 2013; Kay and L’Ecuyer 2013; Duncan et al. 2020). Six 56 

CERES instruments onboard the Terra, Aqua, Soumi-NPP, and NOAA-20 polar orbiting satellites 57 

have provided the most spatially and temporally complete record of global shortwave (SW) and 58 

longwave (LW) TOA radiative fluxes beginning in 2000. The CERES record has enabled many 59 

advances in Arctic climate science including quantifying the sea ice albedo feedback (e.g., Pistone 60 

et al. 2014) and evaluating contemporary climate models (e.g., Boeke and Taylor 2016; Wei et al. 61 

2021). However, CERES radiative fluxes are most uncertain in polar regions (Kato et al. 2013; Su 62 

et al. 2015a,b). Some studies suggest the possibility of biases in reflected CERES SW Arctic fluxes 63 

and surface albedo relative to in situ data (Riihela et al. 2017; Huang et al. 2022). It is important 64 

to understand these sources of uncertainty to improve the radiation budget record.  65 
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An understanding of the methodology used to generate TOA fluxes from CERES observations 66 

is critical to formulating investigations of the uncertainty. CERES instruments do not measure 67 

radiative flux; rather, CERES instruments measure broadband radiances that are inverted to 68 

determine radiative fluxes. CERES calibrated radiances are first corrected for the effects of the 69 

instrument optical train (called “spectral unfiltering”; Loeb et al. 2001). Next, TOA fluxes are 70 

obtained by applying a scene-dependent radiance-to-flux inversion algorithm to the unfiltered 71 

radiances, called angular distribution models (ADMs). ADMs are constructed using empirical and 72 

theoretical approaches (Su et al. 2015a) and defined for many scene types. The scene type is 73 

determined using atmospheric state information from data assimilation and surface and cloud 74 

properties from other satellite instruments (Su et al. 2015a,b). The heterogeneous mixture of 75 

clouds, sea ice, and ocean within the Arctic region makes radiance-to-flux inversion and scene 76 

type identification especially challenging increasing TOA flux uncertainty (Su et al. 2015b).  77 

There has been a lack of data available to evaluate CERES TOA fluxes in the Arctic. Prior 78 

validation efforts over the polar regions have relied on indirect methods (Su et. al. 2015b) that only 79 

determine uncertainties in the radiance-to-flux inversion process, not the absolute uncertainty. 80 

Additionally, past comparisons of CERES against in situ data have primarily used surface-based 81 

measurements (e.g., Rutan et al. 2015; Riihelä et al. 2017; Huang et al. 2022) making it challenging 82 

to draw conclusions about TOA fluxes. The lack of other broadband instruments in a polar orbit 83 

prevents the inter-comparison with other sensors over the Arctic (and Antarctic) that would 84 

provide a better evaluation of absolute uncertainty under polar conditions. 85 

We leverage a unique opportunity to evaluate CERES data against in situ aircraft observations 86 

in the Arctic to address this gap. A similar approach was attempted at mid-latitudes during the 87 

Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) campaign 88 
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comparing GOES-8 derived broadband albedo with measurements using a radiometer onboard the 89 

NASA ER-2 (Pope et al. 2002; Valero et al. 2003). They found agreement between GOES-8 and 90 

the radiometer to within measurement uncertainty. The 2001 Chesapeake Lighthouse and Aircraft 91 

Measurements for Satellites (CLAMS) experiment off the U.S. East Coast was also designed to 92 

test the inputs and data products from instruments onboard NASA’s Terra spacecraft (Smith et al. 93 

2005). Evaluation of CERES irradiances, however, has been confined to comparisons between low 94 

altitude aircraft and surface irradiance measurements with the CERES computed irradiance dataset 95 

(Charlock 2004). During the ARISE Campaign (Smith et al. 2017; Section 2), a unique, statistical 96 

sampling strategy was employed to evaluate CERES time-averaged TOA upwelling LW and SW 97 

fluxes. This study reports on the results of these CERES-ARISE flux comparisons. 98 

2. Background: ARISE Campaign 99 

The Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) was a joint mission between 100 

the radiation, cloud microphysics, and cryosphere communities. The general aim was to measure 101 

the SW and LW radiation while characterizing the atmospheric state, clouds, and sea ice 102 

conditions. Complete details of the ARISE campaign can be found in Smith et. al. (2017).  103 

Briefly, the NASA Wallops C-130 was outfitted with a suite of radiation measuring 104 

instruments, cloud probes, and the Land, Vegetation, and Ice Sensor (LVIS) used during NASA 105 

Operation IceBridge. The radiation suite consisted of a set of upward and downward looking 106 

pyranometers and pyrgeometers, an upward and downward looking solar spectral flux radiometer 107 

(SSFR), and a sun-tracking photometer (4STAR). In all, 15 scientific flights were performed, 108 

extensively sampling the Beaufort Sea region of the Arctic Ocean. Generally, the flight paths were 109 

pre-planned and designed to maximize the sampling over a variety of conditions and intersect with 110 
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polar orbiting satellite tracks. A specific aim was to perform in situ validation of the CERES TOA 111 

irradiances using the broadband radiometers on the aircraft. 112 

3. Data and Methodology 113 

a. CERES 114 

Most CERES instruments consist of a broadband scanning radiometer measuring the radiance 115 

in a SW channel (0.3-5µm), a total channel (0.3-100µm), and a window channel (8-12µm). For 116 

the instrument aboard NOAA-20, the window channel is replaced by a LW channel (5-50µm). The 117 

LW radiance for the Flight Model 1 (FM1) through FM5 instruments is derived from the difference 118 

between the total and SW channels. The nominal footprint size at nadir is ~20 km2, expanding to 119 

70x50km at oblique scan angles. Irradiances are derived from measured radiances using scene type 120 

dependent ADMs (Wielicki et al. 1996). Scene types are classified by a combination of the surface 121 

type (e.g., land type, snow-covered, ocean, or sea ice) and cloud properties. ADM scene 122 

identification additionally depends on cloud phase and optical depth in the SW and on surface skin 123 

temperature and surface-cloud temperature difference in the LW. Cloud information is from co-124 

incident imagers—the MODIS instrument on Terra and Aqua and VIIRS on Soumi-NPP and 125 

NOAA-20 (Trepte et al. 2019; Minnis et al. 2020). Skin temperature data is from the imager 126 

retrieval for clear-sky and the GEOS 5.4.1 meteorological analysis for cloudy scenes. Land type 127 

is from the International Geosphere-Biosphere Programme (IGBP) surface classification 128 

(Loveland and Belward 1997; Belward et al. 1999) and snow and sea ice coverage from the 129 

National Snow and Ice Data Center’s Near-Real Time Snow and Ice Extent (NISE) dataset and an 130 

imager-derived snow and sea ice concentration (SIC) product (Su et al. 2015a).   131 

CERES TOA flux measurement uncertainty originates from two main sources: calibration and 132 

radiance-to-flux inversion. Calibration uncertainty is 1.0% in the SW and 0.5% in the LW 133 
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(Wielicki et al. 1996; Loeb et al. 2008). CERES calibration uncertainty and stability is verified 134 

using a suite of methods including an onboard blackbody source and cold space views in the LW 135 

and a tungsten lamp and solar and lunar calibration looks in the SW (Wielicki et al. 1996; Loeb et 136 

al. 2016). The multi-pronged approach for CERES calibration verification includes 137 

intercomparisons with other space instruments. The result is a set of stable CERES instruments all 138 

referenced to FM1 with calibration drift less than ±0.5 Wm-2 decade-1, a factor of 3-4 better than 139 

anticipated (Loeb et al. 2007; Loeb et al. 2012) 140 

The CERES radiance-to-flux inversion algorithm is the second primary source of uncertainty. 141 

Su et al. (2015a) provides a description of the Edition 4 ADMs and Su et al. (2015b) evaluates the 142 

inversion procedure. Briefly, ADMs are constructed from CERES measurements between 2000 143 

and 2005 when one of the instruments was operating in rotating-azimuth-plane mode. This mode 144 

allows the instruments to observe a given scene type from a wide range of viewing geometries. 145 

The data are then composited into solar zenith, viewing zenith, and relative azimuth angle bins and 146 

further by scene type to empirically determine the anisotropic factors for inversion. The LW 147 

radiance-to-flux inversion procedure mainly accounts for limb-darkening effects and has a 148 

negligible dependence on solar zenith angle (SZA) and relative azimuth angle (Loeb et al. 2003; 149 

Loeb et al. 2005). In the SW, however, the anisotropy has a large dependence on viewing geometry 150 

and scene type. 151 

For the ADM uncertainties in this study, the most suitable are the Single Scanner Footprint – 152 

MISR flux consistency root mean square error values converted into a flux uncertainty for the SW 153 

and the CERES-MODIS flux consistency for the LW. This is done by multiplying the flux 154 

consistency values by 0.6 (Su et al. 2015b). All-sky ADM uncertainty values are used for ocean 155 

and sea ice with two modifications. First, the value for the ocean scenes in Su et al. (2015b; 1.14%) 156 
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is derived using global measurements. To better estimate polar region uncertainty, calculations are 157 

repeated using only ocean measurements poleward of 60°N/S resulting in an uncertainty estimate 158 

of 3.8% for Polar Oceans. Secondly, Su et al. (2015b) reports the uncertainty for combined snow 159 

and ice scenes (5%). To estimate uncertainty for sea ice-only scenes, we apply the same 160 

methodology to sea ice-only scenes resulting in an uncertainty of 4.8%. For the LW, the values 161 

provided in Su et al (2015b) are used: 1.14% for snow/ice scenes and 1.5% for ocean scenes.  162 

Scene identification errors are a critical aspect of uncertainty in the radiance-to-flux inversion 163 

process. Scene identification errors impact ADM uncertainty in two ways: (1) during development 164 

by determining which footprints are aggregated to build the ADMs and (2) during ADM 165 

application by determining which anisotropic factor is used to compute the flux. With respect to 166 

ARISE, scene identification errors stem from errors in cloud properties and the SIC data. Cloud 167 

retrieval errors influence ADMs in complex ways due to the different VZA dependencies of the 168 

anisotropic factor by cloud type. Thus, scene misidentification due to the cloud retrieval errors can 169 

result in an over or an underestimation of the TOA fluxes depending on VZA (Su et al. 2015b). In 170 

addition, Su et al. (2015b) found that the ADM impacts of cloud property retrieval related scene 171 

identification errors are strongest in sea ice regions. 172 

CERES data streams are distinguished by the level of processing. CERES Level 2 refers to the 173 

single scanner footprint (SSF) data and includes ADM inverted footprint radiative fluxes. CERES 174 

level 3 refers to the Synoptic (SYN) product that applies time and space averaging procedures to 175 

put the FM instrument operating in cross-track scan mode SSF data onto a 1ºx1º grid (Doelling et 176 

al. 2013). Edition 4a (Ed4a) SSF and SYN data are used. The SSF1deg level 3 are single satellite 177 

gridded instantaneous products. Over polar regions, the SYN1deg product combines the Terra and 178 

Aqua SSF instantaneous gridded observations and temporally interpolates and averages the fluxes 179 
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into hourly GMT intervals. The SSF1deg Edition 4a (Ed4a) and SYN1deg Ed4a data are used in 180 

the gridbox comparison while the instantaneous footprint comparison utilizes the SSF Ed4a level 181 

2 data from the cross-track and programmable azimuthal plane scan (PAPS) mode. 182 

b. Airborne Broadband Radiometers (BBR) 183 

Broadband Radiometers (BBRs) mounted on the top and bottom of the aircraft during ARISE 184 

measured the down- and upwelling global solar (SW) irradiance (0.2–3.6 μm); and the down- and 185 

upwelling infrared (LW) irradiance (4.5–42 μm) (Smith et. al. 2017). These BBRs were Kipp and 186 

Zonen CM-22 pyranometers (Kipp and Zonen 2004) and CG-4 pyrgeometers (Kipp and Zonen 187 

2001), modified for aircraft use (Bucholtz et al. 2010). The modifications included new sealed 188 

back housings to prevent condensation and freezing inside the domes, with the connector on the 189 

bottom of the housing for easier aircraft mounting. The new housings retained the front-end optics 190 

and electronics of the original instruments but allowed an amplifier to be mounted directly below 191 

the sensor. With the voltage signal amplified at the sensor, the instruments were operated in current 192 

loop mode to minimize electronic noise.   193 

The BBR radiometers were calibrated pre- and post-mission. The SW radiometer calibration 194 

was performed using the standard alternating sunshade method (ASTM 2005), where the given 195 

sensor is compared to the true direct solar irradiance measured by an Eppley automatic Hickey–196 

Frieden absolute cavity radiometer. The sensitivities for the SW radiometers from pre- and post-197 

mission calibrations agreed to within 1%. The LW radiometers were calibrated using a blackbody 198 

immersed in a variable temperature alcohol bath. The calibration coefficients for the LW 199 

radiometers from pre- and post-mission calibrations agreed to within 2%. Thus, the stability of the 200 

SW and LW radiometers during ARISE was excellent. The total BBR calibration uncertainty is 201 

estimated as 4% in the SW and 5% in the LW. 202 
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Even before modification, the Kipp and Zonen radiometers have features that make them 203 

attractive for aircraft use and for use in the Arctic. For example, the CM-22s use 4 mm quartz 204 

domes with high thermal conductivity and good thermal coupling to the body to minimize the zero 205 

offset problem associated with these types of detectors (Kipp and Zonen 2003a; Ji and Tsay 2000).  206 

They also have a low tilt response (<0.2%) for tilt angles up to 90o, meaning there is almost no 207 

change in signal when tilted.   208 

The CG-4s use a silicon dome that has a solar blind filter and a meniscus shape with a full 180o 209 

field-of-view with a good cosine response. Due to the construction methods used, any solar 210 

radiation absorbed by the window is effectively conducted away, allowing accurate measurements 211 

in full sunlight, and eliminating the need for a shading disk. In addition, excellent dome to body 212 

thermal coupling eliminates the need for a dome thermistor and the calculation of the dome to 213 

body temperature offset that is required by other pyrgeometers (Kipp & Zonen 2003b; Philipona 214 

et al. 1995). The CG-4s also have a low tilt angle response. 215 

For Arctic work, a key feature of Kipp and Zonen radiometers is their low temperature 216 

response. Specifically, both the CM-22 (Kipp and Zonen 2004) and the CG-4 (Kipp and Zonen 217 

2001) have an applied thermistor compensation circuit, optimized for each sensor that suppresses 218 

the dependence of the sensor sensitivity to the temperature of the instrument giving them a low 219 

temperature response (CM-22 < 0.5%, CG-4 < 1%) over the temperature range of -20oC to +50oC, 220 

as confirmed by Su et al. (2008). They also have an internal temperature sensor for the body of the 221 

instrument to correct for temperature effects in post-processing, if required.   222 

During the portions of the ARISE flights used in this paper, the temperatures of the BBRs at 223 

altitude never fell below -25oC and were typically -20oC or higher. They, therefore, stayed within 224 

the range of the temperature compensation circuitry and no temperature adjustments to the 225 
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sensitivities determined from the pre- and post-mission calibrations were required. This is further 226 

shown by Chen et al. (2019) where a comparison was made between the SW measurements from 227 

BBR and the Solar Spectral Flux Radiometer (SSFR) that also flew on the aircraft for ARISE. The 228 

SSFR is a moderate resolution flux (irradiance) spectrometer (Pilewskie et al. 2003) whose 229 

sensitivity is not temperature dependent. Chen et al. (2019) compared the upwelling and 230 

downwelling SW measurements from BBR and SSFR for an above cloud case on 11 September 231 

2014 and a below-cloud case on 13 September 2014. Excellent agreement (within a few W m-2) 232 

was found between BBR and SSFR SW fluxes for these cases. 233 

c. Comparison Methodology  234 

CERES fluxes are determined at the satellite level and then set to a 20 km reference level (Loeb 235 

et al. 2002). To provide an accurate comparison between the BBR measurements at the aircraft 236 

level and the CERES measurements, the scattering and absorption of the radiation above the 237 

aircraft must be considered. To do this, we use the Langley Fu-Liou radiative transfer code (Fu 238 

and Liou 1993; Fu et al. 1998; Kratz and Rose 1999; Kato et al. 1999; 2005; Rose et al. 2013). 239 

This code requires inputs of cloud fraction, top and bottom heights, phase, particle size, and optical 240 

depth as well as atmospheric profiles of temperature, water vapor, and ozone, and surface skin 241 

temperature and surface type information to determine spectral albedo and emissivity. The 242 

atmospheric profile information in this study comes from the Goddard Earth Observing System 243 

(GEOS) Reanalysis version 5.4.1 (Suarez et al. 2005), currently used in CERES data production. 244 

Cloud properties are produced using MODIS and VIIRS data by the CERES Cloud Working 245 

Group (Trepte et al. 2019; Minnis et al. 2020). Surface type is determined by the ASI AMSR2 SIC 246 

(Spreen et al. 2008; Melsheimer and Spreen 2019) dataset—a high spatial and temporal resolution 247 

passive microwave derived dataset. 248 
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The process for adjusting BBR measurements to their TOA equivalent is as follows: 249 

1) Match the BBR measurement in time and space with the GEOS atmospheric profile. 250 

2) Determine MODIS cloud properties and SIC by spatially collocating the BBR 251 

measurement within the MODIS swath from the overpass closest in time. Average cloud 252 

properties observed by BBR are determined using a solid angle weighting of all the pixels. 253 

3) The radiative transfer code is run and the upward LW and SW flux profiles are stored. 254 

BBRTOA(l), where l represents the LW or SW flux, is calculated as:                                    255 

BBRTOA(l)= BBR(l) *(F(l, TOA)/F(l, PBBR)) (1), where PBBR is the aircraft pressure level. 256 

4) BBRTOA values are set to the 20 km CERES reference level using the inverse square law.  257 

5) BBRTOA and SSF SW level 2 footprint fluxes are adjusted to the SYN1deg gridbox hourly-258 

integrated SZA to control for SZA differences as: 259 

BBRTOA,adj(SW)=BBRTOA(SW)*(cos(SZASYN1deg)/cos(SZABBR)) (2), where BBRTOA,adj(SW) 260 

is the SZA-weighted flux. Same equation is applied to the SSF1deg SW fluxes. 261 

4. Results   262 

a. Grid box comparison 263 

A series of grid box experiments (Fig. 1) captured the spatial and temporal variation of the 264 

TOA upwelling fluxes at scales comparable to the CERES gridded products (1°x1°). These grid 265 

boxes consist of flying five legs of ~200km in length spaced ~20 km apart. These legs bound an 266 

area of 200 x 80 km but due to the hemispheric nature of the irradiance measurements a slightly 267 

larger area was sampled. In the analysis, these large boxes are split making two ~100x80 km boxes 268 

roughly the size of a 1°x1° grid box at the equator. Three of these grid boxes were attempted, one 269 

over marginal sea ice (on 9/7/2014), one over a region of high SIC (on 9/11/2014), and one over 270 

ice-free ocean (on 9/15/2014). The planned grid boxes on the 7th and 11th were executed 271 
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successfully. On the 15th, high clouds occurred in the planned flight area and prevented the aircraft 272 

from sampling above cloud. Instead, a different, smaller grid box ~100 x 100 km was flown to the 273 

southeast. Figure 1 shows the grid box positions. 274 

The surface and cloud properties of the five grid boxes varied substantially. The grid boxes are 275 

pictured in Fig. 2 as the yellow boxes overlaid on a true color MODIS image. The true color images 276 

demonstrate the cloud field differences between flight days as well as the evolution of the scene 277 

over the ~2-hour sampling window. The average properties and standard deviations within each 278 

grid box are shown in Table 1 and scene property box and whisker plots for each CERES 279 

instrument and the MODIS pixels found within 20 km of the aircraft flight track in Fig. 3. 280 

The grid boxes on September 7th (GB071 and GB072; Fig. 2a) are both located within the 281 

marginal ice zone (MIZ) and contain moderately thick, overcast low clouds (Table 1; Fig. 3). 282 

GB072 had a higher NISE SIC (17%) than GB071 (10%). The SIC distribution (Fig. 3) indicates 283 

similar ranges within the two grid boxes; the median of the SIC distribution in GB071 is between 284 

~5% whereas for GB072 it is between 15-20%. Both grid boxes were overcast for the duration of 285 

the sampling time, however, GB071 had a lower average MODIS-retrieved cloud optical depth 286 

than GB072 (7 and 10, respectively). The distribution of cloud optical depth (Fig. 3) between 287 

GB071 and GB072 differed substantially where GB071 contained a larger number of lower cloud 288 

optical depths (< 3) and GB072 a larger number of higher cloud optical depth values (>10), 289 

accounting for the large SW flux differences between the grid boxes. The clouds were low with 290 

cloud top pressures 868 hPa in GB071 and 904 hPa in GB072. In addition, the cloud conditions 291 

changed slightly over the sampling period in each grid box as thicker clouds moved northwest 292 

from GB072 to GB071 (Fig. 2). The effect of the sampling differences and scene changes on the 293 

comparison are described and quantified in Section 5a. 294 
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The grid boxes on September 11th (GB111 and GB112; Fig. 2b) are located over a region of 295 

high SIC (86% and 77%, respectively). The SIC depends on the dataset used. The ASI-AMSR2 296 

(not shown) dataset has concentrations near 100% for both grid-boxes, whereas the NISE dataset 297 

has a lower value for each grid box. CERES imager-based clear-sky weighted SIC shows higher 298 

values than NISE. Each grid box was partly cloudy with GB111 having a smaller cloud fraction 299 

(43% vs. 84%) especially as sampling progressed. The larger cloud fraction in GB112 results from 300 

the larger number of overcast footprints (Fig. 3). The clouds in both grid boxes were low with 301 

cloud top pressures of 829 and 872 hPa. The mean MODIS-retrieved cloud optical depths are 4 302 

and 9 in GB111 and GB112, respectively.  303 

The grid box on September 15th (GB151; Fig. 2c) is located over a mostly ice-free region with 304 

a small amount of sea ice in the western corner. GB151 contained high, multi-layer (average cloud 305 

top pressure, 594 hPa), and thick clouds with a mean optical depth of 38 (Table 1; Fig. 3). The 306 

distribution of SIC and cloud fraction within GB151 is homogeneous (Fig. 3q,r), whereas the cloud 307 

top pressure and cloud optical depth showed greater heterogeneity (Fig. 3s,t). In addition, the scene 308 

on this day did not change appreciably as the sampling progressed.  309 

Figure 4 summarizes the grid box mean SW and LW fluxes (Table 1 and Fig. 4a,c) from 310 

CERES SSF1deg, CERES SYN1deg, and BBRTOA and the CERES-BBR differences in Fig. 4c,d. 311 

In the LW, the differences between CERES SSF1deg, CERES SYN1deg, and BBRTOA are small, 312 

less than ±10 Wm-2 for all comparisons and within the 2s uncertainty (combined calibration + 313 

inversion) for all five grid boxes. The average SSF1deg-BBR difference in the LW flux is 314 

+2.5 W m-2. The SYN1deg-BBR differences are similar to SSF1deg-BBR with some slight 315 

deviations due to spatial mismatching arising from the gridded and temporally averaged nature of 316 

SYN1deg. Figure 5 shows the box and whisker plots for SSF1deg and BBRTOA fluxes for each grid 317 
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box. Comparing individual CERES instruments, it is evident that the flux distributions can differ 318 

substantially indicating a sensitivity of the fluxes to grid box sampling. Discussed further below, 319 

the differences in the FM1 and FM2 box and whisker plots result from the increased number of 320 

footprints within the grid box for FM2 from the use of the PAPS mode to “stare” at the grid boxes 321 

and the increased footprint size due to larger VZAs; FM2 samples a larger area than FM1. Hourly 322 

fluxes and scene properties are summarized in Fig. S1 and Tables S1-S3. 323 

Despite the strong agreement in the LW, the SW results suggest a ~-10 Wm-2 difference in four 324 

of the five grid box experiments; the average differences between SSF1deg and BBR across all 325 

experiments is -13.0 W m-2. Of the five experiments, agreement was within the combined 2s total 326 

calibration+inversion uncertainty for three (GB071, GB112, and GB151). These grid boxes 327 

represent a wide range of scenes: overcast MIZ, partly cloudy sea ice, overcast sea ice, and overcast 328 

ocean. GB072 and GB111, overcast MIZ scene and partly cloudy sea ices scenes, show mean 329 

SSF1deg-BBR differences larger than the 2s total calibration+inversion uncertainty. Figure 5 330 

shows the distribution of SW flux observations for CERES and BBR indicating that the BBR 331 

fluxes are shifted to slightly higher SW values. Figure 4 also shows the mean flux values from the 332 

hourly averaged fluxes, 1ºx1º gridded fluxes from SYN1deg showing similar results to the 333 

SSF1deg fluxes.   334 

There are two key takeaways from the grid box comparison. First, we find excellent agreement 335 

between CERES and BBR in the LW. Second, we find agreement for most grid boxes within 2s 336 

uncertainty between CERES and BBR in the SW, however the results show a large negative 337 

difference (~-10 W m-2) for four of the five experiments and is consistent with previous results 338 

(Rihella et al. 2017; Huang et al. 2022). While this bias is within the assessed uncertainty for four-339 

of-five grid boxes, the nature of this negative difference warrants further investigation. 340 
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b. Instantaneous footprint comparison 341 

A second approach to comparing the CERES SSF instantaneous footprint and BBR fluxes. The 342 

SSF footprints are collocated in space by a nearest neighbor finding the minimum Haversine 343 

distance and within ±15 minutes of the one-minute averaged BBR measurements. One-minute 344 

average BBR measurements assuming a flight speed of 140 m s-1 yield a track length of 8.4 km 345 

and a “footprint size” of ~24 km. The matched measurements are limited to periods when the 346 

aircraft is above the highest cloud layer; this reduces error caused by incorrect cloud properties. 347 

The benefit of the instantaneous approach, relative to the grid box approach, is that sampling 348 

differences are minimized. The downside of the instantaneous approach is that the reduced 349 

sampling increases noise. 350 

This instantaneous matching approach yields 39 footprints over a variety of scene types. Figure 351 

6 shows the summary of the instantaneous comparison between BBRTOA and SSF SW (Fig. 6a,c) 352 

and LW (Fig. 6b,d) fluxes. High correlation is found between the SSF and BBR LW and SW 353 

fluxes. The mean SSF-BBRTOA difference in the SW is -7.7 Wm-2 (-3.6%) and -0.6 Wm-2 (0.3%) 354 

in the LW. The results in Fig. 6a indicate a dependence on the SW flux magnitude such that 355 

brighter scenes show larger negative differences. Figure 6c,d and Table 2 suggest a spatial 356 

dependence of the SSF-BBR differences corresponding to surface type, although positive and 357 

negative differences are found over low and high SIC regions.  358 

Grouping SSF footprints into common scene types, Table 2 demonstrates a scene dependence 359 

of the SSF-BBR differences. The largest SW differences are found over sea ice partly cloudy 360 

scenes, an SSF-BBR difference of -17.1 Wm-2 (Table 2). This is not surprising due to the 361 

dependence on the imager-based SIC, which tends to overestimate SIC and has increased 362 

uncertainty for cloudier conditions. However, these differences are not statistically robust due to 363 
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the small sample size (N=9). In-atmosphere 3D effects are unaccounted for in this comparison and 364 

likely to be largest over partly cloudy scenes for SW fluxes (Ham et al. 2014). Both ocean cloudy 365 

and sea ice overcast, two prevalent Arctic scene types, show better agreement with differences 366 

of -0.8 Wm-2 and -9.1 Wm-2, respectively. Results for these scene types are also limited by sample 367 

size. As with the grid box experiments, the agreement in the LW is better, with -1.9 Wm-2 over 368 

ocean cloudy and -0.9 Wm-2 for sea ice overcast.  369 

A concern with the instantaneous approach is that the CERES field-of-view varies with VZA, 370 

increasing from ~20 km2 at nadir to 70x50 km at 70°. Using MODIS radiances, we investigate this 371 

effect by selecting the pixels surrounding the matched aircraft location with an increasing area 372 

from a 4x4 km region to a 40x40 km region. We apply a narrowband-to-broadband scheme 373 

(Doelling et al. 2013; 2016) to calculate the broadband radiance and then apply the CERES 374 

inversion (called CERES-like fluxes). This provides CERES-like fluxes at different spatial scales 375 

with a footprint size independent of VZA. The results show a small effect of the variable CERES 376 

footprint size on the comparison. Figure 6a,b illustrates this for a representative set of results for a 377 

20x20 km region (CERES-like) around the CERES-BBR collocation point. Moreover, no 378 

statistically significant correlation is found between the CERES-BBR differences and VZA, 379 

further evidence that footprint size differences are not strongly influencing the results. 380 

In summary, the takeaways from the instantaneous comparison match those from the grid box 381 

comparison. First, better agreement is found between the CERES and BBR fluxes in the LW than 382 

the SW. Second, scene-type dependent CERES-BBR flux differences are found in both the LW 383 

and SW, although larger in the SW. Surprisingly, the mean differences between CERES and 384 

ARISE are similar for the grid box and instantaneous comparisons. Given the larger and negative 385 

average CERES-BBR difference in the SW that is consistent with previous results, we describe 386 
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additional analyses to understand the potential contributions. For the remainder of this study, the 387 

comparisons will focus on SSF-BBR differences. 388 

5. Discussion of CERES-BBR Flux differences  389 

a. Sampling  390 

In Section 4a, we compare grid box averaged fluxes from CERES overpasses that occur within 391 

±15 minutes of the BBR measurements made during a ~two-hour aircraft sampling period. Thus, 392 

CERES and BBR grid box average fluxes are obtained using different sampling approaches. 393 

Average BBR fluxes are computed by averaging the two hours of measurements made while 394 

traversing the grid box. Alternatively, CERES grid box average fluxes are computed using nearly 395 

instantaneous snapshots from ~4 satellite overpasses during the 2-hour period. Figure 7 illustrates 396 

the continuous aircraft sampling vs. the near-instantaneous satellite sampling (vertically stacked 397 

symbols). Considering a constant scene, the two sampling approaches would provide the same grid 398 

box average flux. In cases of substantial scene changes, the sampling differences result in 399 

substantial differences in the grid box mean fluxes and influence the comparison.  400 

We estimate the influence of sampling on the grid box mean flux comparison by leveraging 401 

the complete spatial coverage of MODIS. In estimating sampling effects, we compute and compare 402 

grid box average fluxes in two ways: (1) sampling CERES-like fluxes at each overpass with 403 

aircraft sampling (matching only in space) and (2) sampling CERES-like grid box fluxes with 404 

continuous aircraft sampling (matching in space and time). Sampling strategy (1) represents the 405 

satellite sampling approach and (2) the aircraft sampling approach. The flux differences between 406 

the approach (1) and (2) are only caused by the differences in sampling and are used to provide an 407 

estimate of the sampling uncertainty. While CERES-like fluxes are less accurate, they capture the 408 

spatial variability of the scene and are appropriate for estimating sampling uncertainty. Figure 8 409 
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illustrates the SW and LW CERES-like flux distributions obtained from the different sampling 410 

approaches on 9/11/2014.  411 

Estimation of the sampling effect on the CERES-BBR differences relies on comparing the grid 412 

box average flux differences between the two approaches. For each grid box there are 3 or 4 Terra 413 

and Aqua overpasses (Fig. 7) producing 19 satellite-aircraft sampling flux differences (Table 3). 414 

The results indicate that the sampling effects for individual grid boxes range between ±10 W m-2 415 

in the SW and the LW. The sampling differences result in both positive and negative values 416 

suggesting that sampling is a random effect when considering multiple grid boxes indicated by the 417 

small mean sampling difference of 1.64 W m-2 in the SW and -0.20 W m-2 in the LW. The sampling 418 

uncertainty is estimated as the standard deviation across all 19 of the satellite and aircraft sampling 419 

flux differences and indicate an uncertainty of ±4.6 W m-2 (~1.8%) in the SW and ±3.7 W m-2 420 

(~1.7%). Our results suggest that sampling differences provide a substantial influence on the 421 

CERES-BBR grid box comparison; after accounting for sampling uncertainty, all CERES-BBR 422 

grid box mean SW flux differences agree within 2s uncertainty (Fig. 4). The analysis also provides 423 

evidence that the sampling effect is random, as the mean effect (Table 3) is not statistically 424 

different from zero at the 95% confidence level. Thus, sampling differences do not contribute to 425 

the negative CERES-BBR difference. 426 

b. Scene ID 427 

The identification of scene properties is necessary for creating the CERES data record, as it 428 

drives ADM development and selection. Thus, inaccurate scene identification can cause 429 

substantial errors in fluxes (Su et al. 2015a,b). In situ cloud properties, a key determinant of the 430 

scene, were not measured during the grid box TOA flux validation experiments since the 431 
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requirement was to be above clouds. In the absence of in situ cloud properties, our analysis focuses 432 

on the influence of different SIC data sets.  433 

We consider the effects of two different sea ice data sets on CERES fluxes, namely MODIS 434 

imager-based SIC (Su et al. 2015a) and NISE (Brodzik and Stewart 2016). The Near-real-time Ice 435 

and Snow Extent (NISE) provides daily SIC data and are intended to be the best estimate of current 436 

sea ice conditions. The MODIS imager-based SIC uses a collection of visible radiance channels to 437 

retrieve SIC in clear pixels (Su et al. 2015a). CERES uses NISE to determine if a footprint contains 438 

sea ice and the imager-derived SIC for ADM selection. To assess the influence of sea ice scene 439 

identification, we compute the instantaneous and grid box average CERES flux changes that result 440 

from using NISE for ADM selection. A caveat with this approach is that ADMs (Su et al. 2015a) 441 

were developed using the imager-derived SIC and hence our results may not fully represent the 442 

flux changes from using NISE during ADM development. 443 

Figure 6e-f illustrates the changes in the SSF TOA fluxes for the 39 instantaneously matched 444 

footprints when NISE replaces the imager SIC. The results show an increase in the SSF SW flux 445 

for 9 of the 10 footprints where there was an impact; SW flux changes range from -2.1 to 446 

44.0 Wm-2. LW flux changes are much smaller ranging from -2.0 to 2.9 Wm-2. Stratifying the SW 447 

flux changes by scene type indicates a substantial change (~26 W m2) in the SSF-BBR flux 448 

differences for sea ice partly cloudy scenes when using NISE (Table 2). The negative bias relative 449 

to BBR turns positive for sea ice partly cloudy scenes (Table 2), which is consistent with the 450 

tendency of NISE data to underestimate SIC (Kern et al. 2019). Additionally, using NISE SIC data 451 

reclassifies three ocean cloudy scenes as sea ice partly cloudy (Table 2). The change in sea ice 452 

dataset does not impact the sea ice overcast scenes because SIC is not used in their selection. Thus, 453 
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the use of the imager-based SIC can account for some of the persistent negative CERES-BBR 454 

difference for both sea ice and ocean scenes. 455 

Secondly, we consider the impact of using the NISE SIC data for ADM selection on the grid 456 

box average fluxes (Table 4). Average flux values could only be computed for instruments in 457 

cross-track mode (e.g., FM1, FM3, and FM5). When NISE replaces the imager-based SIC, most 458 

changes in the grid box mean LW and SW fluxes are small, except GB112 where the difference is 459 

-12 W m-2. This result brings the GB112 mean SSF1deg SW flux into better agreement with BBR. 460 

Further evidence that the SIC data can contribute to the negative difference. 461 

The impact of the NISE SIC data on the GB112 SW flux led us to further investigate the 462 

surprisingly small impact on GB111, since both are primarily composed of sea ice partly cloudy 463 

scenes. Table 4 shows the grid box mean fluxes for FM1 and FM2 instruments showing a different 464 

result for each instrument. The FM1 flux changes are consistent with FM3 and FM5 (not shown). 465 

Using NISE SIC data results in a large increase in the FM1 grid box mean SW flux (~31 W m-2) 466 

and a decrease in the FM2 SW flux (~6 W m-2) for GB111. These instrument dependent changes 467 

largely offset due to the greater number of FM2 footprints within GB111. This may be a unique 468 

case, as FM1 and FM2 showed the same sign for the effect of using NISE SIC for GB112. 469 

Additional data is required to separate the influence of the SIC data set from the sensitivity to 470 

sampling differences. Overall, the analysis illustrates a substantial sensitivity of the CERES fluxes 471 

to the SIC data set and provides evidence that the use of the imager-based SIC data is contributing 472 

to the negative CERES-BBR SW difference. 473 

c. Angular Distribution Models 474 

In this section, we investigate the influence of ADMs on the CERES-BBR differences. The 475 

empirical nature of ADMs means that they provide an average anisotropy for a given scene; the 476 
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limited samples used to build ADMs means there is a variation of the anisotropy within a defined 477 

scene. These ADM characteristics can cause instantaneous fluxes to be substantially higher or 478 

lower over a small area due to the high spatial autocorrelation of radiances, such as in this analysis. 479 

Over larger areas and longer time periods these variations tend to cancel, providing unbiased fluxes 480 

(Su et al. 2015a,b). As a result of these challenges, we take several approaches to investigate the 481 

influence of ADMs on the CERES-BBR SW flux differences. 482 

The first approach used to investigate the influence on the SSF-BBR instantaneous flux 483 

differences is to compare the anisotropic factors for the instantaneously matched footprints. The 484 

39 instantaneously matched footprints provide pairs of CERES observed radiances and BBR 485 

fluxes. The ratio of these terms is used to determine the “perfect” anisotropic factor (Rperfect), in 486 

other words the anisotropic factor that would give an exact CERES and BBR flux match.  487 

𝑅!"#$"%& =
'(
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     (3) 488 

where I is the CERES measured unfiltered radiance, BBRTOA is the aircraft measured flux, and 489 

Rperfect is the perfect anisotropic factor. Figure 9 shows a comparison of the CERES anisotropic 490 

factors (RCERES) with the Rperfect for the instantaneously matched footprints. The results show a ~0.8 491 

correlation between RCERES and Rperfect in the SW, a mean difference of <0.01, and a root mean 492 

square error of 0.09. The LW anisotropic factor comparison is shown for completeness indicating 493 

a weaker correlation than in the SW; however, the root mean square error and the mean difference 494 

are smaller in the LW. The wider range in the LW Rperfect values may result from a partial mismatch 495 

between SSF and BBR sampling. Figure 9c,d shows the SW and LW CERES-BBR flux difference 496 

distribution across all instantaneous matches. The standard deviation of the SW CERES-BBR flux 497 

differences is 23.9 W m-2. A caveat with this approach is that calibration differences and 498 
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differences in footprint area between CERES and BBR influence the results; thus, this assessment 499 

of the ADM influence should be treated as qualitative.  500 

Despite this caveat, there is utility in comparing the RCERES-Rperfect differences across scene types 501 

since the calibration and footprint area differences should be largely independent of scene type. 502 

The Fig. 9 inset legend summarizes the RCERES and Rperfect anisotropic factors for each scene type, 503 

showing that the RCERES is systematically ~0.07 larger than Rperfect for the sea ice partly cloudy 504 

scenes indicating that the anisotropy differences in these scenes contribute to a lower CERES SW 505 

flux and the negative SSF-BBR flux differences. All other scene types show better agreement.  506 

This anisotropy difference is strongly influenced by the sea ice data set. Using NISE for ADM 507 

selection changes the RCERES for these sea ice partly scenes from 0.812 to 0.748 (not shown), 508 

yielding better agreement with Rperfect. Only minor changes (<0.01) in the anisotropy occur in the 509 

other scene types. This result indicates that the anisotropy represented by the ADMs is robust and 510 

that the instantaneous flux uncertainty is mainly due to misidentified scenes.  511 

A second approach to assess the potential influence of ADMs on the SSF-BBR SW flux 512 

differences is to evaluate the dependence of SSF SW fluxes on viewing geometry. This approach 513 

is motivated by the design of ADMs, which is meant to provide a flux inversion independent of 514 

viewing geometry. Under normal operations, the CERES instruments operate in cross track mode 515 

(perpendicular to the spacecraft motion direction) scanning from +70° to -70° VZA and only views 516 

a specific grid box from a narrow, repeatable set of viewing geometries. During ARISE, FM2 517 

operated in PAPS mode, scanning through a point in each of the grid boxes as it passed within 518 

range providing more footprints from a broader set of viewing geometries. This is accomplished 519 

by changing the azimuth angle of the instrument scan after each zenith scan and stopped at nadir 520 

(q=0°) during this operation. The FM1 and FM2 scan patterns for GB071 are shown in Fig. 10 521 
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illustrating that FM2 samples a larger range of relative azimuth angles from 135° to 180°, whereas 522 

FM1 samples only at ~114°. Evident from Fig. 10 is that FM2 obtains more samples of each grid 523 

box at higher VZAs than FM1. We analyze the CERES SW flux differences obtained from the 524 

varied FM1 and FM2 viewing geometries focusing on VZA to further investigate the influence of 525 

ADMs. 526 

The comparison between FM1 and FM2 is influenced by the surface and cloud properties that 527 

each instrument observed. To place the influence of observed scene differences into context, we 528 

first compare the cloud and surface properties observed by FM1 and FM2 (Table 5; Fig. 3). For 529 

GB071 and GB072 FM2 observed slightly larger SIC and cloud optical depth. These scene 530 

differences contribute to FM2-FM1 SW flux differences for these grid boxes of 7.1 Wm-2 for 531 

GB071 and -4.5 W m-2 for GB072. For GB111 and GB112, FM1 and FM2 observed similar NISE 532 

SIC, cloud fraction, and cloud optical depth values. The average FM2-FM1 SW flux differences 533 

are 3.8 and -1.6 W m-2 for GB111 and GB112, respectively. Over the four grid boxes, FM2-FM1 534 

differences are both positive and negative suggesting that the viewing geometry and footprint size 535 

differences are likely not having a systematic influence on the CERES-BBR differences. The 536 

results illustrate a sensitivity of the grid box mean fluxes to scene property differences that results 537 

from the combination of sampling differences and scene heterogeneity.  538 

To further investigate the influence of spatial sampling differences on the FM2-FM1 539 

differences, we resample FM1 like FM2. As previously mentioned, the FM1 and FM2 footprint 540 

sizes within the grid box are different due to the different VZAs. The footprint size differences 541 

could influence the FM2-FM1 flux differences due to scene type differences (cloud properties and 542 

sea ice) viewed by each instrument. To evaluate the footprint size influence on the FM2-FM1 543 

comparison, we resample FM1 by including additional footprints with centroids found within the 544 
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FM2 sampling area (FM2-like). The FM2-like mean SW fluxes are summarized in Table 5. For 545 

GB071 and GB111, FM2-like sampling increases the SW flux relative to FM1, whereas for GB112 546 

there is a flux decrease and no change for GB072 relative to FM1. These differences between FM1 547 

and FM2-like fluxes are generally consistent with the changes in scene properties (Table 5). This 548 

mix of increased and decreased fluxes illustrates the influence of scene sampling and heterogeneity 549 

on the flux differences since the changes in sampling result in larger flux changes than the FM1-550 

FM2 differences. 551 

The final analysis of the role of ADMs in the CERES-BBR flux differences is to consider the 552 

angular dependence of the CERES fluxes within scene types (Fig. 11). To combine all the CERES 553 

FM1 and FM2 footprints into a single analysis and evaluate the VZA dependence of the inverted 554 

fluxes, we attempt to control for the influence of within grid box and within scene type variability 555 

by computing a CERES SW flux anomaly (defined as SSF flux minus the SSF1deg grid box mean 556 

flux). Assuming that within grid box scene properties are randomly distributed; thus, given enough 557 

footprints at a VZA, the differences in the scene properties should average to zero. This procedure 558 

enables the accumulation of all CERES footprints into a common phase space and results in a 559 

larger number of footprints. 560 

The results suggest that the CERES SW fluxes show a dependence on VZA for specific scene 561 

types. Figure 11 illustrates the relationship between the CERES SW flux anomalies and VZA 562 

stratified into four different scene types. The sea ice overcast (green) and sea ice clear (black) 563 

scene types show no statistically significant dependence of the SW flux anomaly on VZA and no 564 

bias in anisotropy. The sea ice partly cloudy (gold) and the ocean cloudy (blue) scene types, 565 

however, show a statistically significant (95% confidence level) dependence of the SW flux 566 

anomalies on VZA. For sea ice partly cloudy scenes the SW flux anomalies decrease with 567 
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increasing VZA suggesting a positive anisotropy bias consistent with the instantaneously matched 568 

results. The ocean cloudy scene type, however, indicates the opposite dependence with larger SW 569 

fluxes at larger VZAs. In assessing our randomly varying scene property assumption, we find that 570 

the ocean cloudy scene contains footprints with low NISE SIC values (<15%) that show a 571 

statistically significant (95% confidence level) increase with VZA; thus, the increase in SW fluxes 572 

with VZA for ocean cloudy scenes is explained by the increase in SIC with VZA missed by the 573 

imager-based SIC data due to the cloud cover. Considering sea ice partly cloudy scenes, we find 574 

no statistically significant (95% confidence level) VZA dependence of cloud properties or SIC. 575 

This result provides additional evidence for a bias in the anisotropy for sea ice partly cloudy scenes 576 

that contributes to the persistent negative CERES-BBR SW flux difference. These results are 577 

complicated by the dependence of footprint size on VZA; however, the footprint size effect is 578 

expected to similarly influence the other scene types and yet does not generate a negative 579 

correlation between the SW flux anomalies and VZA.  580 

To further investigate the sea ice partly cloudy scene types, Figure 11b shows a stratification 581 

of the SW anomaly fluxes by cloud fraction. The results also indicate the tendency of the average 582 

SW anomaly flux to decrease with VZA for nearly all cloud fraction bins. The black dots illustrate 583 

the results of a difference of means test between adjacent boxes; a black dot is placed into a bin 584 

when its mean is statistically significantly different at 95% confidence with the bin mean to its 585 

right. Figure 11b suggests a small decrease in the SW flux with increasing VZA for CFs between 586 

20 and 80% and VZA > 20º. This result is consistent with Fig. 11a and indicates that the 587 

dependence of the SW flux on VZA for sea ice partly cloudy scenes is independent of CF. 588 

We have presented several analyses in this section to investigate the influence of the CERES 589 

inversion algorithm. The results do not suggest a bias in the CERES inversion process for the 590 
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ocean cloudy, sea ice overcast, and sea ice clear scenes. The results indicate that the CERES 591 

inversion for sea ice partly cloudy scenes contributes to the negative CERES-BBR SW flux 592 

difference due to scene misidentifications from the imager-based sea ice data set. We find that the 593 

CERES-BBR differences are reduced when replacing the imager sea ice data set with NISE. 594 

d. Radiative Transfer Model Flux Adjustment 595 

To convert the aircraft measured irradiance into a TOA equivalent irradiance, we must use a 596 

radiative transfer code. Due to errors in the code inputs, such as cloud properties, atmospheric state 597 

properties, and surface albedo, this method could introduce biases into our comparisons. 598 

Unfortunately, we do not have simultaneous in-situ measurements that would allow us to validate 599 

the model inputs. The error is likely small because any potential bias is minimized by using the 600 

ratio approach to convert the aircraft level to TOA.  601 

To evaluate the magnitude of any potential bias, we use the Langley Fu-Liou radiative transfer 602 

code to create a look-up table to compute the difference between the “true” TOA flux and the ratio-603 

derived TOA flux as a function of the aircraft level flux and the difference between the aircraft-604 

level flux and the simulated flux. These LUTs are then applied to the BBR measurements and the 605 

differences between the BBR and Fu-Liou fluxes are analyzed. This results in a small increase in 606 

the BBR TOA flux for each grid box. The largest increase is 2.6 Wm-2 for GB071 in the SW, the 607 

remaining grid boxes all have increases of <1Wm-2. Additionally, the two different shades of blue 608 

dots in Fig. 7 indicate the flux results before and after the ratio is applied. The changes in the BBR 609 

SW flux observations after applying the ratio are small <1Wm-2. The LW flux differences before 610 

and after the ratio is applied are larger and applying the ratio brings the fluxes into alignment with 611 

the independently determined CERES LW fluxes. These considerations suggest that the 612 
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uncertainty in the radiative transfer code inputs to the BBR adjustment approach is not contributing 613 

significantly to the CERES-BBR differences. 614 

6. Summary 615 

The comparison between CERES and BBR measurements has given two main results. First, 616 

there is excellent agreement within 2s uncertainty between the CERES and BBR in the LW. This 617 

result indicates that the CERES calibration and radiance-to-flux inversion are working well. The 618 

second result in the SW is less clear. Both the grid box and instantaneous comparisons show that 619 

CERES agrees with BBR to within the 2s total uncertainty, after including sampling uncertainty. 620 

However, we find a tendency for the CERES TOA SW fluxes to be lower than BBR. There are 621 

several factors that could contribute to the average negative SW flux difference: 1) satellite vs. 622 

aircraft sampling differences, 2) anisotropy differences, 3) aircraft flux adjustment, and 4) total 623 

calibration.  624 

The analysis provides evidence that these factors all increase the uncertainty but not all 625 

contribute to a negative SW flux difference. First, differences in satellite vs. aircraft sampling 626 

pattern led to an unbiased 1.8% uncertainty on the grid box SW average fluxes. Next, the flux 627 

adjustment from aircraft flight level to 20 km to account for above aircraft scattering and 628 

absorption has a small effect on the SW fluxes and does not indicate a bias.  629 

Our results illustrate a substantial sensitivity of the CERES SW fluxes to the SIC data set and 630 

provide evidence that scene misidentification from the imager sea ice data set is contributing to 631 

the negative CERES-BBR SW difference. The imager sea ice data set tends to overestimate sea 632 

ice concentration leading to a positive anisotropy bias within sea ice partly cloudy scenes. When 633 

replacing the imager sea ice data with the NISE passive microwave sea ice data, the CERES-BBR 634 

SW differences are reduced. However, the NISE passive microwave sea ice data in this analysis 635 
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only modified the ADM selection and not the ADMs themselves. The NISE passive microwave 636 

sea ice data should therefore be tested as a possible replacement for the imager-based SIC used in 637 

CERES by modifying the ADM development as well. Further analysis is required to better 638 

understand this potential bias in sea ice partly cloudy ADMs. Data collected using PAPS mode for 639 

FM2 during the summer leg of the MOSAiC campaign (May-September 2020) will allow further 640 

investigation of the contribution of ADMs to CERES SW fluxes over sea ice. This work is ongoing. 641 

Calibration differences between CERES and BBR are likely contributing to the consistent 642 

negative difference. The full answer is unknown; however, we can use a case to describe the 643 

potential contribution. Considering the average fluxes for the GB072 (Table 1), the SW flux 644 

calibration accuracy uncertainties are ±2.3 W m-2 and ±9.7 W m-2 for CERES and BBR, 645 

respectively. Considering these numbers and the small number of grid boxes, the uncertainty in 646 

the CERES-BBR differences attributed to calibration is ±10.0 W m-2. Considering a worst-case 647 

scenario where the BBR measurement during the period were on the high side of this calibration 648 

range (e.g., +9.7 W m-2) and CERES measurements where on the low side (-2.3 W m-2), a 649 

substantial portion (~12.0 W m-2) of the difference (~17.8 W m-2) could be explained by 650 

calibration. Further assessing the contribution of accuracy differences in the CERES-BBR 651 

differences requires additional measurements. The best approach to investigate biases in CERES 652 

SW fluxes would be through a comparison with an SI-traceable, absolutely calibrated, in-space 653 

instrument such as the planned CLARREO Pathfinder mission, although the orbit of this mission 654 

is confined between ~±50 º N and S precluding the observation of polar scenes. 655 

Evaluating CERES fluxes in the Arctic is challenging because of the large variability and 656 

heterogeneity in the surface characteristics (e.g., surface albedo). In other words, the way the 657 

CERES scanner samples a grid box area can give very different fluxes depending upon the surface 658 



 
30 

types captured. Thus, more data are needed to unravel the nature of the potential bias. Our results 659 

indicate that when considering quantifiable sources of uncertainty that the CERES and BBR fluxes 660 

agree within the 2s uncertainty level. However, we identified several potential factors that could 661 

cause the CERES SW fluxes to be biased low: (1) total calibration and (2) errors in sea partly 662 

cloudy scene anisotropy due to scene misidentification by the sea ice data set. In the long-term, 663 

more accurate sea ice concentration data are needed to reduce CERES TOA SW flux uncertainties. 664 

Switching from imager to passive microwave sea ice data, in the short-term, could improve 665 

CERES TOA SW fluxes in polar regions. Our uncertainty analysis indicates that total calibration 666 

and sampling limit the ability to place strong constraints (better than ±7%) on CERES TOA fluxes 667 

with aircraft measurements. Our results, confirm that CERES TOA radiative flux data are suitable 668 

for polar climate science analysis. 669 

670 
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Tables 919 
 920 
Table 1. Summary of average grid box scene characteristics and radiative fluxes. Within grid box 921 
variability is represented by the standard deviations shown in parentheses. CERES Ed4a SSF 922 
results include footprints from FM1, 2, 3, and 5. 923 
 924 

Grid 
Box 

NISE 
SIC 
(%) 
(Stdev) 

CERE
S Ed4a 
Imager 
SIC 
(%) 
(Stdev) 

Cloud 
fraction 
(%) 
(Stdev) 

Cloud 
optical 
depth  
(Stdev) 

Cloud 
top 
pressur
e (hPa) 
(Stdev)  

CERES 
SSF 
Ed4a 
OLR 
(Stdev) 
(Wm-2)  

CERES 
SSF 
Ed4a 
SW 
(Stdev) 
(Wm-2) 

Numb
er of 
SSF 
Footpr
ints (#) 

BBR 
OLR 
(Stdev) 
(Wm-2) 

BBR SW 
(Stdev) 
(Wm-2) 

BBR 
Count 
(# of 
1-min 
averag
es) 

CERES 
Ed4a 
SYN 
OLR 
(Wm-2) 

CERES 
Ed4a 
SYN 
SW 
(Wm-2) 

701 9.8 
(9.9) 

85.4 
(35.3) 

100.0 
(0.2) 

7.0 
(2.7) 

867.9 
(85.7) 

222.7 
(6.7) 

195.5 
(19.1) 

351 228.5 
(2.6) 

194.2 
(13.7) 

71 226.3 188.4 

702 16.9 
(9.1) 

74.2 
(38.9) 

99.4 
(0.7) 

9.6 
(2.6) 

903.5 
(36.2)  

225.4 
(5.5) 

223.4 
(17.5) 

497  223.2 
(3.2) 

241.2 
(24.5) 

68 226.8 220.8 

111 86.3 
(3.1) 

100.0 
(0.1) 

43.4 
(28.9) 

4.4 
(1.6) 

829.2 
(195.3) 

220.7 
(3.6) 

240.7 
(13.3) 

560 219.2 
(2.3) 

258.8 
(14.2) 

70 223.9 236.1 

112 77.3 
(6.5) 

100.0 
(0.0) 

84.1 
(27.6) 

8.9 
(2.6) 

871.9 
(21.2) 

223.9 
(2.7) 

265.4 
(19.6) 

337 217.9 
(1.6) 

278.2 
(14.3) 

61 220.3 267.5 

151 0.3 
(0.8) 

97.2 
(16.4) 

99.7 
(1.0) 

40.1 
(31.9) 

626.4 
(120.4) 

209.0 
(9.2) 

256.5 
(24.9) 

108 199.9 
(7.1) 

265.5 
(26.1) 

58 208.7 251.2 

 925 
 926 

927 
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Table 2. Summary statistics of instantaneously matched CERES SSF_Ed4a-BBR flux 928 
comparisons. The number in parentheses in the SW NISE as imager mean difference column 929 
represents that footprint counts, which change when using NISE to classify scenes.  930 

 931 
 932 

933 

ADM GROUP N 
(count) 

SW SSF-
BBR Mean 
Difference 
(W m-2) 

SW  
SSF 
STDEV 
(W m-2) 

SW SSF-
NISE as 
imager-
BBR 
Mean 
Difference 
(W m-2) 

SW SSF-
NISE as 
imager 
STDEV 
(W m-2) 

SSF LW 
Mean 
Difference 
(W m-2) 

LW SSF- 
STDEV 
(W m-2) 

Ocean Cloudy 15 -0.8 17.6 -2.4 (12) 18.2 -1.9 11.2 

Sea Ice Clear n/a n/a n/a n/a n/a n/a n/a 

Sea Ice Partly 
Cloudy 

9 -17.1 13.6 +9.2 (12) 17.7 1.9 7.4 

Sea Ice Overcast 15 -9.1 29.3 -9.1 (15) 29.3 -0.9 11.0 
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Table 3. Summary of the grid box averaged fluxes for the aircraft-like sampling and differences 934 
between the satellite minus the aircraft-like sampling fluxes for individual overpasses from the 935 
sampling study. The column titles for individual overpasses indicates the satellite (Terra/Aqua), 936 
and the hour of the overpass in UTC (20/21/22). 937 

 938 
  939 

940 

Grid 
Box 

SW 
aircraft
-like  

Terra_
20  

Aqua_
21 

Terra_
22 

Aqua_
22 

Avg. 
SW Diff 

LW 
aircraft-
like 

Terra_
20 

Aqua_
21 

Terra_
22 

Aqua_
22 

Avg 
LW 
Diff 

071 220.11 4.59 -0.01 10.73 4.01 4.83 225.51 4.78 9.21 -1.16 -7.6 1.31 
072 255.13 3.29 1.88 -2.8 -8.12 -1.44 230.15 0.11 0.07 -2.29 -3.0 -1.28 
111 251.76 5.44 2.49 0.75 -0.28 2.1 221.27 0.57 0.62 0.23 -0.4 0.26 
112 293.32 -3.12 -2.72 -0.08 -0.39 -1.58 219.16 2.37 2.43 -0.32 -0.23 1.06 
151 282.30 N/A 6.14 9.92 -0.58 5.16 209.88 N/A -1.03 -7.54 -0.59 -3.05 

Mean Difference: 1.64 Mean Difference: -0.20 
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Table 4. Summary of the grid box mean flux differences for CERES SSF Ed4a and when using 941 
NISE sea ice data for ADM selection. 942 
 943 

 944 
 945 
 946 
 947 
 948 
 949 
 950 
 951 

 952 
953 

Grid 
Box 

NISE 
SIC 
(%) 

Imager 
SIC (%) 

LW 
SSF Ed4a 
minus NISE 
SIC (Wm-2) 

SW  
SSF Ed4a 
minus NISE 
SIC (Wm-2) 

SW FM1 
SSF Ed4a  
minus NISE 
(Wm-2) 

SW FM2 
SSF Ed4a 
minus NISE 
(Wm-2) 

071 9.8  85.4 0.1 0.0 0.0 0.0 
072 16.9  74.2 -0.1 -0.3 -0.4 -0.2 
111 86.3  43.4 0.0 0.1 -30.6 +6.2 
112 77.3  84.1 0.0 -12.3 -19.7 -10.9 
151 0.3  99.7 0.1 0.0 0.0 n/a 
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Table 5. Summary of the grid box mean fluxes and scene characteristics for FM1, FM2, and 954 
FM1 sampled like FM2 (FM2-like). 955 
 956 

Grid 
Box 

NISE SIC (%) Cloud fraction (%) CERES Ed4a SW (Wm-2) Count (#) 

 FM1 FM2 FM2-like  FM1 FM2 FM2-
like  

FM1 FM2 FM2-
like  

FM1 FM2 FM2-
like  

701 8.1 14.5 17.5 100 100 100 188.1 195.2 209.8 46 216 138 
702 13.5 18.1 22.2 99 99 99 226.5 222.0 226.1 46 371 202 
111 86.4 86.1 78.2 42.9 44.2 68.6 238.3 242.1 239.5 49 448 185 
112 76.6 80.3 76.8 86.6 90.4 83.8 270.7 269.1 261.2 43 239 104 

 957 
 958 

959 
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Figures 960 

 961 
 962 
 963 
 964 
 965 
  966 

 967 
Fig. 1. C-130 aircraft flight tracks for the CERES top-of-atmosphere grid-box experiments. The 968 
sea ice concentration from the AMSR2-ASI on September 15, 2014 is shown for reference. 969 

970 
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 971 
 972 

 973 

 974 

 975 
Fig. 2. True-color MODIS images from Terra and Aqua for the overpasses coincident with the 976 
aircraft sampling (a) 9/7/2014, (b) 9/11/2014, and (c) 9/15/2014. Overpass time stamp given in 977 
UTC. Yellow boxes show the borders of the CERES grid box sampling region on each day.  978 
 979 
 980 
 981 
 982 
 983 
 984 
  985 
 986 

GB071 

GB072 

GB111 

GB112 

GB151 

a 

b 

c 
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 987 
Fig. 3. Box and whisker plots of cloud fraction, sea ice concentration, cloud optical depth, and 988 
cloud top pressure height are shown for (a-d) GB071, (e-h) GB072, (i-l) GB111, (m-p) GB112, 989 
(q-t) GB151. Distributions of surface and cloud properties are shown separately using a 20-km2 990 
window about the aircraft from each CERES instrument: FM1, FM2, FM3, and FM5. The top and 991 
bottom of each box indicates the upper and lower quartiles, the horizonal line indicates the median, 992 
the triangle symbol indicates the mean, and outliers greater than 1.5 times the interquartile range 993 
are indicated by circles. 994 

995 
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  996 
Fig. 4. Whisker plots showing the 2-hour grid box mean (a) SW and (c) LW fluxes for CERES 997 
E4a SYN, CERES Ed4a SSF (average of all FM1, 2, 3, and 5 footprints), and BBRTOA and the (b) 998 
SW and (d) LW flux differences between BBRTOA and CERES. Error bars represent the 2s 999 
combined uncertainty from calibration (green), inversion (orange), and sampling (blue).  1000 
 1001 

a b 

c d 
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 1002 
Fig. 5. Box and whisker plots of CERES instrument and BBR (a-e) SW and (f-j) LW fluxes for 1003 
each grid box (a-b,f-g) 9/7/2014, (c-d,h-i) 9/11/2014, and (e,j) 9/15/2014. CERES observations are 1004 
also shown for individual instruments: FM1, FM2, FM3, and FM5. The top and bottom of each 1005 
box indicates the upper and lower quartiles, the horizonal line indicates the median, the triangle 1006 
symbol indicates the mean, and outliers greater than 1.5 times the interquartile range are indicated 1007 
by circles. 1008 
  1009 

1010 
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  1011 

   1012 

   1013 
 1014 
Figure 6. Comparison between the CERES and BBR instantaneously matched radiative flux 1015 
measurements. Top panels show scatterplots of the (a) SW and (b) LW SSF and BBRTOA fluxes. 1016 
The yellow symbols show the CERES measurements, and the blue markers show the CERES-like 1017 
fluxes (20 km x 20 km). Middle panels show the spatial distribution of the (c) SW and (d) LW 1018 
SSF-BBRTOA differences. Bottom panels show the changes in the (e) SW and (f) LW when the 1019 
NISE SIC is used for ADMs selection as CERES NISE minus CERES Ed4a. The symbol shapes 1020 
denote the satellite: Terra (circle), Aqua (square), and NPP (diamond).   1021 
  1022 

a b 

e f 

c d 
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Fig. 7. Time series of LW and SW observed fluxes (blue dots) and the CERES overpass 1023 
observations for individual satellite overpasses for FM1 (red), FM2 (green), FM3 (yellow), and 1024 
FM5 (gray) for (a,b) 9/7/2014, (c,d) 9/11/2014, and (e,f) 9/15/2014. Different shades of blue 1025 
represent the fluxes before and after adjustment from flight-level (darker shades) to TOA (lighter 1026 
shades) and the symbols represent different grid boxes: circle for GB1 and diamond for GB2.  1027 

1028 

(c) 9/11/2014
 

(a) 9/7/2014
 

(b) 9/7/2014
 

(f) 9/15/2014
 

(d) 9/11/2014
 

(e) 9/15/2014
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 1029 

 1030 
Fig. 8. Probability distribution of (a,b) SW and (c,d) LW fluxes for the satellite instantaneous 1031 
sampling approach at each overpass time (blue, orange, green, and red) and the aircraft sampling 1032 
(AC, dark gray), where the left column represents GB111 and the right column GB112. For 1033 
context, probability distributions of the BBR measurements are shown in light gray. 1034 

1035 

(c) (d) 

GB111 GB112 

(a) (b) 
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  1036 

  1037 
Fig. 9. Scatterplot of the RCERES vs. Rperfect for (a) SW and (b) LW. The inset legends in panels (a) 1038 
and (b) shows the average value for Rperfect on the left and RCERES on the right for each scene-type. 1039 
Histograms of the flux difference that resulted from the anisotropic factor differences (RCERES-1040 
Rperfect) are shown in (c) SW and (d) LW. 1041 
 1042 
 1043 

1044 

(a) (b) 

(c) (d) 
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 1045 

 1046 
Fig. 10. Polar plot of the FM1 (yellow circles) and FM2 (blue circles) sampled viewing 1047 
geometries in VZA and relative azimuth angle (RAZ) for 9/7/2014.  1048 

1049 
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 1050 
Fig. 11. Scatterplot illustrating the dependence of (a) CERES grid box SW flux anomalies (y-axis; 1051 
defined as the CERES SW minus the CERES grid box mean SW flux) on VZA (x-axis) and (b) a 1052 
joint distribution of the CERES grid box SW flux anomalies stratified by cloud fraction and VZA. 1053 
Black dots represent the statistically significant mean differences at 95% confidence with the box 1054 
to the adjacent to the right. 1055 


