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Abstract

The calculations of atmospheric radiative transfer are among the most time-consuming components of the numerical weather

prediction (NWP) models. Therefore, using deep learning to achieve fast radiative transfer has become a popular research direc-

tion. We propose a physics-incorporated framework for the radiative transfer model training, in which the thermal relationship

between fluxes and heating rates is encoded as a layer of the network so that the energy conservation can be satisfied. Based

on this framework, we compared various types of neural networks and found that the model structures with global receptive

fields are more suitable for the radiative transfer problem, among which the Bi-LSTM model has the best performance.
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Abstract12

The calculations of atmospheric radiative transfer are among the most time-consuming13

components of the numerical weather prediction (NWP) models. Therefore, using deep14

learning to achieve fast radiative transfer has become a popular research direction. We15

propose a physics-incorporated framework for the radiative transfer model training, in16

which the thermal relationship between fluxes and heating rates is encoded as a layer17

of the network so that the energy conservation can be satisfied. Based on this framework,18

we compared various types of neural networks and found that the model structures with19

global receptive fields are more suitable for the radiative transfer problem, among which20

the Bi-LSTM model has the best performance.21

Plain Language Summary22

Numerical weather prediction models require a lot of computational resources and23

time to run. Calculating the atmospheric radiative transfer processes is one of the most24

computationally expensive parts of the model. One alternative is to model the radiative25

transfer using deep learning models, but the deep learning models do not involve phys-26

ical equations and may have physically inconsistent outputs. This paper proposes a model27

training framework to ensure the thermal equilibrium between fluxes and heating rates,28

which are outputs of radiative transfer models. Also, various neural network structures29

have been tested. The results demonstrate that model structures with global receptive30

fields work best for emulating radiative transfer calculations.31

keywords32

radiative transfer parameterization, neural networks, physics-incorporated33

1 Introduction34

Solar (shortwave, SW) and thermal radiation (longwave, LW) are the fundamental35

drivers of the atmospheric and oceanic circulation by creating the equator-versus-pole energy36

imbalance. The atmospheric radiative transfer processes are well understood and accurately37

represented by the line-by-line model LBLRTM (S. Clough et al., 2005; S. A. Clough et al.,38

1992). The LBLRTM requires unaffordable computational costs; thus, it is inappropriate for39

weather and climate modeling. Therefore, various parameterization methods are proposed40

to approximate radiative transfer calculations more efficiently for application in numerical41

models (Stephens, 1984).42

Despite being simplified, the radiative transfer parameterization is still more compu-43

tationally expensive than other dynamical or physical processes. Therefore, the radiative44

transfer parameterization is usually performed less frequently in time and on a coarser45

spatial grid. For example, in the European Centre for Medium-Range Weather Forecasts46

(ECMWF), the radiation scheme is run 8 times less frequently in time and 10.24 times47

coarser in spatial resolution than the high resolution deterministic forecast (HRES), which48

would degrade the precision compared to frequent calls in time and space (Hogan & Bozzo,49

2018). While for the ECMWF ensemble forecast with 12 minutes time step, the radiation50

scheme is only called every 3 hours on a spatial grid 6.25 times coarser than the rest of the51

model.52

To further speed up the radiation calculations in weather and climate models and make53

it feasible for more frequent calls of the radiation schemes, many researchers have investi-54

gated alternative approaches such as neural networks (NNs). Chevallier et al. (1998) and55

Chevallier et al. (2000) used shallow NNs with one hidden layer (called NeuroFlux) to sim-56

ulate the LW radiative budget from the top of the atmosphere to the surface in a model57

with 31 vertical levels. The NeuroFlux achieved comparable accuracy to the accuracy of58
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the ECMWF operational scheme and was also 22 times faster. However, NeuroFlux fails59

to maintain both accuracy and acceleration when applied to models with 60 vertical layers60

and above (Morcrette et al., 2008). Pal et al. (2019) developed two dense, fully connected,61

feed-forward deep NN (DNN) to emulate SW and LW radiative calculations. They replaced62

the original radiation parameterization in the Super-Parameterized Energy Exascale Earth63

System Model (SP-E3SM) with these DNN-based emulators and were able to run numerical64

simulations stably for up to a year. The DNN-based models achieved approximately 90-65

95% accuracy and were 8-10 times faster compared to the original parameterizations. Their66

results demonstrated the applicability of machine learning in modeling radiative transfer67

calculations in NWP models. Roh and Song (2020) found that the NN radiation model68

with high frequency call can perform better than the low frequency calls of the original69

radiation scheme with similar calculation costs. Moreover, Belochitski and Krasnopolsky70

(2021) showed that the shallow NN-based emulators of radiative transfer parameterization71

developed ten years ago for the general circulation model (GCM) are robust despite the72

structural change in the host model. Regarding model generalization, this model can gener-73

ate realistic and stable radiation results when applied to numerical simulations for up to 774

months. Liu et al. (2020) compared feedforward NNs with the convolutional NNs for radia-75

tive transfer computations. Their results showed that the feed-forward NNs demonstrated76

a better trade-off between accuracy and computational performance.77

However, the above methods and results were established using either incomprehensive78

datasets or non-common radiation schemes. Cachay et al. (2021) introduced ClimART, a79

dataset for applications of ML in radiative transfer problems. The ClimART dataset only80

took into account the pristine sky (no aerosols and no clouds) and clear sky conditions;81

thus, the NN models trained on the ClimART dataset would not be suitable for operational82

applications when the presence of clouds is inevitable. Dueben et al. (2021) established and83

published the MAELSTROM (MAchinE Learning for Scalable MeTeoROlogy and Climate)84

dataset, in which the dataset of A3 is generated using the input and output data from85

the ecRad Tripleclouds radiation scheme (Hogan & Bozzo, 2018). However, the ecRad86

radiation scheme is not widely used by other NWP models. For the NN-based radiative87

transfer schemes, if the training dataset contains more comprehensive weather conditions,88

it can have more practical value in the operational NWP simulations. Therefore, this paper89

build a dataset using the Model for Prediction Across Scales - Atmosphere (MPAS-A) that90

covers the entire globe and all months. The rapid radiative transfer model for general91

circulation models (RRTMG) is selected for radiative transfer calculations as the RRTMG92

model is widely used by many global and regional models.93

With regards to the satisfaction of physical constraints, the previous studies (Krasnopolsky94

et al., 2010; Lagerquist et al., 2021; Liu et al., 2020; Roh & Song, 2020) trained NN-based95

emulators to output profiles of heating rates and fluxes at the surface and top-of-atmosphere96

directly, which causes the issues with energy conservation. Cachay et al. (2021) and Ukkonen97

(2022) chose to predict the radiative fluxes and compute heating rates from fluxes, which98

ensures physical consistency (Yuval et al., 2021). However, Ukkonen (2022) found that the99

heating rates are highly sensitive to the continuity in the fluxes profile, and small errors100

of fluxes lead to relatively large errors in heating rates. Based on the above research, the101

satisfaction of physical constraints has become a very critical issue in NN-based radiative102

transfer emulation. In this article, we will discuss this issue in detail from the aspect of103

framework design, and examine how to obtain accurate radiation emulation while satisfying104

the physical constraints.105

In this paper, we use deep learning models to emulate radiative transfer calculations.106

We also propose a physically incorporated training scheme, where the energy conservation107

is encoded in the network in the form of constraints. Based on this framework, we apply108

and compare different network structures and analyze the advantages and disadvantages109

of each network structure in detail. Section 2 describes the dataset used for training and110

evaluation. The overall physics-incorporated solution, and various network structures are111
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described in Section 3. The results related to each type of NNs and detailed error analysis112

are demonstrated in Section 4. Section 5 contains the conclusions and discussions.113

2 Data114

2.1 Data generation115

The dataset was generated by running the Model for Prediction Across Scales - At-116

mosphere (MPAS-A) version 7.1 with initial conditions provided by the National Centers117

for Environmental Prediction (NCEP) Global Forecast System (GFS). MPAS employs an118

unstructured centroidal Voronoi mesh, which allows for variable horizontal resolution with119

higher resolution in a region of interest. In this study, we used the variable resolution rang-120

ing from 92 km to 25 km mesh containing 163842 horizontal grid cells and 57 vertical levels121

with a model top at 30 km.122

The experiments used physics packages consisting of the “mesoscale reference” suite123

in MPAS-A. These packages include the new Tiedtke for cumulus convection (Zhang &124

Wang, 2017), RRTMG for SW and LW radiation (Iacono et al., 2008), Xu-Randall for125

subgrid cloud fraction (Xu & Randall, 1996), WRF Single-Moment 6-Class (WSM6) for126

microphysics (Hong & Lim, 2006), and Yonsei University (YSU) for planetary boundary127

layer mixing (Hong et al., 2006). The simulation was run for a total of 36 days in which a128

three consecutive days’ period was randomly selected from each of 12 months in the year129

2021. The first two days of each three consecutive days are used for training, and the last130

day is used for testing. The model generates radiation inputs and outputs every 1 hour.131

2.2 Input and output data132

Table S1 lists all the input and output variables, where the input contains 29 original133

variables and the output contains 6 variables. Among the input variables, 11 variables134

are surface variables, and others are three-dimensional variables (either full layer or full135

level). To preprocess the data for the DL models, we pad the surface and layers variables136

to match the dimensions of the levels variables. The z-score normalization technique is137

applied to normalize all the input and output variables to ensure they have the same mean138

and variance. For three-dimensional variables, the mean and standard deviation (std) was139

determined from values of either all the vertical levels or layers.140

3 Method141

This section introduces the physics-incorporated model architecture and different net-142

work structures. The evaluation methods are described in the Text S1 in the supporting143

information.144

3.1 Physics-Incorporated Framework145

In the physics-based radiative transfer scheme, mapping between input and output146

variables is constructed column by column. The output comprises two parts: fluxes and147

heating rates. The flux is a measure of the energy being radiated per unit area, which has148

the unit of watts per meter square (W/m2). The heating rate describes the temperature149

change per unit of time, and it has the units of Kelvin per day (K/d). These two types of150

variables are not independent of each other, and there is such a physical relationship:151

HRl =
g

cp

(Fup
l+1 − F down

l+1 )− (Fup
l − F down

l )

pl+1
lev − plevl

(1)
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where g is the gravitational constant, cp is the specific heat at constant pressure, Fup
l ,152

F down
l , and plevl are the upward flux, downward flux, and pressure of level l ∈ 1, . . . , nlev.153

As the full-level heating rates and the fluxes at the bottom and the top level will be used in154

the subsequent calculations of the NWP models, it is necessary to satisfy the conservation155

relationship described by Equation (1). Therefore, in designing NN structures, we focus on156

the satisfaction of this layer of physical relationship. Secondly, the change in atmospheric157

components of one layer/level has both local and global impacts on radiation along the entire158

vertical column. For example, the presence of clouds or liquid water at any layer affects the159

distribution of fluxes across all the vertical levels by producing local heating rates peaks.160

Based on the above considerations, the structure is designed as shown in Figure 1 which161

includes three layers: the differential/integration layer, the radiative transfer layer, and the162

physics-incorporated layer.163

The differential/integral layer is used as a data pre-processing module to preprocess164

input variables so that some prior knowledge can be fully utilized. As the cloud fraction165

(cldfrac in Table S1) and liquid water (qc) can affect fluxes far away from where they166

are present, these variables are integrated upward and downward along the vertical direc-167

tion. The vertically accumulated cloud fraction and liquid water allow the models to learn168

vertically nonlocal effects. Meanwhile, calculating the heating rates requires the pressure169

difference between the two adjacent layers. Given the same values of fluxes, the smaller170

values of pressure difference result in larger values in heating rates. Therefore, the air pres-171

sure difference is obtained in advance by the differential module. The pre-processed features172

produced by the differential/integral layer are concatenated with the original features before173

being input to the models.174

The radiative transfer layer is the most crucial part of the framework, and its output175

is fluxes only. The learnable parameters are only in this layer, as shown in the orange176

block in Figure 1. Through this layer, the mapping similar to that of the physics-based177

radiative transfer model is learned by NNs. A custom error function is designed as a weighted178

combination of the flux Lflux and heating rate Lhr as shown in Equation (2), in which λ is179

the weight of heating rate error. The flux error is defined as an average of the four groups180

of dimensionless values calculated as the mean square deviations divided by variance, as181

shown in Equation (3). Similarly, the heating rate error is an average of two groups of182

dimensionless values, as shown in Equation (4). In the forward propagation, the fluxes are183

first output by the selected networks, and then heating rates are derived by the physics-184

incorporated layer (third layer). The flux and heating rate error are combined, and then185

the network parameters of the radiative transfer layer will be updated accordingly. Many186

network structures can be implemented in this layer, and the details are described in the187

following subsection.188

The last layer is the physics-incorporated layer, which constructs the relationship be-189

tween fluxes and heating rates as shown in Equation (1). In order to make this relationship190

more strictly satisfied, the entire equation is treated as an independent layer and is en-191

coded into the framework, avoiding the non-conservation of thermal equilibrium. Therefore,192

the gradient of heating rate error can be represented using the gradient of flux error and193

Equation (1), there are no learnable parameters within this layer.194

L = Lflux + λLhr (2)

Lflux =
1

4
[
MSEFsw−up

σ2
Fsw−up

+
MSEFsw−dn

σ2
Fsw−dn

+
MSEFlw−up

σ2
Flw−up

+
MSEFlw−dn

σ2
Flw−dn

] (3)

Lhr =
1

2
[
MSEHRsw

σ2
HRsw

+
MSEHRlw

σ2
HRlw

] (4)
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Figure 1. Physics-incorporated framework for emulating atmospheric radiative transfer

3.2 Network Structures195

In this section, the detailed network structures in the radiative transfer layer are de-196

scribed. The layer realizes the mapping from input features (W ×H) to the fluxes outputs197

(4×H), in which W and H represent the number of features and vertical levels, respectively,198

and the four output variables are SW upward flux (SWup), SW downward flux (SWdn), LW199

upward flux (LWup) and LW downward flux (LWdn), respectively. In this paper, various200

network structures are tested, including fully connected networks, convolutional-based NNs,201

recurrent-based networks, Transformer-based NNs, and neural operator based NNs, respec-202

tively. For each group of network structures, we control the total number of parameters to203

be around 1 million. In this way, the influence of the number of the parameters can be ruled204

out, and the influence of the network structures on the radiative transfer modeling can be205

examined more clearly. As the fully connected networks and convolutional-based NN are206

studied by many researchers before (Krasnopolsky et al., 2010; Liu et al., 2020; Cachay et207

al., 2021; Lagerquist et al., 2021; Ukkonen, 2022), the details are described in Text S3 in208

the supporting information.209

• Recurrent Type: Recurrent NNs (RNN) are widely used in natural language process-210

ing (NLP) tasks and are good at dealing with sequential problems. Here, the vertical211

direction is treated as the state transition direction, and the variable at a specific level212

is analogous to the word vector in the NLP tasks, which is represented by the feature213

vector at that level. In information transmission, a single-layer RNN can transmit214

information along the full vertical column, which is very similar to the propagation215

of radiative waves in the vertical direction. Also, a multi-layer RNN layer is used216

to mimic reflection in the radiative transfer processes. The long short-term memory217

(LSTM) (Hochreiter & Schmidhuber, 1997) and gated recurrent units (GRUs) (Cho218

et al., 2014) are explicitly designed to avoid long-term dependency problems. They219

used gated units to retain useful information and remove irrelevant information. The220

LSTM selected in this paper is a 5-layer structure, each layer has 96 hidden layer221

units, and the number of network parameters is 1.12 million. For GRU, a 5-layer222

structure is used, with each layer having 128 hidden layer units, and the number of223

network parameters is 0.77 million. In addition, as the radiative transfer in the atmo-224
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sphere involves both upward and downward processes, we implement the bidirectional225

LSTM and GRU to extract information from both directions.226

• Transformer Type: Transformer (Vaswani et al., 2017) network has recently become227

a hot topic in the field of machine learning. It has global perception capabilities228

due to the attention mechanism. For the NN-based mapping of radiative transfer229

calculations, global dependencies exist between the input features and outputs. For230

example, when clouds occur, the fluxes at all levels are changed accordingly. Here,231

the self-attention mechanism is used so that the feature information is retrieved at all232

vertical levels, and the relevant information can be extracted and summarized. More233

specifically, the network initially superimposes the original feature and the position234

embedding of the vertical index. Then, the combined features are fed into seven235

layers of self-attention blocks. Each block contains one self-attention layer and two236

fully connected layers. The self-attention layer first maps the features into query, key,237

and value vectors and performs the dot product of vectors. All the query, key, and238

value vectors have a dimension of 128. At the end of the network, the embedding239

dimension is changed back to the output dimension through a 1 × 1 convolutional240

layer. The total number of trainable parameters in this Transformer network is 0.71241

million.242

• Neural Operator Type: The traditional radiative transfer parameterization approx-243

imates the full equations of radiative transfer by discretizing the atmosphere in the244

vertical direction. However, the discretization brings about a trade-off between speed245

and accuracy: low resolution is fast but less accurate, while high resolution is accurate246

but slower. Unlike traditional grid-dependent methods, the Fourier Neural Operators247

(FNO) can parameterize the radiative transfer modeling in function space instead of248

the discretized space. The output of FNO is the complete wave field solution, similar249

to the wavelike pattern of fluxes. The FNO (Li et al., 2020) we implement in this250

study includes four sequential modules, each composed of a frequency domain and251

a spatial domain. In the frequency domain, input features go through the Fourier252

transformation, low-pass truncation, and full connection operation. Lastly, the out-253

put is converted to the time-domain space through the inverse Fourier transform. The254

spatial domain is a simple fully connected network. This scheme allows a single layer255

operator to achieve a global perspective of the entire vertical column. The truncated256

wave number is set to 16, and the channel width in the module is 96. The channel257

width is mapped to the output dimension at the final output layer through a 1 × 1258

convolution. The total number of trainable parameters in this Transformer network259

is 1.22 million.260

All settings of the hyperparameters used for different NNs are the same. Each model is261

trained with 500 epochs using a batch size of 4096. Adam optimizer is used with the initial262

learning rate 1e-3. The plateau scheduler is applied to decrease the learning rate by a factor263

of 0.5 when the loss does not decrease for five consecutive epochs.264

4 Results265

4.1 Statistical results266

Table 1 summarizes the error statistics of different NN-based emulators for fluxes and267

heating rates. The root mean square error (RMSE) of SW fluxes and heating rates predicted268

by the FC, ResNet, and U-Net models are higher than 10 W/m2 and 0.1 K/day, respectively,269

across all the vertical layers and time. The RMSE of LW fluxes is greater than 2 W/m2
270

and smaller than that of SW fluxes, which is due to the greater magnitude of SW fluxes271

than that of LW fluxes. The RMSE of LW heating rates is greater than 0.2 K/day and is272

also higher than the SW heating rates of each corresponding NN emulator, as LW heating273

rates are more sensitive to clouds and more difficult to predict (see Figure 2). FC and CNN274
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Table 1. Evaluation metrics (RMSE and MBE) of SW flux, LW flux, TOA net flux, SW heating
rate and LW heating rate for NN emulators including FC, ResNet, U-Net, Bi-GRU, Bi-LSTM,
Transformer and FNO for test data.

Model
SW Flux
W ·m−2

LW Flux
W ·m−2

TOA Net Flux
W ·m−2

SW Heating Rate
K · d−1

LW Heating Rate
K · d−1

RMSE MBE RMSE MBE MBE RMSE MBE RMSE MBE
FC 14.63 -2.31 5.28 0.182 -3.78 18.85e-2 -6.79e-3 3.94e-1 -1.19e-3

ResNet 38.97 -1.17 8.72 -0.38 -2.32e-1 22.89e-2 5.38e-3 4.14e-1 2.51e-3
Unet 10.92 -2.56 2.46 -0.314 -7.62 9.58e-2 -6.02e-3 2.17e-1 -7.06-3

Bi-GRU 2.334 7.31e-3 1.216 -8.20e-3 3.97e-1 3.29e-2 -4.87e-4 1.41e-1 -1.90e-3
Bi-LSTM 2.315 -2.15e-3 1.205 -1.66e-3 4.91e-2 3.20e-2 7.02e-5 1.39e-1 1.48e-4

Transformer 2.753 0.138 1.286 0.211 -5.61 4.06e-2 2.34e-3 1.46e-1 6.85e-5
FNO 3.755 -0.125 1.289 -0.0238 -6.77 4.20e-2 -1.90e-3 1.47e-1 5.92e-4

networks do not perform well in radiative transfer calculations, which can be explained by the275

structural properties of the two networks. For FC networks, the flattening operation erases276

the vertical distribution of all the features, leading to the loss of important information.277

CNN networks only have the local receptive fields in the vertical direction for each operation278

performed. Therefore, the overall performance of FC and CNN networks is not as good as279

RNN, Transformer, and FNO networks.280

The Bi-GRU, Bi-LSTM, Transformer, and FNO achieve significant improvement with281

RMSE of SW and LW fluxes smaller than 2.5 and 1.3 W/m2, respectively. In addition, the282

RMSE of SW and LW heating rates is reduced to less than 0.033 and 0.14 K/day, respec-283

tively. The advantage of these networks is that a global perspective of an entire atmospheric284

column can be obtained in single-layer operations. More specifically, the RNN networks al-285

low the state to be transferred in the vertical direction through the recurrent mechanism.286

For the Transformer, it can query information at any level through the attention mechanism.287

The FNO networks encode the information into the Fourier function space, and each modal288

presents a wave function along the vertical direction. In summary, these networks enable289

complete information transfer in the vertical direction and show a considerable improvement290

in error statistics of the fluxes and heating rates. Overall, the RNN-type networks demon-291

strate the best performance, significantly outperforming the other structures in terms of292

both fluxes and heating rates. Among them, the Bi-LSTM model has the best performance.293

The RMSE of SW and LW fluxes are 2.315 and 1.205 respectively, and the RMSE of SW and294

LW heating rates are 3.20× 10−2 and 1.39× 10−1 respectively. Regarding mean bias error295
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(MBE) of fluxes and heating rates, Bi-GRU and Bi-LSTM also have the smallest values.296

In addition, the biases of the net fluxes at the top-of-atmosphere (TOA) directly determine297

the energy budget of the entire atmosphere. Therefore, if the MBE of net fluxes at the298

TOA tends to be 0, it represents a more consistent energy budget with the physics-based299

radiation schemes. It can be seen from Table 1 that the Bi-LSTM model has the highest300

accuracy in terms of net fluxes at TOA, with a value of 4.91 × 10−2, which is at least one301

order of magnitude smaller than other schemes.302

For a clearer analysis of the vertical distribution of errors, Figure 2 presents the vertical303

profiles of statistics for fluxes and heating rates. The FC and U-Net models generally have304

relatively higher variance, as shown by the vertical profiles of mean std of biases. The305

distribution of the error of the FC network is relatively uniform at different levels, while the306

U-Net shows some sawtooth distribution on the LW profile, and the error changes sharply307

with the vertical distribution. The Bi-LSTM and Transformer models are superior to the308

FC and U-Net models at all levels, which can be seen from the vertical profiles of mean309

absolute error (MAE). Overall, the error distributions of the Bi-LSTM and the Transformer310

are similar, with Bi-LSTM slightly better. The two models show a relatively uniform vertical311

distribution of error in fluxes. For heating rates, both models have relatively higher std of312

biases in the pressure layers between 800-1000 hPa and 200-400 hPa. Those two vertical313

regions are where liquid and ice clouds occur most frequently. Figure S1 illustrates the314

comparisons on scatter plots, and the conclusions are consistent with the vertical profiles315

shown above.316

4.2 Benefits of introducing the physics-incorporated layer317

In this subsection, we discuss the benefits of introducing the physics-incorporated layer.318

The physics-incorporated layer ensures the satisfaction of the thermal equilibrium between319

fluxes and heating rates as shown in Equation (1) by encoding it as part of network layers.320

We designed three groups of experiments: only supervising fluxes, only supervising heating321

rates, and a joint loss with the physics-incorporated layer imposed. For the case of joint loss,322

the weights of the heating rate and the flux are fixed 0.1 and 1, respectively. The RMSE of323

these experiments are summarized in Table S2 in the supporting information.324

When only supervising the fluxes, we calculate the heating rates using Equation (1).325

As the vertical profiles of fluxes are often smooth and flat, the model is relatively easy326

to fit well. As a result, the RMSE of fluxes is only slightly worse than that using the327

physics-incorporated layer. However, the RMSE of SW and LW heating rates are 6 times328

and 1.5 times greater than using the physics-incorporated layer. When models are trained329

only to supervise the heating rates, fluxes cannot be derived accordingly. In this case,330

the heating rates are still less accurate than that with the physics-incorporated layer, and331

the RMSE of SW and LW heating rates are 1.5 and 1.25 times larger. In summary, the332

physics-incorporated layer demonstrates great superiority. Firstly, a physically consistent333

relationship between fluxes and heating rates can be ensured. Secondly, the heating rates334

and fluxes are also more accurate.335

5 Conclusions336

In this paper, we propose a physics-incorporated framework for emulating atmospheric337

radiative transfer processes. The physical relationship between fluxes and heating rates is338

considered in our framework, and it is encoded as a layer of the network. Based on this339

framework, we designed and compared various types of NN structures and found that the340

networks with a full receptive field in a single layer are more suitable for the radiative341

transfer problem, among which the Bi-LSTM model has the best accuracies for fluxes and342

heating rates. Furthermore, vertical profiles of heating rates and fluxes suggest the Bi-LSTM343

performs well at all vertical levels, although there are slightly larger errors and variances344

where clouds are present.345
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Figure 2. Vertical profiles of the statistics in SW heating rates (first row), LW heating
rates(second row), SW fluxes(third row), and LW fluxes (fourth row) for the test data using dif-
ferent NN-based emulators: FC (first column), U-Net (second column), Bi-LSTM (third column),
and Transformer (fourth column). The solid and dotted lines show the MAE and MBE profile,
respectively, and the shaded area indicates the mean std relative to the bias.
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Future work will investigate the online implementation of the DL-based emulators in an346

NWP model such as Weather Research and Forecasting (WRF) with different vertical levels.347

Besides, due to the nonlinearity of the radiative transfer models, there is no corresponding348

tangent-linear and adjoint model of radiative transfer models for WRF. Hatfield et al. (2021)349

demonstrated the feasibility of constructing the tangent-linear and adjoint models from350

the NN-based gravity wave drag parameterization scheme. They showed that the NN-351

derived tangent-linear and adjoint models successfully passed the standard test and were352

applied in four-dimensional variational data assimilation. Likewise, our future work includes353

developing the adjoint model of radiation schemes using NN-based radiation emulators to354

improve the four-dimensional variational data assimilation system.355
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