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Abstract

Modeling the impact of space weather events such as coronal mass ejections (CMEs) is crucial to protecting critical infrastructure.

The Space Weather Modeling Framework (SWMF) is a state-of-the-art framework that offers full Sun-to-Earth simulations by

computing the background solar wind, CME propagation and magnetospheric impact. However, reliable long-term predictions of

CME events require uncertainty quantification (UQ) and data assimilation (DA). We take the first steps by performing global

sensitivity analysis (GSA) and UQ for background solar wind simulations produced by the Alfvén Wave Solar atmosphere

Model (AWSoM) for two Carrington rotations: CR2152 (solar maximum) and CR2208 (solar minimum). We conduct GSA by

computing Sobol indices that quantify contributions from model parameter uncertainty to the variance of solar wind speed and

density at 1 au, both crucial quantities for CME propagation and strength. Sobol indices also allow us to rank and retain only the

most important parameters, which aids in the construction of smaller ensembles for the reduced-dimension parameter space.

We present an efficient procedure for computing the Sobol indices using polynomial chaos expansion (PCE) surrogates and

space-filling designs. The PCEs further enable inexpensive forward UQ. Overall, we identify three important model parameters:

the multiplicative factor applied to the magnetogram, Poynting flux per magnetic field strength constant used at the inner

boundary, and the coefficient of the perpendicular correlation length in the turbulent cascade model in AWSoM.
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Abstract17

Modeling the impact of space weather events such as coronal mass ejections (CMEs) is18

crucial to protecting critical infrastructure. The Space Weather Modeling Framework19

(SWMF) is a state-of-the-art framework that offers full Sun-to-Earth simulations by com-20

puting the background solar wind, CME propagation and magnetospheric impact. How-21

ever, reliable long-term predictions of CME events require uncertainty quantification (UQ)22

and data assimilation (DA). We take the first steps by performing global sensitivity anal-23

ysis (GSA) and UQ for background solar wind simulations produced by the Alfvén Wave24

Solar atmosphere Model (AWSoM) for two Carrington rotations: CR2152 (solar max-25

imum) and CR2208 (solar minimum). We conduct GSA by computing Sobol’ indices that26

quantify contributions from model parameter uncertainty to the variance of solar wind27

speed and density at 1 au, both crucial quantities for CME propagation and strength.28

Sobol’ indices also allow us to rank and retain only the most important parameters, which29

aids in the construction of smaller ensembles for the reduced-dimension parameter space.30

We present an efficient procedure for computing the Sobol’ indices using polynomial chaos31

expansion (PCE) surrogates and space-filling designs. The PCEs further enable inex-32

pensive forward UQ. Overall, we identify three important model parameters: the mul-33

tiplicative factor applied to the magnetogram, Poynting flux per magnetic field strength34

constant used at the inner boundary, and the coefficient of the perpendicular correlation35

length in the turbulent cascade model in AWSoM.36

Plain Language Summary37

Space weather events such as those driven by coronal mass ejections (CMEs) can38

result in severe geomagnetic storms that impact critical infrastructure. Accurate long-39

term forecasts are therefore needed together with uncertainty quantification. In this work,40

we calculate uncertainty and perform sensitivity analysis for the background solar wind41

that has a major impact on the accuracy of the overall CME simulation. Since these mod-42

els have many parameters that carry uncertainty, sensitivity analysis allows us to iden-43

tify the most important ones.44

1 Introduction45

Coronal mass ejections (CMEs) are large-scale eruptions of the solar coronal plasma46

and magnetic fields expelled into the solar wind. CMEs can create magnetic storms in47

the Earth’s magnetosphere that are responsible for severe geomagnetic effects ranging48

from breakdown in radio communications to damage of sensitive electronics on satellites49

and even disrupting the power grid. Therefore it is imperative to obtain reliable long-50

term predictions of space weather events driven by CMEs.51

Current state-of-the-art modeling capabilities involve numerical simulations using52

coupled first-principles and/or empirical models. A prominent example is the Space Weather53

Modeling Framework (SWMF) (Tóth et al. (2005, 2012); Gombosi et al. (2021)) that54

models domains from the upper solar chromosphere to the Earth’s atmosphere and/or55

the outer heliosphere using efficient coupling between multiple models and is capable of56

full Sun-to-Earth simulations. Typically, as shown in Figure 1, the model chain consists57

of obtaining the background solar wind in Stage 1, generating and propagating a CME58

through the heliosphere to Earth in Stage 2, and finally calculating the magnetospheric59

impact via geospace models in Stage 3. Along the way, various observation data (in the60

blue boxes) are also available to calibrate or validate the model. The SWMF offers pre-61

dictions for several macroscopic plasma quantities, including those that critically impact62

the magnetosphere and the resulting geomagnetic perturbations, such as the north-south63

component of the magnetic field, proton density, and solar wind velocity.64
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These models have seen continued improvements and their predictions have been65

validated for various phases of the solar cycle against a suite of observations, for instance66

by Jin et al. (2012); Sachdeva et al. (2019, 2021) and van der Holst et al. (2022). How-67

ever, reliable long-term predictions of impact as well as the uncertainty surrounding the68

predictions are crucially needed for informed decision-making in operational settings. Pro-69

ducing a probabilistic forecast in such settings is challenging. The uncertainty space is70

high-dimensional and the dimensions grow as the simulation is propagated through the71

model chain (Figure 1). Coupled with the high computational cost of simulations, it be-72

comes costly, even prohibitive, to produce an ensemble of runs that accurately portrays73

the uncertainty of the overall system. Updating the uncertainty over the course of a sim-74

ulation with newly acquired remote and in-situ observations of space weather events is75

also non-trivial but highly important. Consequently, systematic uncertainty quantifica-76

tion (UQ) and data assimilation (DA) are needed to address these challenges.77

UQ involves characterizing the uncertainty for a system. Uncertainty may arise due78

to unknown model parameters (e.g., the Poynting flux emanating from the photosphere79

and driving and heating the solar wind), incomplete initial and boundary conditions (e.g.,80

the solar magnetograms that greatly impact solar wind solutions and have major uncer-81

tainty in estimating the magnetic field near the polar regions), missing or simplified physics82

(e.g., magnetic reconnection, auroral arcs), etc. We focus on parametric uncertainty in83

this work. UQ tasks may be broadly divided into two types: forward UQ and inverse UQ84

(e.g., see (Debusschere et al., 2017)). Forward UQ entails the propagation of uncertainty85

from inputs to outputs of a model; inverse UQ deals with updating (reducing) the un-86

certainty of model parameters (and subsequent model predictions and their uncertainty)87

given new observation data. The key difference is that the former is data-free while the88

latter incorporates data; the latter is thus also referred to as DA especially in the con-89

text of state-space models from geophysical research. Our main goal is to develop the90

Michigan Sun-to-Earth model with Quantified Uncertainties and Data Assimilation (MSTEM-91

QUDA) that is capable of forward and inverse UQ (i.e. UQ and DA) for each of the main92

stages for simulating a CME event from the Sun to Earth. As shown in Figure 1, we will93

propagate uncertainty from a stage’s parameters, update the uncertainty with relevant94

observation data and generate a more confident ensemble of simulations, before passing95

them onto the next stage. For this paper, we will focus on the forward UQ part of Stage96

1: background solar wind, using simulations produced by the Alfvén Wave Solar atmo-97

sphere Model (AWSoM) within the SWMF.98

Figure 1: Flow outline of the Michigan Sun-to-Earth model with Quantified Uncertain-
ties and Data Assimilation (MSTEM-QUDA). This paper focuses on forward UQ for the
highlighted Stage 1: background solar wind.
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Forward UQ is typically carried out using Monte Carlo sampling (i.e. ensemble tech-99

niques): first generating samples of input parameters from their uncertainty distribution,100

then running the model at each sample and lastly analyzing the distribution of the re-101

sulting outputs. The number of samples (i.e. simulations) needed to fully explore the102

parameter space using high-fidelity physical models such as those in the SWMF would103

be computationally impractical. Strategies for dimension reduction and surrogate mod-104

eling are thus highly valuable to mitigate this computational burden. In particular, we105

will employ techniques of sensitivity analysis to help identify a smaller subset of the most106

important uncertain parameters, thereby achieving dimension reduction to the param-107

eter space. Since subsequent UQ and DA tasks will be performed jointly on solar wind108

parameters from Stage 1 together with new parameters associated with the CME and109

geospace models in Stages 2 and 3, it is crucial to keep the parameter space dimension110

low.111

Sensitivity analysis methods (e.g., (Borgonovo & Plischke, 2016) and various ar-112

ticles under Part IV of (Ghanem et al., 2017)) are concerned with the behavior of a model113

output quantity of interest (QoI) with respect to changes of model inputs, and can be114

broadly classified as local sensitivity analysis and global sensitivity analysis (GSA). Lo-115

cal sensitivity analysis studies the impact of output from perturbations of input around116

a reference point (e.g., local gradient), thus only capture behavior in the neighborhood117

local to that reference point. In contrast, GSA seeks to quantify the impact on the out-118

puts across the entire domain of all possible values the input parameters can take. Variance-119

based GSA (Saltelli et al., 2004, 2008) further takes into account the current state of un-120

certainty of the model input parameters. These effects are formally quantified through121

the Sobol’ sensitivity indices, which decompose the total variance of an output quantity122

into contributions from the variance of each input parameter. Once the most prominent123

contributors are identified, the other low-impact parameters may be fixed at nominal val-124

ues with only small approximation error in representing the overall uncertainty of the125

system, thereby achieving effective dimension reduction of the parameter space. In ad-126

dition to dimension reduction, GSA may reveal insight about the physical significance127

of the parameters, and guide future data acquisition that inform the most important pa-128

rameters. Being a part of the forward UQ analysis, GSA is performed in an a priori fashion—129

using only model simulations, and not requiring any observation data.130

Past efforts related to UQ and sensitivity analysis in solar wind models are sum-131

marized here. Poduval et al. (2020) focuses on propagating uncertainties in photospheric132

flux density synoptic magnetograms to the solar wind speed predictions at 1 au for three133

different phases of the solar cycle; however uncertainty from other sources (e.g., para-134

metric sources) have yet to be incorporated. Riley et al. (2013) use different combina-135

tions of coronal models, the base coronal temperature and the spatial resolution of the136

numerical grid to generate an ensemble of solar wind speed predictions. In contrast to137

the data-free nature and uncertainty perspective of GSA, this work focuses on assess-138

ing the sensitivity of the model performance (i.e. error measure) when compared to in-139

situ observations under different input settings. While offering insights on physical sig-140

nificance of the parameters for model performance, only two discrete values for the base141

coronal temperature are considered in the combinations, and for a single quiescent time142

period of the solar cycle. Reiss et al. (2020) propose a prediction system that uses an143

ensemble of solar wind solutions. The ensemble is created by varying the four most im-144

portant coefficients in the near-sun solar wind speed relation from the Wang-Sheeley-145

Arge (WSA) model that are identified from sensitivity analysis. Their sensitivities are146

estimated based on the Elementary Effects Approach (Morris, 1991), which computes147

a global summary of local estimates extracted at multiple points in the input space. The148

ensemble, however, is generated using new points specified on a tensor grid of pertur-149

bations from the baseline values of the coefficients, which grows exponentially with di-150

mensionality and is not easily scalable.151
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Our study differs from existing work by employing variance-based GSA for AW-152

SoM that offers sensitivity measure in the context of model parameters’ uncertainty con-153

tributions. We also assess the sensitivity results for both solar minimum and solar max-154

imum conditions, which correspond respectively to periods of low and high solar mag-155

netic activity. We take an approach to perform GSA by building polynomial chaos ex-156

pansion (PCE) (Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Ernst et al., 2012)157

surrogate models that are particularly suited for extracting the Sobol’ indices. PCE rep-158

resents a random variable in terms of orthogonal polynomial expansions of other latent159

variables. This allows us to explicitly associate the randomness in the QoIs to each phys-160

ical source of uncertainty. In addition to GSA, the PCEs will also allow inexpensive sam-161

pling and uncertainty propagation.162

The downselect of key parameters from GSA in this work will help mitigate the163

computational burden of future UQ and DA tasks, where new parameters, features and164

QoIs will enter in the subsequent stages of the CME model chain. For example, we can165

vary flux rope parameters while initializing the CME and consider influence of background166

and flux rope parameters jointly. Inverse UQ on the downselected parameters can help167

constrain them in order to obtain accurate background conditions of solar wind veloc-168

ity and density. This is crucial for estimating the propagation speed and strength of the169

shock wave produced by CMEs launched into the background.170

We summarize the key contributions and novelty of our paper as follows.171

• We perform GSA for background solar wind simulations of the AWSoM to iden-172

tify and downselect the most important uncertain parameters.173

• We construct PCE surrogate models for time-dependent solar wind QoIs and use174

them to compute the Sobol’ indices and perform uncertainty propagation.175

• We assess the uncertainty of sensitivity estimates through a bootstrapping pro-176

cedure.177

• We carry out the analysis for examples of both solar maximum and solar mini-178

mum conditions.179

The remainder of this paper is organized as follows. Section 2 describes features180

of AWSoM used for solar wind simulations and discusses the model inputs and outputs181

as part of the simulation setup. Section 3 provides details on the formulation and com-182

putation of Sobol’ indices leveraging PCE surrogates and space filling designs. Results183

and discussions for the overall workflow are presented in Section 4 followed by conclu-184

sions and future work in Section 5.185

2 The Space Weather Modeling Framework186

2.1 SWMF and AWSoM187

The Space Weather Modeling Framework (SWMF; Tóth et al. 2012; Gombosi et188

al. 2021) developed at the University of Michigan couples together different model com-189

ponents that cover various physical domains providing a computational capability of mod-190

eling the space-weather environment from the Sun to the Earth and/or outer heliosphere.191

With over a million lines of code, the SWMF is a fully functional, well documented soft-192

ware for high performance computing. Recently, a major portion of the SWMF source193

code has been released on Github under a non-commerical open source license (https://194

github.com/MSTEM-QUDA). The full SWMF suite has also been publicly available via195

registration under a user license (http://csem.engin.umich.edu/tools/swmf). The196

SWMF is also available for runs on request through the Community Coordinated Mod-197

eling Center (CCMC) at the NASA Goddard Space Flight Center (GSFC) (https://198

ccmc.gsfc.nasa.gov/index.php).199
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The Alfvén Wave Solar atmosphere Model (AWSoM; van der Holst et al. 2014; Sokolov200

et al. 2013; Sokolov et al. 2021; van der Holst et al. 2022) within the SWMF couples the201

solar corona (SC) and inner heliosphere (IH) components extending from the upper chro-202

mosphere, through the transition region into the corona up to 1 au and beyond. AW-203

SoM is a global three-dimensional (3D) extended magnetohydrodynamic (MHD) model204

based on the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme (BATSRUS; Pow-205

ell et al. (1999)). It incorporates coronal heating and solar wind acceleration due to low-206

frequency Alfvén wave turbulence (see van der Holst et al. (2014) for detailed descrip-207

tion of the model equations). The coronal heating is distributed over the isotropic elec-208

tron temperature and the perpendicular and parallel (with respect to the magnetic field)209

proton temperatures. AWSoM includes stochastic heating and linear wave damping to210

heat the electrons and protons (Chandran et al., 2011). The model also incorporates elec-211

tron heat conduction and radiative losses based on the Chianti model (Dere et al., 1997)212

for both collisional and collisionless regimes. Recently, the energy partitioning scheme213

within AWSoM has been improved and been validated with Parker Solar Probe obser-214

vations (van der Holst et al., 2022).215

AWSoM is also a data-driven model that uses the radial component of the observed216

photospheric magnetic field at the inner boundary. We can use either spherical harmon-217

ics or the finite difference iterative potential solver (FDIPS, Tóth et al. (2011)) to ex-218

trapolate the observational data to a 3D potential field source surface (PFSS) solution.219

At the inner boundary, the isotropic electron temperature and anisotropic proton tem-220

perature are set to 50,000 K. The density at the inner boundary is set to 2×1017 m−3.221

The Poynting flux (SA) of the outward propagating Alfvén waves at the inner bound-222

ary determines the energy flux entering the domain and is proportional to the inner bound-223

ary magnetic field strength B� (Fisk, 1996; Fisk & Schwadron, 2001; Sokolov et al., 2013).224

The coefficient (SA/B)� is an adjustable parameter with a typical value being 106 Wm−2T−1.225

The Alfvén wave correlation length L⊥ is another parameter of the equation set solved226

by AWSoM and is proportional to B−1/2 (Hollweg, 1986). The quantity L⊥
√
B is an ad-227

justable parameter with a typical value of 1.5×105 m
√
T . The stochastic heating am-228

plitude and exponents (Chandran et al., 2011) that determine the energy partitioning229

between electrons and protons are typically set to 0.18 and 0.21, respectively.230

In this work, we use AWSoM to simulate the solar wind in the SC and IH compo-231

nents of SWMF, which use 3D spherical and Cartesian block-adaptive grids, respectively.232

The steady-state solution is obtained by solving the MHD equations in co-rotating frames233

in both SC and IH domains. The spherical buffer grid that couples the SC solution with234

IH extends from 18 to 20 R�. The SC grid covers 1–24 R� and the IH component grid235

covers −250 to 250 R� with the inner boundary at 20 R�. The grid block size in the SC236

domain is 6 × 8 × 8 grid cells and 8 × 8 × 8 grid cells in the IH component. We use237

adaptive mesh refinement (AMR) to refine the grid where needed, including the helio-238

spheric current sheet and a conical region connecting the Sun and Earth. In this region239

the angular resolution as low as 0.35◦ so that the CME propagating towards the Earth240

is well resolved. The angular resolution is 2.8◦ everywhere else in the domain. In the IH241

component, the domain has a smallest cell size of 0.24 R� in the −x direction and 7.8 R�242

at the outer boundary. The simulation uses local time-stepping for 80,000 iterations in243

SC to relax the solution to a steady state. This is followed by coupling with IH for 1 step.244

Since the solar wind is super fast magnetosonic in the IH component, it only takes 5,000245

iterations to obtain a steady-state solution in IH. Over the years, AWSoM has been ex-246

tensively validated against remote and in-situ observations during various phases of the247

solar cycle. AWSoM produces synthetic extreme ultra-violet (EUV) images that have248

been compared to EUV observations from STEREO/EUVI, SDO/AIA and SOHO/LASCO249

instruments. (van der Holst et al., 2010; Meng et al., 2015; Jin et al., 2017; Sachdeva et250

al., 2019, 2021). The AWSoM predicted structure of the solar corona also compares well251

with the tomographic reconstructions of the density and temperature of electrons near252

the Sun determined using the Differential Emission Measure Tomography (DEMT) dur-253
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ing the quiescent phase (Lloveras et al., 2017, 2020, 2022). In addition, comparisons with254

Interplanetary Scintillation (IPS) data at various heliospheric distances as well as solar255

wind plasma observations at 1 au have successfully validated the capability of the AW-256

SoM model to reproduce the solar wind structure near the Sun as well as in the inner257

heliosphere (Sachdeva et al., 2019).258

In this work, we will explore simulations of the background solar wind that are con-259

ducted for different values in the parameter space using AWSoM. In particular, we will260

perform a priori sensitivity analysis. This assessment is a priori in the sense that it is261

performed without any observation data that would otherwise be needed for DA or model262

calibration. Hence, the procedure is by design an initial probing on the properties of the263

model itself. Through this sensitivity analysis, we aim to identify a small subset of only264

the most impactful uncertain parameters that contribute the most to the overall predic-265

tion uncertainty. We can then focus only on these parameters for subsequent compute-266

intensive tasks, thus achieving a dimension reduction of the uncertainty space.267

2.2 Solar Wind Model Input Parameters268

We begin by cataloguing the uncertain input parameters (i.e. parametric sources269

of uncertainty) considered in this study for simulating the background solar wind using270

AWSoM. We focus on simulating the background solar wind for two Carrington rota-271

tion (CR) periods representative of solar maximum (CR2152) and solar minimum (CR2208),272

using exclusively ADAPT-GONG magnetograms. Shown in Table 1, the parameter list273

includes variables concerning boundary conditions, sub-model settings, and fitting pa-274

rameters. Some parameters are categorical, while others are continuous and real-valued.275

In either case, we specify also the value range each parameter may take in this investi-276

gation, which are determined based on assessment from subject matter experts of the277

study team. In addition to the lower and upper bounds, a constraint is incorporated to278

restrict the feasible region of FactorB0 and PoyntingFluxPerBSi such that their prod-279

uct is less than 9×105 Wm−2T−1 for solar maximum and less than 1.2×106 Wm−2T−1280

for solar minimum (see Figure 2). This constraint is motivated by the underlying physics281

where the product term is known to be proportional to the total energy injected into the282

system. Capping the total energy below a reasonable threshold eliminates simulations283

that are not physically meaningful due to excessive kinetic energy density in the simu-284

lated solar wind.285

While the parameter list may be expanded more exhaustively, our selection here286

are based on the prioritization from subject matter experts of the study team. Some choices,287

such as what type of magnetogram should be used or what version of the model to use,288

have been decided from prior studies (Sachdeva et al., 2019, 2021). Using ADAPT-GONG289

maps with the three-temperature AWSoM code provided the best results. The effect of290

grid resolution was also examined and the choice of grid is based on several exploratory291

simulations. The grid is fine enough along the Sun-Earth line to capture the essential292

features impacting Earth, but coarse enough to make hundreds of simulations compu-293

tationally feasible.294

To properly convey the state of uncertainty in these parameters, we endow uniform295

distributions for all parameters over their feasible region to represent a flat, non-informative296

state of uncertainty that does not favor any particular area. The choice of uniform dis-297

tributions appeals to the principle of maximum entropy (Jaynes, 1957), where one can298

show that given a boundary perimeter, the uniform distribution is formed with the fewest299

additional assumptions. We will investigate the effects of uncertainty from these input300

parameters on the model output QoIs.301

–7–
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Parameter Value Range Description

Categorical Parameters

ADAPT realization {1,2,. . . ,12} Realization index number
from ADAPT

PFSS method {HARMONICS, FDIPS} Method for obtaining the potential
field source surface solution

UseSurfaceWaveRefl {True, False} Extra reflection for high enough
transverse density gradient

Continuous Parameters

FactorB0 [0.54, 2.7] Multiplicative factor for input
[–] magnetogram field

PoyntingFluxPerBSI [0.3, 1.1]× 106 Inner boundary Poynting Flux per magnetic field
[W m−2T−1] constant of Alfvén waves

LperpTimesSqrtBSI [0.3, 3.0]× 105 Stochastic Heating Profile
[m T1/2] Perpendicular Correlation Length Coefficient

StochasticExponent [0.10, 0.34] Ion Stochastic Heating
[–] Profile Exponent

nChromoSiAWSoM [2.0, 50.0]× 1017 Inner Boundary Density
[m−3]

rMinWaveReflection [1.0, 1.2] Wave Reflection switched off
[Rs] below this radius

Table 1: Uncertain parameters considered for the AWSoM solar wind model.
An additional constraint is imposed to limit the feasible space of FactorB0 and
PoyntingFluxPerBSi such that their product is less than 0.9 MWm−2T−1 for solar maxi-
mum and less than 1.2 MWm−2T−1 for solar minimum.

2.3 Solar Wind Model Output Quantities of Interest302

The primary prediction output of AWSoM are the macroscopic plasma quantities,303

such as solar wind velocity, density, ion and electron temperatures, the Alfvén wave tur-304

bulence energy densities and the magnetic field vector in the 3D computational domain.305

These primary output variables can be processed into various QoIs, for example synthetic306

extreme ultraviolet (EUV) images in the low corona, synthetic Thomson-scattered white307

light images, or in-situ solar wind and magnetic field values along the Earth orbit. These308

QoIs can be compared with a comprehensive suite of observations including EUV im-309

ages from STEREO-A EUVI and the SDO AIA, LASCO observations of electron den-310

sity, as well as in situ OMNI data obtained at the first Lagrange point (L1) between the311

Sun and Earth.312

Future work on UQ associated with CME events will require accurate predictions313

of the background solar wind, particularly for the radial velocity Ur and proton num-314

ber density Np as these have a major impact on the propagation speed of the CME and315

the strength of the shock wave produced by fast CMEs. For this reason, we select Ur and316

Np as the QoIs. In addition to affecting the CME propagation, Ur and Np are most im-317

portant for space weather forecasts while other quantities like plasma temperature or the318

Bx and By components of the magnetic field are less geo-effective. The Bz component319
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is, of course, extremely important, but it typically originates from the flux rope driving320

the CME. Predicting Bz of the background solar wind is very difficult, as it is dominated321

by turbulent fluctuations.322

To carry out the sensitivity analysis, we will systematically vary the input param-323

eters described in the previous section over their distribution, conduct simulations at the324

different parameter settings for both CR2152 and CR2208, and extract the QoIs and as-325

sess and attribute their variability (detailed in the next section). Representative plots326

of these QoIs from solar wind simulations can be found in Figure 3.327

3 Methodology328

3.1 Variance-based Global Sensitivity Analysis329

We focus on variance-based GSA (Saltelli et al., 2004, 2008). Variance of a QoI can330

be decomposed into contributions from the uncertainty of each input parameter. For-331

mally, let λ = [λ1, λ2, · · · , λd] denote the vector of all input parameters with an asso-332

ciated uncertainty distribution, ft denote the model, and ft(λ) denote a (time-dependent)333

model output QoI at time t. The Sobol’ indices (Sobol, 2003) (defined below) provide334

a quantitative measure of all the inputs λi in terms of their variance contributions to the335

total variance of the output QoI ft(λ). The key task in GSA is therefore to compute these336

Sobol’ indices. Once computed, these indices can be used for dimension reduction, where337

low-sensitivity parameters may be fixed at their nominal values without significantly un-338

derrepresenting the QoI’s variance. The reduced dimension can bring computational sav-339

ings for downstream tasks such as UQ and DA for subsequent CME and geospace sim-340

ulations.341

The main effect (first-order) Sobol’ index measures variance contribution solely due342

to the ith parameter:343

Sti =
Varλi

(Eλ∼i
[ft(λ)|λi])

Var (ft(λ))
(1)344

where λ∼i refers to all components of λ except the ith component, Eλ∼i
then denotes345

the expectation with respect to all λ compnents except for the ith, and Varλi
denotes346

the variance with respect to only the λi component; E and Var without any subscript347

indicates expectation and variance involving all components. The main effect index is348

always between 0 and 1, and a high value indicates that the ith parameter is an impor-349

tant variance (uncertainty) contributor to the QoI. However, a small main effect index350

by itself does not automatically imply low importance for λi, since additional variabil-351

ity may be induced from the interaction of λi with other parameters.352

The joint effect (second-order) Sobol’ index measures variance contribution due to353

the interaction of ith and jth parameters:354

Stij =
Varλi,λj

(Eλ∼ij
[ft(λ)|λi, λj ])

Var(ft(λ))
− Sti − Stj . (2)355

In a similar manner, sensitivity indices for even higher order interactions (e.g., from si-356

multaneous interactions among multiple parameters) can be defined, and the total vari-357

ance of a QoI can be decomposed into fractional contributions through the relation:358

1 =
∑
i

Sti +
∑
i

∑
j>i

Stij +
∑
i

∑
j>i

∑
k>i

Stijk + . . .+ St123...d. (3)359

Furthermore, the effect hierarchy principle (Sec. 4.6 of (Wu & Hamada, 2009)) states360

that only the lower order effects are the most significant. If the main effect and joint ef-361

fect sensitivity indices sum close to 1, then we can conclude that the higher order inter-362

actions among parameters are negligible.363
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A key assumption behind the above definitions of Sobol’ indices is that the input364

parameters are mutually independent, i.e. their joint distribution can be factored into365

the products of individual marginal distributions p(λi, λj) = p(λi)p(λj). While this is366

satisfied for a uniform distribution over a rectangular domain formed from the various367

parameter ranges described in Table 1, it is violated when imposing the constraint on368

the product of FactorB0 and PoyntingFluxPerBSi: e.g., knowing the value of one pa-369

rameter provides information about what the other parameter could be owing to the con-370

straint, hence they are not independent. There are efforts to formulate a generalized GSA371

for dependent inputs (Da Veiga et al., 2009; Chastaing et al., 2012), but they are gen-372

erally difficult to exercise or requires parameter transformations that are not interpretable373

compared to their original forms. Therefore, we retain the definition derived for the in-374

dependent setting, but acknowledging that some approximation errors are incurred.375

The Sobol’ indices cannot be computed in closed-form except for very simple mod-376

els, and generally they need to be approximated numerically. While different flavors of377

efficient Monte Carlo (MC) methods have been developed to estimate these indices (Sobol,378

1990; Jansen, 1999; Saltelli et al., 1999; Sobol, 2001; Saltelli, 2002; Saltelli et al., 2010),379

the MC nature means they still require a large number of model evaluations and can be-380

come impractical when each model simulation is already expensive: a single AWSoM sim-381

ulation takes about 7,000 CPU core hours. An alternative strategy is then to trade off382

model fidelity and accuracy for speed, by first building a surrogate model and then us-383

ing this approximate but fast surrogate model to estimate the sensitivity indices. We in-384

troduce next a surrogate model form that is particularly well suited for estimating the385

Sobol’ indices.386

3.2 Polynomial Chaos Expansions387

A common surrogate model used for UQ is the PCE. A PCE is a spectral expan-388

sion of a random variable, and is particularly attractive for GSA as it has a form that389

allows convenient estimates of the Sobol’ sensitivity indices. We provide a brief intro-390

duction of PCE below, and refer readers to several books and review papers for detailed391

discussions (Ghanem & Spanos, 1991; Najm, 2009; Xiu, 2009; Le Mâıtre & Knio, 2010).392

A real-valued random variable u with finite variance (such as an input parameter393

or an output QoI) can be represented by the following expansion (Ernst et al., 2012):394

395

u =

∞∑
‖ β ‖1=0

bβΨβ(ξ1, . . . , ξd), (4)396

where ξj are independent and identically distributed (i.i.d.) reference (latent) variables;397

d is the number of stochastic degrees of freedom in the system (typically the number of398

uncertain input parameters); bβ are the expansion coefficients; β = (β1, . . . , βd), ∀βj ∈399

N0, is a multi-index; and Ψβ are (normalized) multivariate orthogonal polynomials (ba-400

sis functions) that are products of univariate orthonormal polynomials:401

Ψβ(ξ1, . . . , ξd) =

d∏
j=1

ψβj
(ξj). (5)402

The univariate functions ψβj
are polynomials of degree βj in ξj , and orthonormal with403

respect to the probability density of ξ (i.e., p(ξ)):404

E[ψk(ξ)ψn(ξ)] =

∫
ψk(ξ)ψn(ξ)p(ξ) dξ = δk,n, (6)405

where δk,n is the Kronecker delta. While different choices of ξ and ψβ are available un-406

der the generalized Askey family (Xiu & Karniadakis, 2002), we employ uniformly dis-407

tributed ξ and Legendre polynomials in this study to conveniently mirror the uniform408
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distributions of the input parameters from Table 1. Lastly, the infinite sum in is trun-409

cated in practice:410

u ≈
∑
β∈J

bβΨβ(ξ1, . . . , ξnt), (7)411

where J is some finite index set. For example, one popular choice for J is the “total-412

order” expansion of degree p, where J = {β : ‖β ‖1 ≤ p}.413

Under this formulation, we can write the PCE for input parameter and output QoI414

at a time t as415

λi ≈
∑
β∈J

cβΨβ(ξ1, . . . , ξd), ft ≈
∑
β∈J

bt,βΨβ(ξ1, . . . , ξd). (8)416

Since the distribution of ξ is strategically chosen to match the type as our input param-417

eters (i.e. uniform distributions in our case), the PCE for λi can be determined easily418

as a linear expansion (i.e. cβ are simply the scale and shift terms acting on ξi). The main419

task is then to compute the PCE coefficients ct,β for the output QoI. We take a regres-420

sion approach to estimate these coefficients, by solving the following linear system:421 Ψβ1(ξ(1)) · · · Ψβ(nt)(ξ
(1))

...
...

Ψβ1(ξ(N)) · · · ΨβN (ξ(nt))


 bt,β1

...
bt,βnt

 =

 f(t, λ(ξ(1)))
...

f(t, λ(ξ(nt)))

 , (9)422

where Ψβn refers to the nth polynomial basis function, bt,βn is the coefficient correspond-423

ing to that term, and ξ(m) is the mth regression (training) point. Ψ is thus the regres-424

sion matrix where each column corresponds to a basis function and each row corresponds425

to a regression point. To prevent overfitting, we can include an `2 (ridge regression) or426

an `1 (LASSO) regularization.427

Once the PCE for the QoIs is constructed, we can extract the Sobol indices ana-428

lytically from their expansion coefficients via the formulae:429

Sti =
1

Var(ft(λ))

∑
β∈Ji

b2t,β , where Ji = {β ∈ J : βi > 0, βk = 0, k 6= i} (10)430

Stij =
1

Var(ft(λ))

∑
β∈Jij

b2t,β where Jij = {β ∈ J : βi > 0, βj > 0, βk = 0, k 6= i, k 6= j}431

The QoI total variance can be calculated as432

Var(f(λ)) =
∑

06=β∈J

b2t,β . (11)433

3.3 Design of Computer Experiments434

We briefly describe how to select the training points ξ(m) to form the regression435

system for constructing the PCEs in the previous section. Since each AWSoM simula-436

tion is computationally expensive (about 7, 000 total CPU hours per run taking 4 hours437

of wall time on 32 nodes with 56 cores per node on the Frontera computing system (Stanzione438

et al., 2020)) a judicious selection of the simulation input values can be quite beneficial.439

While one may approach this task by defining and optimizing some criteria that reflects440

the quality of estimated Sobol’ sensitivity indices, such a goal-oriented approach is non-441

trivial to formulate. Instead, we take an explorative strategy and seek space-filling de-442

signs (Joseph, 2016) that can “cover” the parameter space well.443

One popular space-filling approach is the Latin Hypercube design (LHD) (McKay444

et al., 1979), which can be constructed using a maximin design criterion that maximizes445

the minimum distance between all pairs of points (Morris & Mitchell, 1995). The max-446

imin LHD for a multi-dimensional space can retain good space-filling properties when447
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projected onto any single dimension, but not when projecting onto multi-dimensional448

subspaces (i.e. when focusing on a subset of multiple parameters) (Joseph, 2016). We449

thus adopt an improved Maximum Projection (MaxPro) design (Joseph et al., 2015, 2020)450

that uses a weighted distance measure to account for projections to all possible subspaces.451

Another notable advantage of using MaxPro designs is that new samples can be added452

in a sequential manner where the importance for different factor levels based on sensi-453

tivity results can be incorporated into the objective function (Wang et al., 2018).454

MaxPro design is typically defined for a box domain. With the only non-rectangular455

domain in our study being the constraint on the product of FactorB0 and PoyntingFluxPerBSi456

(see Figure 2), we simply generate MaxPro sample in the bounding rectangle and then457

reject the points that lay outside the constraint.458

4 Results and Discussion459

4.1 AWSoM Solar Wind Simulations460

We perform solar wind simulations using the AWSoM model for CR2152 (solar max-461

imum) and CR2208 (solar minimum). The model input parameter values are generated462

from their feasible ranges summarized in Table 1 using the MaxPro design described in463

Section 3.3. Scatter plots of these samples for select pairs of input parameters are shown464

in Figure 2, with the left-most panel showing the constraint on the product of FactorB0465

and PoyntingFluxPerBSi. Given our computational budget, 200 runs are conducted for466

each of the two CR periods.467
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Figure 2: Scatter plots of MaxPro design samples to perform AWSoM simulations for
select pairs of input parameters for CR2152 (solar maximum, left column) and CR2208
(solar minimum, right column). Each AWSoM run is initiated at each point for a total of
200 runs.

From the 200 simulations for each CR, 5 of CR2152 and 1 of CR2208 did not con-468

verge while all others succeeded. The results of all successful runs are analyzed to fil-469

ter out those that are not physically meaningful. We extract the plasma state along Earth’s470

orbit and a simulation is discarded if both of the following exclusion criteria are triggered:471

• the radial velocity exceeds 900 km/s or falls below 200 km/s, and472

• the number density exceeds 100 cm−3.473

In the end, 174 runs are retained for CR2152 and 199 for CR2208. The final ensemble474

of select predicted QoIs at 1 au are shown in Figure 3.475
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Figure 3: Ensemble of AWSoM simulation results for CR2152 (solar maximum, left
column) and CR2208 (solar minimum, right column). Each line is from a different simula-
tion.

4.2 UQ and GSA using PCE Surrogate476

We use the set of AWSoM simulations to construct PCE surrogates following Sec-477

tion 3.2. In particular, we construct a separate PCE at 577 time points of each QoIs: ra-478

dial velocity (Ur) and number density (Np), for both CR2152 and CR2208. The input479

space of each PCE is 6 dimensional, encompassing all the continuous input parameters480

from the second half of Table 1.481

The parameters in the first half of Table 1 are categorical (i.e. not ordinal), and482

they do not have any intrinsic ordering of their values or a notion of distance. They are483

not true random variables and quantities such as mean and variance are undefined. There-484

fore, the concept of sensitivity for categorical variables is ill-posed altogether. As a re-485

sult, we consider sensitivity only for the six continuous parameters. Note that uncertainty486

contributions from the three categorical parameters are still captured since they are var-487

ied in generating the AWSoM simulation set. Our PCEs are built by marginalizing out488

(averaged over) the three categical parameters and trained to predict the QoI values based489

on the six continuous input parameters. Ridge regression is adopted for computing the490
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PCE coefficients in the regression system Equation (9), with regularization parameter491

selected through cross-validation. We employ PCEs with total order expansions of de-492

gree 2. While higher degree polynomials may be attempted, the increased number of un-493

known coefficients is more prone to overfitting given our small sample size (around 200).494

We also verified that increasing to degree 3 does not lead to substantial differences of495

the surrogate predictions, supporting that degree 2 is sufficient. All PCE constructions496

are carried out using PolyChaos.jl (Mühlpfordt et al., 2020), an open source package497

available in the Julia programming language (Bezanson et al., 2017). Once the PCE sur-498

rogates are available, we can use them to inexpensively perform MC-based uncertainty499

propagation by first drawing samples from the uncertainty distribution of the input and500

then using the PCEs to evaluate the output QOIs. Figure 4 presents the predictive un-501

certainty on the QoIs highlighting their mean (solid red line) ± 2 standard deviations502

(red shaded area), and overlaid with boxplots to illustrate more details of the distribu-503

tion at different time-slices. The sample mean (blue dashed line) is identical to the sur-504

rogate mean (red solid line).505

Figure 4: Predictive mean (red line) ±2 standard deviation (shaded area) for QoIs Ur
and Np using PCE surrogates for CR2152 (solar maximum, left column) and CR2208 (so-
lar minimum, right column). The boxplots at selected locations give additional informa-
tion about the distributions, showing the median and interquartile range (IQR); whiskers
extend to 1.5 IQR on either side. The sample mean (dashed blue line) is essentially equal
to the predictive mean.

Using Equations 10−11, we can calculate the Sobol sensitivity indices directly from506

the PCE coefficients. In particular, we focus on the sensitivity for radial velocity Ur and507

number density Np with respect to all the continuous input parameters from Table 1.508

The main effect indices Sti for Ur and Np are plotted over time during CR2152 and CR2208509

in Figure 5. At any particular time instant, Sti represents the relative variance contri-510

bution from the ith parameter. For CR2152 (solar maximum), overall FactorB0 and LperpTimesSqrtBSI511

appear to be most dominating followed by PoyntingFluxPerBSi, while rMinWaveReflection,512
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StochasticExponent, and nChromoSi AWSoM have much smaller contributions. For CR2208513

(solar minimum), LperpTimesSqrtBSi has a much smaller contribution than it is in CR2152514

(solar maximum). This agrees with our expectations: the LperpTimesSqrtBSi param-515

eter has the most impact along open magnetic field lines coming from coronal holes, which516

are more likely to be at low latitude during solar maximum and therefore have an im-517

pact at Earth orbit. FactorB0 and PoyntingFluxPerBSi appear to be the most influ-518

ential, especially for the number density Np. For Ur, StochasticExponent also has sig-519

nificant contributions particularly for solar minimum. The sum of main effect indices from520

all parameters at a time instant can also provide an indication regarding the interaction521

effects among parameters. If the sum is much less than 1, the interactions between pa-522

rameters is non-negligible. For example the sum of Np’s sensitivity indices for CR2152523

is close to 0.5 around July 3, 2014, suggesting there is significant parameter interactions524

at that time.525

Figure 5: Time-varying main effect Sti for CR2152 (solar maximum, left column) and
CR2208 (solar minimum, right column), for QoIs Ur and Np.
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Figure 6: Time-averaged main effect Si and joint effect Sij for CR2208 (solar maximum,
left column) and CR2208 (solar minimum, right column) for QoIs Ur and Np.

Lastly, we summarize the time-dependent Sobol’ sensitivity indices by computing526

the time-averaged main effect and joint effect indices in Figure 6, where the (i, j)th el-527

ement indicates the time-averaged value of Si,j and the diagonal elements represent Si.528

The time-averaged sensitivity indices confirm the observations from the time-dependent529

results that the most important variance contributors for QoIs Ur and Np in CR2152 (with530

a threshold chosen as Si > 0.2 for either QoI) are FactorB0, PoyntingFluxPerBSi and531

LperpTimesSqrtBSi, and for CR2208 are FactorB0 and PoyntingFluxPerBSi. The re-532

maining parameters’ contributions, when time-averaged, are very small. As a sanity check,533

we can also see that the averaged main and joint sensitivities approximately sum to 1,534

as suggested by Equation (3).535

We note that PCE in general cannot constrain its output value to be positive only,536

whereas the number density Np can only be positive. As a result, we have occasionally537

encountered negative Np predictions from the the PCE surrogates. One possible tech-538

nique to guarantee positivity is to build PCEs for predicting logarithm of the QoIs (i.e.539

logNp), and then extract the non-logarithm values by taking the exponent. However,540

subsequently computed Sobol’ sensitivity indices then indicate the parameter contribu-541

tions on the variance of logNp and not of Np, which may alter the ranking of param-542

eters (Borgonovo et al., 2014). In our testing with the log-QoIs setup, we see example543

from Figure 7 that indeed Np (CR2152) is now guaranteed to be always positive and its544

corresponding Sobol’ indices support the same conclusion of the most sensitive param-545

eters, but with different rankings (similar results for CR2208 are omitted for brevity).546

4.3 Uncertainty of the Sobol’ Index Estimates547

Given that our Sobol’ indices are estimated using small sample size (around 200),548

it is important to assess the uncertainty of these estimates. Ideally, one can repeat the549
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Figure 7: Comparison of results as an illustration when building surrogate on the orig-
inal Np (left column) and log(Np) (right column). Predictions of Np at 400 test points
from trained PCE surrogates are shown on the top row, while the bottom row shows the
time-averaged sensitivity heatmaps.

GSA procedure with new batches of samples and compute the variance of the repeated550

trials, but such a process would be prohibitively expensive. Therefore, we use a boot-551

strapping technique that only uses existing and available samples, summarized in Algo-552

rithm 1.553

Algorithm 1: Procedure for Bootstrapped GSA

Input: Input parameters λ at N design points, N QoI simulations f(λ),
bootstrap sample sizes nstart, nend, step size ∆, number of replications K
for each sample size

1 n = [nstart, nstart + ∆, · · · , nend];
/* The outer loop runs through different sample sizes */

2 for i = 1 : length(n) do
3 nSamples = n[i];

/* The inner loop runs K replications per sample size */

4 for k = 1, 2, · · ·K do
5 Sample indices ik ∈ {1, · · · , N} with replacement (nSamples in all);
6 Build PCEs with input parameters λ and outputs f indexed by ik;
7 Calculate and store time-averaged main effects Si[:, k, i];

8 end

9 end
10 return Si ;
11 Calculate mean and standard deviations over K replications

554

We carry out the bootstrapping analysis for n = {20, 40, . . . , 140}. For each n,555

K = 1000 trials of estimating the time-averaged Si are repeated, and their mean and556

standard deviation are computed. To save time, we did not re-optimize the regulariza-557
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tion parameters and opted for ordinary least squares for Equation (9) in building the new558

PCEs. The results are plotted in Figure 8 for Ur and Np in both CR2152 and CR2208.559

The figures suggest that n = 20 or 40 would carry significant errors and present chal-560

lenges for distinguishing the influential parameters, and estimates start to stabilize af-561

ter n = 60. The mean St values at n = 120 and n = 140 are quite close to the values562

we obtained with the full sample set, and the rankings of the most influential parame-563

ters are reasonably robust over multiple replications.564

Figure 8: Mean ± standard deviation (over K = 1000 replications) time-averaged Si for
Ur and Np under different bootstrap set size n in CR2152 (solar maximum, left column)
and CR2208 (solar minimum, right column)

.

Our bootstrapping analysis carries several limitations. First, the uncertainty on Sobol’565

indices obtained from bootstrapping is an underestimate especially as n becomes closer566

to the size of the full dataset. This is because the repeated subset trials would have larger567

overlaps among each other and therefore lowered variability, since each subset would nec-568

essarily contain a large portion of the full dataset (e.g., if subsampling n = 190 from569

a full dataset of 200 runs, then the repeated subsets must have many overlap samples).570

Second, in order to reduce the substantial computational burden from the many repeated571

PCE and GSA during bootstrapping, ordinary least squares is used without regulariza-572

tion for the new PCE regression problems. Lastly, we only perform the bootstrapping573

analysis on the time-averaged Sobol’ indices for brevity, and do not consider their un-574

certainty at each time point; although this may be done easily.575
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5 Conclusions and Future Work576

We conducted variance-based GSA for background solar wind during CR2152 (a577

solar maximum period) and CR2208 (a solar minimum period) simulated using the AW-578

SoM from the SWMF. We computed the main and joint effect Sobol’ sensitivity indices579

for output QoIs of radial velocity and proton number density at 1 au, with respect to580

the uncertainty of a number of input parameters including FactorB0, nChromoSi AWSoM,581

PoyntingFluxPerBSi, LperpTimesSqrtBSI, StochasticExponent, and rMinWaveReflection.582

The Sobol’ indices quantify the fractional contribution of and individual input param-583

eter’s uncertainty towards the total variance of the QoIs, and therefore provide sensi-584

tivity information that reflects the current state of parameter uncertainty. Furthermore,585

this GSA can be performed in a data-free manner, without needing any observation data586

at 1 au.587

We presented an efficient computational procedure for estimating the Sobol’ indices588

by creating PCE surrogate models from a dataset of AWSoM simulations selected through589

space-filling designs of the model parameters. Once these PCEs became available, the590

Sobol’ indices were calculated analytically from the expansion coefficients. At the same591

time, forward UQ was also achieved by sampling the PCEs to obtain predictive uncer-592

tainty for the QoIs. The uncertainty of the estimated Sobol’ indices were also estimated593

through a bootstrapping procedure. Overall, we found the most impactful parameters594

to be FactorB0, PoyntingFluxPerBSi, and LperpTimesSqrtBSI for CR2152 (solar max-595

imum); and FactorB0 and PoyntingFluxPerBSi for CR2208 (solar minimum). For fu-596

ture tasks, only these parameters need to be kept as uncertain while the other low-impact597

parameters may be fixed at nominal values, thereby achieving dimension reduction of598

the parameter space.599

There are several limitations of our current work that warrant interesting future600

studies. Our results are obtained from two specific CR periods, and the generalizabil-601

ity of the high-sensitive parameters to other solar maximum and solar minimum peri-602

ods needs to be tested. On a more technical side, the Sobol’ indices definitions employed603

are for input parameters with independent uncertainty distributions. However our con-604

straint between FactorB0 and PoyntingFluxPerBSi, while justified from a physical un-605

derstanding of the system, violates the independent assumption. As a result, our com-606

puted Sobol’ indices incur additional error due to this effect, and generalized GSA tech-607

niques that may accommodate dependent parameter distributions may be explored (Chas-608

taing et al., 2012).609

Lastly, while we have taken the first step towards an overall probabilistic forecast610

framework of space weather events by focusing on UQ of the background solar wind, the611

next parts of our work will involve DA and the CME and geospace stages in complet-612

ing the Sun-to-Earth model. Computations for these future tasks will benefit from the613

reduced dimension of the solar wind parameter space from this paper.614

Acronyms615

QoI Quantity of Interest616

UQ Uncertainty Quantification617

DA Data Assimilation618

PCE Polynomial Chaos Expansion619

GSA Global Sensitivity Analysis620

CME Coronal Mass Ejection621

SWMF Space Weather Modeling Framework622

AWSoM Alfvén Wave Solar atmosphere Model623

SC Solar Corona624

IH Inner Heliosphere625
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6 Open Research626

The scripts and routines used to produce the results in this manuscript are avail-627

able at the University of Michigan (UM) Library Deep Blue Data Repository here: Re-628

sults for “Global Sensitivity Analysis and Uncertainty Quantification for Background So-629

lar Wind in the Alfvén Wave Solar Atmosphere Model”:630

https://deepblue .lib.umich .edu/data/concern/file sets/41687h82q/631

anonymous link/b5aefa23760a609fd9eb5b53fc6cb91f0fca3dd0f7a378503fea7cdf84b4e622632

A major portion of the SWMF source code has been released on Github un-633

der a non-commerical open source license (https :// github .com / MSTEM -QUDA).634

The full SWMF suite is publicly available via registration under a user license635

(http://csem.engin.umich.edu/tools/swmf).636
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