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Abstract

Natural and anthropogenic disturbances act as important drivers of tree mortality, shaping the structure, composition and

biomass distribution of forests. Disturbance regimes may emerge from different characteristics of disturbance events over time

and space. We design a model- based experiment to investigate the links between disturbance regimes at the landscape scale

and spatial features of biomass patterns. The effects on biomass of a wide range of disturbance regimes are simulated by

varying three different parameters, i.e. μ (probability scale), α (clustering degree), and β (intensity slope) that shape the extent,

frequency, and intensity of disturbance events, respectively. A simple dynamic carbon cycle model is used to simulate 200 years

of plant biomass dynamics in response to circa +2000 different disturbance regimes, depending on the different combinations

of μ, α, and β. Each parameter combination yields a spatially explicit estimate of plant biomass for which sixteen synthesis

statistics are estimated on the spatial distributions of biomass, including information-based and texture features. Based on a

multi-output regression approach we link these synthesis statistics with additional gross primary production (GPP) constraints

to retrieve the three disturbance parameters. In doing so we evaluate the confidence in inferring disturbance regimes from

spatial distributions of biomass. Our results show that all three parameters can be confidently retrieved. The Nash-Sutcliffe

efficiency for the prediction of the μ, α, and β is 97.3%, 96.6%, and 97.9%, respectively. A feature importance analysis reveals

that the distribution statistics dominate the prediction of μ and β, while features quantifying texture have a stronger connection

with α. Overall, this study clarifies the association between biomass patterns emerging from different underlying disturbance

regimes, while overcoming the previously found equifinality between mortality rates and total biomass. Given the links between

decadal vegetation dynamics and the uncertainties in the role of terrestrial ecosystems in the global biogeochemical cycles, a

better understanding and the quantification of disturbance regimes would improve our current understanding of controls and

feedback at the biosphere-atmosphere interface in the current Earth system models.
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Abstract 

Natural and anthropogenic disturbances act as important drivers of tree mortality, shaping 

the structure, composition and biomass distribution of forests. Disturbance regimes may emerge 15 

from different characteristics of disturbance events over time and space. We design a model-

based experiment to investigate the links between disturbance regimes at the landscape scale 

and spatial features of biomass patterns. The effects on biomass of a wide range of disturbance 

regimes are simulated by varying three different parameters, i.e. μ (probability scale), α 

(clustering degree), and β (intensity slope) that shape the extent, frequency, and intensity of 20 

disturbance events, respectively. A simple dynamic carbon cycle model is used to simulate 200 

years of plant biomass dynamics in response to circa +2000 different disturbance regimes, 

depending on the different combinations of μ, α, and β. Each parameter combination yields a 

spatially explicit estimate of plant biomass for which sixteen synthesis statistics are estimated 

on the spatial distributions of biomass, including information-based and texture features. Based 25 

on a multi-output regression approach we link these synthesis statistics with additional gross 

primary production (GPP) constraints to retrieve the three disturbance parameters. In doing so 

we evaluate the confidence in inferring disturbance regimes from spatial distributions of biomass. 

Our results show that all three parameters can be confidently retrieved. The Nash-Sutcliffe 

efficiency for the prediction of the μ, α, and β is 97.3%, 96.6%, and 97.9%, respectively. A 30 

feature importance analysis reveals that the distribution statistics dominate the prediction of μ 

and β, while features quantifying texture have a stronger connection with α. Overall, this study 

clarifies the association between biomass patterns emerging from different underlying 

disturbance regimes, while overcoming the previously found equifinality between mortality rates 

and total biomass. Given the links between decadal vegetation dynamics and the uncertainties 35 

in the role of terrestrial ecosystems in the global biogeochemical cycles, a better understanding 

and the quantification of disturbance regimes would improve our current understanding of 

controls and feedback at the biosphere-atmosphere interface in the current Earth system 

models. 

  40 
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1 Introduction 

Mortality is one of the key processes in vegetation dynamics (Franklin, Shugart, and Harmon 

1987; Runkle 2000), which dominates the aboveground carbon turnover rate (Carvalhais et al. 

2014; Thurner et al. 2016) and contributes to significant uncertainties in carbon fluxes and 

carbon budget (Andrew D. Friend et al. 2014). The diverse range of natural (e.g. fire, droughts, 45 

windthrows, pathogens, and insects) and anthropogenic disturbances (e.g. agriculture, 

urbanization, and clearcutting) act as strong drivers of vegetation mortality, leading to the total 

or partial loss of biomass (McDowell et al. 2022; Hammond et al. 2022; Grime 1977). A better 

understanding of the mortality caused by disturbance, as well as its impacts on vegetation 

carbon dynamics, is crucial for constraining future carbon cycling prognostics (Andrew D. Friend 50 

et al. 2014). 

 

Comparatively to primary productivity and allocation, mortality caused by disturbances also 

plays an equivalently important role in determining the spatial gradients of above-ground 

biomass (AGB, Delbart et al. 2010) and is currently poorly monitored due to its highly stochastic 55 

nature (Chambers et al. 2004; Allen et al. 2010; Hammond et al. 2022). Characteristics of these 

stochastic disturbance events at the landscape level, also called disturbance regimes, are 

commonly interpreted as different metrics, such as size, frequency, intensity, and aggregation 

(Turner 2010). These different attributes of disturbance regimes are the description of 

cumulative effects of all disturbance events occurring in a given area and time period (Senf and 60 

Seidl 2021b), ultimately leading to a shifting steady-state mosaic, represented by patches of 

distinct successional ages or carbon stocks over long time periods (Brokaw and Scheiner 1989).  

 

Most research on quantifying disturbance regime parameters has been carried out either in 

an observation-driven manner or using model-data-integration simulation. Through large scale 65 

time-series remote sensing data, the information on vegetation change, such as spectral 

bands/indices and segment outline is able to be directly extracted for describing the disturbance 

magnitude, duration, and rate of change (Chambers et al. 2013; Senf and Seidl 2021b). On the 

other hand, the disturbance regime can also be simulated beforehand and incorporated into the 

process- and individual-based models (Bugmann 2001; Bossel and Krieger 1994; Yan et al. 70 

2005; Köhler and Huth 1998), in which the relationship between disturbance regime parameters 

and model outputs, such as above-ground biomass, can be expected to be established. 

Previous research has revealed that two disturbance parameters that determine the average 

probability and intensity of biomass loss, can be retrieved back via satellite biomass observation 

(Williams, Hill, and Ryan 2013). Further relying on successive biomass maps, the difference in 75 

patterns of intensity ranging from deforestation to widespread low-intensity disturbance can also 

be detected (Hill, Ryan, and Williams 2015), which indicate a strong relationship between 

disturbance regimes and biomass observations. 

 

It should be noted that the clustering pattern of disturbance events has been recognized as a 80 

fundamental attribute of the disturbance regime. And if these disturbance events are not 

correctly characterized, the average mortality and growth would lead to misestimations (Fisher 

et al. 2008). Therefore, caution is advised for considering the different disturbance events 

https://www.zotero.org/google-docs/?yYGrSu
https://www.zotero.org/google-docs/?yYGrSu
https://www.zotero.org/google-docs/?p5DDLx
https://www.zotero.org/google-docs/?p5DDLx
https://www.zotero.org/google-docs/?rhKrZ2
https://www.zotero.org/google-docs/?iALlw7
https://www.zotero.org/google-docs/?iALlw7
https://www.zotero.org/google-docs/?iALlw7
https://www.zotero.org/google-docs/?v9Qjqo
https://www.zotero.org/google-docs/?v9Qjqo
https://www.zotero.org/google-docs/?F9i19T
https://www.zotero.org/google-docs/?kAstHo
https://www.zotero.org/google-docs/?kAstHo
https://www.zotero.org/google-docs/?kAstHo
https://www.zotero.org/google-docs/?X40MsI
https://www.zotero.org/google-docs/?p2ndam
https://www.zotero.org/google-docs/?p2ndam
https://www.zotero.org/google-docs/?RGR5EH
https://www.zotero.org/google-docs/?c4HuZ9
https://www.zotero.org/google-docs/?XGzpYy
https://www.zotero.org/google-docs/?XGzpYy
https://www.zotero.org/google-docs/?x32a8K
https://www.zotero.org/google-docs/?mmCine
https://www.zotero.org/google-docs/?RA1pFs
https://www.zotero.org/google-docs/?RA1pFs
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clustering patterns in the process of simulation. Besides, most previous works about simulating 

disturbance events were under relatively similar growth processes, which simplified the 85 

heterogeneity of the forest’s primary productivity. The development of high-resolution biomass 

observations (Saatchi et al. 2011; Santoro et al. 2021), indicates a need to understand more 

comprehensive disturbance regimes through biomass maps. 

 

In this paper, we design a model-based experiment to investigate the links between 90 

disturbance regimes at the landscape scale and spatial features of biomass patterns. The 

effects on biomass of a wide range of disturbance regimes are simulated based on different 𝜇 

(probability scale), α (clustering degree), and β (intensity slope) that respectively shape the 

extent, frequency, and intensity of disturbance events. A simple dynamic carbon cycle model is 

used to simulate 200 years of plant biomass dynamics in response to circa +2000 different 95 

disturbance regimes, depending on different combinations of 𝜇 , α, and β. Each parameter 

combination yields a spatially explicit estimate of plant biomass for which different synthesis 

statistics are estimated (e.g., mean, median, standard deviation, quantiles, and skewness). 

Based on a multi-output regression approach we link these synthesis statistics back to the three 

disturbance parameters to evaluate the confidence in inferring disturbance regimes from spatial 100 

distributions of biomass alone.  

2 Method 

2.1 Dynamic carbon cycle model 

 

We determined the dynamic processes of carbon cycling at the patch level. Each patch is 105 

specified as a square pixel with a length of 10m, which means the smallest computing unit 

corresponds to a 0.01ha plant crown area (Fisher et al. 2008). The changes of vegetation 

carbon (C, in 𝑘𝑔𝐶 ⋅ 𝑚−2 ⋅ 𝑦𝑟−1) are controlled by the differences between carbon gains (via 

photosynthesis, 𝑁𝑃𝑃𝐴𝐺𝐵) and losses (𝐿, Eq. 1). Here the simulations are performed at annual 

timescales, which allow rapid computations and flexibility on the occurrence of disturbance 110 

events. 

         Eq.1 

 

For carbon gain part (𝑁𝑃𝑃𝐴𝐺𝐵), it comes from the gross primary production (GPP) which  

loses a fraction of C to growth respiration (1 − 𝑌𝐺, Amthor 2000), and part of which is allocated 115 

to above-ground biomass (𝑓𝐴𝐺𝐵) as follow: 

 

  Eq.2 

 

To simplify the experiments, the transfer ratio from 𝐺𝑃𝑃 to 𝑁𝑃𝑃𝐴𝐺𝐵 ((1 − 𝑌𝐺) × 𝑓𝐴𝐺𝐵) is fixed to 120 

a value of 0.5, representing 2/3 allocation of C to the above ground pools, and a growth 

respiration ratio of 0.25 (Amthor 2000). And we performed a simple relationship between GPP 

and biomass, which can be mathematically described as 

 

https://www.zotero.org/google-docs/?V5qKgm
https://www.zotero.org/google-docs/?1e84Jl
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  Eq.3 125 

 

From which the gross carbon gain follows an exponential increasing pattern with the biomass 

accumulation.  

 

   Eq.4 130 

 

The process of carbon loss consists of two parts: loss during disturbance events (𝐿𝑑) and 

background mortality (𝐿𝑏 , Eq. 4). Here we specify that background mortality is a constant 

proportion of above-ground biomass, including the average effects of litterfall, root exudates, 

and herbivory (Thurner et al. 2016). 135 

 

  Eq.5 

  

  Eq.6 

 140 

Where 𝐾𝑏 refers to the background mortality rate, which is the reciprocal of the turnover rate 

𝜏. On the other hand, disturbance-induced carbon loss occurs as a result of disturbance events, 

and the proportion would be determined by the intensity of the specific disturbance event which 

covers the patch. 

 145 

  Eq.7 

 

Parameter 𝐼 represents the disturbance’s intensity, depending on the size of the event and 

the intensity slope, which will be addressed below in Section 2.2. 

 150 

2.2 Model different disturbance regimes 

 

We applied three parameters to describe the three dimensions of disturbance regimes: μ, α, 

and β, representing the probability of total occurrence, clustering pattern of events, and intensity 

slope respectively in the domain. For the purpose of distributing a sufficiently large and spatially 155 

random number of disturbance events, our experiment deploys a million-patch array to simulate 

the corresponding landscape-scale domains. Each patch represents one single canopy tree 

square with a 10 m length, so the total domain size is 10,000 ha or 100 km2.  

 

2.2.1 Parameterization of disturbance regimes 160 

 

Specifically, the disturbance parameter μ refers to the total disturbed area in the domain: 

 

  Eq.8 

 165 
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Here D refers to the total domain size and μ is the percentage of the domain affected by 

disturbances.  

 

As for parameter α, we followed Fisher’s method by applying the scaling exponent 𝛼  to 

determine the clustering degree of events (Fisher et al. 2008). The lower 𝛼  represents the 170 

disturbance events would be more clustered, exhibiting the characteristics of large disturbing 

events but with rare occurrences in the domain; in contrast, the higher 𝛼 will distribute the total 

disturbed areas more scattered and simultaneously increase the occurrences of small-sized 

events in the domain. To simulate multiple scaled events, the event sizes are prescribed as a 

numerically discrete series from 20 cells to the domain size, capped at 219 cells. Stepwise values 175 

follow the mechanism of powers of 2, leading to twenty classes of event sizes:  

 

  Eq.9 

 

Where the number of disturbance events (𝑛𝑧) at a specific event size z is following a power 180 

law mechanism, 𝛼 is the scaling exponent for the disturbance event clustering degree with a 

dimensionless unit. And the value A is a proportionality factor, manipulated by the size of the 

total disturbed area and the setting of events size series, and 𝑧𝑖  is the corresponding 

disturbance event size, maximum 𝑖 is 20 in this case: 

 185 

  Eq.10 

 

Due to the discrete nature of the event sizes (𝑧𝑖) and the pseudo-random amount of the 

corresponding events, a limited uncertain gap remains between the total disturbed area after the 

generation process and the prescribed value. In an attempt to limit this gap, we performed an 190 

error threshold to regulate this randomness: the difference between generated total area and 

prescribed value as a percentage of total domain area should be lower than 0.001% (10 pixels 

to a 1000-width domain). When the gap has exceeded the threshold, the new event amount 

sequence will be recalculated until the condition is met. In very rare cases, it is difficult to 

compute an amount sequence satisfying the threshold of 0.001%, so in which circumstances, 195 

the acceptable gap is relaxed to 0.002% (20 pixels to a 1000-width domain).  

 

We assume the intensity of disturbance or the fractional mortality due to disturbance is 

proportional to the logarithm of event size (Chambers et al. 2013):  

 200 

  Eq.11 

 

The parameter 𝛽 controls the slopes of the logarithmic function for describing the relationship 

between the disturbance's intensity and its size. We descend from Chambers’ description of the 

quantitative relationship between the average mortality rate and disturbance size (Chambers et 205 

al. 2013), inheriting a constant intercept parameter b = 0.22684 but varying interval of slope 

parameter β, from 0.03 to 0.5. For the same size of disturbance events, a larger β indicates a 

greater intensity, causing more carbon loss during the dynamic carbon cycling simulation. In 

https://www.zotero.org/google-docs/?NejhVC
https://www.zotero.org/google-docs/?AE8Flk
https://www.zotero.org/google-docs/?NAXhdE
https://www.zotero.org/google-docs/?NAXhdE
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practice, it is possible for the value of intensity to exceed 1, which usually happens for the big 

beta and large events. In those cases, all intensity exceeding 1 should be limited back to 1 as 210 

per the reality of the situation. 

 

2.2.2 Disturbance Parameter Ranges 

 

The inclusion of the parameters μ, α, and β allows a flexible description of disturbance 215 

regimes in different scenarios of landscape, containing all possible disturbance properties in 

three dimensions and without the need for specifying particular types of disturbance. To be 

realistic, we referred to previous literature and designed different ranges and intervals for the 

primary productivity parameter G and three disturbance parameters independently. 

 220 

In particular, the parameter G is specified as a range from 0.03 to 0.1, deriving a range of 

average steady state biomass from 10 to 40 𝑘𝑔𝐶 ⋅ 𝑚−2 without disturbances; the parameter μ is 

set in a range of 0.01 to 0.05 with an interval of 0.005, corresponding to the average 

documented value of 0.02 for forests (Moorcroft, Hurtt, and Pacala 2001; Malhi et al. 2004); α’s 

setting comes from observed gap-size distributions from previous studies in the tropical and 225 

sub-humid forest ecosystem, which indicated a suggestive range of α within 1.1-1.6 (Lawton 

and Putz 1988; Jans et al. 1993; Nelson et al. 1994; Yavitt et al. 1995; Fisher et al. 2008), 

accordingly a 0.05 interval step was deployed in the range of 1.0 to 1.8 for the experiment; With 

regard to the parameter intensity slope - β, we refer to the statistics result from (Chambers et al. 

2013)’s study and set the range from 0.03 to 0.5 with varied intervals (Chambers et al. 2013), 230 

which is 0.01 for the range [0.03, 0.09], and 0.05 for [0.1, 0.25] and 0.1 for [0.3, 0.5].  

 

Table 1. Parameter Setting  

Parameter Range Interval Count 

μ [0.01:0.05] 0.005 9 

α [1.0:1.8] 0.05 17 

β [0.03:0.5] 0.01/0.05/0.1 14 

G [0.03:0.1] 0.01/0.02/0.03 5 

 

 235 

2.3 Generation of Disturbance Events  

To comply with the prescribed setting of disturbance regime parameters, a disturbance 

events generator was proposed to place all the events in a domain array, which is also 

supposed to satisfy the requirement of stochasticity in spatial distribution. For the convenience 

of calculations, all disturbance events are restricted to the shape of a rectangle (Fisher et al. 240 

2008), the event lengths are specified as 10m, 300m, 500m, 750m, 1000m, and the 

corresponding width varies with the size of the disturbance events. The placement of 

disturbance events follows the principle of ascending from the largest to the smallest. The 

generator randomly assigns the center coordinates of a class of size disturbance events and 

detects whether they overlap with surrounding events that were already placed. Initiate 245 

https://www.zotero.org/google-docs/?cmWFtq
https://www.zotero.org/google-docs/?Wi2fB9
https://www.zotero.org/google-docs/?Wi2fB9
https://www.zotero.org/google-docs/?35uR0R
https://www.zotero.org/google-docs/?35uR0R
https://www.zotero.org/google-docs/?SLXpM1
https://www.zotero.org/google-docs/?MtvrLq
https://www.zotero.org/google-docs/?MtvrLq
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reassignment if overlapping is detected or continue with the assignment of the next class size 

disturbance events. 

 

The disturbance events generator also includes a boundary overlapping detection function. If 

there are any events that intersect with the domain’s boundary, leading to a partial disturbance 250 

that does not occur within the array, the generator will activate the correction response by 

reassigning the center coordinates for the overlapped disturbance events. 

   

2.4 Characteristics of the Biomass Pattern 

 255 

Following the previous parameter range and interval setting, 2142 combinations of 

disturbance regimes were established in total. For each regime, we constructed a cube of depth 

100 as a reference database for the disturbance event. Every snapshot of the reference cube is 

a 1000x1000 stochastic disturbance reference map, providing the spatial reference for the 

domain’s carbon cycling dynamic simulation.  260 

 

With the support of the disturbance reference cube, we applied the strategy of unordered 

sampling with replacement to generate time series disturbance references. Ultimately, 200 

maps of disturbance events were randomly extracted from cubes as a sequence of reference for 

simulating the occurrence of disturbances over 200 years in the domain. For each disturbance 265 

regime, we incorporated the disturbance sequence from the corresponding cube, together with 

the prescribed varied primary productivity capacity (parameter G), to run the dynamic carbon 

model to an equilibrium state of biomass. Motivated by the consideration of randomness in the 

occurrence of temporal disturbances, we shuffle the sequence of 200-year disturbance 

reference maps up to 10 times for each run of the model. The results of all runs will be labeled 270 

with the shuffle index and used for training or validation. 

 

Despite some subtle sawtooth fluctuations that can instantaneously deviate from the 

expectation due to the impacts of stochastic disturbances, the average biomass for the whole 

domain saturates and reaches a dynamic steady state over the 200-year simulation run. We 275 

averaged the biomass maps for the last decade to obtain steady-state equilibrium biomass 

distributions, from which three kinds of statistical indicators were used to characterize  steady-

state biomass distribution properties under variable disturbance regimes and primary 

productivity. 

 280 

The first type of statistics is based on the histogram distribution, such as mean, median, 

variance, skewness, kurtosis, percentiles, as well as standard deviation and coefficient of 

variation. Some of these metrics, such as skewness and mean, have been suggested to be 

associated with the probability and intensity of disturbances in previous literature (Williams, Hill, 

and Ryan 2013). We have also introduced a type of informative feature - the Shannon entropy 285 

index (Shannon 1948), to measure the “amount of information” inherent in the biomass map. 

Shannon’s entropy, or the Shannon-Wiener index, is also a commonly used indicator that 

describes the diversity level in ecosystems (Spellerberg and Fedor 2003). In addition, the 

https://www.zotero.org/google-docs/?pVJaUg
https://www.zotero.org/google-docs/?pVJaUg
https://www.zotero.org/google-docs/?79Ahwd
https://www.zotero.org/google-docs/?r7U0CF
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statistical properties that come from the texture of biomass distribution have also been included. 

Texture provides information about the spatial arrangement of intensities in an image, a 290 

biomass map in our case, characterized by the spatial distribution of intensity levels in a 

neighborhood. One of the most common texture feature extraction methods based on image 

statistics is Gray-Level Co-Occurrence Matrices (GLCMs), which study the spatial correlation 

properties by using gray-scaled images (Haralick, Shanmugam, and Dinstein 1973). Here in our 

study, we applied four statistics from the GLCMs method: Contrast, Correlation, Energy, and 295 

Homogeneity (Table 2), to extract the texture features of the biomass maps. It is notable that all 

biomass maps are re-scaled to a range of 0 to 255 before calculation, and non-equilibrium 

outliers have been detected and removed.  

 

Table 2. Statistics of the steady-state biomass map  300 

Feature 
types 

Statistic 
Variable 
Names 

Formula 

Histogram 
features 

mean mean_bio 
 

N: Total patch amount 
𝐴𝑖: Biomass value for patch 𝑖 

median median_bio  A: Biomass map 

range range_bio  
P90: Percentile 90% 
P10: Percentile 10% 

variance var_bio 

 
μ: Mean biomass  

 
standard 
deviation 

std_bio 

 

coefficient of 
variation 

cv_bio 
 

σ: Standard deviation skewness skew_bio 
 

kurtosis kurt_bio 
 

percentile 
25% 

prc25_bio  P25: Percentile 25% 

percentile 
75% 

prc75_bio  P75: Percentile 75% 

Trimean Trimean  MED: Median value 

Informative 
feature 

Shannon 
entropy 

Shannon 
 

𝑝: Normalized histogram counts 

Texture 
features 

contrast contrast 
 

𝑖: Reference pixel value 
𝑗: Neighbor pixel value 

glc(i,j): An entry in GLCM 
𝜇𝑖, 𝜇𝑗: Means of GLCM w.r.t. 𝑖 and 𝑗 

𝜎𝑖, 𝜎𝑗: Standard deviations of GLCM 

w.r.t. 𝑖 and 𝑗 
correlation correlation 

 

https://www.zotero.org/google-docs/?rwdLM6
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energy energy 
 

homogeneity homogeneity 
 

 

 

As mentioned above, we have assumed 2142 different combinations of three disturbance 

regime parameters, and each individual regime corresponds to 5 different primary productivity 

scenarios.  Therefore, more than ten thousand parameter combinations have been involved in 305 

the simulation of biomass dynamics with the carbon cycling model, and each parameter 

combination is expected to run ten times via different shuffling sequences of disturbance 

reference maps. The simulation will produce 17 statistics in total for each run, 16 comes from 

the steady-state biomass distribution and 1 is the mean GPP at the end of the simulation.  

 310 

2.5 Prediction and validation 

 

We performed a multi-output random forest regression method by Scikit-learn (Pedregosa et 

al. 2011), to investigate the links between the statistics from simulated biomass maps and the 

prescribed disturbance regimes and primary productivity parameters. In order to ensure the 315 

validity of the trained model and avoid overfitting, we designed three types of cross-validation 

strategies.  

 

With the prescribed disturbance regime and GPP parameters, all the steady-state biomass 

distribution statistical metrics were documented together with the disturbance sequence shuffle 320 

index. For the first type of cross-validation, referred to as the Completely Random 10-fold 

method, we disrupted all entries in random order and equally divided them into ten parts for 10-

fold cross-validation. Nine-tenths of the data is used to fit the model and the rest is for validation, 

and the ultimate prediction accuracy is the mean of ten cross-validation results. Another 

strategy refers to the Leave-One-Sequence-Out method (LOSO). Instead of randomly dividing 325 

all the data into ten sets, the fit and validate process was conducted according to the shuffle 

index. For instance, entries with shuffle index 1 were used for validation and the rest for training 

and circulated the validation shuffle index until all the data are validated and trained. The last 

strategy is against the robustness of disturbance regime parameters. For each of α, β, and μ, 

we keep each value in turn for validation and train all the remaining data to test the model’s 330 

predictive capacity for the untrained parameters. 

 

We use Nash-Sutcliffe efficiency (NSE), to evaluate the performance of the predicting model 

(Nash and Sutcliffe 1970). The bigger NSE represents the better accuracy between prediction 

and observation, which are predicted and prescribed disturbance regime parameters in this 335 

study. 

 

  Eq.12 

https://www.zotero.org/google-docs/?7RgiRv
https://www.zotero.org/google-docs/?7RgiRv
https://www.zotero.org/google-docs/?HOAl54
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Where the 𝑌𝑖
𝑜𝑏𝑠 is the i-th prescribed disturbance regime parameter, 𝑌𝑖

𝑝𝑟𝑒
 is the i-th predicted 340 

value for the constituent being evaluated, 𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is the mean of the prescribed parameter, and n is 

the total number of observations (D. N. Moriasi et al. 2007).  

 

3 Results 

3.1 Disturbance reference cubes 345 

3.1.1 Spatial binary cubes 

 

The disturbance generator produced 153 (9 μ’s and 17 α’s) disturbance binary reference 

cubes in total, each cube representing a unique combination of μ and α and consisting of 200 

snapshots simulating different scenarios of different disturbance event spatial distribution. 350 

Notably, these snapshots are all binary and without any attribute related to the information of the 

intensity, which means that they provide only the spatial reference information under specific mu 

and alpha. 

 

The disturbance events, which refer to the unique patches with true value, regardless of their 355 

corresponding sizes or shapes, are meant to be randomly distributed across the whole domain 

without overlapping or overstepping boundaries. As two cubes with completely different 

disturbance regimes (Figure 1e-f), all the disturbance events are uniformly distributed 

throughout the whole domain, satisfying the requirement of no overlap and relative 

independence (Figure 1c-d), despite the fact that there are cases where large events are joined 360 

by some small events. Other than that, all marginal areas are well circumvented, thus ensuring 

that no pixels are omitted, otherwise causing the simulated μ to be less than the specified value. 

 

https://www.zotero.org/google-docs/?HTk6In


-11- 

 
Figure 1. Concept diagram of disturbance reference cubes, (a) refers to the 2D disturbance reference 365 

map, (b) refers to the 3D disturbance reference cube, and (c) disturbance events should avoid interfacing 

with edges or (d) overlapping with each other. (e) and (f) show two disturbance reference cube examples 

with different disturbance regimes. 

 

 370 
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3.1.2 Intensity reference cube 

 

Intensity of disturbance, or the fractional carbon loss due to disturbance, is designed of being 

varied with event sizes by parameter β. As a consequence of the binary spatial reference cube, 

the varied β, which represents the gradient relationship between event size and intensity, were 375 

assigned to the same cube and resulted in different intensities. 

 

 

3.2 Parameterization and dynamic carbon model 

3.2.1 parameterization of disturbance regimes 380 

 

Parameter α ensures that the disturbance event in a specific size and its amounts across the 

domain consistently adhere to a binding correspondence. Take an example of α-1.2 (Fig S1),  

the number of events decreases exponentially with the event size. Although the theoretical 

largest event has an area of up to half the size of the total domain (219 pixels), the maximum 385 

event size in this experiment is limited to 214 due to the range of alpha parameters (Table1, 

minimum alpha is 1.0). 

 

From the simulated cubes, the average size of events in the domain exponentially decays as 

the parameter alpha increases, conversely, the number of events tends to a logistic increase, 390 

which confirms that larger alpha corresponds to more and smaller discrete events rather than 

concentrated large ones. With discrete but progressive alpha values, the disturbance reference 

cubes provide a gradient relationship between the amounts and sizes of events across the 

domain. 

 395 

 
Figure 2. The relationship between gradient α and the average sizes of events (bar plot) and the average 

amount of events (line plot) in domain. 

 

Parameter beta, designed in a hierarchy gradient, is in an attempt to lead to different 400 

intensity levels with the same event size. According to the prescribed relationship between β 

and event size (Eq.9), the intensity of disturbance events needs to follow a logarithmic pattern 
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with its increasing sizes. Figure 3 shows this pattern of event size and intensity for all the betas 

we assigned in the experiment, and two different scales for small-size events (linear x-axis, 

range 1-32) and larger ones (logarithmic x-axis, range 32+) were employed to bring out the 405 

regularity of this relationship. 

 

The result shows all curves maintain a clear hierarchy between each other, indicating the 

gradient relationship between intensity and event sizes. For small-size events, they share the 

same instant logarithmic increment for intensity, and then the intensity goes much slower with 410 

the increasing event sizes. β greater than 0.2 are likely to exceed the intensity greater than 1, in 

which case the intensity would be limited to 1, corresponding to reality. Notably, β-0.5 reaches 

the saturation of intensity limitation at the very beginning of event size, which performs a straight 

line on the top of the plot.  

 415 

 

Figure 3. Relationship between Intensity and event size, showing linear scale for events under 32 pixels 

and logarithmic scale for larger events. The intensity value of β-0.5 is saturated at 1.0 starting from event 

size 1. 420 

 

3.2.2 Temporal carbon dynamics 

 

Using the parsimonious carbon model, the dynamics of GPP together with carbon loss from 

physiological mortality and disturbances, can be simulated in an annual step and lead to a 425 

logarithmic growth for biomass. The parameters G, designed to represent gradients of 

photosynthesis, produce hierarchical GPP capabilities at steady states without taking 

disturbances into account. Meanwhile, AGB reaches different steady states with five different 

Gs, indicating different scenarios with significant differences in average biomass across 
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domains (~ 10 𝑘𝑔𝐶 ⋅ 𝑚−2 to 40 𝑘𝑔𝐶 ⋅ 𝑚−2). Figure 4 also shows the impacts of disturbance on 430 

temporal GPP and AGB dynamic. In the case of a disturbance regime with μ 0.04, α 1.5, and β 

0.5, although the overall growth pattern has not changed much, the average level of GPP and 

AGB in steady states are significantly reduced due to the involvement of disturbance, GPP 

reduced from ~0.5 to 1.5  𝑘𝑔 ⋅ 𝑚−2 for different Gs, and AGB dropped to half of its original level 

on average. Furthermore, the original smooth growth curves have been replaced with distinct 435 

sawtooth fluctuations that become more violent as G increases.  

 

 

Figure 4. AGB and GPP evolution with varied Parameter G, (a) and (b) refer to the scenario without any 

disturbance events, (c) and (d) provide the impact of disturbance regime with μ-0.03, α-1.0, and β-0.2. 440 

 

 

3.2.3 Steady-state Biomass distribution  

 

Under the same capacity of photosynthesis (fixed G), the steady-state biomass (year 200) 445 

shows diverse spatial and numerical differences with different disturbance regimes. By 

increasing parameter μ and fixing the other two parameters (first row in Figure 5), there are 

more areas with lower biomass, which exhibit more signs of impact from disturbances and 

indicate the increasing possibility of total disturbance occurrences. In addition, as the level of 

clustering degree changes, at which the parameter α increases, the spatial distribution of the 450 

steady-state biomass map becomes more homogeneous, shifting from being able to distinguish 
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the effects of disturbance events to a uniformly distributed noise mosaic (second row in Figure 

5). Furthermore, the influence of elevated β is apparent as well. Events with higher intensity 

removed more biomass and left the succession of plants regrowing at a lower level, which 

results in a more clearly visible disturbance footprint. The combination of three disturbance 455 

regime parameters resulted in varied patterns of spatial biomass distribution, implicating a 

plausible possibility to retrieve disturbance attributes back according to biomass observation 

and dynamic biomass simulation model. 

 

 460 
Figure 5. Steady-state biomass map in different disturbance regimes. The first row shows the comparison 

of increasing μ, the second row refers to increasing α, and the third row shows increasing β. 

 

 

3.3 Retrieving Disturbance Regimes from Biomass Patterns  465 

3.3.1 Cross-Validation 
 

Table 3 shows that all the strategies of cross-validation have a good performance for 

retrieving the three disturbance regime parameters. Relying on the 16 statistics (table 2) 
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calculated from the average biomass of the last ten-year simulation and the steady-state GPP 470 

constraints, all the NSEs of μ, α, and β exceeded 0.95 (Table 3) in the CR and LOSO validation. 

In addition, the LOPO validation is also relatively accurate, in the case that the target prediction 

parameters are not involved in the training, they can still be predicted with the NSE around 0.88.  

 

Table 3. Cross-Validation results via different strategies 475 

Average 

NSE 

Completely Random 
10-Fold 

(CR) 

Leave One 
Sequence Out 

(LOSO) 

Leave One Parameter 
Out 

(LOPO) 

μ 0.973 0.971 0.881 

α 0.966 0.964 0.878 

β 0.979 0.978 0.882 

 
 

The scatter plots of different CV strategies confirmed the high accuracy and apparent 

gradient for the predictions. Figure 6a is an example of the completely random prediction results, 

for μ and α, equally spaced parameter settings correspond to a relatively uniform distribution 480 

outcome for each of the values, where the high-density pattern lies near the prescribed value. 

Only very few of the predicted values are discrete anomalies, whose amount does not exceed 

10. Although the distribution is more scattered for the higher β values, due to the setting of 

varied intervals, the trend is also in line with the 1:1 line, indicating the great accuracy and high 

correlation with the prescribed values. In contrast to the CR validation, the LOSO validation 485 

(Figure 6b) maintains a similar prediction accuracy but the LOPO results are much more 

scattered. This may indicate that the accuracy of prediction is more sensitive to parameter 

interval setting rather than the shuffle order, particularly missing boundary values of the 

parameter during the training could lead to an obvious bias, such as the prediction of μ and β, 

presenting an integral shift to the inner domain for the maximum and minimum parameters. 490 
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Figure 6. Accuracy of the completely random validation for three disturbance regime parameters. The 

horizontal axis denotes the predicted values and the vertical axis denotes the prescribed values. (a) 

illustrates the three-parameter prediction results in the Completely Random cross-validation strategy, (b) 495 

refers to the Leave One Sequence Out strategy, and (c) refers to the Leave One Parameter Out strategy 

 

3.3.2 Feature Importance  
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 500 
Figure 7. (a) shows the feature importance of multi-output disturbance regime prediction, the value for 

each feature represents the magnitude of the accuracy decrease when removing its variability from the 

prediction of all three disturbance regime parameters; and (b) shows the prediction accuracy change in 

ascending importance for each disturbance regime parameter, x-axis refers to the feature(s) excluded 

from the prediction process (cumulatively from left to right). Accuracy is measured as the NSE between 505 

the full model estimates and the model outputs from the different factorial experiments for the entire three 

disturbance regime metrics (μ, α, β). 

 

In the multi-output random forest method, the feature importance analysis reveals that all 

types of statistics played significant roles in predicting the disturbance remiges, the information 510 

of steady-state GPP constraints has around 3% contribution (Figure 7a), ranking at seventh 

place. More specifically, the texture feature correlation, together with the histogram feature 

coefficient of variation, dominates the main contribution to prediction, with which about 60% of 

the predicting contribution for disturbance regime parameters can be explained. 

 515 

We also implement an exclusion experiment to quantify the prediction accuracy of μ, α, and β 

by removing one feature each time, following the order of contribution from lowest to second 
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highest. Figure 7b shows that both μ and α start with a steep drop in prediction accuracy from 

the Shannon index (6th in the importance order), while β doesn’t change significantly in NSE 

until only the last two features (correlation and coefficient of variation). 520 

 

In order to investigate the relationship between the individual disturbance regime parameter 

and statistics, we retrained the corresponding random forest model for only predicting one 

parameter by using biomass statistics and GPP constraints. Figure 8a illustrates that μ is mainly 

controlled by histogram features, and GPP ranked fourth with exceeding 10% contribution, 525 

playing the most significant role compared to α (< 4%) and β (<2%). Texture features are the 

main predictors for parameter α, which can explain about 50% contribution of the prediction. 

The largest contributor-correlation accounts for about 40%. In the case of β, 80% of its 

contribution is due to the coefficient of variation, which occupies an absolute position. 

 530 

A similar exclusive analysis was applied to the individual parameter, and the result shows 

that to achieve over 80% accuracy, μ, α, and β require the participation of at least 2,3, and 4 

features respectively (Figure e-g). 

 

 535 
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Figure 8. Breaks down the results of the feature importance for each individual disturbance regime 

parameter: μ, α, β. On the left (a-c) are shown the feature importance results (as in Fig. 7a) while on the 

right (d-f) the cumulative feature importance (as in Fig. 7b). 

4 Discussion 

Disturbance regimes are usually defined by their frequency, severity, and spatial coverage 540 

(Liu et al. 2011), and can vary significantly across the landscape (Nelson et al. 1994). Some 

researchers have attempted to infer or evaluate partial representatives of the disturbance 

regimes in different manners from the model and observation, such as the number, size, and 

distribution of disturbance events in Fisher’s work (Fisher et al. 2008), probability and intensity 

in Williams’ work (Williams, Hill, and Ryan 2013), or return frequency, fractional trees and 545 

fractional mortality in Chambers’ work (Chambers et al. 2013). Based on these previous studies 

as well as the definition, we designed three general parameters μ, α, and β with a relatively wide 

parameter range to simulate sufficient varied disturbance regime scenarios without considering 

the specified types. In terms of parameterization, the binary disturbance reference maps are 

controlled by μ, α which are following Fisher’s work (Fisher et al. 2008), these two parameters 550 

were employed at equal intervals for conducting gradient patterns of spatial distribution for 

disturbance events. From the prediction results, the evenly distributed and distinguishable μ and 

α show that the set of intervals is reasonable and indicates the capability of a denser 

improvement (Figure 6). Instead of killing all of the biomass due to any disturbance events, we 

use parameter β to link the disturbance intensity or the fraction of biomass loss with the 555 

corresponding event size. Based on the statistic from Chambers’ work, we experimentally 

employed a set of values around the statistic with varying intervals, and the prediction shows a 

more divergent prediction distribution but also exhibits good prediction accuracy as the intervals 

increase. As a result, we suggest that the modelers focus equally on the interval and range, and 

the limits and validity of settings should in our study be evaluated further. 560 

 

Here we hypothesize and demonstrate that higher-order statistics on biomass patterns reveal 

properties of underlying disturbance regimes which have been assumed to be unsolvable in 

previous modeling exercises (Fisher et al. 2008; Ryan et al. 2012; Williams, Hill, and Ryan 

2013). We present a conceptual modeling framework where a wide variety of disturbance 565 

regimes is inverted from simulated biomass patterns via machine learning. Our results are 

robust for different cross-validation strategies, suggesting the generalization of the approach 

(Table 3). 

 

The multi-output regression shows that the most important variables to predict mu, alpha and 570 

beta relate to the spatial distribution of biomass, rather than the mean or any higher quantiles of 

the biomass distribution (Figure 7). Yet, on particular disturbance metrics, the rankings of 

variable importance may change. Mu, the average domain fraction affected by disturbances, is 

strongly linked to biomass distribution statistics (skewness, range, CV, standard deviation) and 

also to the GPP (Figure 8a). Interestingly biomass itself does not emerge as of high importance, 575 

although it is implicitly present in CV and STD. Alpha, the clustering pattern of events' 

distribution, is more correlated with text features, such as Correlation, Homogeneity, and 

https://www.zotero.org/google-docs/?pZXEeq
https://www.zotero.org/google-docs/?SYyKEs
https://www.zotero.org/google-docs/?uCAUHJ
https://www.zotero.org/google-docs/?LOLKVC
https://www.zotero.org/google-docs/?ANS82D
https://www.zotero.org/google-docs/?iBkHtA
https://www.zotero.org/google-docs/?Hy0UeF
https://www.zotero.org/google-docs/?Hy0UeF
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Contrast, which account for around 50% of contributions (Figure 8b). And Beta, controlling the 

relationship between disturbance intensity and event size, is mainly dominated by CV (Figure 8c) 

whose contribution is over 80%. This connection is most obvious among the three parameters, 580 

indicating that the intensity would directly affect the biomass histogram distribution and thus 

lead to varying CV statistics. 

  

By design, within each domain, (1) disturbance events are independent between years, and 

(2) the event shape does not change according to event type or local land surface conditions, 585 

while  (3) GPP parameters do not change within the domain. 

 

(1) As the temporal occurrence, the current setting of disturbance events are all temporarily 

stochastic for considering the simplicity of simulation. We randomly extract a single 

snapshot annually from the disturbance cube, in which the instances within the stack are 590 

also independent.  In reality disturbance, however, could modify forest soil’s physical 

and chemical factors and microclimatic environments, creating ecological legacies that 

have further legacy effects on carbon dynamics (Liu et al. 2003). Thus different 

disturbance types would result in a varying probability for the occurrence of the 

subsequent disturbance event. Further discussion is needed to constrain this temporal 595 

randomness with a view to narrowing the gap between reality and simulation.  

 

(2) As for the event shape, all the disturbance events are regulated as rectangular shapes 

for the reason of computing efficiency at the moment. This strategy allows all the events 

across the domain can be distributed without overlapping or edge-connecting with 600 

impressive efficiency. However, this simplified method could also raise a few problems. 

Firstly, the gaps between the rectangular events over time are likely to be missed even 

after a 200-year spatial-stochastic simulation, resulting in some extremely large values in 

non-steady states. These non-equilibrium outliers, defined as values more than three 

standard deviations from the mean value by each column of the domain (Table S2), 605 

were filled with the nearest steady-state values around. Although increasing the spin-up 

time may theoretically mitigate this non-equilibrium phenomenon, it’s not cost-effective in 

terms of computation consumption. We also noticed that the statistical features without 

outliers preprocessing could lead to an apparent decrease in accuracy by a comparison 

experiment, this suggests that the correlation between biomass statistics and 610 

disturbance regimes relies on the steady-state assumption, and the noise of non-

equilibrium outliers can significantly affect the prediction accuracy. Secondly, the shapes 

of realistic disturbance events are usually more complex and stochastic based on the 

monitor results of high-resolution remote sensing observation (Chambers et al. 2013; 

Senf and Seidl 2021a). The impact of varied disturbance event shapes on the statistical 615 

features of spatial steady-state biomass, and whether the simplification process will have 

any effect on the robustness of the prediction accuracy both need to be further 

discussed.  

 

(3) For GPP parameter G, we applied 5 different values for representing a gradient 620 

photosynthesis capacity at the landscape level. Considering the heterogeneity of 

https://www.zotero.org/google-docs/?7Jz1rC
https://www.zotero.org/google-docs/?3gSmMy
https://www.zotero.org/google-docs/?3gSmMy
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photosynthesis capacity within the domain, we deployed a normal distribution to 

randomly distribute G values for each patch, but overall Gs did not vary much and 

remained fixed over time. It has been found that multiple environmental factors, such as 

temperature, vapor pressure deficit, atmospheric CO2 concentrations, soil water 625 

availability, light intensity, and cloudiness, dominate varied impacts on the light use 

efficiency (LUE) model parameters across in-situ sites (Bao et al. 2022). Therefore more 

environmental variables and photosynthetic parameters should be taken into account to 

localize the GPP dynamic simulation. 

 630 

Besides, we employed a relatively simple carbon dynamic model to simulate the dynamics of 

biomass, particularly the carbon gain and physiological loss mass are only associated with the 

plant biomass at the moment, exclusively allowing the analysis of the direct disturbance impact 

without considering other detailed physiological processes and allocation mechanisms. 

However, the realistic biomass dynamic is often more sophisticated, most of the compartment 635 

models at the moment, such as CASA (Potter et al. 1993), JSBACH (Reick et al. 2021), DALEC 

(Williams et al. 2005), etc., are capable of describing different biomass compartments such as 

leaves, branches, stems, roots, and CWD in various details. Besides the plant growth recovery 

can be affected by the climate and atmosphere in terms of long life span, the impacts of the 

changes like carbon dioxide fertilization and arising temperate on forests should be addressed 640 

(Norby et al. 2001; Pan et al. 2010). Therefore performing a more detailed, synthetic, and goal-

directed model is expected, relying on which the direction of assessing the weights of these 

biomass-leading factors in predicting the disturbance regimes could be pointed and thus enable 

to evaluate of how these factors’ interaction impact the ultimate prediction accuracy. Besides, 

through the incorporation of multiple observed constraints, more detailed carbon compartments 645 

and plant physiological processes like metabolic activity can be described, permitting the 

localization of regional biomass dynamics and corresponding disturbance regimes. 

 

Identifying disturbances' varying occurrences in time and space and the complexity of the 

plant’s response in different compartments remains a key scientific challenge. Through the use 650 

of remote sensing data and ground-based networks, significant advances have been achieved 

in understanding, representing, scaling, and characterizing disturbance, ultimately leading to the 

development of the hypotheses in the process-based models, which can generally be 

categorized into compartment models and demography models (Liu et al. 2011). The 

compartment models, including the biogeochemical and ecophysiological ones (Parton et al. 655 

1987; Running and Gower 1991; Raich et al. 1991; McGuire et al. 1992; Chen, Chen, and Cihlar 

2000; Liu et al. 2003; Bond-Lamberty et al. 2005), can integrate general stand information and 

meteorological data to simulate carbon cycling, and applied to simulate the biogeochemical 

processes of forests associated with disturbance (Brugnach 2005; Tatarinov and Cienciala 2006; 

Wang et al. 2009). And the demography models, also referred to as gap models, are more 660 

focused on the simulation of the impacts of disturbance on the forest composition, structure, and 

biomass in a relatively long term (Shugart, Leemans, and Bonan 1992; Hurtt et al. 1998; 

Bugmann 2001; Norby et al. 2001). Overall, most of these processed-based models at the 

moment rely on the field or satellite observations to quantify or evaluate the impacts of 

disturbance on carbon stocks or fluxes, so the models are more diagnostic and require specific 665 

https://www.zotero.org/google-docs/?Ax9CSk
https://www.zotero.org/google-docs/?7MYLCT
https://www.zotero.org/google-docs/?CwxqCx
https://www.zotero.org/google-docs/?Wh64Np
https://www.zotero.org/google-docs/?aNlsc2
https://www.zotero.org/google-docs/?maxDsv
https://www.zotero.org/google-docs/?1uqyQv
https://www.zotero.org/google-docs/?1uqyQv
https://www.zotero.org/google-docs/?1uqyQv
https://www.zotero.org/google-docs/?aqs9WG
https://www.zotero.org/google-docs/?aqs9WG
https://www.zotero.org/google-docs/?mC9pAO
https://www.zotero.org/google-docs/?mC9pAO
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information, such as the extent, type, and timing of disturbance events for supporting the impact 

analysis. To determine the impact of disturbance, the timely and continuous land change land 

cover (LULC) or other types of datasets describing the disturbance attribute always need to be 

taken into consideration in order to generate a more robust simulation of carbon dynamics (Liu 

et al. 2003). Based on the framework we built, the concept of the demography model simulating 670 

the regional biomass with replicated patch pixels and the mechanism of the carbon 

compartment model describing the biomass dynamic can be combined together to conduct the 

simulation. In spite of the dependence on a large amount of computation-consuming resources, 

our study is capable of retrieving the disturbance regimes parameter back only by the biomass 

observations under the assumption of the steady-state, empowered with prognosis for the 675 

development of many dynamic global vegetation models (DGVMs), such as LPJ (Haxeltine and 

Prentice 1996), HYBRID (A. D. Friend et al. 1997), IBIS (Foley et al. 1996), VECODE (Brovkin, 

Ganopolski, and Svirezhev 1997), and LM3V (Shevliakova et al. 2009) considering the impact of 

disturbance. 

 680 

5 Conclusion   

Our study reveals a strong link between landscape-level disturbance regimes and biomass 

distribution patterns and statistics. Relying on a conceptual model-based experiment and 

machine learning regression three disturbance regime parameters can be reliably retrieved via 

the spatial distribution of plant biomass and primary productivity. Namely, the average fraction 685 

of the domain affected by disturbances, the event size clustering exponent, and the perturbation 

intensity can be determined with an accuracy of 97.3%, 96.6%, and 97.9%, respectively. As 

earth observation efforts evolve to deploy upcoming global satellite missions such as GEDI 

(Stavros et al. 2017), NISAR (Rosen et al. 2015), and BIOMASS (Le Toan et al. 2011), further 

efforts to quantify photosynthesis at higher resolution are taking place (Cogliati et al. 2015; Jung 690 

et al. 2020), our approach lays the ground for the development of long term diagnostics on the 

terrestrial carbon cycle using contemporaneous observations. 
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Appendix 705 

 
Figure S1. Number of events for each size in one domain where α is 1.2 

 

 GPP AGB 

μ 0.03 
α 1.0 
β 0.2 

  

μ 0.05 
α 1.0 
β 0.2 
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μ 0.03 
α 1.8 
β 0.2 

  

μ 0.03 
α 1.0 
β 0.5 

  
Figure S2. AGB (𝑔𝐶 ⋅ 𝑚−2) and GPP (𝑔𝐶 ⋅ 𝑚−2 ⋅ 𝑦𝑟−1) evolution against age (year) for different 

disturbance regimes 710 

 

 

 

Table S2. the number of outliers in three methods for a domain with 1 million pixels 

Pixels Detect by each column Detect by all values 

Median 28602 28550 

Mean 9887 9422 

Quartiles 39628 34348 

  715 
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