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Abstract

The United States Federal Emergency Management Agency (FEMA) provides model-output localized flood grids that are useful

in characterizing flood hazards for properties located in the Special Flood Hazard Area (SFHA - areas expected to experience

a 1% or greater annual chance of flooding). However, due to the unavailability of higher-return-period flood grids, the flood

risk of properties located outside the SFHA cannot be quantified. Here, we present a method to estimate flood hazards for U.S.

properties that are located both inside and outside the SFHA using existing annual exceedance probability (AEP) surfaces.

Flood hazards are characterized by the Gumbel extreme value distribution to project extreme flood event elevations for which

an entire area is assumed to be submerged. Spatial interpolation techniques impute flood elevation values and are used to

estimate flood hazards for areas outside the SFHA. The proposed method has the potential to improve the assessment of flood

risk for properties located both inside and outside the SFHA and therefore to improve the decision-making process regarding

flood insurance purchases, mitigation strategies, and long-term planning for enhanced resilience to one of the world’s most

ubiquitous natural hazards.
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Abstract 18 

The United States Federal Emergency Management Agency (FEMA) provides model-output 19 

localized flood grids that are useful in characterizing flood hazards for properties located in the 20 

Special Flood Hazard Area (SFHA ─ areas expected to experience a 1% or greater annual chance of 21 

flooding). However, due to the unavailability of higher-return-period flood grids, the flood risk of 22 

properties located outside the SFHA cannot be quantified. Here, we present a method to estimate 23 

flood hazards for U.S. properties that are located both inside and outside the SFHA using existing 24 

annual exceedance probability (AEP) surfaces. Flood hazards are characterized by the Gumbel 25 

extreme value distribution to project extreme flood event elevations for which an entire area is 26 

assumed to be submerged. Spatial interpolation techniques impute flood elevation values and are 27 

used to estimate flood hazards for areas outside the SFHA. The proposed method has the potential to 28 

improve the assessment of flood risk for properties located both inside and outside the SFHA and 29 

therefore to improve the decision-making process regarding flood insurance purchases, mitigation 30 

strategies, and long-term planning for enhanced resilience to one of the world’s most ubiquitous 31 

natural hazards.  32 
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1 Introduction 33 

The perilous and expensive nature of flood hazards calls for concurrent improvements in the 34 

ability of scientists to measure their risk (Kron 2005). Moreover, rapid increases in the population 35 

living in marginal areas relative to the flood hazards (Moulds et al. 2021), amid the consequences of 36 

land use changes (Akter et al. 2018; Qiang et al. 2017)), a changing climate (Kreibich et al. 2015; 37 

Zhou et al. 2012), sea level rise (Bushra et al. 2021; Nicholls et al. 1999), and local factors such as 38 

subsidence (Mostafiz et al. 2021a) and extreme weather events (Guhathakurta et al. 2011), underline 39 

the urgent need for accelerated improvements in flood risk assessment (Merz et al. 2014; Mostafiz 40 

2022a). Yet proportionately little advancement has been made. Flood risk maps are often outdated 41 

and ignore expression of uncertainty in the depth-duration-return period relationships (Hassini & Guo 42 

2017; Tuyls et al. 2018). Consequences of this gap in scientific analysis ripple into many facets of 43 

flood awareness, communication, modeling, planning, preparation, and recovery (Huang & Xiao 44 

2015). Thus, improved quantification of flood hazards, and therefore flood risk, is crucial not only 45 

for its own sake, but also for the benefit of other, related efforts to reduce flood-induced losses to life 46 

and property (Al Assi et al. 2022; Gnan et al. 2022a; Merz et al. 2014; Mostafiz et al. 2021b, 2022b; 47 

Rahim et al. 2022a).   48 

One component of flood hazard quantification that is of particular importance in planning for 49 

development is the accurate estimations of return-period-based flood depths (Yang et al. 2020). This 50 

is especially important for infrastructure that is expected to be protected during its service over a long 51 

period of usefulness (Requena et al. 2013), such as residential and commercial construction, roads, 52 

bridges, tunnels, and historical/cultural sites. Not only do lives and livelihoods depend on the 53 

protection of such flood-safe infrastructure (Wiering 2019), but renovating and rebuilding these 54 

resources after a flood is expensive, disruptive, unpleasant, and incongruent with the ongoing quest 55 

for healthier and more resilient individuals and communities (Sayers et al. 2018), if it is possible at 56 

all.  57 

Not surprisingly given the paucity of updated scientific work on flood, few if any historical 58 

records of such estimates may exist to guide construction, protection, or restoration efforts. Thus, 59 

reliance on hydrologic and hydraulic modeling of flood events as a function of annual exceedance 60 

probability (AEP; i.e., reciprocal of return period) is necessary (Mostafiz et al. 2021c). However, 61 

relatively flood-safe areas often have “null” (i.e., zero or negative) depth values at modeled return 62 

periods, even while vulnerability remains substantial during the life span of the infrastructure 63 

(Mostafiz et al. 2021c). This leaves even fewer known depth values for planning purposes and may 64 

compound flood estimation errors at successively longer return periods, which further weakens 65 

efforts to mitigate the impacts of the most destructive floods (Kundzewicz et al. 2013). Therefore, 66 

stochastic statistical methods are vital tools to enhance the hydrologic-modeled data for estimating 67 

flood (McCuen 2016), to provide construction specialists, architects, developers, and urban and 68 

regional planners with adequate information to build more resilient facilities and communities (Olsen 69 

et al. 2015).  70 

Previous research has focused on estimating flood hazard and risk for properties located 71 

inside the Special Flood Hazard Area (SFHA ─ areas exposed to 1% or greater annual chance of 72 

flooding), where flood insurance is mandatory (e.g., Habete & Ferreira 2017; Johnston & Moeltner 73 

2019; Mobley et al. 2021; Posey & Rogers 2010). The areas outside the SFHA are divided into the 74 

“shaded X Zone” (i.e., between 1% and 0.2% annual chance of flooding inundation areas) and the 75 

“unshaded X Zone” (i.e., outside of the 0.2% annual chance of flooding inundation area) (Crowell et 76 

al. 2010). Generally, no estimates of flood risk exist for properties located in the shaded or unshaded 77 
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X Zones (Czajkowski et al. 2013). Additionally, flood insurance is not mandatory in these areas 78 

(Kousky 2018), despite the fact that the flood risk is non-zero, may be substantial (especially where 79 

valuable and/or expensive infrastructure exists), and may be poorly understood by scientists 80 

(Czajkowski et al. 2013). The properties inside the shaded X Zone are considered to have “moderate” 81 

flood risk whereas properties inside the unshaded X Zone are labeled as being subjected to “minimal” 82 

flood risk (Federal Emergency Management Agency (FEMA) 2005), even though the precise risk 83 

throughout the zone is currently unknown. The need for greater quantitative techniques is obvious, so 84 

that citizen constituents and government leaders are more aware of the risks that they and their 85 

communities face (Mostafiz et al. 2022c, 2021d).  86 

The overarching goal of this research is to characterize flood hazards at locations both inside 87 

and outside the SFHA. More specifically, the research addresses the question, “If no modeled flood 88 

data exist for some or all return periods, what are the flood characteristics?” To that end, this research 89 

introduces a method for describing flood hazards whereby the flood is characterized using the 90 

Gumbel extreme value distribution (Nadarajah & Kotz 2004; Waylen & Woo 1982), and flood 91 

elevations are projected at higher return periods (Mostafiz et al. 2021c). The gaps in flood surfaces 92 

due to limited data are filled by spatial interpolation techniques. These filled elevation values are then 93 

used to estimate floods for the locations inside the shaded or unshaded X Zones.  94 

The contribution of this research is the development of a novel method to estimate flood 95 

hazard characteristics based on existing modeled flood surfaces. Ultimately, this technique will help 96 

government agencies and community officials to formulate policies and homeowners to make more 97 

informed decisions regarding insurance purchase (Rahim et al. 2021, 2022b), mitigation strategy 98 

(Zarekarizi et al. 2020; Zhou et al. 2012), and long-term planning (Gnan et al. 2022b). 99 

2 Method 100 

The method consists of extrapolating flood depths using the Gumbel extreme value 101 

distribution at the locations where a Gumbel fit is possible because flood depths for at least two 102 

return periods are known. Extreme return periods are selected where most of the study area is 103 

assumed to be submerged (Figure 1). Then, spatial interpolation techniques (Lam 1983), including 104 

moving average (e.g., Haining 1978; Chang et al. 1984), inverse distance weighting (IDW; e.g., 105 

Fassnacht et al. 2003; Lu & Wong 2008), natural neighbor (e.g., Watson 1999; da Silva et al. 2019), 106 

and kriging (e.g., Delhomme 1978; Oliver & Webster 1990), are used to estimate the flood elevation 107 

for the extreme return periods at grid cells for which no data-derived distribution can be fit 108 

confidently. It is necessary to use flood elevation rather than flood depth for spatial interpolation 109 

because flood depth cannot be smoothed across space, while flood elevation is generally insensitive 110 

to differences in surface elevation. The imputed extreme-return-period flood elevations are then fit 111 

with the Gumbel distribution and used to estimate flood depth for locations that are unflooded at 112 

shorter return periods to verify that negative values, confirming that the surface is not flooded at that 113 

return period) are returned. Through this method, the flood depth vs. annual non-exceedance 114 

probability relationships are established for all locations in the study area, which can then be used to 115 

develop flood hazard estimates that are more reasonable to expect within the useful life of the 116 

building or settlement.  117 
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 118 

Figure 1. Schematic representation of the concept behind the flood depth surface estimating method.  119 

2.1 Study Area and Data 120 

A frequently-flooded residential neighborhood in Metairie, Louisiana (Jefferson Parish), 121 

bounded by the area shown in Figure 2, is used for this case study. This site is chosen primarily 122 

because of the availability of model-output flood depth grids for four return periods – 10, 50, 100, 123 

and 500 years – developed at a scale of 3.048 m x 3.048 m, by FEMA through its Risk Mapping, 124 

Assessment and Planning (Risk MAP) program (FEMA, 2021). The grid cells located within SFHA 125 

have at least two flood depth values (i.e., 100- and 500-year return periods) for which the Gumbel 126 

distribution can be fit initially (described in Section 2.3). For the grid cells located in shaded-X zone 127 

(i.e., only 500-year flood depth is available) or unshaded-X zone (i.e., no flood information 128 

available), spatial interpolation is conducted to characterize flood in these grids (described in Section 129 

2.4). 130 

The study area consists of 44 census blocks with a total area of approximately 1.126 km2. The 131 

mean elevation in this below-sea-level, levee-protected area is –5.5 feet with a standard deviation of 132 

0.71 and a range of –9.0 to –2.9 feet. Descriptive statistics of the Risk MAP-output flood depths by 133 

return period are shown in Table 1. The spurious maximum value for the 100-year return period, 134 

which is equal to that of the 500-year return period (Table 1), suggests that data cleanup is necessary.  135 

 136 

Figure 2. Study area in Metairie, Louisiana. 137 
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Table 1. Descriptive statistics of preliminary (uncleaned) flood depths (feet) by return period for the 138 

Metairie, Louisiana, study area. 139 

Return 

Period 

(years) 

Mean 

(ft.) 

Standard 

Deviation 

(ft.) 

Minimum 

(ft.) 

Maximum 

(ft.) 

Number of 

Flooded Cells 

10 0.67 0.45 0.00 3.40   51,937 

50 0.75 0.50 0.00 3.70   68,937 

100 0.90 0.58 0.00 4.10   91,163 

500 0.93 0.58 0.00 4.10 100,705 

 140 

Figure 3.  Schematic summary of the flood hazard characterization method. 141 

2.2 Data Cleaning 142 

Initial quality checks of the source data are performed to identify cells with unrealistic flood 143 

depths. The three types of spurious source data are: 1) any cell with a reported flood depth less than 144 

or equal to zero for any return period; 2) any cell in which a flood depth for a shorter return period 145 

equals or exceeds that for any longer return period; and 3) any cell in which a shorter-duration return 146 

period has a reported flood depth but a longer return period has a null (i.e., flood-free) value. Flood 147 

depth values for all return periods at any cell that violate any of the three rules above are 148 

characterized as “missing.” Flood depth values for cells in which the depth is known (i.e., non-null) 149 

for only the 500-year return period are removed here temporarily, but the regression parameters 150 

derived are used later to project flood depth as a function of return period for such cells.   151 
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2.3 Gumbel Fitting for Cells Flooded by 100-Year Return Period Event 152 

The Gumbel distribution is a widely accepted method for flood frequency analysis (e.g., 153 

Kumar & Bhardwaj 2015; Singh et al. 2018). The right-skewed nature of flood return periods makes 154 

the Gumbel distribution ideal for estimating the depth vs. annual non-exceedance probability 155 

relationship. The two-parameter (i.e., 𝑢 and 𝛼, which are the calculated, site-specific location and 156 

scale parameters, respectively) Gumbel extreme value probability density function (PDF) as a 157 

function of flood depth (𝐷) is: 158 

𝑓(𝐷) =  (
1

𝛼
) 𝑒𝑥𝑝 {− (

𝐷−𝑢

𝛼
) − 𝑒𝑥𝑝 [− (

𝐷−𝑢

𝛼
)]} (1) 159 

The cumulative distribution function (CDF) is equal to the non-exceedance probability, P, or 160 

𝑃 = 𝐹(𝐷) =  𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (
𝐷−𝑢

𝛼
)]} (2) 161 

Solving for D yields the Gumbel inverse CDF, where D is obtained as a function of 𝑃 and the 162 

Gumbel parameters as: 163 

𝐷 = 𝐹−1[𝐹(𝐷)] = 𝑢 − 𝛼 {𝑙𝑛[−𝑙𝑛(𝑃)]} (3) 164 

For each cell having non-null 𝐷 for at least two return periods, all non-null return periods are 165 

used to fit the Gumbel distribution. The site-specific 𝑢 represents the 𝐷 at a theoretical, asymptotic 166 

approximately-1.58-year return period. Thus, 𝑢 would be positive for cells located in coastal areas or 167 

water bodies and negative for cells located in non-water bodies, including residential areas (Mostafiz 168 

et al. 2021c), because a developed area would rarely flood at a 1.58-year return period.  169 

The cells that flood at all four (i.e., 10-, 50-, 100-, and 500-year) return periods are examined 170 

first. Such cells that represent a water body are distinguished from those that represent a (flood-171 

prone) terrestrial surface. Each cell that is actually terrestrial and has a negative 𝑢 is considered to 172 

have a plausible Gumbel fit, while each terrestrial cell with a positive 𝑢 is considered to have a 173 

spurious fit. To correct the fit for the cells having a spurious 𝑢 value, the Gumbel distribution is re-fit 174 

while including a “dummy” 2-year return period having a 𝐷 of –0.05 feet in addition to the known 175 

return period depths. A return period of less than two years is cumbersome because calculation of the 176 

natural logarithm function for such short return periods yields an unstable result that approaches 177 

negative infinity for near-zero return periods. For each cell in which the resulting re-calculated 𝑢 178 

value based on (now) five return periods then has the appropriate sign, the re-fit Gumbel parameters 179 

are accepted. However, for each terrestrial cell in which the re-fit Gumbel distribution again produces 180 

a 𝑢 value with a spurious sign, the iteration of re-fitting the Gumbel distribution (this time using a 𝐷 181 

of –0.10 feet) is continued, with the process repeated using incremental dummy decreases in 𝐷 of –182 

0.15 feet, –0.20 feet, etc., with the process ending at the first iteration that generates a negative value 183 

for 𝑢. 184 

The cells flooded at only three (i.e., 50-, 100-, and 500-year) return periods and having null 𝐷 185 

(i.e., flood-free) at the shortest (i.e., 10-year) return period are treated next. For such cells, the 186 

Gumbel distribution is fit using only the three valid return periods, and 𝐷 must be estimated for the 187 

10-year return period using the Gumbel distribution with the 𝛼 and 𝑢 parameters derived for that cell. 188 

If such an estimate yields a negative value for the 10-year return period, the estimation is considered 189 

valid. However, if the calculation results in a positive value, correction is necessary because the cell 190 
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is known to be flood-free at that return period. In such cases, a dummy 10-year return period 𝐷 of –191 

0.05 feet is assigned, and the Gumbel distribution is fit once again, this time using this dummy 𝐷, 192 

along with the output for the three 𝐷 values for the same cell. For cells in which this new Gumbel fit 193 

using the dummy value produces a “correct” condition (i.e., flood-free) regarding 𝐷, the revised 194 

𝛼 and 𝑢 Gumbel parameters are accepted for that cell. However, for cells in which the “correct” 195 

flood condition is still not predicted accurately, the dummy 10-year return period 𝐷 is replaced by –196 

0.10 feet, and the Gumbel distribution is then run a third time for that cell. For cells in which this 197 

new dummy 𝐷 now generates a “correct” condition, the re-revised 𝛼 and 𝑢 parameters are “accepted” 198 

for that cell, but for those “null” cells still having a positive calculated 10-year-return-period 𝐷, yet 199 

another iteration is necessary, this time using a 𝐷 of –0.15 feet. Each iteration provides more cells 200 

with “correct” 10-year-return-period 𝐷 values, with the 𝛼 and 𝑢 Gumbel parameters from the fit that 201 

makes the depth “correct” replacing the former parameters. The process continues iteratively, 202 

changing the dummy 𝐷 incrementally by –0.05 feet, until all cells have a “correct” estimation of the 203 

10-year-return-period 𝐷.  204 

The cells having known, positive 𝐷 (i.e., flooded) at only two (i.e., 100- and 500-year) return 205 

periods and null 𝐷 values (i.e., flood-free) at the two shortest (i.e., 10- and 50-year) return periods are 206 

treated next. These places are less flood-prone than those analyzed previously. For each of these cells 207 

taken individually, the Gumbel 𝛼 and 𝑢 parameters are derived based only on the two return periods 208 

and are used to estimate the 50-year return-period 𝐷. If the calculation results in a positive value, 209 

correction is necessary because the cell is known to be flood-free at that return period. In such cases, 210 

a dummy 50-year return period 𝐷 of –0.05 feet is assigned for such cells, and the Gumbel 211 

distribution is fit once again, this time using this dummy 𝐷, along with the output for the two 𝐷 212 

values for the same cell. The process continues iteratively, changing the dummy 𝐷 incrementally by 213 

–0.05 feet, until all cells have the “correctly” estimated sign of the 50-year-return-period 𝐷. There is 214 

no need to repeat the process for the cells that have 10-year-return-period 𝐷 of the “incorrect” sign, 215 

as cells that are not flooded at the 50-year return period will not be flooded at the 10-year return 216 

period. 217 

2.4 Parameter Estimation for Cells Not Flooded by 100-Year Return Period Event 218 

At each cell flooded by the 100-year return period event, the unique 𝛼 and 𝑢 values are used 219 

to extrapolate 𝐷 at that cell for floods of small probabilities (i.e., higher return periods, including 220 

5,000-, 10,000-, 15,000, and 20,000-year), over which the entire study area is assumed to have 221 

flooded. The flood elevation of each of these extrapolated extreme periods is calculated as the sum of 222 

𝐷 at that return period and the ground elevation of the corresponding cell. It is necessary to use flood 223 

elevation rather than 𝐷 for spatial interpolation because flood elevation is insensitive to differences in 224 

surface elevation.  225 

Several spatial interpolation techniques are applied to the study area, separately for each 226 

extreme return period (i.e., 5,000-, 10,000-, 15,000, and 20,000-year). A moving average filter is 227 

used to impute all missing flood elevation cells in the study area, by experimenting with different 228 

window sizes. The dimensions of the final window selected are determined as the smallest that can 229 

impute all missing cells, with the same-sized window used for all return periods. Then, because the 230 

flood elevation surface of a completely flooded surface should be smooth, a 3x3 moving window is 231 

run to smooth the flood elevation surface (i.e., reduce undulations over the flooded terrain). Along 232 

with the moving average-smoothing, IDW, natural neighbor, and ordinary kriging spatial 233 

interpolation techniques are also used (separately) to impute the missing cell values. Assessment of 234 

the relative effectiveness of each technique is conducted. The result of the spatial interpolation 235 
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procedure is a complete set of flood elevations at each extreme return period for each cell in the study 236 

area, including those cells for which the values were expunged at the shorter return periods.  237 

After deducting the ground elevation, 𝐷 for the extreme return period events (i.e., 5,000-, 238 

10,000-, 15,000-, and 20,000-year) is used to estimate the flood characteristics in areas unflooded at 239 

the 500- and 100-year return periods. Several scenarios are possible. First, for cells that have a 240 

positive 500-year 𝐷 (i.e., are flooded) but are unflooded at 100-year (and shorter) return periods, the 241 

Gumbel distribution is fit using the 500-year return period 𝐷 along with the spatially interpolated 242 

estimates at 5,000-, 10,000-, 15,000-, and 20,000-year return periods, and a dummy 100-year return-243 

period 𝐷 of –0.05 feet. If the resulting estimation of the 100-year return-period 𝐷 is negative, the 244 

values are accepted. However, a (falsely) positive 100-year return period 𝐷 calculation requires a 245 

refitting using the Gumbel distribution for a 100-year return period 𝐷 of –0.10 feet. Again, if the 246 

value is falsely positive, the iteration process continues at incrementally changing dummy values 247 

until the 100-year return-period 𝐷 is (correctly) negative (i.e., null, or flood-free). 248 

A second scenario occurs for cells that have a null 𝐷 (i.e., unflooded surface) at the 500-year 249 

return period but a positive estimated 𝐷 (i.e., flooded) at the 5,000-year return period. For such cells, 250 

the Gumbel distribution is fit using the spatially interpolated estimates at the 5,000-, 10,000-, 15,000-251 

, and 20,000-year return periods along with a dummy 𝐷 of –0.05 feet for the 500-year return period. 252 

The iteration process continues analogously to the previous examples, but with a 500-year return-253 

period 𝐷 of –0.10, –0.15 feet, etc. until the 500-year return-period 𝐷 estimate is (correctly) flood-254 

free.  255 

Likewise, the third scenario involves cells with null (i.e., flood-free) 𝐷 at 500- and spatially 256 

interpolated 5,000-year return periods. In such cases, the Gumbel distribution is fit using the 5,000-, 257 

10,000-, 15,000-, and 20,000-year return period estimates.  258 

The fourth scenario involves correcting any cells for which the spatially interpolated 5,000-259 

year depth is spuriously less than the Risk MAP-modeled 500-year 𝐷. In those cases, the Gumbel 260 

distribution is fit using the 500-year 𝐷 along with a dummy flood 100-year return period 𝐷 of –0.05 261 

feet. If the resulting 100-year value is (falsely) positive, the fitting process continues iteratively 262 

(using –0.10, –0.15 feet, etc.) until the estimated 100-year 𝐷 becomes a negative value. 263 

2.5 Validation of the Gumbel Fit and Spatial Interpolation Techniques 264 

Model validation is then performed by statistically comparing the estimated 𝐷 at the 10-, 50-, 265 

100-, and 500-year return periods with the originally available Risk MAP-modeled data. More 266 

specifically, the estimated 𝐷 at the 10-, 50-, 100-, and 500-year return periods should be negative in 267 

flood-free cells and positive in flooded cells, as represented in the originally available data. 268 

Descriptive statistics are presented based on the estimated and original 𝐷 values, where the Gumbel 269 

distribution is fit initially with the original available 𝐷 data.  270 

Then, four spatial interpolation methods are implemented (one at a time, separately) to 271 

estimate Gumbel parameters (i.e., 𝛼 and 𝑢) for cells having zero or only one non-null 𝐷 values (i.e., 272 

at the 500-year return period), based on values calculated at cells with two or more non-null values.  273 

The validity of the Gumbel estimation of 𝐷 at cells having one non-null value is assessed via the 274 

descriptive statistics of the difference between the estimated and Risk MAP-modeled value at the 275 

known (i.e., 500-year) return period, by spatial interpolation technique.  276 
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2.6 Sensitivity Analysis 277 

A sensitivity analysis is performed, cell by cell, to check the extent to which the success of 278 

the estimation procedure, based on the Gumbel parameters, hinges on the number of “known” 𝐷 279 

values. The model fit is assessed separately via descriptive statistics for the complete set of paired 280 

predicted vs. known 𝐷 values at a particular return period. At each cell, taken one at a time, if 𝐷 is 281 

known from Risk MAP-model-output at 10-, 50-, 100-, and 500-year return periods, the 10-, 50-, and 282 

100-year-return-period 𝐷 values are used to predict the 500-year-return-period 𝐷. An analogous 283 

procedure is used for cells that have known 𝐷 at three return periods. Similarly, the 𝐷 values at 10- 284 

and 50-year return periods are used to predict 𝐷 at the 100- and 500-year return periods. In each case, 285 

the model fit is assessed separately via descriptive statistics of the paired difference between 286 

predicted vs. known 𝐷. 287 

3 Results 288 

3.1 Data Cleaning 289 

The data cleaning process described in Section 2.2 is run on the 121,215 cells in the study 290 

area. Data cleaning identifies 32 cells with 𝐷 equal to zero (no cells have negative 𝐷), 3,575 cells for 291 

which a shorter return period 𝐷 equals or exceeds a longer return period 𝐷, and 2,365 cells for which 292 

a positive shorter return period 𝐷 is accompanied by a “null” longer return period 𝐷 (Table 2). The 293 

original 𝐷 values in these 5,972 cells (4.9% of the initial cells) are thus unused in the analysis 294 

because they fail one or more of these data cleaning tests.  295 

Table 2. Number of cells in the study area removed by each data cleaning criterion. 296 

Data Cleaning Rule Number of Cells 

10-year flood depth ≤ 0 13 

50-year flood depth ≤ 0 16 

100-year flood depth ≤ 0 1 

500-year flood depth ≤ 0 2 

10-year flood depth ≥ 50-year flood depth 776 

10-year flood depth ≥ 100-year flood depth 0 

10-year flood depth ≥ 500-year flood depth 2 

50-year flood depth ≥ 100-year flood depth 530 

50-year flood depth ≥ 500-year flood depth 4 

100-year flood depth ≥ 500-year flood depth 2,263 

10-year flood depth ≥ 0 and 50-year flood depth is NULL 7 

10-year flood depth ≥ 0 and 100-year flood depth is NULL 0 

10-year flood depth ≥ 0 and 500-year flood depth is NULL 0 

50-year flood depth ≥ 0 and 100-year flood depth is NULL 4 

50-year flood depth ≥ 0 and 500-year flood depth is NULL 1 

100-year flood depth ≥ 0 and 500-year flood depth is NULL 2,353 

Total 5,972 

  297 



Data-driven Flood Hazard Characterization 

 
10 

This is a provisional file, not the final typeset article 

3.2 Gumbel Fitting 298 

Descriptive statistics for the scale (𝛼) and location (𝑢) parameters are shown in Table 3. Once 299 

the 𝛼 and 𝑢 parameters are corrected for all cells, they are used to extrapolate 𝐷 for the 5,000-, 300 

10,000-, 15,000-, and 20,000-year return periods in their respective cells.  301 

Table 3. Descriptive statistics of 𝛼 and 𝑢 for the location (cells) flooded by more than one return 302 

period in the Metairie, Louisiana, study area. 303 

Gumbel 

Parameter 

Mean Standard 

Deviation 

Minimum Maximum 

𝛼  0.24 0.08 0.08 0.82 

𝑢  –0.33 0.37 –3.16 0.00 

The smallest possible moving-average window that interpolates all flood elevation values at 304 

extreme return periods is 31x31 cells. Descriptive statistics for the spatially interpolated and 305 

smoothed Gumbel parameters are shown in Table 4. A negative value is found for 𝑢 in every cell. 306 

The Risk MAP-modeled 500-year 𝐷 spuriously exceeds the spatially interpolated 5,000-year depth in 307 

36 cells (0.03% of the study area), so correction procedures described in Section 2.4 in the “fourth 308 

scenario” are implemented.  309 

Table 4. Descriptive statistics for 𝛼 and 𝑢, after implementing a 31x31 moving average and a 3x3 310 

moving average, based on extrapolated 𝐷 values of the 5,000-, 10,000-, 15,000-, and 20,000-year 311 

return periods, for locations flooded by only one (i.e., 500-year) or no return periods, after removal of 312 

spurious cells, for the Metairie, Louisiana, study area.  313 

Gumbel 

Parameter 

Mean  Standard 

Deviation  

Minimum Maximum 

 𝛼  0.28 0.22 0.07 2.08 

 𝑢  –1.72 1.41 –12.96 –0.39 

3.3 Validation  314 

The procedure described in Section 2.5 regarding validation of the distribution is 315 

implemented for the case study area. Table 5 shows the descriptive statistics and root-mean-square 316 

error (RMSE) of the difference between estimated and Risk MAP-modeled data for cells having at 317 

least two non-null 𝐷 values. These results verify that a relatively small amount of error is introduced 318 

in the estimation procedure, if it can be assumed that the Risk MAP data are “correct.”  319 

Table 5. Descriptive statistics and root-mean-square error for Risk MAP-modeled minus predicted 𝐷, 320 

for cells having two or more originally-modeled 𝐷 from among 10-, 50-, 100-, and 500-year return 321 

periods, for Metairie, Louisiana, study area. 322 
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Mean (ft.) Standard Deviation 

(ft.) 

Minimum 

(ft.) 

Maximum 

(ft.) 

RMSE 

(ft.) 

10-year 0.17 0.21 –0.25 1.58 0.27 

50-year –0.01 0.09 –0.33 0.53 0.09 

100-year 0.13 0.07  –0.00 0.85 0.15 

500-year –0.10 0.11 –0.95 0.57 0.14 

For cells having only a 500-year Risk MAP-modeled 𝐷, the relative correspondence between 323 

the spatially interpolated estimated 500-year 𝐷 and that from Risk MAP is calculated by spatial 324 

interpolation technique. Because of the strong correspondence across spatial interpolation methods, 325 

values are expressed in inches (Table 6). Results suggest that the selection of spatial interpolation 326 

technique has little impact on the results. 327 

Table 6. Descriptive statistics and root-mean-square error for Risk MAP-modeled minus predicted 328 

500-year 𝐷, for cells having only 500-year return period flood depth, for the Metairie, Louisiana, 329 

study area, by moving average (31x31) and smoothing (3x3), inverse distance weighting, natural 330 

neighbor, and ordinary kriging. 331 

Interpolation Technique 
Mean 

(in.) 

Standard Deviation 

(in.) 

Minimum 

(in.) 

Maximum 

(in.) 

RMSE 

(in.) 

Moving Average and Smoothing –1.14 1.30 –11.43 6.90 1.73 

Inverse Distance Weighting –1.12 1.32 –11.43 6.92 1.73 

Natural Neighbor –1.11 1.33 –11.43 6.92 1.73 

Ordinary Kriging –1.12 1.32 –11.43 6.93 1.73 

3.4 Sensitivity Analysis 332 

The sensitivity analysis described in Section 2.6 quantifies the rationality of using Gumbel 333 

extreme value distribution even as the number of known points decreases to two (Table 7). Results 334 

suggest that, not surprisingly, the increased magnitudes of the 500-year 𝐷 leave a wider range from 335 

which the estimate can deviate from the actual 𝐷. Also, it is not surprising that the largest standard 336 

deviation of this modeled-vs.-estimated difference occurs for predicting the 500-year 𝐷 when 𝐷 is 337 

known at only two return periods. Nevertheless, even in such cases, the RMSE falls within a half-338 

foot.  339 
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Table 7. Descriptive statistics and root-mean-square error of the difference (∆) between the Gumbel 340 

model-based flood depth (𝐷) estimation and Risk MAP-modeled 𝐷, when using 𝐷 at known return 341 

periods to predict 𝐷 at another known return period, for Metairie, Louisiana, study area. 342 

Scenario Mean 

(ft.) 

Standard 

Deviation 

(ft.) 

Minimum 

(ft.) 

Maximum 

(ft.) 

RMSE (ft.) 

∆ 500-year depth using 

10-, 50-, and 100-year 

depth as predictors 

0.32 0.22 –0.26 1.87 0.39 

∆ 100-year depth using 

10- and 50-year depth as 

predictors 

–0.02 0.20 –0.46 1.09 0.20 

∆ 500-year depth using 

10- and 50-year depth as 

predictors 

0.28 0.38 –0.46 2.65 0.47 

4 Discussion and Limitations 343 

This method offers a means for circumventing the ever-present dilemma of how to ensure 344 

high-quality modeling to support planning for preventing, mitigating, and/or adapting to future flood 345 

events when little measured data are available, for locations where advanced hydrological and 346 

hydraulic modeling has been conducted to determine estimate 𝐷 at multiple return periods. In the 347 

case study area in Metairie, Louisiana, only approximately 5 percent of the cells failed the “data 348 

cleaning” tests, which suggests that the modeled data are reasonable. Nearly all of the spurious data 349 

occurred when shorter return period 𝐷 exceeds longer return period 𝐷 or longer return period 𝐷 is 350 

null.  351 

If it can be assumed that the Risk MAP-modeled data are the “correct” values, the Gumbel 352 

distribution-generated flood parameters are shown to be remarkably stable for simulating and 353 

imputing 𝐷 for various return periods. The fact that 𝑢 remains negative in all cases verifies that the 354 

correction algorithm succeeded in ensuring that all terrestrial cells are not submerged under normal 355 

conditions. The much smaller standard deviation for 𝛼 than for 𝑢 is likely an artifact of the small, 356 

homogeneously-elevated study area. As 𝛼 represents the slope of the Gumbel fit line, each cell in the 357 

study area will have a similar relationship between 𝐷 and 𝑃. This contrasts with 𝑢, which can have a 358 

wider range of values, suggesting that some cells are more susceptible to flooding than others, even 359 

within the same neighborhood.  360 

Validation and sensitivity analysis confirm that the method is relatively insensitive to the 361 

spatial interpolation technique chosen. The relatively small errors, as evidenced by the small RMSE 362 

values (see Table 5), even for 500-year 𝐷 and even when 𝐷 values for only two return periods are 363 

known, are interpreted as evidence that the procedure is successful. The Gumbel distribution is 364 

deemed to provide an acceptable result. Moreover, the relatively small RMSE values, even between 365 

estimated vs. modeled 500-year 𝐷 and even when 𝐷 values for only two return periods are known, 366 
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imply that 𝐷 can be estimated relatively accurately and precisely. Such estimates can provide 367 

engineers and planners with useful information for enhancing infrastructure to accommodate low-368 

frequency, large-magnitude flood events. Although the method is computationally intensive, it can be 369 

automated for improved 𝐷 estimates for any location that is “data rich” regarding 𝐷 grids at multiple 370 

return periods. Refinements in the modeled data for short or long return periods may allow for further 371 

improved understanding of infrastructure needs for accommodating floodwaters.    372 

As with any research, there are limitations to the analysis and interpretation of results. Flood 373 

hazard estimation is, by necessity, based on such a limited number of data points, but the availability 374 

of FEMA-based model output at only a small number of locations and return periods necessitates use 375 

of this technique. Moreover, the rounding of original FEMA-modeled values to the tenth of a foot 376 

restricts the precision with which the results can be presented. This method was applied to a 377 

relatively limited geographical extent with homogeneous topography. Future work should evaluate 378 

the performance of the method across a larger geographical extent with more heterogeneous 379 

topography. In addition, the effect of climate change on flood hydroclimatology is not considered 380 

(Zhou et al. 2012). Changing climate may alter the log-linear shape of the Gumbel distribution, 381 

particularly if forecasts of increasing frequency of extreme precipitation events (Intergovernmental 382 

Panel on Climate Change 2014, p. 8) prove to be accurate. Likewise, differences in local land cover 383 

may cause differences in the Gumbel parameters for 𝐷 as a function of return period and in 384 

generating a continuous surface using the spatial interpolation techniques. Despite the fact that 385 

caution should be exercised in the interpretation of results for these and other reasons, the approach 386 

offers an advantageous “next step” in planning for, forecasting, and mitigating the world’s most 387 

destructive natural hazard.  388 

5 Summary and Conclusions 389 

Existing 𝐷 grids based on Risk MAP hydrologic and hydraulic model output provide 390 

communities with guidance data for anticipating and minimizing flood hazards. However, these 391 

depth grids are only available for limited locations and return periods. This study introduces a 392 

method for imputing flood depths and elevations for areas considered at low- to moderate-risk, where 393 

insufficient flood data are available to characterize the hazard. The method involves fitting the 394 

Gumbel extreme value distribution to rasterized flood data of flood depth as a function of annual 395 

non-exceedance probability, by cell. The method then uses the Gumbel parameters of scale (𝛼) and 396 

location (𝑢) to extrapolate flood elevations at extreme return periods for which it can be assumed that 397 

the study area is entirely flooded. Spatial interpolation algorithms are used to fill and smooth 398 

spatially the areas that are not flooded by the 100-year flood, and Gumbel scale and location 399 

parameters are determined for areas with previously uncharacterized or minimally characterized 400 

flood hazards. Validation and sensitivity analyses are conducted through comparison with Risk 401 

MAP-modeled output. A case study in Metairie, Louisiana, is used to illustrate the technique. For the 402 

study area, different spatial interpolation methods produced similar results when compared to Risk 403 

MAP-modeled output 𝐷 grids. Validation and sensitivity analyses of the case study illustrate that the 404 

method offers improvements in characterization of flood hazard for enhanced flood mitigation 405 

planning.  406 

Overall, the method performed well across the study area. The specific findings of the case 407 

study include that: 408 

• the presented method is able to characterize flood hazards in areas of low to moderate flood risk; 409 

for example, 100-year 𝐷 were predicted for cells with known 100-year 𝐷 with RMSE of 0.15 feet 410 
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• spatial interpolation of extrapolated surfaces functioned well, regardless of technique; for 411 

example, 500-year 𝐷 were imputed using spatial interpolation for cells with known 500-year 𝐷 412 

with RMSE of 1.73 inches 413 

• using 10-, 50-, and 100-year 𝐷 as predictors, the estimated 500-year 𝐷 had an RMSE of 0.39 feet 414 

while the estimated 100- and 500-year 𝐷 had an RMSE of 0.20 and 0.47 feet, respectively, when 415 

using 10- and 50-year 𝐷 as predictors 416 

Future availability of longer-return-period 𝐷 grids, such as for the 1,000-year flood, will 417 

enhance accuracy of our results. Additionally, because many areas have modeled 𝐷 for only the 100-418 

year return period or for no return periods at all, operationalization of the technique for locations that 419 

lack high-quality, modeled 𝐷 at multiple return periods is needed (Shen et al. 2021). Specifically, 420 

ratios between the 100-year 𝐷 and the 𝐷 estimated at other return periods, from nearby “data-rich” 421 

areas such as Metairie should be calculated as shown here. Then, the ratio between 100-year 𝐷 and 𝐷 422 

at other return periods may be used to derive 𝐷 at other return periods where only the 100-year 𝐷 has 423 

been modeled hydrologically (i.e., “data-medium” areas). Then, the relationship between ground 424 

elevation and the 100-year 𝐷 can be used to identify the 100-year return period 𝐷 for locations where 425 

no hydrological model output is available (i.e., “data poor” areas), based on that from data-rich and 426 

data-medium areas. Finally, if such modeling efforts yield plausible results, estimation of 𝐷 for other 427 

return periods in “data-poor” areas can be made based on the Risk MAP output from “data-medium” 428 

and “data-rich” areas.  429 
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