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Abstract

The International Ocean Discovery Program cored Sites U1517 (Tuaheni landslide complex) and U1519 (upper Tuaheni Basin)

on the Hikurangi margin, North Island, New Zealand. Strong ocean currents result in unusual amounts of compositional

homogeny in the muds. Detrital smectite dominates among clay minerals, with average proportions of 52 wt% at Site U1517

and 53 wt% at Site U1519. Bulk sediment from Site U1517 contains up to ˜29 wt% smectite (average = 21 wt%), high enough

to reduce the angle of internal friction (on average) to ˜6°. There are no compositional excursions along inferred slip surfaces

or weak layers. Smectite decreases toward the SW in the “downstream” direction of the East Cape Current, and that spatial

trend correlates with lower densities of slide scars.
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Key Points: 16 

• Hikurangi trench-slope sediments, including muds within the Tuaheni landslide complex, contain high 17 
concentrations of detrital smectite  18 

• Smectite is abundant enough to reduce the bulk sediment’s coefficient of friction, with little 19 
stratigraphic variability 20 

• The homogeneous mud composition results from strong currents and does not change significantly 21 
along inferred slip surfaces or weak layers 22 
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Abstract 25 

The International Ocean Discovery Program cored Sites U1517 (Tuaheni landslide complex) and U1519 26 

(upper Tuaheni Basin) on the Hikurangi margin, North Island, New Zealand. Strong ocean currents result in 27 

unusual amounts of compositional homogeny in the muds. Detrital smectite dominates among clay minerals, 28 

with average proportions of 52 wt% at Site U1517 and 53 wt% at Site U1519. Bulk sediment from Site U1517 29 

contains up to ~29 wt% smectite (average = 21 wt%), high enough to reduce the angle of internal friction (on 30 

average) to ~6°. There are no compositional excursions along inferred slip surfaces or weak layers. Smectite 31 

decreases toward the SW in the “downstream” direction of the East Cape Current, and that spatial trend 32 

correlates with lower densities of slide scars. 33 

Plain Language Summary 34 

Expandable clay minerals of the smectite group are notorious for weakening soils and marine sediments and 35 

contributing to conditions that promote landslides. The Hikurangi margin offshore North Island, New Zealand, 36 

is noted for its abundance of submarine landslides. To assess their possible causes, we analyzed clay mineral 37 

assemblages from two sites on the upper trench slope that were sampled by the International Ocean Discovery 38 

Program (Sites U1517 and U1519). Cores from both sites display unusual degrees of compositional homogeny, 39 

with smectite as the dominant clay mineral. Illite occurs in lesser amounts, and the concentrations of chlorite 40 

and kaolinite are relatively minor. Cores from Site U1517 encompass the Tuaheni landslide complex, but we 41 

did not find any compositional anomalies at inferred slip surfaces or along weak layers. Instead, the entire 42 

stratigraphic succession appears to be relatively weak. Because of that inherited preconditioning, dynamic 43 

loading during such events as large earthquakes is probably enough to trigger numerous submarine landslides. 44 

However, there appears to be no predisposition for slip along any unusually weak, layer-specific interval of the 45 

sediment. 46 

1 Introduction 47 

Sedimentary facies in active subduction zones with high rates of terrigenous sedimentation (e.g., Cascadia, 48 

Nankai Trough, southern Chile Trench, Sumatra, Makran) are governed by interactions among eustacy, 49 

tectonics, and sediment-transport processes (e.g., Piper et al., 1973; Underwood & Bachman, 1982; Thornburg 50 

& Kulm, 1987). Subduction accretion normally creates a stair-step series of intraslope basins separated by 51 

fault-cored anticlinal ridges (e.g., Moore & Karig, 1976; McAdoo et al., 2004; Ding et al., 2010; Contardo et 52 

al., 2011). Some unconfined flows are capable of overtopping bathymetric highs (Muck & Underwood, 1990), 53 

but taller ridges tend to block such pathways. Consequently, slope basins behind taller tectonic ridges typically 54 

act as traps for turbidity currents, slumps, mudflows, and debris-flows (e.g., Moore & Karig, 1976; Underwood 55 

& Moore, 1995; Contardo et al., 2008; Nelson et al., 2011), whereas steeper slopes are usually covered by mud 56 

that settles slowly from suspension. 57 
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Submarine slides are common in subduction zones (e.g., Yamada et al., 2010; Harders et al., 2011; Hill et al., 58 

2020), but their spatial distributions are challenging to understand, and their triggering mechanisms are often 59 

impossible to pin-point. Geotechnical tests provide clues by revealing how frictional properties change with 60 

concentrations of individual minerals (e.g., Lupini et al., 1981; Shimamoto & Logan, 1981; Logan & 61 

Rauenzahn, 1987; Tiwari & Marui, 2005; Tembe et al., 2010; Ikari et al., 2018). Many additional variables 62 

need to be considered, however: seafloor topography; rates of sediment accumulation; grain size distribution, 63 

especially the proportion of clay-sized grains; particle shape and microfabric; hydration state of clay minerals; 64 

porosity, permeability, and pore-fluid pressure; consolidation and lithification; and dynamic loading by 65 

earthquakes (e.g., Hampton et al., 1996; Locat & Lee, 2002; Masson et al., 2006; Bartetzko & Kopf, 2007; 66 

Ikari et al., 2007, 2011; Kock & Huhn, 2007; Saffer & Tobin, 2011; Takahashi et al., 2014; Trutner et al., 67 

2015; Kremer et al., 2017; Silver & Dugan, 2020). Those variables seemingly combine in ways that are unique 68 

to each individual locale (Vanneste et al., 2014). 69 

 70 

The Hikurangi margin offshore North Island, New Zealand (Fig. 1a) conforms to most of the paradigms of 71 

subduction-zone tectonics and sedimentation (Bostock et al., 2018). The margin’s architecture includes forearc 72 

basins, imbricate thrusts and folds within the frontal accretionary prism, and scattered slope basins (e.g., 73 

Tuaheni Basin) (Barnes et al., 2002; Paquet et al., 2009; Pedley et al., 2010; Pouderoux et al., 2012; Ghisetti et 74 

al., 2016). The landward trench slope is also noteworthy for submarine landslides, including the Tuaheni 75 

landslide complex (Collot et al., 2001; Mountjoy et al., 2014b; Watson et al., 2020). Hikurangi deviates from 76 

the global paradigm, however, in two important ways: ocean currents are strong, and contourite drifts and 77 

hybrid contourites are widespread (Bailey et al., 2020, 2021; Couvin et al., 2020). Mindful of those facts, we 78 

focus attention in this paper on how slope-parallel currents affect mud composition across the mid to upper 79 

slope. We test whether that composition has had any demonstrable influence on slope stability and landslides. 80 

Our results for Hikurangi provide a tightly constrained case study that serves as a benchmark for comparisons 81 

of cause-and-effect for slope failures and mass-transport deposits along other margins. 82 

 83 

Dispersal and deposition of fine-grained suspended sediment in the oceans are governed by several processes 84 

(e.g., Gorsline, 1984; McCave, 1984). Sediment gravity flow provides one mechanism for directing mud onto 85 

the Hikurangi slope, as unconfined turbidity currents and/or by funneling through submarine canyons 86 

(Mountjoy et al., 2009a, 2014a; Alexander et al., 2010; Pouderoux et al., 2012). Margin-parallel ocean currents 87 

provide the main competition (Carter & Wilkin, 1999; Chiswell et al., 2015). The NE-directed Wairarapa 88 

Coastal Current (Fig. 1a) carries suspensions along the continental shelf and uppermost slope (Foster & Carter, 89 

1997; Chiswell, 2000). A strong SW-directed current (East Cape Current) dominates the mid to upper slope 90 

(Fig. 1a), extending to a water depth of ~1300 m (Chiswell & Roemmich, 1998). Transient counterclockwise 91 

gyres (e.g., Wairarapa Eddy) impact surface-water farther offshore (Fig. 1a), but their temporal stability 92 
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 93 
 94 
Figure 1. a. Simplified map of onshore geology, North Island, New Zealand (modified from Jiao et al., 2014), 95 
prominent bathymetric features, ocean currents, and pathways for sediment transport by gravity flow. Giant 96 
mounded drifts and slope plastered drifts from Bailey et al. (2020). b. Bathymetric map with locations of Tuaheni 97 
Basin and IODP sites (from Saffer et al., 2017). c. Seismic reflection profile crossing IODP Site U1517. 98 
Interpretations from Barnes et al. (2019a). d. Seismic reflection profile crossing IODP Site U1519. Interpretation of 99 
slope plastered drift from Bailey et al. (2020). Interpretations of faults and unconformity from Barnes et al. (2019b). 100 
See Fig. 1b for tracklines. 101 
  102 
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and maximum water depths remain uncertain (Chiswell & Roemmich, 1998; Chiswell, 2005). Seaward of the 103 

trench, the Deep Western Boundary Current (Fig. 1a) dominates abyssal circulation and drift sedimentation 104 

(Carter & McCave, 1997, 2002; Carter et al., 2004). Those currents set up a likelihood of persistent mixing of 105 

suspensions from downslope versus along-slope routing. 106 

 107 
The International Ocean Discovery Program (IODP) positioned Site U1519 in Tuaheni Basin on the upper 108 

trench slope (Fig. 1b), approximately 38 km from shore at a water depth of 1000 m. The site lies well within 109 

the domain of the East Cape Current (Fig. 1a), and Bailey et al. (2020, 2021) recognized the nearby acoustic 110 

character as a “slope plastered” contourite drift (Fig. 1c). Shipboard sedimentologists (Barnes et al., 2019b) 111 

defined two lithostratigraphic units (Fig. 2b). Unit I (0–282.66 mbsf) is composed of mud and mudstone with 112 

sparse and very thin interbeds of silt and volcanic ash (Fig. 2b), whereas unit II (282.66–635.65 mbsf) consists 113 

of mudstone with scattered interbeds of siltstone, sandy siltstone, and sandstone (inferred turbidites). Some 114 

intervals display convolute laminae, mesoscale folds, dismembered bedding, and clasts of mudstone in a 115 

mudstone matrix, all suggestive of mass transport. Evidence from cores for contourite deposition is 116 

inconclusive. In general, diagnostic criteria remain elusive for distinguishing among turbidites, contourites, 117 

hemipelagites, and hybrids (Stow et al., 2002; Stow & Smillie, 2020). Definitive bed-by-bed identification 118 

requires time-consuming post-cruise analyses of microstructures, ichnofacies, grain size distributions, 119 

mineralogy, geochemistry, and/or computed tomography (e.g., Alonso et al., 2016; Nishida, 2016; Rodriquez-120 

Tovar & Hernandez-Molina, 2018; Vandorpe et al., 2019; de Castro et al., 2020). Unfortunately, rigorous 121 

analyses of the cores from Site U1519 were thwarted by wide gaps between intervals of core (Fig. 3b), 122 

unusually poor recovery (~55%), and widespread (severe) drilling disturbance. Thus, the prevalence of 123 

contourites near Site U1519 is based largely on seismic-reflection interpretations (Bailey et al., 2020). 124 

 125 

At a water depth of ~732 m (Fig. 1b), Site U1517 is also well within the core of the East Cape Current  126 

(Chiswell et al., 2015), and seismic-reflection data are indicative of a “slope plastered” contourite drift (Bailey 127 

et al., 2020, 2021). The primary purpose of drilling Site U1517, however, was to log and sample through the  128 

Tuaheni landslide complex (Mountjoy et al., 2014b). Creep seems to have occurred where the base of gas-129 

hydrate stability pinches out at the seafloor (Mountjoy et al., 2009b, 2014b), so one hypothesis is that 130 

occlusion of permeability by gas hydrate may have led to overpressured conditions and hydrofracturing 131 

(Crutchley et al., 2010; Ellis et al., 2010; Gross et al., 2018). Hydrate-bearing sediments, moreover, might be 132 

prone to time-dependent plastic deformation (Mountjoy et al., 2014b). To test those ideas, the cored interval at 133 

Site U1517 (Fig. 1d) crossed interpreted positions of the décollement at ~37 mbsf, the base of landslide debris 134 

at ~59 mbsf, and the base of gas-hydrate stability at ~162 mbsf (Barnes et al., 2019a). 135 

 136 

According to shipboard scientists (Barnes et al., 2019a), unit I at Site U1517 (0–3.0 mbsf) consists of a thin 137 

Holocene mud blanket (Fig. 2a). Unit II (3.0–40.74 mbsf) contains interbeds of mud and very fine sand. The 138 
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  139 

 140 

Figure 2. a. XRD results for IODP Site U1517 (Underwood and Dugan, 2021). Proportions of total clay minerals 141 
and values of shear strength from Barnes et al. (2019a). b. XRD results for IODP Site U1519 (Underwood 2022). 142 
Proportions of total clay minerals from Barnes et al. (2019b).  143 
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bioturbated mud within unit III (40.74–66.38 mbsf) alternates with laminated stacked couplets of silt and clay, 144 

resembling silty contourites described elsewhere (e.g., Stow et al., 2002; Stow & Smillie, 2020). Unit IV 145 

(66.38–103.16 mbsf) consists mostly of structureless mud, whereas unit V (103.16–187.53 mbsf) contains 146 

numerous interbeds of normally graded sand (inferred turbidites) and mud (Fig. 2a). Barnes et al. (2019a) 147 

provisionally assigned the upper ~67 m of strata to the Tuaheni landslide complex (Fig. 2a), but many 148 

questions about the landslide remain. Gas hydrate was detected, for example, but only at depths deeper than 149 

100 mbsf (Barnes et al., 2019a); that observation and numerical modeling indicate that gas-hydrate dynamics 150 

are unlikely as the main destabilizing variable (Screaton et al., 2019). Couvin et al. (2020) identified two 151 

chaotic acoustic intervals in nearby seismic-reflection profiles, but the correlative intervals of core (units II and 152 

III) are perplexing because they display almost no internal deformation; moreover, there are no mesoscopic 153 

indicators of concentrated slip at the base of the inferred landslide (Barnes et al., 2019a). The only core-scale 154 

indicators of gravity-driven, soft-sediment deformation are scattered patches that display convolute bedding 155 

and/or intraformational mud clasts (Barnes et al., 2019a). Couvin et al. (2020) suggested that Hole U1517C 156 

intersected an intact block within an otherwise chaotic landslide. Adding to the debate, Luo et al. (2020) used 157 

numerical modeling of porewater-chemistry data to support their contention of two slip events. The more-158 

recent failure evidently occurred as a coherent 40-m-thick block, which places the décollement at the base of 159 

unit II. On the other hand, shipboard measurements of shear strength (Barnes et al., 2019a) revealed a weak 160 

interval centered at ~31 mbsf, within the middle of unit II (Fig. 2a). These conflicting results and 161 

interpretations deserve more scrutiny. Our objective here is to determine if excursions in clay mineralogy 162 

might be large enough to have affected the sediment’s shear strength along any slip surfaces or weak intervals. 163 

 164 

2 Materials and Methods 165 

Samples from Sites U1517 and U1519 were positioned with several collocated subsamples (“clusters”) adjacent to 166 

whole rounds that had already been extracted from cores for tests of interstitial water chemistry and geotechnical/ 167 

frictional/hydrogeologic properties. Coarser interbeds were avoided. See Underwood and Dugan (2021) for detailed 168 

descriptions of sample preparation and XRD methods. To reiterate briefly, mud specimens were disaggregated, and 169 

oriented aggregates of glycol-saturated clay-sized splits (<2 μm equivalent spherical settling diameter) were 170 

prepared using the filter-peel method (Moore & Reynolds, 1989). XRD scans were completed using a Panalytical 171 

X’Pert Pro diffractometer, and values of normalized relative mineral abundance were computed using a set of 172 

regression equations that relate wt% values to peak area. Absolute errors of accuracy are: illite = 3.0 wt%, smectite 173 

= 3.9 wt%, and undifferentiated (chlorite + kaolinite) = 5.1 wt% (Underwood et al., 2020). Compositional 174 

differences among individual specimens, or between lithologic units, are not regarded as geologically significant 175 

unless they exceed those errors. 176 
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3 Data 177 

The cored intervals at Site U1519 display unusually small amounts of compositional scatter, with minor (but 178 

statistically significant) differences between the two lithologic units (Fig. 3b). Results of 76 measurements 179 

(Underwood, 2021) show smectite to be the most abundant clay mineral (site average = 53 wt%), with 180 

normalized abundances ranging from 33 to 65 wt%. Proportions of illite range from 32 to 49 wt%, and the 181 

values for undifferentiated (chlorite + kaolinite) are 0–16 wt%. The mean (µ) and standard deviation (s) values 182 

for unit I are smectite: µ = 50 wt%, s = 4; illite: µ = 38 wt%, s = 3; and undifferentiated (chlorite + kaolinite): 183 

µ = 12 wt%, s = 1. Comparable statistics for unit II are smectite: µ = 57 wt%, s = 5; illite: µ = 36 wt%, s = 4; 184 

undifferentiated (chlorite + kaolinite): µ = 7 wt%, s = 2. 185 

 186 

The ninety-nine specimens from Site U1517 (Underwood & Dugan, 2021) likewise reveal small variations 187 

among the five lithologic units (Fig. 2a). Smectite is the most abundant clay mineral (site average = 52 wt%), 188 

with a range of 30–63 wt% (Fig. 2a). Percentages of illite range from 31 to 54 wt%, and the range for 189 

undifferentiated (chlorite + kaolinite) is 5–16 wt%. The mean and standard deviation statistics for unit II are 190 

smectite: µ = 55 wt%, s = 3; illite: µ = 34 wt%, s = 2; undifferentiated (chlorite + kaolinite): µ = 11 wt%, s = 191 

1. Values for unit III are smectite: µ = 48 wt%, s = 2; illite: µ = 40 wt%, s = 2; chlorite + kaolinite: µ = 11 192 

wt%, s = 0.5. Statistics for unit IV are smectite: µ = 51 wt%, s = 5; illite: µ = 39 wt%, s = 4; undifferentiated 193 

(chlorite + kaolinite): µ = 10 wt%, s = 1. In unit V, the statistics are smectite: µ = 53 wt%, s = 5; illite: µ = 38 194 

wt%, s = 4; undifferentiated (chlorite + kaolinite): µ = 9 wt%, s = 2. Unit V displays the greatest amount of 195 

statistical scatter, with subtle gradients of decreasing, then increasing proportions of illite moving down-196 

section (Fig. 2a). Compositional shifts at horizons of interest (e.g., ~31, ~41, ~66 mbsf) are trivial, however, 197 

and within the normal error range for the method (Fig. 2a). 198 

 199 

Concentrations of individual minerals in bulk sediment are more diagnostic if the goal is to assess how 200 

composition affects hydrogeological, frictional, and geotechnical properties. The average content of total clay 201 

minerals at Site U1517 is 40 wt%, with a range of 10–49 wt% (Barnes et al., 2019a). Average values for bulk 202 

sediment are: smectite = 1 wt% (s = 4); illite = 15 wt% (s = 3); and undifferentiated (chlorite + kaolinite) = 4 203 

wt% (s = 0.9). Contrasts across unit boundaries are within the background range of scatter, and excursions are 204 

absent at the suspected slip surfaces (Fig. 2a). Data from Site U1519 are similar (Fig. 2b). 205 

To expand spatial coverage, we also collected data from 30 specimens from piston and gravity cores 206 

(Underwood, 2020), from the vicinity of the Ruatoria debris avalanche in the NE to offshore Hawke’s Bay in 207 

the SW (Fig. 3a). Smectite ranges from 29 to 54 wt% (µ = 45, wt% s = 6). The range for illite is 36–57 wt% (µ 208 

= 43 wt%, s = 5), and undifferentiated (chlorite + kaolinite) ranges from 9 to 16 wt% (µ = 12 wt%, s = 2). 209 

These values overlap data from Sites U1517 and U1519, but with more statistical scatter. Moreover, samples 210 
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from the NE corner of the study area generally contain more smectite (and less illite) compared to those to the 211 

SW (Fig. 3a). 212 

4 Results 213 

4.1. Principal Sources for Detrital Clays 214 

If our results are viewed in the context of geotechnical inquiry, it doesn’t really matter where the clays 215 

originated, or how they arrived at sites of deposition, but we offer some possibilities. Illite is the expected 216 

weathering product of plutonic, low-grade metasedimentary, and sedimentary sources (Biscaye, 1965; Fagel, 217 

2007). Basement rocks across New Zealand (Fig. 1a) consist mostly of illite- and chlorite-rich metagraywackes 218 

and argillites of the Torlesse and Waipapa terranes (Sporli, 1978; MacKinnon, 1983; Warr & Cox, 2016). 219 

Younger cover sequences and forearc deposits in the East Coast Basin, and in regions immediately southeast of 220 

the Axial Range (Fig. 1a), are composed of moderately indurated illite-rich sedimentary strata with scattered 221 

tuff and bentonitic marl (e.g., Neef, 1999; Browne, 2004; Maison et al., 2018; McArthur et al., 2020). Rivers in 222 

the area (e.g., the Waipaoa River, Fig. 1a) erode into poorly indurated Miocene-Pliocene sediments (Erdman & 223 

Kelsey, 1992; Reid, 1998; Browne, 2004; Marsaglia et al., 2010). Although smectite is also a reported 224 

constituent of the mudstones (Claridge, 1960), illite is the dominate clay in soil samples from steep-land fields 225 

(Officer et al., 2006). Those watersheds (e.g., Waipaoa) generate unusually high yields of suspended sediment 226 

(Hicks et al., 2011), and discharge should supply the Hikurangi shelf and slope with illite-rich clays.  227 

 228 

Sedimentologists usually attribute high concentrations of smectite to weathering or alteration of volcanic 229 

sources (Biscaye, 1965; Hein & Scholl, 1978; Fagel, 2007; Huff, 2016). The East Cape region of North Island 230 

(Fig. 1) exposes several potential parents for detrital smectite. Mafic mélange (disrupted ophiolite) and small 231 

lenses of volcanic conglomerate do exist in the East Coast Allochthon (Brothers & Delaloye, 1982; Cluzel et 232 

al., 2010; Marsaglia et al., 2014), but their exposures are probably not large enough to produce all the smectite 233 

we found in the slope muds. The Taupo Volcanic Zone (TVZ), on the other hand, fits all the prerequisites for a 234 

regionally extensive source (Fig. 1a), with enormous andesitic to rhyolitic calderas (Kohn & Topping, 1978; 235 

Cole et al., 2014; Wilson & Rowland, 2016), ignimbrites, tephras, and lahars (e.g., Cronin et al., 1999; 236 

Hidgson & Manville, 1999; Lowe et al., 2013; Downs et al., 2014; Procter et al., 2014; Gravley et al., 2016). 237 

Their chemical weathering products are demonstrably smectite-dominant, and those clays are ubiquitous in 238 

geothermal and hydrothermal systems (Libbey et al., 2013; Simpson et al., 2019; Heap et al., 2020). After 239 

reaching the Bay of Plenty coast, at least some particulates from the TVZ are likely swept eastward by the East 240 

Cape Current before that current bifurcates around East Cape and directs suspensions toward the SW (Fig. 1a). 241 

Moreover, heavily weathered tephra is widespread in coastal exposures around the Bay of Plenty (Iso et al., 242 

1982), and smectite alteration of volcaniclastic sediment permeates into geothermal systems offshore (Hocking 243 

et al., 2010). Farther to the east near East Cape, discharge from the Waiapu River is known to contain 244 

remarkably high loads of suspended sediment (Hicks et al., 2011); that discharge might contribute some  245 
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 246 
Figure 3a. Locations of piston-gravity cores used in this study, with depths of specimens in cm below seafloor 247 
(Underwood, 2020). Pie diagrams depict normalized proportions of smectite, illite, and undifferentiated (chlorite + 248 
kaolinite). Background shows frequency distribution of landslide scars (from Watson et al., 2020). 3b. Empirical 249 
relation between proportion of smectite in bulk sediment and residual angle of internal friction, as determined by 250 
Tiwari & Marui (2005). Average and maximum values for Site U1517 yield predictions for the Tuaheni landslide. 251 
Yellow field depicts one standard deviation around the mean. 252 
 253 

additional smectite into suspensions carried by the East Cape Current, but also higher concentrations of illite 254 

and chlorite liberated from easily eroded sedimentary strata. We suggest that the typical Hikurangi clay 255 
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mineral assemblage, with appreciable amounts of both smectite and illite, is a product of blending among 256 

suspensions from multiple sources along the pathway of the East Cape Current.  257 

4.2. Implications for Slope Stability 258 

It seems certain that several factors combine to destabilize the Hikurangi trench slope, but it is challenging to 259 

isolate and quantify the impact of each. Rapid accumulation of low-permeability sediments often contributes to 260 

overpressured conditions on continental slopes (e.g., Stoecklin et al., 2017). Contourite drifts elsewhere are 261 

known to be susceptible to failure due to such factors as localized oversteepening of the seafloor, scouring by 262 

currents, and/or pronounced climate-induced changes of lithology (e.g., Laberg et al., 2016; Prieto et al., 2016; 263 

Miramontes et al., 2018; Gatter et al., 2020). Fluid pressures in such deposits can be exacerbated by trapping or 264 

seepage of free gas (e.g., Faure et al., 2006; Gross et al., 2018; Crutchley et al., 2022). The Hikurangi margin, 265 

in addition, has a propensity for moderate to large subduction-induced earthquakes (Dowrick & Rhoades, 266 

1998; Cubrinovski et al., 2022), so it is also logical to expect dynamic loading during seismic shaking, together 267 

with transient increases of fluid pressure (e.g., Stegmann et al., 2007). The Ruatoria avalanche offshore North 268 

Island has been attributed to seamount subduction (Collot et al., 2001; Lewis et al., 2004). No matter how 269 

sedimentologists might debate interpretations of detrital provenance and routing paths for any depositional 270 

system, the abundance of clay and the composition of clay minerals also play key roles in modulating 271 

sediment’s frictional strength. Smectite is widely regarded as a crucial ingredient in that sense (Tembe et al., 272 

2010). Residual shear strength decreases dramatically once the proportion of smectite exceeds 25–30% of the 273 

bulk mineralogy (e.g., Luipini et al., 1981; Logan & Rauenzahn, 1987). The results of Tiwari & Marui (2005) 274 

allow us to predict ranges of residual shear strength for the Tuaheni landslide based on our calculated 275 

percentages of smectite in the bulk sediment. Using the empirical relation for two-component quartz-smectite 276 

mixtures, those %-smectite values translate to predicted angles of internal friction that range from an average 277 

of 14.2° to a minimum of 7.8° (Fig. 3b). The three-component quartz-smectite-kaolinite group (Tiwari & 278 

Marui, 2005) provides a more realistic match for Hikurangi bulk sediment. Using that curve, our calculated 279 

values for bulk %-smectite translate to predictions of 5.9° for the average and only 3.8° for the minimum angle 280 

of internal friction (Fig. 3b). Accordingly, although direct tests of frictional property are warranted to verify, 281 

we stipulate that clay composition preconditions the Tuaheni strata to fail without having a preferred slip 282 

surface along any layer-specific weak interval. 283 

  284 

Crutchley et al. (2022) contended that the basal shear zone of the Tuaheni slide exploited a stratigraphic 285 

interval with comparatively low shear strength (i.e., a pre-existing weak layer). Weak layers are known to 286 

occur in many lithologies (Gatter et al., 2021). Some weak layers evidently predate failure and function as the 287 

preferred glide planes, whereas others form during failure events due to realignment of grain fabric (Locat et 288 

al., 2014; Gatter et al., 2021). In some instances, contrasts of hydrogeologic properties across a pronounced 289 

lithologic boundary allow pore pressure to build up along a potential failure plane (e.g., Stegmann et al., 2007). 290 
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Elsewhere, tephra beds act as weak layers; their suggested causes include fabric rearrangement and volume 291 

reduction during shearing (Harders et al., 2010), alteration of the volcanic glass to smectite (Miramontes et al., 292 

2018), or the tephra’s role in focusing transient perturbations of pore-fluid pressure (Wiemer et al., 2015; 293 

Kuhlmann et al., 2016). Our data allow for tests of those possibilities. 294 

 295 

Surprisingly, we found no evidence at Site U1517 for pronounced compositional variations within or across 296 

any of the weak layers or inferred slip surfaces. Compositional homogeny prevails across the slip surface at 297 

~41 mbsf, across the base of the creeping slide interval (as defined by seismic-reflection data at ~59 mbsf), and 298 

within the weak layer at ~31 mbsf (Fig. 2a). None of those intervals in the cores coincides with a layer of 299 

volcanic ash, or unusually high amounts of total clay, or unusually high concentrations of smectite (Fig. 3a). 300 

Instead, we see a subtle facies transition between mud with stacked couplets of silt and mud (unit III) and 301 

mostly mud (unit IV). That facies change probably resulted from temporal variations in sediment supplies and 302 

current strength. The weak layer at ~31 mbsf occurs in the middle of unit III, without any obvious facies 303 

change or anomaly in sediment texture, internal sedimentary structures, bed thickness, or bed geometry (Fig. 304 

2a). That weak layer probably developed during a slip event via realignment of phyllosilicate grain fabric 305 

(Crutchley et al., 2022).  306 

 307 

If we accept the validity of the East Cape Current as the path for routing residual smectite toward the SW, then 308 

it follows for slope stability offshore North Island to improve “downstream” where more detrital illite and 309 

chlorite enters the dispersal system from the Waipaoa and kindred watersheds (Fig. 1a). XRD data from 310 

piston/gravity cores are consistent with that interpretation (Fig. 3a). The frequency of landslide scars decreases 311 

where proportions of illite and chlorite are higher (Watson et al., 2020). In the opposite direction, landslide 312 

scars are more concentrated in areas that are closer to the volcanic sources of smectite-rich clay (Fig. 3a). 313 

5 Conclusions 314 

Our results reinforce the notion that submarine slopes fail in response to many interwoven variables, including 315 

mineralogy, and those variables combine in ways that are unique to each individual landslide. The homogeny 316 

of mud across the Hikurangi trench slope is a result of strong currents blending suspensions from multiple 317 

sources. Smectite is the most abundant clay mineral, with concentrations high enough to reduce the bulk mud’s 318 

angle of internal friction to an average of ~6° and a minimum of ~4°. We did not find compositional 319 

excursions along any inferred slip surfaces or weak layers within the Tuaheni landslide. Smectite abundance 320 

and slide scars both decrease toward the SW, in the “downstream” direction of the East Cape Current. Thus, 321 

sediment-dispersal systems such as Hikurangi can contribute inconspicuously to strike-parallel changes in 322 

slope instability by modulating composition. Our study demonstrates why quantitative analyses of mineralogy 323 
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should be included in any holistic investigation of landslides, to test for possible compositional 324 

preconditioning. 325 
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