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Abstract20

The maximum extent of the last North American ice sheet is well constrained em-21

pirically, but it has proven to be challenging to simulate with coupled Climate-Ice Sheet22

models. Coupled Climate-Ice Sheet models are often too computationally expensive to23

sufficiently explore uncertainty in input parameters, and it is unlikely values calibrated24

to reproduce modern ice sheets will reproduce the known extent of the ice at the Last25

Glacial Maximum. To address this, we run a series of ensembles with a coupled Climate-26

Ice Sheet model (FAMOUS-ice), simulating the final stages of growth of the last North27

American Ice Sheets’ maximum extent. Using this large ensemble approach, we explore28

the influence of uncertain ice sheet, albedo, atmospheric, and oceanic parameters on the29

ice sheet extent. We find that albedo parameters determine the majority of uncertainty30

when simulating the Last Glacial Maximum North American Ice Sheets. Importantly,31

different albedo parameters are needed to produce a good match to the Last Glacial Max-32

imum North American Ice Sheets than have previously been used to model the contem-33

porary Greenland Ice Sheet, due to differences in cloud cover over ablation zones. Thus34

calibrating coupled climate-ice sheet models solely for present day strongly biases sim-35

ulations of past and future climates different from today.36

Plain Language Summary37

At the peak of the last ice age, an ice sheet covered much of North America. The38

extent of this ice sheet is well-understood after decades of intensive data collection, but39

producing a computer simulation of the ice sheet which matches our observations has40

been a challenge. This is partly because of uncertainty about the “correct” model set-41

up to create the best simulation, and partly because the computer models used in the42

simulations require large computing resources.43

In this paper, we present a series of simulations of the North American ice sheet44

at the peak of the last ice age using a fast-running computer model in which the atmo-45

sphere and ice sheets interact. We run hundreds of simulations to tackle the uncertainty46

about the optimum values for unknown input parameters. We find that the model’s rep-47

resentation of how reflective the ice sheet surface is has the most impact on the size and48

shape of the simulated ice sheet. Importantly, the parameter values that produce the best49

simulations of modern-day Greenland produce poor simulations of the North American50

ice sheets during the last ice age, calling into question whether the parameters chosen51

for modern Greenland will produce reasonable simulations of future ice sheet change and52

sea level rise.53

1 Introduction54

Accurately estimating future changes in ice sheets is crucial for producing mean-55

ingful projections of future sea level rise (IPCC, 2021). Ice sheets interact with the at-56

mosphere and ocean, and are vulnerable to instabilities in their growth and retreat (e.g.57

Shepherd et al., 2012; J. Gregory et al., 2012). These instabilities, along with the un-58

certainties in processes of climate and ice sheet evolution, make future projections us-59

ing numerical models difficult, and the accuracy of any future simulations is a challenge60

to assess. For the Greenland ice sheet, one of the main sources of uncertainty is the fu-61

ture changes in surface mass balance (the balance of accumulation and melt of snow and62

ice at the surface) (Fettweis et al., 2011). This surface mass balance is highly dependent63

on both the climate and the ice sheet topography, as well as the strong interactions be-64

tween the two. Thus projections of future Greenland evolution need to account for climate-65

ice sheet interactions (Goelzer et al., 2017). However, there are major challenges in rep-66

resenting surface mass balance and climate ice sheet interactions in models: (i) climate67

models often have large biases in ice sheet regions (Davy & Outten, 2020), (ii) these re-68
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gions are difficult environments to work in, limiting the observations we have of the cli-69

mate and surface mass balance (Vernon et al., 2013) and (iii) surface melt occurs in nar-70

row steep regions at the edge of the ice sheets that are difficult processes to capture or71

represent in global climate models.72

Major progress has been made to tackle these challenges and there are now sev-73

eral earth system models that include interactive ice sheets in Greenland and/or Antarc-74

tica (e.g. Danabasoglu et al., 2020; R. S. Smith et al., 2021). However, there are numer-75

ous challenges in simulating climate-ice sheet interactions. Perhaps most acutely, there76

is a mismatch of spatial and temporal scales between typical ice sheet and global climate77

models. Spatially, kilometer (or sub-kilometer) processes are important for accurate sim-78

ulation of ice sheet processes, such as grounding line migration, and margin precipita-79

tion gradients (Franco et al., 2012; Cornford et al., 2013), so recent ice sheet models have80

been developed to simulate ice sheets at this scale, e.g. through adaptive mesh refine-81

ment, and they require climate (or surface mass balance inputs) at that scale. On the82

other hand, Atmosphere Ocean General Circulation Models (AOGCMs) have a grid-box83

size 10-1000× larger than the scale of modelled ice sheet processes and inputs (Sellar et84

al., 2019; Danabasoglu et al., 2020). This conundrum of mistmatching scales is flipped85

in the time domain. Temporally, AOGCMs require sub-daily timesteps to accurately sim-86

ulate the climate system, while ice sheet change is usually a multi-centennial process.87

The spatial-temporal mismatch of scales creates a problem for computational efficiency,88

since high resolution is needed for both and isn’t easily compromised for one in favour89

of the other. Consequently, most AOGCMs cannot practically simulate interactive ice90

sheet change, instead prescribing the ice sheet extent as a boundary condition (e.g. Kageyama91

et al., 2017; Ivanovic et al., 2015; Menviel et al., 2019) and updating the ice sheet pe-92

riodically for palaeo runs where significant ice sheet change occurs. Similarly, ice sheet93

simulations often rely on prescribed climate or surface mass balance fields (e.g. L. J. Gre-94

goire et al., 2016; Patton et al., 2013; Gandy et al., 2021).95

Nonetheless, recent technical advances have allowed coupled simulations of the cli-96

mate and ice sheets, through a combination of model development and increasing com-97

pute power. The spatial mismatch between ice sheet and climate model grids can be ad-98

dressed by calculating ice-sheet relevant processes, such as albedo calculations, with sub-99

gridscale parameterisations (Ganopolski et al., 2010; Vizcáıno et al., 2013; Ziemen et al.,100

2014; R. S. Smith et al., 2020, 2021). One way to solve the problem of time scale (sub-101

daily timesteps for multimillennial integrations) is to couple the ice sheet to climate mod-102

els which are typically computationally efficient, in part due to having relatively low spa-103

tial resolution, meaning the the simulations can be run for the length of time needed to104

spin-up and simulate the co-evolution of ice sheets and climate.105

A remaining challenge is how coupled climate-ice sheet models should be calibrated106

and tested. For many models, uncertain parameters are hand-tuned to produce stable107

modern ice sheets of the right shape and size compared to observations. However, this108

only represents one point in time. The recent past, for which we have direct observations109

of ice sheets has seen relatively small changes compared to those expected in the next110

centuries. These observations thus provide poor constraints on the strength of climate-111

ice sheet feedbacks and there is a danger of over-fitting the model to modern conditions112

and compensating for biases in the simulated climate. To have confidence in the abil-113

ity of coupled climate-ice sheet models we need to test them under conditions different114

from today where we have sufficient observational constraints on the climate and ice sheets.115

We propose to use the Last Glacial Maximum as a benchmark for coupled climate-116

ice sheet models. This period, which occurred around 21,000 years ago, has been a fo-117

cus of the Palaeoclimate Model Intercomparison Project since the 1990s (Kageyama, Abe-118

Ouchi, et al., 2021), because it was a period of relatively stable and well documented cli-119

mate, with CO2 concentrations much lower than today (180 ppm). The North Amer-120

ican ice sheet is thought to have reached a relatively stable maximum extent, that is very121
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well reconstructed (e.g. Dyke et al., 2002; Peltier et al., 2015; Gowan et al., 2021). It is122

thus possible to run equilibrium simulations under LGM conditions with an interactive123

North American ice sheet until a stable maximum ice extent is reached, which can be124

meaningfully compared to reconstructions. Ice at the LGM reached much lower latitudes125

than today, providing a way to test the ability of models to represent SMB and climate-126

ice interactions under energy balance conditions different than modern Greenland.127

We use FAMOUS-Ice (R. S. Smith et al., 2020), a coarse resolution, fast running128

AOGCM, which has been used in long-palaeo simulations (R. S. Smith, 2012; J. Gregory129

et al., 2012; Roberts et al., 2014; Dentith et al., 2019; L. J. Gregoire et al., 2012) and130

uncertainty quantification (L. Gregoire et al., 2010), coupled to the Glimmer Ice Sheet131

model by downscaling SMB calculations (R. S. Smith et al., 2020), rather than previ-132

ous work using a PDD SMB scheme (J. Gregory et al., 2012). This coupled model has133

been used to simulate present and future Greenland Ice Sheet evolution (J. M. Gregory134

et al., 2020). We start the manuscript by presenting the first attempt at simulating the135

LGM with the FAMOUS-ice model with interactive ice sheets in Greenland and North136

America. Here, we use an atmosphere-only version of FAMOUS, prescribing Sea Sur-137

face Temperatures (SSTs) and Sea Ice Concentrations (SICs) in order to minimise bi-138

ases in surface climate. We found that with the standard tuning that reproduced the mod-139

ern Greenland shape and size (R. S. Smith et al., 2020) the model produces a collapse140

of the North American ice sheet under LGM climatic conditions. We then present the141

efficient method we developed to generate large ensembles of coupled climate ice sheet142

simulations simultaneously varying uncertain parameters controlling the climate, ice sheet143

and surface mass balance. Finally we show that albedo parameters are the primary con-144

trol on uncertainty in our ensemble and we investigate the link between, cloudiness, albedo145

and surface mass balance under modern and glacial conditions.146

2 Model description and setup147

FAMOUS-ice is a fast climate model coupled to the Glimmer ice sheet model (R. S. Smith148

et al., 2020). The atmospheric component is that of FAMOUS, a fast low resolution gen-149

eral circulation model designed for running simulations of the climate on multi-millennial150

timescales (e.g. Dentith et al., 2019; L. J. Gregoire et al., 2012) and large ensembles for151

calibration or uncertainty quantification purposes (L. Gregoire et al., 2010). The Glim-152

mer ice sheet model is a fast simplified 3D dynamical ice sheet model based on the shal-153

low ice approximation that is used to simulate continental ice sheets over glacial inter-154

glacial cycles (L. J. Gregoire et al., 2015; Rutt et al., 2009). A multilayer surface snow155

scheme is used in the atmosphere model to calculate surface mass balance (SMB) at ten156

different elevation levels within each grid cell that contains part of an ice sheet. The SMB157

calculated by the atmosphere model is regridded from the coarse FAMOUS-ice grid (7.5◦longitude158

by 5◦latitude) onto the surface of the Glimmer ice sheet model (in this case 40km×40km)159

each model year. The use of ten elevation levels on which SMB is calculated provides160

a mean to effectively “downscale” the SMB from the coarse atmospheric grid to the finer161

ice sheet grid. Coupled climate-ice sheet simulations would usually be too computation-162

ally expensive to run as part of large multi-millennial ensembles, but the speed of both163

FAMOUS and Glimmer make these experiments possible.164

During the development of FAMOUS-ice, albedo parameters were manually tuned165

to simulate a stable Greenland ice sheet at present day (R. S. Smith et al., 2020). The166

model has been applied to evaluate the long-term future decline of the Greenland Ice Sheet167

(J. M. Gregory et al., 2020). In both cases, sea surface temperatures and sea ice concen-168

trations in FAMOUS were prescribed from the output of higher resolution and complex-169

ity climate models to allow some control of the climate evolution and reduce the impact170

of biases resulting from atmosphere-ocean and sea ice interactions. FAMOUS can also171

be used with a dynamical ocean (e.g. Dentith et al., 2019) and the Glimmer ice sheet172
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component can be replaced with the more complex and computationally expensive BISI-173

CLES ice sheet model (Cornford et al., 2013; Matero et al., 2020; Gandy et al., 2018).174

We setup FAMOUS-ice to simulate the climate of the Last Glacial Maximum, with175

interactive North American and Greenland ice sheets. We follow the PMIP4 LGM pro-176

tocol (Kageyama et al., 2017) to setup most of the climate boundary conditions, includ-177

ing the CO2, CH4, and N2O concentrations. Global orography and the land-sea mask178

was taken from the 21 ka BP Glac-1D reconstruction (Tarasov et al., 2012b), and prein-179

dustrial (PI) vegetation distribution was implemented and kept constant throughout the180

run. Thus our simulation neglect the effects of climate-ice-vegetation feedbacks that can181

affect ice sheet evoluation (Stone & Lunt, 2013). The orbital configuration is set to 23182

ka BP, rather than 21 ka BP as in the PMIP4 protocol. This is 2,000 years prior to the183

ice sheet maximum extent to represent an orbit closer to point of maximum volume for184

the North American Ice Sheet (Peltier et al., 2015; Tarasov et al., 2012b). This slightly185

inhibits ice sheet growth as shown by a sensitivity experiment included in the supple-186

mentary information.187

SSTs and sea ice concentrations are taken from the statistical reconstruction of Astfalck188

et al. (2021), combining information from the PMIP LGM multi-model ensemble (Kageyama,189

Harrison, et al., 2021) and compilations of proxy data (Kucera et al., 2005), and their190

associated uncertainties. The method is able to generate ensembles of plausible SST and191

SIC pairs that can be used to drive atmosphere models. The simulated SSTs are in good192

agreement with the proxy-based reconstruction of Paul et al. (2021) with significantly193

warmer tropical SSTs than the data assimilation product of Tierney et al. (2020).194

The interactive ice sheet model domain is set to cover North America, Greenland,195

and Iceland. All other ice sheets are fixed to match the Glac-1D reconstruction. The Glim-196

mer initial condition is taken from a previous ensemble of North American Ice Sheet deglacia-197

tions (L. J. Gregoire et al., 2016); specifically, ensemble member Cano3-022 at 18.2 ka198

BP. This was chosen to represent an intermediate sized ice sheet resembling the likely199

extent during Marine Isotope Stage 3 (Gowan et al., 2021), from which to grow the North200

American ice sheet to an equilibrium ice sheet volume. In FAMOUS-ice, ice is able to201

grow by flowing onto a gridcell not previously covered in ice, but ice is not able to form202

from the accumulation of snow into an unglaciated gridcell. We thus chose an initial con-203

dition with a Cordilleran ice sheet. We also chose to start with ice already covering the204

Hudson Bay as the Glimmer ice sheet model does not represent the complex processes205

of grounding line migration. Simulations are run with 10 × ice sheet acceleration; i.e.,206

for every climate year simulated, Glimmer integrates for 10 ice sheet years with the same207

surface mass balance inputs (from the climate model). After this, the new Glimmer ice208

sheet surface elevation is passed back to the climate model, regridded and processed to209

update its orography and ice fraction fields.210

We first run an initial standard experiment, using the atmosphere model param-211

eters from simulations that produce a stable contemporary Greenland ice sheet (J. M. Gre-212

gory et al., 2020) (apart from boundary conditions altered according to the PMIP4 LGM213

protocol), and ice sheet model parameters from previous simulations of the North Amer-214

ican ice sheet with glimmer (L. J. Gregoire et al., 2016). Parameters that may have an215

impact on the ice sheet evolution are listed in Table 1.216

3 Collapse of the LGM ice sheet with a standard setup217

Unexpectedly, with the the standard parameter values from (R. S. Smith et al., 2020),218

instead of growing from a mid-glacial ice sheet size, the North American ice sheet rapidly219

deglaciates in our standard experiment, losing half its volume in 2,500 years. This even-220

tually results in a simulation with LGM climate conditions, but no North American Ice221

Sheet (Figure 1). The deglaciation is driven by ablation across the North American Ice222
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Table 1. Key climate and ice sheet parameters in the simulation

Parameter Standard
Value

Ensemble
Range

Units Notes

Lapse rate 6 2-10 K km−1 Prescribed lapse rate for air tem-
perature used to downscale FA-
MOUS near-surface ice sheet
climate onto surface elevation tiles.
Downwelling longwave radiation is
also adjusted for consistency

Daice -0.35 -0.4-0 K−1 Sensitivity of bare-ice albedo to
surface air temperatures once the
surface is in a melt regime

AVGR 0.007 0.001-0.01 µm−1 Sensitivity of the snow albedo to
variation in surface grain size

Fsnow 600 350-800 kg m−3 The threshold in surface snow den-
sity at which the FAMOUS albedo
scheme switches from a scattering
paradigm appropriate for a con-
glomeration of snow grains to one
more appropriate for a solid surface

Flow factor 3 1-10 The softness of ice. Increasing the
factor makes the ice softer and
more deformable

Mantle relax-
ation time

3000 500-9000 yr The relaxation time of the mantle,
a lower value essentially making
the mantle less viscous, thus allow-
ing a quicker topographic rebound.

Basal sliding 10 0.5-20 mm yr−1

Pa−1
The basal sliding rate. A higher
value allows increased ice velocity.

RHCRIT 0.85 0.6-0.9 The threshold of relative humidity
for cloud formation (R. Smith,
1990).

VF1 1.882 1-2 ms−1 The precipitating ice fall-out speed
(Heymsfield, 1977).

CT 0.000302 5 × 10−5-4 ×
10−4

s−1 The conversion rate of cloud liquid
water droplets to precipitation
(R. Smith, 1990).

CW 0.001688 0.0001-0.002 kg m−3 The threshold values of cloud
liquid water for formation of pre-
cipitation (R. Smith, 1990). Only
the value for the land is varied.

Entrainment
rate

3 1.5-6 Entrainment rate coefficient Con-
vection Scales rate of mixing be-
tween environmental air and con-
vective plume.

Alpham 0.2152 0.2-0.65 The sea ice low albedo (Crossley &
Roberts, 1995).
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Figure 1. LGM North American Ice Sheet evolution in the standard setup. a) The ice sheet

volume, normalised by the initial volume (green line) compared to the PI Greenland simulations

(red line). b-d) Ice Thickness at 0, 2000 and 4000 years into the run. e-g) The SMB at 0, 2000

and 4000 years into the run.

Sheet, including the ice sheet interior (Figure 1e), which is present from the start of the223

simulation and causes a rapid retreat of the southern margin northward through Hud-224

son Bay (Figure 1b-d). The Greenland Ice Sheet on the other hand maintains its initial225

extent, which corresponds to full glacial conditions, in good agreement with observations226

(Simpson et al., 2009).227

We know from geologic constraints (Dyke et al., 2002) that the ice sheet should be228

considerably larger than simulated here (i.e. it should cover the whole of Canada). We229

therefore conclude that parameters previously tuned to simulate the present day Green-230

land ice sheet well (as in (R. S. Smith et al., 2020)) are not suitable for the LGM North231

American Ice Sheet. To find a reasonable simulation, we thus need to fully explore the232

uncertainty in model input parameters controlling the surface mass balance, ice sheet233

dynamics and climatic conditions over the ice sheets in FAMOUS-ice as described be-234
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low, in essence to “de-tune” the model and find parameter combinations that produce235

good representations of the LGM North American Ice Sheet.236

4 The Ensemble Approach237

4.1 An Initial Pass: Wave 1238

We started by running a large 280-member ensemble of simulations varying param-239

eter values of Table 1. These values were sampled using k-extended Latin Hypercube sam-240

pling (Williamson, 2015) within ranges derived from previous uncertainty quantification241

work with FAMOUS (L. Gregoire et al., 2010) and Glimmer (L. J. Gregoire et al., 2016),242

with the addition of the Entrainment rate coefficient. We purposefully chose wide but243

plausible ranges (Table 1) with the aim to identify a region of the parameter space that244

would produce a reasonable North American ice extent at the LGM. We expected that245

similar to the standard simulation (Section 3), many runs would fully deglaciate. Thus,246

to optimise our use of computing resources, simulations were stopped at 2,500, 5,000,247

and 10,000 ice sheet years if they lost more than 25% of the initial ice sheet area.248

In the majority of the 280 ensemble members, the North American ice volume re-249

duces dramatically and thus all but 18 simulations were terminated early (figure 2a). How-250

ever, five simulations remain relatively stable at the initial volume and area, and ice vol-251

ume grows in twelve simulations. This deglaciation could be caused by errors in the sim-252

ulated climate. We thus compared the ensemble results to prior simulations from PMIP3253

and PMIP4 (Figure 3). We find that global mean temperature is broadly in line with254

previous PMIP3 and PMIP4 simulations - on the warmer end around 284K. The range255

of global mean temperatures in the ensemble is limited by the prescribed SSTs, which256

have a variability in the temperatures spatial distribution, but the same global mean SST257

(within 0.5K).258

To assess our ice sheet results, we compare them to the ice extent reconstructed259

by Dyke et al. (2002). We calculate ice extent error as in Gregoire et al. (2016); by sum-260

ming up the number of gridcells where the ice does not match the reconstruction. The261

maximum allowed error extent was chosen to align with the maximum LGM extent er-262

ror from the NROY ensemble of L. J. Gregoire et al. (2016). L. J. Gregoire et al. (2016)263

applied a cumulative extent error over the whole deglaciation to identify their NROY264

set of simulations, we translated this into a maximum bound for our LGM extent error265

metric by applying our metric to their final NROY set and identifying the maximum value266

obtained. Constraints on North American ice volume are not as well known as ice ex-267

tent, but can provide a useful metric for ruling out simulations. We chose to set a min-268

imum threshold of 2.1 ×107km3 for ice volume as in L. J. Gregoire et al. (2016), based269

on a variety of individual reconstructions (Clark & Tarasov, 2014; Lambeck et al., 2014;270

Peltier et al., 2015; Tarasov et al., 2012a). Only a small subset of the simulations (18271

out of 280) terminate the simulation within this accepted criteria for volume and extent,272

highlighted by the green box in Figure 2b. We refer to the parameters of these simula-273

tions as Not Ruled Out Yet (NROY).274

The average spatial extent of the ensemble is a poor fit to reconstructed ice extent275

(Figure 2c). Very few simulations approach the southern margin. In fact, despite stop-276

ping deglaciating simulations early only around 40% of simulations cover Hudson Bay,277

which should be in the ice sheet interior. Of the 18 simulations that do have a larger ex-278

tent, there is a variety of ice configurations, but some consistent model-data mismatch.279

All the ice sheets that grow from the initial extent include extensive ice in Alaska, which280

was mostly ice free at the LGM (Dyke et al., 2002). After this first wave of 280 runs, more281

simulations were required to determine if these errors are systematic in the model set-282

up, or an artefact of the small number of simulations with a larger ice sheet volume.283
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Figure 2. Wave 1 of the ensemble. a) North American Ice volume evolution for each ensemble

member. b) The final ice volume and extent error (compared to the Dyke et al. (2002) margin)

for each ensemble member. c) The % of simulations with ice cover compared to the Dyke et al.

(2002) margin. The red line and point on panels a and b shows the control run, as shown in

Figure 1.

Figure 3. The surface temperature climatology of the Wave 1 ensemble compared to previous

simulations as part of PMIP3 and PMIP4.
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4.2 Refining the Ensemble: Wave 2284

The fact that only 18 of 280 simulations in Wave 1 sustain a large enough North285

American ice sheet indicates that the majority of the parameter space, defined in Ta-286

ble 1, produce inappropriate conditions for the maintenance of a North American Ice Sheet.287

Searching through the parameter space to find realistic simulations thus required the use288

of statistical emulation and an intelligent and efficient iterative ensemble design to iden-289

tify and target the space of ‘reasonable’ parameters. In order to provide optimal (pa-290

rameter) space coverage of the design, whilst respecting the simulations that are already291

run, we use a stratified k-extended Latin Hypercube design (details follow).292

Reaching an equilibrium in ice volume requires long simulations, particularly for293

the good simulations that take 10,000 years to reach a reasonable ice volume (Figure294

4). In order to reduce computational cost, we investigated if it was possible to guess whether295

a simulation would be good or bad based on information from the start of the simula-296

tion. For the ice sheet to grow to a glacial maximum volume, it needs to accumulate more297

snow than the snow and ice lost in the ablation zone. In other words, the surface mass298

balance (SMB) at least needs to be positive. This is a conservative minimum require-299

ment; in reality an ice sheet with a positive SMB may not reach the target reconstructed300

LGM extent, but this requirement excludes simulations that certainly cannot reach the301

target extent.302

To efficiently select inputs for Wave 2 we generate a candidate set of runs by first303

identifying, from Wave 1, initial SMB values that result in plausible equilibrium ice-sheet304

areas; and second, emulating these initial SMB values as a function of the input param-305

eters. We identified a strong relationship between the equilibrium ice-sheet area and the306

average SMB value from the first 20 years. Denote by b the 20 year averaged SMB value,307

and by A the “equilibrium” ice-sheet area after 10,000 ice sheet years. A predictive model308

of equilibrium ice-sheet area takes the form A = f(b)+ϵ where f(·) may be any func-309

tion. We considered f to be either linear or a Gaussian process and found that the lin-310

ear model gave more conservative in the uncertainty estimates, which was desired as we311

want the Wave 2 runs to bound the NROY space. Define a predictive interval P (b) =312

[f(b) + 3
√
var(ϵ), f(b) − 3

√
var(ϵ)] from our predictive model. We target equilibrium313

ice-sheet areas in the interval T = [1.5×107km2, 2×107km2] and consider the b (and314

the corresponding input parameters) such that the intersection P (b)∩T is non-zero as315

plausible for design in Wave 2.316

To find combinations of input parameters that produce plausible values of b (and317

hence equilibrium ice-sheet areas), we ran three sub-waves of 20 year-long simulations318

to obtain the average SMB in the first 20 years. Note that simulations in the fist sub-319

wave were run for 50 years to examine relationships other than 20-year SMB average that,320

in the end, were not used. Running these shorter simulations is still somewhat costly,321

and so we utilised a Gaussian Process (GP) emulator to design for parameterisations that322

was likely to produce desirable values for b. Define by x the multivariate vector of pa-323

rameters that we build the emulator over: here x comprised of the 4 most influential pa-324

rameters FSNOW, AVGR, DAICE, and FLOW FACTOR (see Table 1). We model b via a stochas-325

tic GP, b ∼ GP(x), where the effects of the parameters not explicitly represented in x326

is handled by the stochasticity of the process. The specific set-up of this GP is provided327

in code as supplementary material.328

From our three sub-waves of 20-50 year-long simulations, we are able to extract a329

candidate set of simulations for the Wave 2 ensemble. The first sub-wave (Wave 1.1) sam-330

ples 200 ensemble members, which are predicted from the emulator to have non-negligible331

probability of positive SMB. This results in around 50% of simulations in this subwave332

having a positive SMB, an increase from 15% in the original wave (Figure 4b, Wave 1.1).333

We attempt to refine the predictive bounds on the GP model twice more (Figures 4c-334

d, Wave 1.2 and 1.3), with no improvement. This is likely due to the inherent stochas-335
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Figure 4. Ice Volumes simulated in the successive ensemble subwaves of simulations sampled

to have a positive initial surface mass balance using the Gaussian Process emulator.

ticity of the climate model and cumulative effects of the parameters that we absorb into336

the predictive error term. At the end of this process of iterative short waves, our can-337

didate set contains over 1000 20-year long simulations that have a positive SMB over the338

North American ice sheet. From this candidate set, we select an optimal (with respect339

to space-filling and accounting for the previous Wave 1 runs) design of 200 ensemble mem-340

bers to continue for a full 10,000 years to an equilibrium North American Ice Sheet. These341

200 simulations make up our Wave 2. For context, this process of GP model subwaves342

saved around 230,000 core hours (or about 2 months of real time) compared to running343

a full second ensemble wave.344

4.3 Wave 2 Results345

By sampling a second wave of long simulation from the shorter subwaves, we de-346

sign an ensemble of simulations that produce more NROY ice sheet extents, with 120/200347

simulations maintaining or growing volume beyond the initial extent (Figure 5a). 176348

more simulations out of the 200 wave 2 simulation are considered to be NROY based on349

the volume and extent error thresholds previously described (Figure 5b), a factor of ten350

increase from the 18 out of 280 simulations in Wave 1. This demonstrates the success351

of our approach in efficiently identifying good combinations of parameters values. Some352

simulations (56/200) shrank in volume slightly, but expended in area to meet both the353

volume and area constraints to be considered NROY. The definition of an NROY en-354

semble member is lenient, but could be further constrained (for example, by adding a355
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target for the top of the atmosphere energy balance) depending on future research ques-356

tions or aims.357

The mean ice sheet extent of the second wave is close to the southern ice sheet mar-358

gin (Figure 5c). However, simulations that meet this margin still show some consistent359

model-data mismatch. All simulations with a low Laurentide Ice Sheet extent error have360

ice that is too extensive in Alaska. This is also common in ice sheet-only simulations with361

Glimmer (L. J. Gregoire et al., 2016; Ji et al., 2021) driven by climate forcing from FA-362

MOUS and from the higher resolution CCSM3 model, so is likely a systematic bias re-363

sulting from the climate model. Alaskan ice extent was limited by the wider ice sheet364

disrupting atmospheric circulations (Löfverström & Liakka, 2016; Tulenko et al., 2020).365

The likelihood of matching observations is not helped by the climate coupling; a low res-366

olution of FAMOUS struggles to simulate the temperature and precipitation gradients367

caused by steep topography such as the Aleutian Range (Abe-Ouchi et al., 2007). Pre-368

scribing the SMB forcing in an uncoupled model nudges the simulated ice sheets towards369

the ice sheet prescribed (usually from reconstructions) in the climate-only model, encour-370

aging a better match between modelled and reconstructed ice geometry, but not neces-371

sarily for predictive reasons. Instead, in this case, a coupled climate-ice sheet model es-372

sentially introduces additional freedom into the simulations to produce a greater vari-373

ety of ice sheets.374

At this point, we could repeat the subwave emulation step from the first wave of375

simulations in an attempt to further narrow the parameter range and produce a third376

wave of simulations with a greater proportion of NROY simulations. However, this sec-377

ond wave has already produced 176 more NROY simulations, and running large waves378

of simulations is computationally costly. We deem that there would be diminishing ben-379

efits to running subsequent waves of simulations beyond this point.380

5 Importance of Albedo Values381

While 13 parameters are varied in the ensemble, it is clear that only three to four382

of these parameters explain the majority of the variation in the model outputs. This is383

demonstrated in Figure 6, where the parameter ranges for Wave 1 and Wave 2 are com-384

pared. In Wave 2, the statistical emulator has removed regions of the parameter space385

that do not produce reasonable ice sheet extents. There are large changes to the ranges386

of FSNOW, DAICE, and AVGR, in the NROY ensemble, but limited changes for the other387

ten parameters.388

The parameters that are most influential on the simulated ice sheet volume all con-389

trol the ice sheet surface albedo, these are the snow-ice density threshold (FSNOW), the390

maximum albedo of bare ice (DAICE), and the snow grain size (AVGR) (Table 1, see391

Smith et al 2020 for full details of how these terms are used in their respective param-392

eterisations). As expected, the largest ice volumes result from having more reflective snow393

and bare ice (from AVGR and DAICE respectively), and a high density threshold (FS-394

NOW) to start considering snow to be ice (keeping a surface classed as more reflective395

snow, rather than ice, for longer). The average surface albedo of the NROY simulations396

is 0.1 higher than from the ruled-out simulations (Figure 5).397

5.1 Why does the ice sheet deglaciate at low albedos?398

We have shown that albedo parameters that have been manually tuned to produce399

a reasonable contemporary Greenland ice sheet (J. M. Gregory et al., 2020; R. S. Smith400

et al., 2020) produce a collapsed North American Ice Sheet at the LGM. Here, we ex-401

plore the reasons why the present day Greenland ice sheet may not be a sufficient tar-402

get for calibrating a coupled climate-ice sheet model. The contrasting behaviour between403

present day Greenland and North American LGM ice sheets is associated with differ-404
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Figure 5. Wave 2 of the ensemble. a) Ice volume evolution for each ensemble member. b) The

final ice volume and extent error (compared to the Dyke et al. (2002) margin) for each ensemble

member. The % of simulations with ice cover shown as shades of blue compared to the Dyke et

al. (2002) margin plotted as the red contour for the whole Wave 2 ensemble (c), and just for the

NROY members of the Wave 2 ensemble (d).
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Figure 6. The resulting initial 20-year SMB and equillibrium Ice Volumes as a function of

normalised albedo and flow factor parameter combinations in the ensembles. Wave 2 ensemble

members are circled in black, and are clustered in the parameter space as a result of the GP em-

ulator aiming for a positive SMB. For reference, the control simulation is marked by an orange

star.
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Figure 7. Average Ice Sheet surface albedos for NROY and Ruled Out ensemble members

across both Wave 1 and Wave 2. a) The distribution of ice surface albedos for NROY and Ruled

Out ensemble members. b) The relationship between final ice sheet volume and the ice sheet

surface albedo. c) The relationship between the 30-year ice sheet SMB and the ice sheet surface

albedo. All ice sheet surface albedos are taken as a 30-year average of the July albedo at the

start of a simulations, so that ice sheet extents are comparable between ensemble members.
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Figure 8. July cloud cover and downward shortwave radiation for the PI simulation, Wave 1,

and Wave 2.

ences in the magnitude of downward shortwave radiation at surface and cloud cover be-405

tween the two ice sheets. In the modern Greenland simulations, the ablation zone at the406

ice sheet margin is often covered by thick clouds (Figure 8).407

Simply, the relationship between cloud and ice sheet surface albedo can be split into408

three groups (Figure 9). At high surface elevations there is lower temperatures and cloud409

cover; a “sunny cold” regime that can sustain an ice sheet. At lower elevations there can410

be sufficient cloud cover to reduce downward shortwave radiation, and therefore limit411

ice sheet melt. In this “cloudy warm” regime the cloud cover means the ice sheet is in-412

sensitive to its surface albedo. Finally, at lower elevations and limited cloud cover we can413

see a “sunny warm” regime, where the ice sheet is highly sensitive to surface albedo pa-414

rameters. Figure 9 shows downward shortwave radiation and ice surface albedo values415

for each ice sheet surface gridbox in the control runs for PI Greenland and LGM North416

America. While both runs occupy the “sunny cold” and “cloudy warm” regime, the “sunny417

warm” regime is dominated by the LGM run. In this manner, the North American ice418

sheet becomes very sensitive to low ice albedo parameters.419
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Figure 9. Comparison of energy balance between LGM North American and modern Green-

land ice sheets: a) Downward Shortwave radiation vs ice surface albedo in each ice sheet gridcell

for Greenland in the ”standard” pre-industrial simulation (orange) and for the North Ameri-

can ice sheet in the ”standard” LGM simulation (blue). Shaded ovals show the proposed sur-

face albedo and radiation behaviour groups for the Greenland and Laurentide Ice Sheets. b) A

schematic of the different radiative effect of clouds on the PI Greenland and LGM Laurentide Ice

Sheets.

We further examine outputs from PMIP3 models (Brady et al., 2013; Voldoire et420

al., 2013; Ullman et al., 2014; Sueyoshi et al., 2013; Adloff et al., 2018) to verify whether421

the very strong downward shortwave radiation over the North American ice sheet ob-422

served in FAMOUS-ice is a common feature among other models. The area-averaged val-423

ues over the North American ice sheet are summarised in Table 2. The results show that424

other PMIP models simulate stronger downward shortwave radiation at the southern mar-425

gin of the ice sheet, and that FAMOUS-ice shows the smallest value for this together with426

CCSM4 (Table 2). In other words, other models may impose an even stronger melt on427

the ice sheet than in our simulations. This is associated with the strongest cloud radia-428

tive effect in shortwave radiation in FAMOUS-ice and CCSM4. These results show that429

the North American ice sheet would also be sensitive to low albedo values in other PMIP430

models; if they allow a very small minimum bare ice albedo, a very large amount of so-431

lar energy would be absorbed. Therefore, the larger sensitivity of the LGM North Amer-432

ican ice sheet to low albedo parameters is likely not a unique feature of FAMOUS-ice,433

but seems to be a common feature among other climate models.434

There is a large uncertainty and variety in minimum ice sheet surface albedo among435

PMIP models ranging from 0.2 in MRI and FAMOUS-ice to 0.7 in MPI (Alder & Hostetler,436

2019). These differences in albedo values are induced by the combined effects of discrep-437

ancies in the physics of the albedo scheme and biases in AGCMs. For the latter, biases438

in cloud radiative effects (R. S. Smith et al., 2020) and horizontal resolution (Kapsch et439

al., 2021) can affect the choice of albedo values. Importantly, the albedo values selected440

are often strongly tuned to reproduce the modern SMB. This is sensible when the fo-441

cus is on future change of Greenland ice sheet in the next few decades, since changes in442

SMB are the dominant driver on this time scale. However, ice sheets evolve (e.g. in re-443

sponse to climate) over much longer timeframes, and on a longer time-scale, when the444
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Table 2. Albedo and radiative characteristics of PMIP3 models and FAMOUS-ice. FAMOUS-

ice values are taken from the Wave 2 ensemble, showing the mean value and ensemble range (in

brackets).

PMIP3 Model Surface albedo Sfc down s/w
radiation

Absorbed s/w
at sfc

FAMOUS-ice 0.68 (0.56-0.75) 296 (265-324) 96 (71-126)
CCSM4 0.70 295.18 87.40
CNRM 0.34 307.67 204.47
GISS 0.66 341.52 116.34
IPSL 0.75 343.80 86.58
MIROC 0.75 351.76 86.51
MPI 0.83 348.92 58.07
MRI 0.57 318.19 138.25

ice sheet is subject to larger instabilities and more pronounced climate interactions, tun-445

ing the albedo parameters may cause an unrealistic relationship between surface albedo446

and cloud cover. Moreover, changes in the clouds over the next century could have pro-447

nounced effects on SMB with unrealistic surface albedo.448

In the case of FAMOUS-ice, the surface albedo parameters used for the contem-449

porary Greenland ice sheet were originally tuned to a low value to compensate for an450

excessive reflection of shortwave radiation by clouds (R. S. Smith et al., 2020). This was451

performed to better simulate a stable and realistic Greenland ice sheet geometry under452

modern day climate. However, the resulting ice albedo parameter sets are too low to pro-453

duce a realistic North American ice sheet at the LGM due to the different cloud cover454

and downward shortwave radiation over the ablation zone. Therefore we are in an un-455

desirable situation where a model with good SMB in modern climate is unable to sim-456

ulate the LGM North American Ice Sheets, and could also be unable to simulate other457

ice sheets and time periods. This result suggests that overtuning the albedo to compen-458

sate for biases in other components under modern climate may cause degraded simula-459

tion results under different climate states, when the cloud properties and downward short-460

wave radiation over ablation zones are different from modern. Most concerning, this sug-461

gests that simulations projecting the future of the Greenland ice sheet are particularly462

vulnerable to uncertain future cloudiness over the ice sheet.463

6 Conclusions464

We have applied a new coupled Climate-Ice Sheet model (FAMOUS-ice) to sim-465

ulate the maximum extent of the last North American Ice Sheets. The standard model466

setup manually tuned for modern day Greenland resulted in a collapsed ice sheet at the467

LGM. We underwent a process of “detuning” the model, running hundreds of simula-468

tions to produced a range of reasonable equilibrium ice sheets, enabling us to explore the469

influence and importance of key uncertain parameters. Large parts of the parameter space470

produced collapsed ice sheets at the LGM. Efficiently scanning the parameter space for471

good input parameter combinations thus required an iteration of short simulations in-472

formed by emulation of equilibrium ice volume as a function of initial surface mass bal-473

ance. The results show that FAMOUS-ice is able to simulate the maximum extent of the474

LGM North American Ice Sheet, with particularly good match to the southern Lauren-475

tice limits, though some systematic ice overgrowth remains in Alaska.476
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From our results, we are able to identify that the parameters controlling ice sheet477

surface albedo dominate the simulated variability in ice sheet geometry. Importantly, com-478

binations of albedo parameter values that produced a reasonable contemporary Green-479

land ice sheet do not necessarily produce a reasonable LGM North American Ice Sheet.480

This is because albedo parameter can be overtuned to compensate for biases in modern481

clouds over Greenland. The different cloud distribution over the Southern Laurentide482

ice sheet at the Last Glacial Maximum provide a useful “stress test” for coupled climate-483

ice sheet models. This highlights the potential problems of relying solely on contempo-484

rary observations for model tuning. Efforts to find a region of the parameter space that485

produce reasonable simulations of contemporary and glacial ice sheets are important, and486

could lead to improved confidence in future ice sheet projections.487
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