
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
22
36
/v

1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

The relationship between the global mean deep-sea and surface

temperature during the Early Eocene

Barbara Goudsmit1,1, Angelique Lansu2,2, Michiel Baatsen3,3, Anna S. von der Heydt4,4,
Niels Jonathan de Winter5,5, Yurui Zhang6,6, Ayako Abe-Ouchi7,7, Agatha Margaretha De
Boer8,8, Wing-Le Chan7,7, Yannick Donnadieu9,9, David Hutchinson10,10, Gregor Knorr11,11,
Jean-Baptiste Ladant12,12, Polina A Morozova13,13, Igor Niezgodzki14,14, Sebastian
Steinig15,15, Aradhna Tripati16,16, Zhongshi Zhang17,17, Jiang Zhu18,18, and Martin Ziegler3,3

1Royal Netherlands Institute for Sea Research
2Open Universiteit
3Utrecht University
4Institute for Marine and Atmospheric research Utrecht, Utrecht University
5Vrije Universiteit Brussel
6Xiamen University
7University of Tokyo
8Stockholm University
9Centre national de la recherche scientifique
10University of New South Wales
11AWI Bremerhaven
12Laboratoire des Sciences du Climat et de l’Environnement
13Institute of Geography, Russian Academy of Sciences
14ING PAN - Institute of Geological Sciences Polish Academy of Sciences
15University of Bristol
16University of California,Los Angeles
17Bjerknes Centre for Climate Research
18National Center for Atmospheric Research

November 30, 2022

Abstract

Our current understanding of global mean near-surface (land and sea) air temperature (GMSAT) during the Cenozoic era

relies on paleo-proxy estimates of deep-sea temperature combined with assumed relationships between global mean deep-sea

temperature (GMDST), global mean sea-surface temperature (GMSST), and GMSAT. The validity of these assumptions is

essential in our understanding of past climate states such as the Early Eocene Climate Optimum hothouse climate (EECO, 56–

48 Ma). The EECO remains relevant today, because EECO-like CO2 levels are possible in the 22nd century under continued high

CO2 emissions. We analyze the relationship between the three global temperature indicators for the EECO using 25 different

millennia-long model simulations with varying CO2 levels from the Deep-Time Model Intercomparison Project (DeepMIP).

The model simulations show limited spatial variability in deep-sea temperature, indicating that local temperature estimates

can be regarded representative of GMDST. Linear regression analysis indicates that compared to GMSST, both GMDST and

GMSAT respond more strongly to changes in atmospheric CO2 by factors of 1.18 and 1.17, respectively. Consequently, this

model-based analysis validates the assumption that changes in GMDST can be used to estimate changes in GMSAT during
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the EECO. Paleo-proxies of GMDST, GMSST, and GMSAT during EECO show the best fit with model simulations having an

atmospheric CO2 level of 1,680 ppm, which matches paleo-proxies of atmospheric CO2 during EECO. Similar analyses of other

past climate states are needed to examine whether these results are robust throughout the Cenozoic, providing insight into the

long-term future warming under various shared socioeconomic pathways.
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Key Points:

• Based on 25 Early Eocene model simulations (DeepMIP), the global mean
deep-sea and surface temperature are approximately equally sensitive to
changes in atmospheric CO2.

• There is limited spatial variability in deep-sea temperature in these sim-
ulations, making local deep-sea temperature estimates generally represen-
tative of the global mean.

• The model simulations with a CO2 forcing of 1,680 ppm align well with
paleo-proxies in the combination of global mean deep-sea, sea-surface, and
surface temperature.

Abstract

Our current understanding of global mean near-surface (land and sea) air tem-
perature (GMSAT) during the Cenozoic era relies on paleo-proxy estimates
of deep-sea temperature combined with assumed relationships between global
mean deep-sea temperature (GMDST), global mean sea-surface temperature
(GMSST), and GMSAT. The validity of these assumptions is essential in our
understanding of past climate states such as the Early Eocene Climate Opti-
mum hothouse climate (EECO, 56–48 Ma). The EECO remains relevant today,
because EECO-like CO2 levels are possible in the 22nd century under contin-
ued high CO2 emissions. We analyze the relationship between the three global
temperature indicators for the EECO using 25 different millennia-long model
simulations with varying CO2 levels from the Deep-Time Model Intercompari-
son Project (DeepMIP). The model simulations show limited spatial variability
in deep-sea temperature, indicating that local temperature estimates can be re-
garded representative of GMDST. Linear regression analysis indicates that com-
pared to GMSST, both GMDST and GMSAT respond more strongly to changes
in atmospheric CO2 by factors of 1.18 and 1.17, respectively. Consequently,
this model-based analysis validates the assumption that changes in GMDST
can be used to estimate changes in GMSAT during the EECO. Paleo-proxies
of GMDST, GMSST, and GMSAT during EECO show the best fit with model
simulations having an atmospheric CO2 level of 1,680 ppm, which matches paleo-
proxies of atmospheric CO2 during EECO. Similar analyses of other past climate
states are needed to examine whether these results are robust throughout the
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Cenozoic, providing insight into the long-term future warming under various
shared socioeconomic pathways.

Plain Language Summary

A widely used indicator of global climate change is the change in global mean
(land and sea) surface air temperature (GMSAT). Our current understanding of
the GMSAT evolution during the last 66 million years is largely based on deep-
sea temperature proxies from fossilized micro-organisms and the assumption
that changes in the global mean deep-sea temperature (GMDST) are similar
to those in GMSAT. In short, GMDST and GMSAT are linked via the global
mean sea-surface temperature (GMSST) by assuming that they are both less
sensitive than the GMSST to atmospheric CO2 changes by the same degree.
The validity of this assumption is essential in our understanding of past climate
states such as the Early Eocene Climate Optimum (EECO, 56–48 million years
ago), a hothouse period characterized by high atmospheric CO2 levels. We
analyzed the relationship between the three global temperature indicators in
climate model simulations of the EECO. Based on linear regression analysis,
we find that changes in GMDST can indeed be used to estimate changes in
GMSAT during the EECO (regression slope 0.99). Furthermore, paleo-proxies of
GMDST, GMSST, and GMSAT during EECO show the best fit with the model
simulations having an atmospheric CO2 level of 1,680 ppm, which matches paleo-
proxies of atmospheric CO2 during EECO. This indicates a good fit between
models and proxy-data.

1 Introduction

The atmospheric CO2 concentration has fluctuated considerably over the Ceno-
zoic era (66 Ma – present) (Figure 1; Rae et al., 2021). During the Early Eocene
Climate Optimum (EECO, 56–48 Ma) – the warmest interval of the Cenozoic
– the atmospheric CO2 concentration reached values between 1,150 and 2,000
ppm (Anagnostou et al., 2020; Rae et al., 2021). After the EECO hothouse cli-
mate, the atmospheric CO2 level gradually declined and remained below 1,000
ppm for the remainder of the Cenozoic (Gulev et al., 2021). In the more re-
cent past, the atmospheric CO2 concentration has increased from 280 ppm at
the start of the industrial era around 1750 AD to 412.5 ppm in 2020 (NOAA,
2021). In its Sixth Assessment Report (AR6), the Intergovernmental Panel on
Climate Change (IPCC) considers five main scenarios for the future atmospheric
CO2 level based on a set of Shared Socioeconomic Pathways (SSPs). In case of
continued high CO2 emissions (SSP5-8.5), the atmospheric CO2 concentration
can reach values above 1,100 ppm by 2100, leveling off at 2,200 ppm between
2200 and 2250; comparable to the level during the EECO (Figure 1; Cheng
et al., 2021). This makes the climate of the EECO of interest today, to gain
understanding of how the climate system operates under these possible extreme
future CO2 levels (Burke et al., 2018; Tierney et al., 2020).

Compared to today, the world during the Early Eocene displays some striking
differences (Figure 1 (a) and (b)). There were no ice sheets on Antarctica and
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Greenland (Zachos et al., 2001), and frost-free winters allowed forest growth in
polar regions (Pross et al., 2012). The North-Atlantic Ocean was narrower than
nowadays, limiting the connectivity with the Arctic Ocean. Furthermore, the
oceanic gateway between Antarctica and Australia was more restrictive com-
pared to today (Lunt et al., 2021; Sauermilch et al., 2021). These differences in
land cover and continental configuration also provide a climate forcing, in addi-
tion to the higher atmospheric CO2 level. Furthermore, the EECO represents
a quasi-equilibrated hothouse climate state (Figure 1 (c)), while the climate of
the 21st century is still in transient state due to the pronounced CO2 rise in a
relatively short time (Figure 1 (d)). Although the EECO does not represent a
direct analogue for future climate scenarios due to these differences, reconstruc-
tions of the EECO climate can deepen our understanding of the operational
modes in a climate system under high CO2 conditions.

Figure 1. Top: Continental configuration during the Early Eocene (a) and the
Preindustrial (b) with shared color bars for continent elevation and ocean depth.
Ice sheets during the Preindustrial are depicted in white. Bottom: Evolution
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of the atmospheric CO2 concentration in ppm during the last 55 million years
(c) with uncertainty in shading, based on data from Rae et al. (2021), and for
1750-2014 and 2015-2300 (d) based on respectively observations and the five
scenarios used in IPCC Assessment Report 6 (Chen et al., 2021), based on data
from The University of Melbourne (n.d.).

An important indicator of both past climate states like the EECO and sce-
narios of the future climate is the global mean surface air temperature (GM-
SAT): the mean near-surface air temperature above both land and sea. Current
insights into the GMSAT evolution during the Cenozoic era, as presented in
IPCC AR6 (Gulev et al., 2021), are based on estimates of deep-sea temperature
(DST) from oxygen isotope compositions of benthic foraminifera (Hansen et al.,
2013; Westerhold et al., 2020). This �18O paleothermometry is based on the
temperature-dependent fractionation of the oxygen isotopes 16O and 18O in the
calcium carbonate shells of these micro-organisms (Urey, 1948; McCrea, 1950).
The DST estimates are translated into GMSAT estimates by assuming a 1-on-
1 relationship between changes in GMDST and GMSAT prior to the Pliocene
using the following line of reasoning of Hansen et al (2013):

1. The GMDST is essentially determined by the sea surface temperature
(SST) at high-latitude sites of deep-water formation, where surface water
sinks to the bottom. Hence, GMDST exhibits the same sensitivity to CO2
changes as the high-latitude SST,

2. Due to polar amplification, the high-latitude SST, and hence also GMDST,
responds stronger to CO2 changes than the global mean SST (GMSST),

3. The surface temperature change is greater over land than over ocean.
Hence, GMSAT responds stronger to CO2 changes than GMSST,

4. GMDST and GMSAT are equally sensitive to CO2 changes, when assum-
ing that GMSST underestimates the sensitivities of GMDST and GMSAT
by the same factor.

The validity of these underlying assumptions is essential to our understanding of
past and future climate states under hothouse conditions. In this light, Valdes
et al. (2021) used climate model simulations of different time-periods cover-
ing the whole Phanerozoic era to investigate the relationship between DST and
GMSAT. They found an overall linear relationship between DST and GMSAT
during the Phanerozoic, yet with variable slope and coefficient of determination
depending on the geologic time-period under consideration. To build on this
analysis, we investigated the relationships between GMDST, GMSST, and GM-
SAT for one specific time-period during the Cenozoic: the EECO. We use an
ensemble of model simulations of the EECO climate assuming different atmo-
spheric CO2 levels, performed as part of the Deep-Time Model Intercomparison
Project (DeepMIP) (Lunt et al., 2017; 2021). Hence, we analyze the temper-
ature relationships under fixed non-CO2 climatic factors (such as continental
configuration and astronomical conditions) and variable CO2 level.
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In addition to this model-based analysis, we performed a model-data comparison
to investigate the alignment between the model estimates and paleo-proxy based
reconstructions of atmospheric CO2 level, GMDST, GMSST, and GMSAT dur-
ing the EECO. Previous EECO model simulations required atmospheric CO2
levels as high as 4,480 ppm (16 times the preindustrial (PI) level) to reproduce
paleo-proxies of surface temperatures (Lunt et al., 2012). For the DeepMIP
model simulations, Lunt et al. (2021) found that the simulations with CO2
levels of 1,120 (4 times PI) and 1,680 ppm (6 times PI) are most consistent
with paleo-proxies of GMSAT and CO2 level during the EECO. In our analysis,
we additionally consider paleo-proxies of GMDST and GMSST and analyze the
model-data alignment for the combination of the three global mean temperature
indicators and the CO2 levels.

2 Data

2.1 Output of EECO model simulations

As part of the DeepMIP, simulations for the EECO were performed with nine
Earth System Models based on a standard set of boundary conditions (Lunt et
al., 2017; 2021). Each model performed a preindustrial control run, and several
EECO simulations at various atmospheric CO2 concentrations ranging from the
PI CO2 concentration of 280 ppm to 9 times this baseline (2,520 ppm; Table 1).
Most model simulations ran for at least 2,000 years, allowing us to analyze a long-
term response of the deep-sea and surface temperatures to the atmospheric CO2
concentration. The model simulation output data contain monthly averages of
variables over the last 100 simulation years on the model-specific grid (Table 2),
except for the NorESM ocean variables which are available as annual instead of
monthly averages.

Table 1. Large-scale features of the DeepMIP simulations per model (Lunt et
al., 2021). The resolution presented for the ocean grid is the nominal resolution,
as most models use a non-rectangular grid for their ocean component (such as
a bipolar, tripolar, or displaced pole grid). The depth levels of all models vary
with thickness and become thicker with increasing depth. Note that several
models start with 1 run and branch off other runs after a spin up period. The
run-time presented is the total run-time, including possible spin-up. Detailed
information on the simulations of each model is provided in (Lunt et al., 2021).
Additionally, (Zhu et al., 2019) and (Zhang et al., 2020) serve as references
for the DeepMIP simulations of CESM and IPSL respectively. The models are
referred to by the specified short name in the remainder of this article.
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Model Short
name

Simulations
in multipli-
cation
factor CO2

Ocean
resolution
in latitude
x
longitude,
depth
levels

Atmosphere
resolution
in latitude
x
longitude,
vertical
levels

Run time
in years

CESM1.2_
CAM5

CESM , 3, 6, 9 +
PI

° x 1°,
60 depth
levels

° x 2.5°,
30 vertical
levels

,600
(1xCO2)
2,000
(others)

COSMOS-
landveg_r2413

COSMOS , 3, 4 + PI ° x 3.0°,
40 depth
levels

° x 3.75°,
19 vertical
levels

,500

GFDL_CM2.1GFDL , 2, 3, 4, 6
+ PI

° x 1.5°,
50 depth
levels

° x 3.75°,
24 vertical
levels

,000

HadCM3B-
M2.1aN

HadCM
High
Resolution

, 2, 3 + PI ° x 1.25°,
20 depth
levels

° x 3.75°,
19 vertical
levels

,500

HadCM3BL-
M2.1aN

HadCM
Low
Resolution

, 2, 3 + PI ° x 3.75°,
20 depth
levels

° x 3.75°,
19 vertical
levels

,500

INM-CM4-
8

INMCM + PI ° x 1°,
33 depth
levels

° x 2°,
17 vertical
levels

,150

IPSL-
CM5A2

IPSL , 3 + PI -2° x 2°,
31 depth
levels

° x 2.5°,
39 vertical
levels

,000

MIROC4m MIROC , 2, 3 + PI -1.4° x
1.4°,
44 depth
levels

° x 2.8°,
20 vertical
levels

,000

NorESM1-
F

NorESM , 4 + PI ° x 1°,
70 depth
levels

° x 2°,
26 vertical
levels

,100

Table 2. DeepMIP variables used in the analysis. Temperatures in K are
converted to °C by subtracting 273.15.
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Variable Model
component

Name in data Unit Dimensions

Potential sea
temperature

Ocean thetao °C Month
Latitude
Longitude
Depth level

Sea surface
temperature

Ocean tos °C Month
Latitude
Longitude

Near-surface
air
temperature

Atmosphere tas °C

Top-of-
atmosphere
(TOA)
outgoing
longwave
radiation
(LW↑)

Atmosphere rlut W/m2

TOA
outgoing
shortwave
radiation
(SW↑)

Atmosphere rsut W/m2

TOA
incoming
shortwave
radiation
(SW↓)

Atmosphere rsdt W/m2

2.2 Data of modern ocean temperature

In order to compare the relationship between global temperature indicators dur-
ing EECO with the modern climate, estimates of present-day GMDST, GMSST,
and GMSAT were added as a reference in the analysis. Estimates of modern
GMDST and GMSST were obtained from three datasets of global current ocean
temperature data:

• Monthly values for January 2019 – December 2019 of the Global Ocean
Physics Reanalysis GLORYS12V1 (short name GLORYS) dataset (E.U.
Copernicus Marine Service Information, 2021b).

• Monthly values for January 2019 – December 2019 of the Multi Obser-
vation Global Ocean ARMOR3D (short name ARMOR) dataset (E.U.
Copernicus Marine Service Information, 2021c).
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• Quarterly values for Q1 2019 – Q4 2020 of the Global Ocean OSTIA
Sea Surface Temperature (short name OSTIA) dataset (E.U. Copernicus
Marine Service Information, 2021a). This dataset only supplies SST data.

An estimate of modern GMSAT was derived from monthly values for January
2016 – December 2020 of the ERA5 reanalysis dataset. The variable used to
derive the GMSAT is the temperature of air at 2 m above the surface of land,
sea or inland waters (Hersbach et al, 2019). An overview of the data used per
dataset is given in Table S1.

2.3 EECO paleo-proxies

For the paleo-proxy estimates of GMDST, GMSST, GMSAT and CO2 level dur-
ing EECO, several existing proxy compilations were used. As a basis for our
own estimates of GMSAT and GMSST, we used the dataset with marine and
terrestrial surface temperature proxies compiled as part of DeepMIP (Hollis et
al., 2019) as given in the supplementary information of (Inglis et al., 2020). The
27 marine temperature estimates in this set are based on four distinct methods
for paleothermometry: stable oxygen isotope ratio (�18O; 5 estimates), Mg/Ca
ratio (6 estimates), clumped isotopes (Δ47; 5 estimates), and TEX86 (11 esti-
mates). The first three methods infer surface temperature from the calcium
carbonate shells of planktic foraminifera, while TEX86 relies on membrane lipid
structures of thaumarchaeota, micro-organisms that dwell predominantly at the
(sub-) surface (Hollis et al., 2019; and references therein). The 70 compiled
proxies for terrestrial air temperature are based on membrane lipid structures
produced by bacteria (22 estimates), Δ47 on soil carbonates (3 estimates), and
analysis of fossil leaves (38 estimates) and pollen (7 estimates) (Hollis et al.,
2019; and references therein). To derive proxy-based estimate of GMSST and
GMSAT, we respectively used only the marine proxy estimates and both the
marine and terrestrial estimates. Note that the full DeepMIP dataset addition-
ally contains 7 marine estimates based on recrystallized planktonic foraminifera
and 10 terrestrial estimates based on mammal and paleosol analysis. We did
not include these estimates in the analysis, following the data selection choices
of Inglis et al. (2020). The dataset provides all temperature estimate in °C (as
the 50% percentile, i.e., median, of the temperature estimate derived from the
proxy value) together with the location of the proxy specified by latitude and
longitude during EECO (52 Ma) using a mantle reference frame (Inglis et al.,
2020). An overview of the local SST and SAT proxies is given in Table S2 and
the location of the proxies is depicted in Figure S1.

For a proxy-based estimate of GMDST, two additional estimates of GMSAT,
and an estimate of atmospheric CO2 level, we relied on literature. The paleo-
proxy range for GMDST during EECO used in our analysis is based on the recent
Δ47 analysis from Meckler et al. (2022). The temperature estimates for the
EECO in this study are from the Newfoundland Margin in the North-Atlantic
with paleo-depth 3,050 m and the Walvis Ridge in the South-Atlantic with paleo-
depth 1,500. We chose a GMDST estimate based on Δ47 paleothermometry,
because clumped isotope analysis has the advantage that no assumption needs
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to be made regarding the �18O of seawater, unlike �18O analysis (Eiler, 2007;
Ghosh et al., 2006). Regarding GMSAT, we used the estimated ranges from
Inglis et al. (2020) and Zhu et al. (2019), both based on a combination of
all marine and terrestrial methods of paleothermometry. Finally, the range for
atmospheric CO2 level during the EECO is based on the studies of Anagnostou
et al. (2020) and Rae et al. (2021). Both constrain the atmospheric CO2 level
from the pH-dependent boron isotope composition in foraminifera together with
the relationship between seawater’s pH-level and carbonate chemistry.

3 Methods

3.1 Estimation of GMDST, GMSST, and GMSAT

The GMDST per model simulation is estimated using the monthly mean poten-
tial sea water temperature data (Table 2). The annual mean per grid cell was
calculated as the average over the 12 months for all models except NorESM. We
defined the deep-sea as the part of the ocean ranging from a depth of 2,000 m
to the ocean floor. As most model depth levels do not exactly coincide with
this boundary, we used a model-specific deep-sea definition starting at the depth
level closest to 2,000 m (Table S3). The local DST per 2-dimensional (longitude,
latitude) surface grid cell was calculated as the weighted average temperature of
the column of grid cells ranging from the model-specific deep-sea depth level to
the bottom using depth level thickness as weights. Subsequently, the GMDST
is estimated as the average of all local DST estimates, weighted with the vol-
ume of the deep-sea column at that location. In case the surface grid cell areas
were part of the model output, the grid cell column volume is defined as the
product of horizontal area and vertical thickness. In other cases, a relative grid
cell column volume was calculated using the cosine of the grid cell latitude and
vertical thickness. For each model simulation, the annual mean local DST was
plotted on a (longitude, latitude) grid to visually inspect the results and assess
the usability of the data for the intended analysis.

The GMSST and GMSAT estimations resemble that of GMDST, with the dif-
ference that vertical averaging was not necessary as the variables are given on
a 2-dimensional spatial grid (Table 2). The 12 monthly values were averaged
to obtain the annual local means (except for NorESM SST), and the GMSST
and GMSAT were derived by area-weighted averaging over all local values. The
methods described are also used to estimate the modern values of GMDST,
GMSST, and GMSAT using the datasets described in Section 2.2.

Note that GMSAT is defined as the temperature of the air above the land and
ocean. A related and commonly used global temperature indicator is the global
mean surface temperature (GMST), defined as the mean temperature of the
air above the land surface and the temperature of the water at the sea surface.
GMST and GMSAT are strongly related, but physically distinct temperature
estimates and long-term differences between them are estimated to be at most
10% (Gulev et al., 2021). As the analysis of Hansen et al. (2013) does not
specify whether the paleo proxy DST estimates are translated into GMST or
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GMSAT, we henceforth make no distinction between GMSAT and GMST and
use the abbreviation GMSAT to indicate either estimate.

3.2 Selection of model simulations

To determine whether the model-based temperature estimates can be regarded
as equilibrium values, we assessed the degree of energy equilibrium obtained
by the model simulations. We based our model simulation selection on a vi-
sual inspection of the global annual mean ocean temperature trend, and the
global annual mean top-of-atmosphere (TOA) energy imbalance over the last
100 simulation years. Data on ocean temperature time series were not part of
the standard DeepMIP database and were requested separately from the model
developers. The temperature time series data were available for all EECO sim-
ulations except that of INMCM. The underlying ocean cross-section differs per
model (Table S3). The global annual TOA energy imbalance per model simu-
lation was calculated as the temporally and spatially weighted average of the
difference between net incoming shortwave radiation and outgoing shortwave
and longwave radiation (SW↓ - SW↑ - LW↑, Table 2). For the criterion regard-
ing a sufficiently small TOA energy imbalance at the end of the simulation, we
followed Lunt et al. (2021) who used a value less than 0.3 W/m2 or a value
similar to that of the PI control run.

We decided to include several model simulations in the regression analyses which
have not reached full energy equilibrium yet based on ocean temperature trend.
To interpret the values of these simulations, we made the assumption that GM-
SAT and GMSST have reached equilibrium in all simulations and only the
GMDST values of these simulations have not reached equilibrium. The ratio-
nale behind this assumption is that the deep-sea takes longer to adjust to the
CO2 level than the surface temperatures (Li et al., 2013). In this case, the sim-
ulations with a cooling, respectively warming trend have an equilibrium value
of GMDST below respectively above the estimated GMDST.

3.3 Assessment of spatial variability DST

The spatial variability of the DST per simulation was analyzed through the
weighted distribution of absolute differences between local DST and the GMDST
for all (longitude, latitude) locations defined by the surface grid cell, weighted
by the volume of the deep-sea below the corresponding surface grid cell. We
assessed this distribution by considering several percentiles. Due to the weight-
ing, the interpretation of the xth percentile is that x% of the total deep-sea
volume has an absolute difference between local DST and GMDST less than
the percentile value, for x between 0 and 100. Furthermore, we calculated the
annual mean DST for the five main oceanic basins: North Atlantic Ocean, South
Atlantic Ocean, Southern Ocean, Pacific Ocean, and Indian Ocean (Figure S2).
The basin borders are defined such that coastal areas are excluded, in order to
obtain stable open ocean basins. The basins are comprised of one or more rect-
angular (longitude, latitude) boxes following the demarcation in Table S4. This
demarcation is applied to all models equally, except for NorESM. This model
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uses a slightly different paleogeography, and the basin demarcations are ad-
justed accordingly. The difference between the DST per basin and the GMDST
is considered both per model simulation and grouped per oceanic basin for all
model simulations together.

3.4 Estimation of temperature relationships

We analyzed the relationships between global temperature indicators by means
of linear regression. Three temperature combinations were considered to test the
relationships set forth by Hansen et al (2013): GMSST vs GMDST, GMSAT vs
GMSST, and GMSAT vs GMDST. For each combination, two linear regressions
were performed: one based on only the EECO simulations, and one based on
the EECO simulations together with the PI control runs. The linear regression
analyses resulted in expression of the first temperature (the dependent variable)
as a linear function of the second temperature (the independent variable):

𝑇dependent = slope • 𝑇independent + intercept. (1)

Estimates of the slope and intercept coefficients were obtained via the ordinary
least square method. The fit of the result was assessed by the coefficient of
determination R2. Besides these analyses on global annual means, the same
linear regression method is used to analyze the relationship between GMDST
and SST in areas of deep-water formation.

3.5 Comparison of model-based and proxy-based GMDST, GMSST, and GM-
SAT

Using the dataset of 27 marine and 70 terrestrial local temperature proxies
(Section 2.3), proxy-based GMSST and GMSAT estimates were obtained by
applying the method Dsurf-2 of Inglis et al. (2020). This method requires two
model simulations with different CO2 levels (low and high CO2). Assuming a
linear relationship between the local and global temperature estimates in the
two model simulations, the local proxy-based temperature estimate is scaled to
an estimate of global mean temperature. The global mean temperature (GMT,
being either GMSST or GMSAT) inferred from a local proxy is defined as:

GMT=GMTlow+ (Tproxy-Tlow) � GMThigh-GMTlow
Thigh-Tlow

(2)

with

• Proxy-based temperature estimate Tproxy,

• Model-based temperature at the same location for low and high CO2 (Tlow
and Thigh),

• Model-based GMT for low and high CO2 (GMTlow and GMThigh).

To find the modelled SST at the proxy location, we selected all model grid cells
within a certain (longitude, latitude) range of the proxy location. The range
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is chosen such that all proxy locations are matched with at least one grid cell.
Due to the difference in model resolution (Table 1), this range is model-specific
and spans from (±2°, ±2°) for high resolution to (±5°, ±5°) for lower resolution
models. The model-based local temperature is then the area-weighted average
over the selected grid cells. For GMSST, the transfer function was applied to all
27 local SST proxies in the dataset using the SST estimates of all possible low
and high CO2 simulations of DeepMIP models with multiple simulations. The
GMSST estimates for all 27 proxies were averaged to obtain a final estimate
of GMSST per combination of low and high CO2 model simulation. The same
method was applied to obtain a proxy-based estimate of GMSAT, using the
dataset of 27 marine and 70 terrestrial temperature proxies, the model-based
estimates of SAT at the proxy location and GMSAT values. Subsequently, the
GMT (either GMSST or GMSAT) estimates for all combination of low and
high CO2 model simulations were first averaged per model, to obtain the mean
estimate per DeepMIP model. The average of these values was taken as the
final best estimates of GMSST and GMSAT.

The uncertainty of these GMSST and GMSAT estimates was derived following
the approach of Farnsworth et al. (2019). The skill of the transfer function
was tested by applying the method using model-based instead of proxy-based
local temperature estimates. This means that Equation (2) was applied to
the temperature estimates from three different model simulations: a low CO2
simulation, a high CO2 simulation, and a third distinct simulation taking the
place of the proxy-based temperature estimate Tproxy. Mirroring the proxy-
based GMSST and GMSAT derivations, the transfer function was applied to
the modelled local SST estimates on all 27 locations of marine proxies, and to
the modelled local SAT estimates on all 97 locations of marine and terrestrial
proxies. The average of these 27, respectively 97, estimates was subsequently
compared to the actual model-based GMSST, respectively GMSAT, of this third
simulation, to assess the offset between the true value and the outcome of the
transfer function. This method was applied with all possible combinations of
three DeepMIP model simulations with the restriction that the low and high
CO2 simulations are from the same model. The 2.5th and 97.5th quartiles of the
resulting distribution of offsets were used to obtain the 95% confidence interval
around the proxy-based GMSST and GMSAT derivations.

For a proxy-based estimate of GMDST, we relied on results available in literature
based on recent Δ47-based temperature estimates from the Atlantic (Meckler et
al., 2021). Furthermore, we used the estimated GMSAT ranges from Inglis et al.
(2020) and Zhu et al. (2019). The 95% confidence interval for the estimate by
Zhu et al. (2019) is given, yet Inglis et al. (2020) provide the 66% and 90% con-
fidence intervals. For consistency, we calculated the 95% confidence interval for
the estimate by Inglis et al. (2020) by mirroring their approach of Monte Carlo
resampling (Section 4.5). Besides these proxy-based temperature estimates, we
used a proxy-based best estimate and range for the atmospheric CO2 concen-
tration during the EECO for the model-proxy comparison (Anagnostou et al.,
2020; Rae et al., 2021).
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3.6 Sensitivity analysis

As part of the analysis, we made choices regarding the definition of the deep-
sea, inclusion of oceanic basins and model simulations included in the analysis.
Specifically, we defined the deep-sea as the part of the ocean ranging from a
depth of 2,000 m to the ocean floor (Section 3.1). Furthermore, we decided to
exclude the Arctic Ocean from the calculations of GMDST and GMSST (Sec-
tion 4.1) and we decided to include several simulations that did not reach full
equilibrium (CESM, IPSL, and NorESM 4xCO2; Section 4.2). In the sensitiv-
ity analysis, we assessed the sensitivity of the GMDST value to the deep-sea
definition, and we repeated the linear regression analysis for different deep-sea
definitions, for the ocean including the Arctic, and only for the model simula-
tions that reached full energy equilibrium. We assessed the sensitivity of the
linear regression results from the main analysis by comparing the regression
slopes of the main analysis with the slopes of the sensitivity analysis.

4 Results

4.1 Estimates of GMDST, GMSST, and GMSAT

An overview of the GMDST, GMSST, and GMSAT for the EECO and PI sim-
ulations is given in Table 3, and visually depicted in Figure 2. After a visual
inspection of the analysis results, we made two changes to the data underlying
the analysis. First, there are small outlier sections in some EECO model simu-
lations, where the DST values were several °C higher or lower than those of the
surrounding area. These sections span a couple of grid cells in the Arctic gate-
way east of Greenland for COSMOS, HadCM High Resolution, INMCM, and
MIROC, and between the Australian and Antarctic continents for COSMOS
and IPSL. These outliers were manually removed from the data. Secondly,
we chose to exclude the Arctic Ocean from the calculations of GMDST and
GMSST. Inspection of the model ocean bathymetry showed that the Arctic was
poorly connected with the rest of the ocean during EECO with a maximum
gateway depth in the CESM simulations of about 600 m (Figure 1(a)), limit-
ing deep-water exchange. The Arctic was removed from the data by excluding
the surface grid cells with latitudes above 65 °N. To assess the impact of this
exclusion, we performed a sensitivity analysis based on GMDST and GMSST
estimates including the Arctic (Section 4.6).

As expected, the global mean temperatures increase with increasing CO2 level.
Furthermore, the temperatures in the 1xCO2 runs are higher than those of the
PI runs for all models with a 1xCO2 simulation. This difference is due to non-
CO2-related effects such as differences in continental configuration, vegetation,
and presence of ice sheets (Lunt et al., 2021). The average difference between
the 1xCO2 run and the PI control run is 2.1 °C for GMDST, 3.5 °C for GMSST,
and 3.8 °C for GMSAT. Hence, the response to non-CO2 climatic factors seems
stronger at the surface than in the deep-sea. However, the variation between
models for GMDST 1xCO2 run and PI difference is considerable, from as low
as 0.5 °C for COSMOS and MIROC to almost 5°C for CESM. This indicates
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that the models vary in their sensitivity of GMDST to the non-CO2 effects.
Note however that the models vary in run time (Table 1) and degree of energy
equilibrium for the 1xCO2 simulations (Table 3).

Figure 2. GMDST (left), GMSST (middle), and GMSAT (right) relative to
the PI value as a function of CO2 multiplication factor (horizontal) for the
DeepMIP EECO model simulations. The global mean temperature values of
each model are depicted with a different color and symbol and the values of
different simulations with the same model are connected with a line. The CO2
multiplication factors on the horizontal axis are plotted on a logarithmic scale.

Table 3. GMDST, GMSST, GMSAT, TOA energy imbalance, and ocean tem-
perature trend per simulation. For the EECO simulations, absolute TOA energy
imbalance values of at least 0.30 W/m2 are in bold, unless the value is similar
to that of the PI control run. Ocean temperature trends of at least 0.5 °C/1000
yrs in absolute value are also in bold.
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Model SimulationGMDST
in °C

GMSST
in °C

GMSAT
in °C

TOA
energy
imbal-
ance in
W/m2

Ocean
tem-
pera-
ture
trend
in
°C/1000
yrs

CESM PI +0.01
1xCO2 -0.66
3xCO2 -0.30 -0.89
6xCO2 +0.37 +0.91
9xCO2 +0.68 +1.72

COSMOS PI +1.78
1xCO2 +1.95
3xCO2 +1.82 +0.14
4xCO2 +1.98 +0.15

GFDL PI +0.30
1xCO2 +0.08
2xCO2
3xCO2
4xCO2
6xCO2

HadCM
High
Resolu-
tion

PI

1xCO2 +0.00 +0.07
2xCO2
3xCO2

HadCM
Low
Resolu-
tion

PI

1xCO2 +0.20
2xCO2 +0.11
3xCO2 +0.04 +0.31

INMCM PI +4.36
6xCO2 +2.86

IPSL PI +0.10
1.5xCO2 +0.61
3xCO2 +0.79

MIROC PI +0.96
1xCO2 +0.77 +0.00
2xCO2 +0.90 +0.00
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Model SimulationGMDST
in °C

GMSST
in °C

GMSAT
in °C

TOA
energy
imbal-
ance in
W/m2

Ocean
tem-
pera-
ture
trend
in
°C/1000
yrs

3xCO2 +0.97
NorESM PI +0.03

2xCO2 +0.06
4xCO2 +0.27 +0.59

4.2 Model simulation selection

We assessed both the global mean TOA energy imbalance and the global mean
ocean temperature trend at the end of the simulation. The TOA energy imbal-
ance primarily reflects the energy equilibrium at the surface, while the ocean
temperature trend determines the degree of energy equilibrium in the deep
ocean, Lunt et al. (2021) set the criterion for TOA energy imbalance at less
than 0.3 W/m2 or similar to that of the PI control run. This criterion does
not hold for CESM 3xCO2, 6xCO2 and 9xCO2, INMCM and both runs of IPSL
(Table 3). Note that COSMOS and MIROC have a TOA energy imbalance
above 0.3 W/m2, which is however similar in value to that of the PI control run.
The comparison between EECO and PI value is necessary for models that do
not reach a low TOA energy imbalance due to non-conservation of energy. This
is for example the case for COSMOS (Stevens et al., 2013). Another reason for
a high TOA energy imbalance can be that the calculation is made at the top
of the model atmosphere instead of the full atmosphere, which is the case for
INMCM (Lunt et al., 2021).

The ocean temperature trends of CESM 6xCO2 and 9xCO2 and NorESM 4xCO2
are above 0.5 °C/ 1000 years at the end of the simulations (Table 3). Hence,
the deep ocean is still taking up heat at the end of these simulations, and the
equilibrium GMDST value is expected to be higher than the end-of-simulation
GMDST. On the other hand, the runs CESM 1xCO2 and 3xCO2 show a con-
siderable cooling trend of more than 0.5 °C/ 1000 years. The other model
simulations show a more modest ocean temperature trend, indicating that the
end-of-simulation GMDST is close to the equilibrium GMDST. Note that the
ocean temperature trends of COSMOS and MIROC are close to 0. This in-
dicates that these simulations are close to equilibrium, and the relatively high
TOA imbalance value is related to non-conservation of energy. Combining these
findings, we conclude that:

• The simulations of COSMOS, GFDL, HadCM High and Low Resolution,
MIROC, and NorESM 2xCO2 are close to equilibrium,
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• The simulations of CESM, IPSL, and NorESM 4xCO2 have not reached
full equilibrium yet.

• There is insufficient information to correctly interpret the degree of equi-
librium of INMCM.

Based on this assessment, we decided to include all simulations except INMCM
in the analysis with the realization that caution is needed to correctly interpret
the results regarding CESM, IPSL, and NorESM 4xCO2. For the interpretation
of these simulations, we assumed that only the GMDST values have not reached
equilibrium. The results of INMCM are not used in the analysis but are included
in the figures and tables, for reference and completeness.

4.3 Spatial variability in DST

To gain insight into the spatial variability of the DST in the model simulations
of the EECO climate, the results of the annual mean DST in the different CO2
model simulations are plotted on a (longitude, latitude) grid using a Robinson
projection (Figure S3). Comparing the different simulations from the same
model, we see that the spatial temperature distribution of relatively warm and
cold regions stays roughly the same with increasing CO2 level. Furthermore, the
results show that the spatial variability for DST is limited to a few °C in the
model simulations. There is a warm tendency in the parts of the deep-sea that
are relatively shallow, such as the Mid-Atlantic Ridge and coastal zones around
North America and Africa. This can be clearly seen in the simulations of CESM,
HadCM and NorESM. Several models, such as COSMOS, GFDL, HadCM and
IPSL, show a relatively large temperature difference between the deep-sea south
and east of the Australian continent. Except for these warm regions south of
Australia, the Southern Ocean is the coldest in the simulations.

To further analyze the spatial variability of DST, Figure 3 presents boxplots
of the absolute difference between the local DST and the GMDST for all the
simulations weighted by local volume of the deep-sea. The same plot for only
the locations that belong to the five main open oceanic basins (Figure S2) is
given in Figure S4. The COSMOS model has the most homogeneous DST, with
98% of the deep-sea volume differing less than 0.5 °C from the mean. The
models INMCM, MIROC and NorESM show most spatial variability in DST.
Regarding NorESM, a possible cause for this spatial variability is the weak
meridional overturning circulation displayed in these simulations (Zhang et al.,
2022). The other models show a DST anomaly of no more than 2 °C when
excluding the outliers beyond the 99th percentile. For all model simulations
except NorESM 2xCO2 (and INMCM), 50% of the deep-sea volume differs less
than 0.4 °C from the GMDST, 75% less than 0.7 °C, and 90% less than 1.5 °C.
When only considering the five main open oceanic basins (Figure S4), it holds
that 50% of the deep-sea volume differs less than 0.4 °C from the GMDST, 75%
less than 0.6 °C, and 90% less than 0.8 °C, for all model simulations except
NorESM 2xCO2 (and INMCM). This indicates that the open oceanic basins
are more homogeneous in DST than the parts of the deep-sea that lie closer
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to the continents. Model resolution can also impact the model results in these
relatively shallow parts of the ocean near the continents, as coastal regions are
more difficult to resolve on a relatively coarse ocean model grid.

The difference between the DST per oceanic basin and the GMDST is depicted in
Figure 4 grouped per oceanic basin for all models except INMCM, and in Figure
S5 grouped per model. The plots show that the mean DST of the Pacific Ocean
agree best with the GMDST, partly because of the relatively large area covered
by the Pacific. In most simulations, the Southern Ocean is colder, and the North-
Atlantic Ocean is warmer than the global average. The results for the Indian
Ocean and the South-Atlantic Ocean show more variability with simulation and
model. For 84% of the 125 combinations of 25 model simulations (excluding
INMCM) and 5 basins, the absolute difference between basin and global mean
DST is less than 0.5 °C, and for 95% of the combinations it is less than 1 °C.
From this analysis we conclude that the spatial variability for DST in basins is
low. All basins are more or less representative of the global mean, with a cold
tendency in the Southern Ocean and warm tendency North-Atlantic.
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Figure 3. Local DST anomaly in absolute value from GMDST in °C for all
model simulations. The boxplots show the distribution of the absolute difference
between the local DST and the GMDST for all the ocean surface grid cells
weighted by the volume of the deep-sea below that grid cell. The orange vertical
line indicates the median (50th percentile), the black box ranges from the 25th

to the 75th percentile, the green vertical lines extending from the box range
from the 10th to the 90th percentile, and the blue lines from the 1st to the 99th

percentile.
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Figure 4. Difference between basin mean and global mean DST in °C for all
the DeepMIP EECO model simulations except INMCM grouped per basin. The
Arctic Ocean (defined as all latitudes north of 65 °N) is plotted for reference
with a different range for the horizontal axis. Color codes of the boxplot and
vertical lines are the same as for Figure 3. The small open circles indicate the
outliers beyond the 1st and 99th percentile.

4.4 Temperature relationships

4.4.1 Relationship between GMDST, GMSST, and GMSAT

The linear regression results are presented in Table 4, and visually depicted
in Figure 5. All regressions show a good fit with the data, based on the R2

value of at least 0.95. The relationship between GMDST and GMSAT is of
special interest, as the GMSAT evolution during the Cenozoic presented in
IPCC AR6 is based on the translation of paleo-proxies of DST into GMSAT
estimates (Gulev et al., 2021). The slope of the linear regression in the EECO
only case (0.99) implies that changes in GMDST relate almost 1-on-1 to changes
in GMSAT. This means that the slopes of the linear regressions between GMDST
and GMSST (1/1.18) and between GMSST and GMSAT (1.17) cancel out each
other almost completely. This is not the case for the combination of EECO and
PI simulations, in which case the slope between GMDST and GMSAT is 1.09.
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Figure 5. Relationship between (a) GMDST and GMSST, (b) GMDST and
GMSAT, and (c) GMSST and GMSAT. The results of the EECO simulations
except for INMCM are depicted with large symbols indicating the model, and
colors indicating the CO2 multiplication factor. The results of the PI run are
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depicted with small grey symbols, and the results of INMCM are depicted with
grey crosses. Reference values for modern temperatures are depicted with black
hexagons (Table S1). The regression results based on all models except IN-
MCM are depicted in blue (EECO) and pink (EECO+ PI), with 95% confidence
bands in shading. The colored dots mark combinations of proxy-based GMDST,
GMSST, and GMSAT estimates, and the vertical and horizontal lines extending
from the dots indicate the corresponding 95% confidence intervals (Section 4.5).

We included model simulations in the regressions which have not reached full
energy equilibrium yet, and we assumed that only the GMDST values of these
simulations have not reached equilibrium. In the plots with GMDST as indepen-
dent variable, this means that the equilibrium GMDST of cooling simulations
lie to the left of their current position, and those of warming simulations to the
right. For CESM 1xCO2, 3xCO2 and 9x CO2, this means that the equilibrium
values move towards the regression line. Contrarily, CESM 6xCO2, both IPSL
simulation and NorESM 4x CO2 move away from the regression line. Hence,
there is no uniform relationship between the sign of temperature trend and the
position relative to the regression line for the non-equilibrium simulations. We
discuss the effect of the non-equilibrium simulations on the regression results in
more detail as part of the sensitivity analysis (Section 4.6).

Table 4. Regression results between GMDST, GMSST, and GMSAT for the
relationships presented in Figure 5. The standard error (SE) of the slope is
given in parentheses.

Independent variable Dependent variable Regression EECO Regression EECO + PI
Slope (SE) Intercept R2 Slope (SE) Intercept R2

GMDST GMSST 0.84 (0.04) 18.52 0.96 0.94 (0.04) 17.40 0.96
GMSST GMSAT 1.17 (0.03) -7.69 0.99 1.16 (0.02) -7.26 0.99
GMDST GMSAT 0.99 (0.05) 14.04 0.95 1.09 (0.04) 12.87 0.96

4.4.2 Temperature relationship for the Antarctic winter area

As stated in Section 1, Hansen et al. (2013) assume that GMDST is essentially
determined by the SST at areas of deep-water formation (DWF). Hence, the re-
lationship in the EECO simulations between GMDST and SST at these sites is
of special interest. In the DeepMIP simulations, the Antarctic region is the pre-
dominant area of deep-water formation, and DWF is strongest in the Antarctic
winter (June, July, and August) (Zhang et al., 2022). Therefore, we analyzed
the relationship between GMDST and Antarctic winter SST. The NorESM is
excluded from the analysis of the Antarctic winter SST, as only annual mean
SST estimates are available for NorESM. We defined the Antarctic area of the
Southern Ocean as the part consisting of surface grid cells with latitudes south
of 60 °S. Note that this simplified definition does not include all DWF areas, as
the GFDL model simulations also show DWF in the northern Pacific (Zhang et
al., 2022).
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The linear regression results are presented in Figure 6. The two regressions
show a good fit with the data, based on the R2 values of 0.93 and 0.94. The
slope of the regression based on the combination of EECO and PI simulations is
larger than that of the EECO regression. This means that the Antarctic winter
SST for the PI simulations is colder than would be expected from the EECO-
regression. The difference between Antarctic winter SST in the PI and 1xCO2
runs is substantiated by a Student’s t-test hypothesis, rejecting the hypothesis
that the Antarctic winter SST values for the PI runs and the 1xCO2 simulations
are drawn from the same population (p-value = 0.0003). The slope of the EECO-
regression is 0.97, indicating that there is indeed a strong relationship between
Antarctic winter SST and GMDST, yet Antarctic winter SST is a little less
sensitive to changes in CO2 than GMDST.

Figure
6. Relationship between GMDST and Antarctic winter SST. Colors and sym-
bols are the same as in Figure 5. Standard error of EECO only slope is 0.06,
and that of the EECO+PI slope is 0.05.

4.5 Comparison of model-based and proxy-based GMDST, GMSST, and GM-
SAT

Figure 5 includes paleo-proxy based estimates of GMDST, GMSST, and GM-
SAT. The paleo-proxy range for the GMDST during EECO is shown to be 17-20
°C based on recent Δ47 analysis (Meckler et al., 2021). To obtain estimates of
GMSST and GMSAT, we applied the transfer function of Equation (2) to the
set of 27, respectively 97, paleo-proxies using the DeepMIP model simulations
(Tables S5 and S6). The 95% confidence intervals (CI) around these GMSST
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and GMSAT estimates were determined from the distribution of offsets between
the true value and the value estimated by the transfer function applied to the
model-based local temperature estimates of the DeepMIP models (Figure S6).
Note that the estimates of COSMOS in Tables S5 and S6 deviate from those of
the other models and have a high standard deviation for both the GMSST and
GMSAT estimates. Leaving out the COSMOS results from the averaging, we
obtain mean proxy-based estimates of 33.7 °C (95% CI: 31.5 – 35.7) for GMSST
and 27.3 °C (95% CI: 24.7 – 30.4) for GMSAT. Additionally, we derived an
estimate of GMSAT based on solely the 27 marine temperature proxies (Table
S7). Again, excluding the COSMOS estimates, this results in a GMSAT of 33.1
°C (95% CI: 31.0 – 35.0), considerably higher than when the terrestrial proxies
are also taken into account.

Furthermore, Inglis et al. (2020) and Zhu et al. (2019) provide proxy-based
estimates of GMSAT. Inglis et al. (2020) derive a best estimate of 27.0 °C with
66% CI of 23.2 – 29.6, and Zhu et al. (2019) arrive at an estimate of 29 ± 3 °C
(95% CI). Inglis et al. (2020) do not include a 95% CI in their documentation.
For consistency with the other estimates, we derived a 95% confidence interval
for the best estimate of Inglis et al. (2020) by reproducing their approach of
Monte Carlo resampling with full propagation of errors on the intermediate
results provided in their Table 3. The resulting 95% CI spans 17.5 – 35.9 °C.

The proxy-based estimate of atmospheric CO2 during EECO range is 1,150 –
2,000 ppm with a best estimate of 1,500 ppm (Anagnostou et al., 2020; Rae
et al., 2021). This translates to a range of 4.1 and 7.1 times the preindustrial
CO2 level, with a best estimate of 5.4. Comparing the model-based and proxy-
based temperature estimates, we see that the 6xCO2 simulations of GFDL and
CESM correspond best with the proxy reconstructions (Figure 5). Both simu-
lations lie within the 95% CI of GMDST, GMSST, and the GMSAT estimates
of this study, Zhu et al. (2019), and Inglis et al. (2020). This CO2 level of
1,680 ppm corresponds well with the proxy-based range of CO2 of 1,150 – 2,000
ppm. Hence, there is agreement between models and proxies concerning the
relationship between GMDST, GMSST, GMSAT, and CO2 level.

1. Sensitivity analysis

Typically, the term deep-sea refers to the ocean below the thermocline at a depth
of 1,500-2,000 m. In our research, we define the deep-sea as the part of the ocean
below 2,000 m depth. This demarcation corresponds with the study of deep
ocean warming by Desbruyères et al. (2016) and the assessment of ocean heat
uptake in IPCC AR6 in which the ocean below 2,000 m is considered separately
from the upper layers (Gulev et al., 2021). To understand the sensitivity of our
results to the chosen 2,000 m demarcation, the difference between the GMDST
starting at 2,000 m and GMDST starting at depth levels between 1,000 and 4,000
m is analyzed (Figure S7). On average, the GMDST increases when starting at
a shallower depth level. This means that the ocean temperature decreases with
depth level. For most model simulations, the difference between the GMDST
estimate used in the analyses and the other GMDST estimates is less than 0.6°C.
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The model that shows the most variability is INMCM. Other model simulations
with a relatively high sensitivity regarding deep-sea definition are the CESM
9xCO2 and the NorESM simulations. A possible explanation is that the ocean
has not reached thermal equilibrium yet in the model simulation. In such a
case, the temperature of the (deep-)ocean is still adjusting to the prescribed
CO2 scenario. The model simulations CESM 9xCO2 and NorESM 4xCO2 show
a considerable warming trend for the full ocean at the end of the simulation
(Table 3), indicating that the ocean is indeed still taking up considerable heat.
The NorESM 2xCO2 simulation does not have such a warming trend for the full
ocean (Table 3), yet the different ocean layers could still be exchanging energy.
The relatively large difference between GMDST starting at 4,000 m and 1,000
m for this model simulation could indicate that the deep ocean is still warming.

We assessed the sensitivity of the linear regression results from the main anal-
ysis by performing a linear regression for different definitions of the deep-sea,
only the model simulations that have reached full energy equilibrium and for
GMDST and GMSST estimates including the Arctic. We duplicated the linear
regression for definitions of the deep-sea starting at 1,500 m, 2,500 m, and 3,000
m (Table 5). The slope and fit of the linear regression results are comparable
for the different deep-sea definitions. Hence, the relationships between changes
in GMDST, GMSST and GMSAT are little affected by the deep-sea definition.
The intercepts show a slightly increasing trend with the starting level of the
deep-sea. This agrees with the decreasing value of GMDST with starting depth
(Figure S7): the difference between GMSST/GMSAT and GMDST increases
when the deep-sea threshold is deeper. The intercept of the linear regression
captures this constant difference between GMSST and GMDST.

Comparing the regression results for only the model simulations in equilibrium
(Table 6) with those of the regressions based on all simulations (Table 4), we see
that the slope decreases for both GMSST versus GMSAT, and GMDST versus
GMSAT, yet remains unchanged for GMDST versus GMSST. As a result, the
relationship between changes in GMDST and in GMSAT is not completely 1-
to-1 in the EECO only case. Instead, the GMSAT is about 4% less sensitive to
CO2 changes than the GMDST (slope of 0.96).

The differences between the linear regressions based on data including the Arctic
(Table 7) and those excluding the Arctic region (Table 4) are small. We observe
an approximate 1-to-1 relationship between GMDST and GMSAT in regressions
based on EECO data when including the Arctic Ocean. In the regression based
on the combination of EECO and PI simulations, the GMSAT responds about
9% stronger than GMDST to atmospheric CO2 changes (slope of 1.09). These
results are very similar to the results without the Arctic (Table 4). From this
we conclude that the linear regression results are only weakly sensitive to the
inclusion or exclusion of the Arctic region in the analysis.

Table 5. Regression results between GMDST, GMSST, and GMSAT for dif-
ferent definitions of deep-sea. The standard error (SE) of the slope is given in
parentheses.
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Independent variable Dependent variable Regression EECO Regression EECO + PI
Slope (SE) Intercept R2 Slope (SE) Intercept R2

Deep-sea starting at 1,500 m
GMDST GMSST 0.85 (0.04) 18.41 0.96 0.94 (0.04) 17.20 0.95
GMDST GMSAT 1.00 (0.05) 13.89 0.95 1.10 (0.04) 12.63 0.96
Deep-sea starting at 2,500 m
GMDST GMSST 0.85 (0.04) 18.59 0.96 0.93 (0.04) 17.55 0.96
GMDST GMSAT 0.99 (0.05) 14.13 0.95 1.09 (0.04) 13.05 0.96
Deep-sea starting at 3,000 m
GMDST GMSST 0.85 (0.04) 18.63 0.96 0.93 (0.03) 17.66 0.96
GMDST GMSAT 1.00 (0.05) 14.17 0.95 1.08 (0.04) 13.19 0.96

Table 6. Regression results between GMDST, GMSST, and GMSAT based on
only the model simulations in equilibrium. The standard error (SE) of the slope
is given in parentheses.

Independent variable Dependent variable Regression EECO Regression EECO + PI
Slope (SE) Intercept R2 Slope (SE) Intercept R2

GMDST GMSST 0.84 (0.03) 18.62 0.98 0.94 (0.04) 17.44 0.96
GMSST GMSAT 1.14 (0.04) -6.82 0.98 1.14 (0.02) -6.70 0.99
GMDST GMSAT 0.96 (0.04) 14.40 0.97 1.07 (0.05) 13.09 0.96

Table 7. Regression results between GMDST, GMSST, and GMSAT including
the Arctic region. The standard error (SE) of the slope is given in parentheses.

Independent variable Dependent variable Regression EECO Regression EECO + PI
Slope (SE) Intercept R2 Slope (SE) Intercept R2

GMDST GMSST 0.86 (0.04) 17.92 0.96 0.92 (0.03) 17.16 0.96
GMSST GMSAT 1.16 (0.02) -6.78 0.99 1.19 (0.01) -7.57 0.99
GMDST GMSAT 1.00 (0.05) 14.04 0.95 1.09 (0.04) 12.87 0.96

5 Discussion

The current understanding of temperatures at the Earth’s surface during the
Cenozoic era as presented in IPCC AR6 relies on paleo-proxies of DST combined
with assumptions regarding the relationship between DST and GMSAT, most
notably through the work of Hansen et al. (2013) and Westerhold et al. (2020).
Our findings can be used to test whether two important underlying assumptions
hold during the EECO:

1. A local DST estimate is representative for GMDST.
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2. GMDST and GMSAT are equally sensitive to changes in atmospheric CO2
concentrations.

We discuss assumption 1 through our model-based research results regarding
the spatial variability of DST, and assumption 2 through our results about the
relationship between GMDST, GMSST, and GMSAT.

5.1 Using local DST to infer GMDST

A characteristic feature of the current deep-sea is its spatial temperature homo-
geneity. Essentially this means that global DST is determined by the surface
temperature at the location of deep-water formation, and the DST change dur-
ing the subsequent circulation of the deep part of the full global ocean is limited.
Insight into the spatial variability of DST during paleo climates is essential, as
spatial homogeneity is an important prerequisite for using local paleo proxies of
DST as indicator of GMDST. In the DeepMIP EECO simulations, we indeed
observe limited spatial variability in DST (Figures 3 and S4). For all but one
model simulation, 90% of the deep-sea volume differs less than 0.8 °C from the
GMDST in the open oceanic basins. This limited spatial variability implies
that local open ocean palaeoceanographic proxies of deep-sea temperature can
be regarded as representative of the GMDST. Proxies from locations closer to
the continents may be subject to more spatial temperature variability. The
Δ47-estimate of GMDST we derived from Meckler et al. (2022) is based on
fossils from open ocean basins with paleo-depths of 1,500 m and 3,050 m. Note
that our analysis uses a deep-sea definition starting at a depth of 2,000 m, while
paleo-proxies of DST are taken from different paleo-depths. The sensitivity anal-
ysis shows that the dependence of GMDST value on the starting depth of the
deep-sea is limited: the absolute difference between a GMDST value starting
at 1,500 or 3,000 m depth and that starting at 2,000 m is no more than 0.2 °C
in most model simulations (Figure S7). This indicates that the impact of the
different paleo-depths of the proxies on the DST estimate is limited.

Continental configuration and bathymetry can be the cause of spatial variability
in DST. There is a warm tendency in the relatively shallow parts of the ocean,
such as the Mid-Atlantic Ridge and coastal zones around North America and
Africa. Furthermore, several models show a relatively large temperature differ-
ence between the deep-sea south and east of the Australian continent, which is
related to the narrow Tasman Seaway between Antarctica and Australia, pre-
venting ocean circulation. This aligns with the analysis of Sijp et al. (2011): in
their Eocene model simulations with a closed Tasman Seaway and open Drake
Passage there are two separate subpolar gyres, and these gyres are replaced by
a zonally oriented circumpolar current in response to a deepening of the Tas-
man Seaway. The model simulations of Sauermilch et al. (2021) also show that
transport through the shallow Tasman Gateway during the Eocene is limited.
Furthermore, Baatsen et al. (2020) show that there is a difference in deep-water
age on both sides of the Tasman Seaway in simulations of the Late Eocene cli-
mate, whereas the Antarctic deep-water during the preindustrial has a more
uniform age. Their Late Eocene simulation also shows a limited deep-water
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circulation in the North-Atlantic due to the continental configuration and the
lack of northern DWF.

Looking at the DST per basin, we note that compared to the GMDST, the
Southern Ocean deep-sea is relatively cold and the North-Atlantic deep-sea rel-
atively warm (Figure 4). These temperature variations can have several causes.
Regarding the Southern Ocean, there may be interannual variability in the
Antarctic winter SST, implying that the source of deep-water varies in tem-
perature. The full circulation of deep ocean water takes millennia, so these
temperature differences slowly spread throughout the oceanic basins. Another
possible factor for inter-basin temperature variations can be diffusion of heat
from the upper layers to the deep ocean. This would mean that the GMDST
is not fully determined by the Antarctic SST, but also by the SST of the other
oceanic basins. Particularly in basins that are further away from the DWF area
there can possibly be mixing of the deep-water with the water masses above that
are warmed from diffused heat. This could be the case for the North-Atlantic
since there is no DWF in this area in the DeepMIP EECO simulations. An
interesting topic of further research would be to analyze whether heat diffusion
significantly contributes to DST in warm climates such as the EECO, and if the
deep ocean takes longer to equilibrate as a consequence.

In this regard, we note that several model simulations still show a cooling or
warming trend in deep or full ocean temperature at the end of the simulation,
predominantly the simulations of CESM, IPSL, and NorESM 4xCO2 have not
reached full equilibrium yet. The strength of the overturning circulation in the
3xCO2 simulations of 18 Sv or more as estimated by Zhang et al. (2022) suggests
that a full circulation of the deep-ocean water can be expected to take less than
2,400 years in case of a sufficiently deep global overturning cell based on an
ocean volume of 1.335·1018 m3. If the DST is fully determined by the SST at
DWF areas, an equilibrium can be expected after a full overturning circulation.
Hence, the presence of a cooling or warming trend in ocean temperature after
multiple millennia can indicate that diffusion of heat from the upper layers
to the deep ocean plays a role in determining DST as well. This aligns with
the results of Li et al. (2013). In their model simulation based on modern
continental configuration and bathymetry, the GMSST has reached equilibrium
after about 1,200 years and the full ocean after 4,600 years, displaying a near-
uniform warming with water depth. Hence, in this experiment it took the deep
ocean 3,400 years to reach equilibrium after the sea-surface had fully responded
to a climate perturbation.

Looking at paleo-proxy based research into the inter-basin temperature variabil-
ity during the EECO, Cramer et al. (2009) found that �18O isotopic differences
between the North-Atlantic, South-Atlantic, Pacific, and Southern Ocean were
at most 0.5‰ in the Early Eocene ocean. The �18O are most negative for
the North-Atlantic Ocean, aligning with the relatively warm deep ocean in the
DeepMIP model simulations. In an ice-free world, we can approximate the re-
lationship between temperature and �18O by assuming an approximate 4 °C
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temperature change per 1‰ change in �18O (Hansen et al., 2013; Kim & O’Neil,
1997). Hence, the inter-basin difference of 0.5‰ corresponds to a deep-sea tem-
perature variability of at most 2 °C. This proxy-based estimate is higher than
our estimate of the temperature variability of the open ocean basins (Figure
S4) but is in alignment with the model-based finding that 90% of the full deep
ocean has a temperature difference of less than 1.5 °C (Figure 3).

5.2 The relationship between GMDST and GMSAT

Our linear regression results align with the reasoning set forth by Hansen et al.
(2013) regarding the sensitivities of GMDST, GMSST, and GMSAT to a change
in atmospheric CO2. There is an almost 1-to-1 relationship between GMDST
and GMSAT (linear regression slope = 0.99 with standard error 0.05), and also
there is a strong relationship between Antarctic winter SST and GMDST (slope
= 0.97 with standard error 0.06). The 1-to-1 relationship between GMDST
and GMSAT is not sensitive to the definition of deep-sea starting depth (Table
5), yet is less strong when considering only the model simulations that have
reached full equilibrium (slope 0.96; Table 6) and when using the regression
results based on the EECO simulations and the PI control runs together (slope
1.09; Table 4). This means that, based on both EECO and PI model runs, the
GMSAT is 9% more sensitive to a CO2 change than GMDST. Furthermore, the
Antarctic winter SST for the PI simulations is colder than would be expected
from the EECO-regression. This can possibly be explained by albedo effects
from the ice sheet on Antarctica a in the preindustrial, causing an amplification
of surface temperature changes near the southern pole in the PI control runs.
Several other mechanisms could cause a relatively cold Antarctic winter SST in
the PI compared to the 1xCO2 EECO, such as a shift in the Antarctic coastline
or sinking regions, and changes in the position and strength of the Antarctic
Circumpolar Current.

Our analysis indicates that the assumptions of Hansen et al. (2013) are valid
for the full set of model simulations of the EECO climate, but that this result
cannot immediately be translated to validate the assumption for other climate
states, such as the preindustrial one. This corresponds well with the research of
Valdes et al. (2021) that covers the whole Phanerozoic era. Analyzing data from
this 540-million-year long period, they find a relatively strong linear relationship
between GMDST and GMSAT yet with variable slope. The overall slope for
the whole Phanerozoic is 0.64 (R2 = 0.74), which increases to 0.67 (R2 = 0.90)
when only considering the last 115 Ma. They conclude that the relationship
between GMDST and Antarctic winter SST depends on the location of deep-
water formation, and the strength of the overturning circulation. Furthermore,
the relationship between Antarctic winter SST and GMSAT depends on the
strength of ice albedo feedbacks. As a result, the combined relationship between
GMDST and GMSAT changes over the Phanerozoic due to differences in climate
state.

Our analysis is based on long model simulations, however some of the simu-
lations have not reached full energy equilibrium yet. Model intercomparison
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projects like DeepMIP provide a solid basis for an array of analyses of the sim-
ulated climate. Striving for energy equilibrium in the model simulations per-
formed within the standardized boundary conditions of intercomparison projects
is necessary for the in-depth analysis of the role of the deep-sea in the climate
system. Hence, millennia-long model simulations, ideally ran to full equilibrium,
are indispensable for an accurate analysis of the relationship between deep-sea
and surface temperatures and a strong test of the assumptions of Hansen et al.
(2013).

5.3 Consequences for GMSST, GMSAT, and Climate Sensitivity estimates

Our analysis of the EECO climate based on model-simulations shows a strong
linear relationship between GMDST, GMSST, and GMSAT during EECO. The
model-based relationships obtained though linear regression can be used to-
gether with a proxy-based temperature estimate to translate this temperature
estimate into estimates of the other two global temperature indicators. Re-
cent Δ47 analysis shows that the paleo-proxy range for the GMDST during
EECO is 17 – 20 °C (Meckler et al., 2022), which aligns well with the model-
based GMDST estimates of the 6xCO2 simulations. We used this proxy-based
GMDST range as input to derive estimated ranges of GMSST and GMSAT.
Combining the linear relationship between GMDST and GMSST based on only
the EECO simulations together with the Δ47 GMDST range, we obtain a range
for GMSST of 32.8 – 35.3 °C. The linear regression based on both the EECO
simulations and the preindustrial control runs leads to a GMSST range of 33.4
– 36.2 °C. These ranges show good agreement with our derived proxy-based
GMSST estimate of 31.5 – 35.7 °C. This indicates that the model-based lin-
ear relationship is consistent with the combination of proxy-based GMDST and
GMSST estimates. Repeating this calculation for GMSAT gives temperature
ranges of 30.87 – 33.84 °C (EECO only regression) and 31.40 – 34.67 °C (EECO
and PI regressions). Both estimates are high compared to our proxy-based GM-
SAT estimate of 24.7 – 30.4 °C and the best-estimate of 27.0 °C of Inglis et el.
(2020) but align well with our GMSAT estimate based on marine proxies only
(31.0 – 35.0 °C) and the upper end of the range 29 ± 3 °C by Zhu et al. (2019).

We used the Δ47-estimate of GMDST from Meckler et al. (2022) because
clumped isotope analysis has the advantage that no assumption needs to be
made regarding the �18O of seawater, unlike �18O analysis (Eiler, 2007; Ghosh
et al., 2006). The estimated GMDST for EECO is several degrees higher than
the range of 12 – 14 °C based on previous �18O estimates (e.g., Hansen et al.,
2013; Cramer et al., 2011). Note that Meckler et al. (2022) estimated DST
for the North-Atlantic, which has a slightly higher mean DST in the DeepMIP
model simulations. However, the difference between basin mean and global
mean DST is limited (Figure 4), indicating that the estimate of Meckler et al.
(2022) could be regarded as representative of GMDST during EECO. Additional
clumped isotope reconstructions of DST from other ocean basins will need to
confirm this in the future. Note that the inter-basin �18O isotopic differences
were at most 0.5‰ during the EECO, corresponding to a DST variability of at
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most 2 °C (see section 5.1; Cramer et al. 2009).

The correspondence between the regression-derived and proxy-based estimates
of GMSST indicates that there is model-data agreement regarding seawater
temperatures. On the other hand, the GMSAT estimates inferred from the
regression relationship are on the higher end of the proxy-based estimates of
GMSAT. Note that there is still considerable uncertainty in the estimation of
GMSAT from proxies, the outcome varies both with the proxies taken into
account and the methodology to deduce a global mean from the local proxies.
The first is shown by the difference in our estimates of GMSAT based on both
the terrestrial and marine proxies (24.7 – 30.4 °C) and only the marine proxies
(31.0 – 35.0 °C). The analysis of Inglis et al. (2020) exemplifies the dependence
on methodology: the best-estimate GMSAT is based on six different methods,
with underlying best estimates ranges from a low of 22.8 °C to a high of 29.8 °C.
Our regression-based estimated GMSAT inferred from recent Δ47-estimates of
GMDST could indicate that GMSAT during EECO was higher than previous
estimates based on paleothermometers such as �18O.

The regression-inferred GMSAT range of 30.87 – 33.84 °C (based on EECO
only regressions) can be used as a starting point to estimate the Equilibrium
Climate Sensitivity (ECS) during the EECO, together with estimates of prein-
dustrial GMSAT and CO2 concentration for both EECO and the preindustrial.
ECS is defined as the equilibrium change in GMSAT that results from the
change in radiative forcing following a doubling of the atmospheric CO2 con-
centration. Note that estimating ECS from two different geological times such
as the EECO and the PI has its caveats. Non-CO2 climate forcings that are
different between the EECO and PI, like continental configuration, ice sheets
and orbital parameters, need to be corrected for. The same holds for the effects
of slow climate feedbacks associated with for example vegetation and ice sheets
that are not part of the ECS definition (Sherwood et al., 2020). Following Inglis
et al. (2020), we account for non-CO2 climate forcings and slow feedbacks by
deducting a value of 4.5 °C from the GMSAT of EECO. This value is based on
a comparison of model simulations for EECO and PI, both with 280 ppm CO2
concentration by Zhu et al. (2019). Hence, the equilibrium change in GMSAT
between EECO and PI due to the difference in CO2 concentration is calculated
as:

�GMSAT𝐸𝐸𝐶𝑂−𝑃𝐼 = GMSAT (EECO)EECO − 4.5 − GMSATPI 𝑖𝑛 ∘𝐶. (3)

The change in climate forcing F between EECO and PI due to the difference in
CO2 concentration C follows from the radiative forcing equations of Byrne and
Goldblatt (2014):

�𝐹𝐸𝐸𝐶𝑂−𝑃𝐼 = 5.32 • ln ( 𝐶EECO
𝐶PI

) + 0.39 • (ln ( 𝐶EECO
𝐶PI

))2
in 𝑊

𝑚2. (4)
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Applying Equation (4) with a CO2 concentration ratio 𝐶EECO
𝐶PI

= 2 amounts to
3.875, which is the multiplication factor required to translate the outcome into
the effect of a CO2 doubling:

ECS𝐸𝐸𝐶𝑂−𝑃𝐼 = 3.875 • �GMSAT𝐸𝐸𝐶𝑂−𝑃𝐼
�𝐹𝐸𝐸𝐶𝑂−𝑃𝐼

. (5)

Assuming a preindustrial GMSAT of 14 °C (as in Inglis et al., 2021), an EECO
GMSAT of 30.87 – 33.84 °C, a preindustrial CO2 level of 280 ppm, and an
EECO best estimate CO2 level of 1,500 ppm (Anagnostou et al., 2020; Rae et
al., 2021), we arrive at an ECS estimates of 4.8 – 5.9 °C. Note that this range is
directly based on the range in EECO GMSAT and does not take into account
uncertainties in the other variables, most importantly the range in the EECO
atmospheric CO2 level of 1,150 – 2,000 ppm (Anagnostou et al., 2020; Rae et
al., 2021). Using a 1,150 ppm CO2 level gives an ECS range of 5.8 – 7.2 °C, and
the 2,000 ppm CO2 level results in a range of 4.0 – 5.0 °C. The obtained ECS
estimate (4.8 – 5.9 °C) is higher than the EECO best estimate of Inglis et al.
(2021) of 3.1°C, which is a direct consequence of their use of a lower GMSAT
estimate (27 °C). An alternative model-based estimate of ECS can be obtained
by considering the slope of a linear regression between ln(CO2) and the GMSAT
relative to PI of the DeepMIP simulations (Figure 2). Considering all models
except INMCM, the regression slope is 5.93 with 95% confidence interval of
4.05 – 7.80 (R2 = 0.65). This means that the change in GMSAT is 5.92 °C per
unit change in ln(CO2), or an ECS estimate of 4.11 (2.81 – 5.41) °C per CO2
doubling.

By definition, the estimated ECS is highly dependent on the estimates of GM-
SAT and CO2 concentration. Hence, constraining temperature and CO2 esti-
mates of key geologic intervals is a necessity for an accurate estimation of ECS.
A reconsideration of the GMDST during EECO based on the latest insights
from clumped isotope analysis affects the GMSAT estimate, and hence the ECS
estimate. Assuming a fixed CO2 concentration, a higher GMSAT directly re-
sults in a higher ECS. Previous high model-based estimates of ECS from CMIP6
were considered unrealistic based on a comparison of model-based and proxy-
based estimates of EECO CO2 level and GMSAT (Zhu et al., 2002). Our higher
GMSAT estimate leads to ECS estimates closer to those of the high-end ECS
CMIP6 models. Hence, we argue that paleo-data does not completely rule out
the possibility that the high ECS model estimates are realistic. We note that
our ECS EECO estimate is higher than the ECS estimate of IPCC AR6 of
3°C for the current climate and lies beyond the likely range of 2.5 – 4.0 °C
(Forster et al., 2021). However, it is important to note that estimates of ECS
for paleoclimates like the EECO cannot be regarded as directly representative
of ECS in our current climate due to the possible climate-state dependence of
ECS (Sherwood et al., 2020).

5.4 Outlook into future climate
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A good understanding of the EECO climate is highly relevant today, since the
atmospheric CO2 concentration during the 22nd century will be like that of the
EECO in the high-emission SSP5-8.5 scenario. Reconstructions of the EECO
climate improve our understanding of the workings of the climate system in
hothouse conditions such as those possible in the far future. We can regard the
linear relationships between GMDST, GMSST, and GMSAT (Figure 5) as time-
lines showing the progression of the global mean temperatures under conditions
of increasing atmospheric CO2 concentrations in an ice-free world with EECO
continental configuration and vegetation. An interesting subject of future re-
search would be to construct similar timelines for the future under different
scenarios of CO2 emissions. For such research, an understanding of the differ-
ences between the EECO and the present climate is necessary.

An essential step for a good comparison of a specific paleoclimate such as the
EECO to the climate of the future is an understanding of the impact of differ-
ences in non-CO2 related conditions on the climate system. Through various
feedbacks working on different timescales, factors such as vegetation type, con-
tinental configuration, and the presence of ice sheets play a role in determining
temperatures independent of the atmospheric CO2 level, as can be seen from
the differences between the 1xCO2 EECO run and the PI control run. For
GMDST, GMSST, and GMSAT, the average differences are 2.1 °C, 3.5 °C, and
3.8 °C respectively. This implies that the response of surface temperatures to
non-CO2 climatic factors seems stronger than that of GMDST. This can be the
result of differences in land elevation and the geographical location of the conti-
nents. Furthermore, the response of GMDST could be dampened due to the PI
value of GMDST being close to freezing point. In the current warming climate,
the response of GMDST to non-CO2 factors could therefore be higher than the
model simulations suggest. Additionally, the deep ocean will take millennia to
equilibrate to the level of atmospheric CO2 to be reached in the future. This is
a caveat when comparing an equilibrated hothouse climate state like the EECO
with the climate of the 22nd century that is still in the progress of obtaining an
energy equilibrium.

The above considerations are important when applying knowledge of paleocli-
mate to the climate of the possible long-term future under high CO2 conditions.
No past hothouse climate is a perfect match for the future climate system. The
study of an array of paleoclimates under a wide range of climate forcing condi-
tions is essential to gain an understanding of the workings of the climate system
in different underlying situations. Our main finding is the existence of a strong
linear relationship between GMDST, GMSST, and GMSAT during the high
atmospheric CO2 conditions of the EECO, but this relationship does not nec-
essary translate 1-to-1 to other past and future climates. In order to use this
relationship in a broader context, it is important to determine to which degree
the relationship is specific to the climate state of the EECO as implemented in
the model simulations. The robustness of the found relationships can be tested
on other warm climate states such as the Mid-Pliocene Warm Period (MPWP;
3.3 - 3.0 Ma) and the Miocene Climate Optimum (MCO; 16.9 – 14.7 Ma). These
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geologic intervals are characterized by more moderate atmospheric CO2 levels
and warming compared to the EECO: the atmospheric CO2 level during the
MPWP was comparable to today and MCO CO2 levels were approximately 600
– 800 ppm (Figure 1; Rae et al., 2021). The MPWP is the key geologic interval
to gain understanding of the 21st century climate system under scenario SSP2-
4.5 (Burke et al., 2018), which incorporates planned mitigation and adaptation
actions by national governments (Chen et al., 2021). The atmospheric CO2 level
of the MCO is comparable to the projected CO2 level in 2100 under the SSP3-7.0
scenario (Figure 1), which is an intermediate-to-high emission scenario (Chen et
al., 2021). The Model Intercomparison Projects PlioMIP for the MPWP (Hay-
wood et al., 2021), and MioMIP for the MCO (Burls et al., 2021) provide an
opportunity to expand our analysis of the relationship between temperatures in
the deep-sea and temperatures at the surface to these warm paleoclimates.

6 Conclusion

Using millennia-long model runs simulating the Early Eocene Climate Opti-
mum, we have investigated the long-term responses of global mean deep-sea
temperature, sea-surface temperature, and surface air temperature to different
atmospheric CO2 levels. The model simulations show limited spatial variability
in DST, indicating that local DST estimates can be regarded as reasonably repre-
sentative of GMDST. We estimate a strong linear relationship between GMDST
and both GMSST and GMSAT for the different EECO simulations using lin-
ear regression. The results indicate that GMDST responds more strongly to
changes in atmospheric CO2 than GMSST by a factor 1.18. Furthermore, GM-
SAT is more sensitive to CO2 changes than GMSST by a factor 1.17. Hence,
the responses of GMDST and GMSAT to atmospheric CO2 changes are similar
in magnitude. This indicates that changes in GMDST can be used to estimate
changes in GMSAT, validating the assumptions made by Hansen et al. (2013)
for the DeepMIP EECO model simulations.

To make a model-data comparison, we derived a proxy-based GMSST of 33.7 °C
(95% CI: 31.5 – 35.7), a GMSAT estimate of 27.3 °C (95% CI: 24.7 – 30.4) based
on marine and terrestrial paleo proxies, and of 33.1 °C (95% CI: 31.0 – 35.0),
based on marine proxies only. Furthermore, Inglis et al. (2020) derived a proxy-
based best estimate for GMSAT of 27.0 °C (95% CI: 17.5 – 35.9), and Zhu et al.
(2019) arrive at an estimate of 29 ± 3 °C (95% CI). Finally, recent Δ47 analysis
indicates that GMDST during the EECO was 17-20 °C (Meckler et al., 2022).
The best fit of these paleo proxy estimates is found with the 6xCO2 model
simulations. The corresponding CO2 level of 1,680 ppm is also in agreement
with paleo proxies of atmospheric CO2 during EECO of 1,150 – 2,000 ppm
(Anagnostou et al., 2020; Rae et al., 2021). Hence, the model simulations align
well with paleo proxies in their combination of CO2 level, GMDST, GMSST,
and GMSAT. Further research into other Cenozoic climate states is needed to
test the robustness of these results. Such an improved understanding of past
climates is indispensable today to better understand the changing climate of the
future.
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