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Abstract

We propose a novel scheme that applies a multitasking convolutional neural network to learn the back azimuthal behavior from
receiver function seismograms, which can effectively predict the depth and occurrence of the Moho beneath a single seismic
station. Our scheme consists of three main steps: 1. Based on the style transfer technique, we generate 9000 synthetic receiver
function seismograms blended by realistic noise as training data sets. 2. A multitasking convolutional neural network is trained
to predict the depth and occurrence of the Moho. 3. All real receiver function seismograms are reconstructed by the accelerated
joint iterative method before prediction. We apply the scheme to study the middle-southern of the Tanlu fault zone and
adjacent regions and successfully achieve the depth and occurrence of the Moho beneath 10 permanent seismic stations. The
predicted depths are in agreement with the results computed by conventional methods, and the predicted strikes and dip angles
present an undulating Moho with near NE-striking. Moreover, the predicted strikes are nearly consistent with the strikes of
the normal faults in the upper crust, which implies that intense continental extension in the Cretaceous play a prominent role
in the tectonic deformation of the brittle upper crust and the ductile lower crust simultaneously. Besides, it helps to illustrate

that the stress field orientation of the major geological event can be recorded and preserved in the lower crust.
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Key Points:

e The prediction of the Moho information from receiver functions seismo-
gram by using multi-task deep learning

e The recombining synthetic receiver functions via the style transfer tech-
nique

e The early Cretaceous extensional tectonics relics preserved in the lower
crust of the Tanlu fault zone and adjacencies

Abstract

We propose a novel scheme that applies a multitasking convolutional neural net-
work to learn the back azimuthal behavior from receiver function seismograms,
which can effectively predict the depth and occurrence of the Moho beneath a
single seismic station. Our scheme consists of three main steps: 1. Based on
the style transfer technique, we generate 9000 synthetic receiver function seis-
mograms blended by realistic noise as training data sets. 2. A multitasking
convolutional neural network is trained to predict the depth and occurrence of
the Moho. 3. All real receiver function seismograms are reconstructed by the
accelerated joint iterative method before prediction. We apply the scheme to
study the middle-southern of the Tanlu fault zone and adjacent regions and
successfully achieve the depth and occurrence of the Moho beneath 10 perma-
nent seismic stations. The predicted depths are in agreement with the results
computed by conventional methods, and the predicted strikes and dip angles
present an undulating Moho with near NE-striking. Moreover, the predicted
strikes are nearly consistent with the strikes of the normal faults in the upper
crust, which implies that intense continental extension in the Cretaceous play
a prominent role in the tectonic deformation of the brittle upper crust and the
ductile lower crust simultaneously. Besides, it helps to illustrate that the stress
field orientation of the major geological event can be recorded and preserved in
the lower crust.

Plain Language Summary
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We cast the structural study of the Moho with the conventional receiver func-
tion method as a deep learning problem. The focus of this paper, subsequently,
is placed on the applications of our scheme to real data recorded from 10 perma-
nent seismic stations located in the middle-southern segment of the Tanlu fault
zone and its adjacencies. Yielded predicted information reveals an undulating
Moho with near NE-striking below the study area, which is rarely unveiled by
other traditional approaches. Those tectonics seem to have strong correlations
with the Cretaceous continental extension. Meanwhile, our scheme provides an
effective way to study other tectonic areas.

1 Introduction

Receiver functions (RFs) are time series to study the structure of the Earth and
internal boundaries. As its derivative methods, the H-kappa stacking (Li et al.,
2019; Zhu & Kanamori, 2000) is widely used to estimate crustal thickness and
ratio of P to S velocities, and the common conversion point stacking (Kosarev
et al., 1999; Zhu, 2000) and the migration (eg. Chen et al., 2005; Millet et al.,
2019) provide some ways for imaging of the deep interface structure along the
profile. Besides, in the single station seismogram with RFs arranged in back az-
imuth, dipping Moho can often induce the variation of amplitudes and arrivals
of the conversions (Ps) and the multiples (PsPs+PpSs, PpPs) (Frederiksen &
Bostock, 1999; Langston, 1977; Peng & Humphreys, 1997; Savage, 1998; Zhang
& Langston, 1995). Under some circumstances (high signal-to-noise ratio or
lower anisotropy), researchers can even analyze the back azimuthal behavior of
the phases to recognize the occurrence of the interface qualitatively (eg. Mon-
salve et al. 2019; Sherrington et al. 2004; Wirth & Long, 2012; ). However,
the noise contamination and significant anisotropy make the back azimuthal be-
havior complicated and illegible (Liu & Niu, 2012; McNamara & Owens, 1993;
Nagaya et al. 2008). For most existing seismological imaging methods, the
stacking and smoothing technique likely tend to erase tectonic features to some
extent, and the imaging resolution significantly reduces with the depth increases,
resulting in relatively poor observation. In our study, utilizing the powerful fea-
ture extraction capability of the multitasking convolutional neural network, we
put forward a new deep learning scheme to predict the depth and occurrence
of the Moho beneath a single seismic station from the RFs seismogram. The
predicted results effectively elucidate structural characteristics of the Moho and
indirectly provide new evidence about lower crustal evolution.

Over the last few years, machine learning has been massively adapted to assist
the investigation of deep earth structures. Nevertheless, the previous combining
study of machine learning and RFs focused mainly on denoising (Dalai et al.,
2022) and auto-picking (Gan et al., 2021; Li et al., 2021), rather than delineat-
ing structural information of the subsurface. Recently, researchers have begun
to realize the potential of combining the two methods. Zhang et al. (2019)
reconstructed RFs with PCA to gain a more accessible analysis to the back az-
imuthal behaviors and the phases. Yang et al. (2022) designed a convolutional
neural network to predict the shear wave velocity. Wang et al. (2022) achieved



a substitute method of the H-kappa by deep learning. In this paper, we mainly
focus on retrieving the structural information (depth, strike, and dip angle) of
the Moho from RFs seismogram using a multitasking convolutional neural net-
work, and more importantly, the findings will provide essential insights into the
relationship between the tectonics and geological evolution.

Using broadband data from 10 permanent seismic stations, we applied the newly
proposed scheme to study the Tanlu fault zone, a suture between the North
China block (NCB) and the Lower Yangtze block (LYZB). The predecessors
have researched the deep structure of the TLFZ and its adjacencies over a long
period via geophysical methods and found massive shreds of evidence on crustal
thickness and structure (Chen et al., 2006; Lei et al.,2020; Lii et al., 2015; Ma et
al., 2020; Shi et al., 2013; Ye et al., 2019; Zhang et al., 2020). In the meantime,
the geochemical and geological researches also unveil more details on evolution
and mechanism (Jia et al., 2016; Kang et al., 2021; Wang et al., 2021; Yin et al.,
2020; Zhao et al. 2014; Zheng et al, 2018; Zhu et al. 2018). Despite all this, a
current burning issue in geosciences lies in identifying the relation between deep
deformation and the evolutional process. Our scheme simultaneously extracts
the depth and occurrence of the Moho beneath the stations on the middle-
southern segment of TLFZ and adjacent regions. Finally, we will discuss the
correlation between lower crustal deformation and geological evolution.

We chose the middle-southern segment of the TLFZ and its adjacencies for
scheme testing for two reasons. 1. The study area developed typical thin-skinned
tectonics in Eastern China, which indicate a simpler deep geologic structure
compared with the thick-skinned structures in Southwest China or double Moho
in Tibetan Plateau (Shen et al., 2017; Ye et al., 2015). 2. Previous studies
have revealed that the study area has a thin crust (<40 km) and weak velocity
anisotropy, which results in RFs with earlier arrival times and explicit behaviors
of the phases. Hence this area can be viewed as an ideal place for scheme testing.

2 Methodology
2.1 The style transfer technique

The success of supervised learning depends heavily on the availability and qual-
ity of a large volume of sample data and the accuracy of labels. However, unfor-
tunately, on the one hand, the RFs from the bandpass waveform are costly, and
the missing traces in partial back azimuth will further degrade the performance
of the involved methods. Except for this, the geological distinction between
different areas shapes the heterologous features of RFs, which means that a
network by simply training observed data from one place will bring about the
failure of prediction for another place. On the other hand, the realistic RFs are
often contaminated with the noise of different sources, resulting in the disorder
of back-azimuthal information of phases and further erroneous identification.

Considering the merits of synthetic data in enlarging sample space and providing
an accurate representation of wave propagation, we adopt the synthetic RFs as
the training sample set in this work. Besides, we introduce a practical way to



simulate a high-quality synthetic RFs seismogram with noise, namely, using a
style transfer technique based on the convolutional neural network (Gatys et al.,
2016) to capture noise features from the real data and further integrate them
into the synthetic RFs. In this way, the synthetic RFs for training will obtain
similar noise levels and characteristics as the real data.

A pre-train VGG-19 network is responsible for separating and recombining the
content (the synthetic RFs seismograms without noise) and the style (the noises
trimmed from the real RFs), and outputting the recombination (the synthetic
RFs seismograms with noise). The outputs of selected specific matching layers
are used to define different loss functions, then the final recombining seismogram
is calculated iteratively via batch gradient descent.

For the content representation, the content loss is defined as follows:
1

represents the synthetic RFs seismogram, andrepresents recombining RFs seis-
mogram in each iteration. the content representation in a layerof VGG-19 net
are stored in a matrix, where is the activation of thefilter at positionin layer.
Similarly, the recombined representation on a layerof VGG-19 net are stored in
a matrix.

For the style representation, we need to define a feature correlation, given by
the Gram matrix, where is the inner product between the vectorised feature
mapsandin layer:

2
where represents VGG-19 block. The style loss is defined as follow:
3

In equation (3),represents the style and its matrix size is the same as.is the
number of the filters in layer andis filter size.is the style feature representation
in layerof VGG-19 net.is weighting factors of the contribution of each layer to
the total loss.

Then, the total loss is defined as below:

4

where and are the weighting factors for the content and the style, respectively.
2.2 The multi-task learning based on the hard parameter sharing

We select the most classical and common approach, the hard parameter sharing
(Caruana, 1993), to design a multitasking deep neural network. All tasks gener-
ally share the hidden layers on the bottom of the network, while the individual
task has self-task-specific layers on top of the network. The most significant
advantage of this method is that this structure dramatically reduces the risk
of overfitting and enhances the robustness of the model (Baxter, 1997; Ruder,



2017). In our deep neural network, the hard share bottom consists of multi-
convolutional layers, sharing all learned weights and biases. The output of the
hard share bottom as the input is fed into different task-specific layers. We
divide our predictive goals into three tasks: the Moho depth is a classification
task, while the strike and the dip angle are viewed as two individual regression
tasks.

For the Moho depth prediction, we adopt the cross-entropy loss function as
follows:

5

Wherepresents the real probability of thedepth class , represents the predictive
probability of thedepth class.

The mean squared error loss with L1_ L2 class regularization for two regression
tasks is calculated as.

6

whereis the number of the RFs samples,is the wights of the layer, andis the
regularization parameter.presents the label of theRFs sample, andis the corre-
sponding prediction. Furthermore, the total loss function is a linear combination
of loss functions of the three tasks.

2.3 The reconstruction of RFs seismogram via the accelerated joint iterative
method

In a realistic RFs seismogram, the uneven distribution of seismic events and
the existence of bad traces generally bring about the missing traces in partial
back azimuth, so it is necessary to restore and reconstruct RFs seismogram
before the prediction. We introduce a sophisticated method derived from the
compressive sensing theory (Donoho et al., 2006), the accelerated joint iterative
method (AJIM) (Zhang et al., 2022), to reconstruct realistic RFs seismogram
based on the acceleration linearized Bregman method (ALBM) (Gou et al., 2014;
Huang et al., 2013; Osher et al., 2005) and the iterative shrinkage thresholding
algorithm (ISTA) in the curvelet transform domain, where the curvelets as a
superior sparse to provide an optimally sparse representation of objects with
edges and wave propagators (Candés & Demanet, 2004; Zhang et al., 2017).
Moreover, a new exponential function (Zhang et al., 2022) is used to control the
contribution of ISTA and ALBM in AJIM. This method can perfectly solve the
reconstruction of RFs seismogram with missing traces in partial back azimuth
in most cases.

3 Scheme

Based on the methods introduced above, we propose a novel scheme for predict-
ing the depth and occurrence of the Moho. The whole workflow can be observed
in Fig. 1. The scheme has good generality and flexibility, which means it can be
directly employed in other studying areas with minor and suitable modifications.
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Figure 1. Workflow of the data processing scheme.
3.1 The synthetic RFs seismogram and labels encoded

The deep geological structures and the physical properties were carefully inves-
tigated and analyzed to retrieve the most appropriate design parameters for
generating the synthetic data set. The crustal thickness range is from 26 to
43km (Wei et al., 2020), including a 0 to 3km low velocity sedimentary layer.
Besides, the seismic imaging results show that the Moho of TLFZ and its adja-
cencies are relatively flat (Chen et al., 2006; Lii et al., 2015; Ma et al., 2020), so
in the strike range of 0 to 360°, the dip angle range is set from 0 to 20°. In addi-
tion, considering wave velocity anisotropy in the crust, we randomly introduce
0 to 3% azimuthal anisotropy to every synthetic RFs seismogram (Bem et al.,
2022; Gu et al., 2020). RFs are sensitive for wave velocity and density, hence,
we set the average value of study areas as the initial parameters (Vp = 6.4km/s;
Vs = 3.5km/s; The crustal density = 2800kg/m?) (Luo et al., 2019; Pasyanos
et.al. 2014; Zhang et al., 2020). Ultimately, 9000 synthetic RFs seismograms
with a ray parameter of 0.06 s/km, each consisting of 36 RFs corresponding to
0 to 360° back azimuth, were produced by the RAYSUM code (Frederiksen &
Bostock, 2000).

As mentioned above, the Moho depth was viewed as a classification task. We
thus divided 26 to 43 km of crust thickness into one class per 1km. In practice,
for instance, if the corresponding depth of one synthetic RFs seismogram is
34.76km, it will be rounded to 35. Next, all the depth labels of sample data
were encoded by the one-hot. The Moho strike and dip angle were regarded as




two regression tasks, so the corresponding strike and dip angle of all synthetic
RFs seismograms are normalized to -1 to 1.

3.2 The recombining synthetic RFs seismogram via the style transfer

A noise data set composed of 500 noise segments acted as a raw material of the
style for attaining recombining synthetic RFs seismogram. First of all, we ran-
domly selected an RF from the realistic RFs to be predicted and then trimmed
a segment of 25s at any random time after 25s as one noise sample. Repeat
this operation until 500 noisy samples were gathered as the noise set. After
that, 36 noises were chosen randomly from the noise data set as the style, and
a synthetic RFs seismogram with the same size acted as the content. Subse-
quently, we implemented the transfer style by a VGG19 net of pre-training on
ImageNet excluding the three fully-connected layers at the top of the network
(Fig. 2). The two wights of Formulae 4, and, were set toand, respectively.
The research suggested that matching the content/style representation on lay-
ers played a vital role in the recombination (Gatys et al., 2016). therefore, we
tried many combinations from different matching layers and evaluated their ef-
fect (Fig. S1 and Table S1). Finally, we matched the style features in layers
blockl__convl, block2_convl, block3 conv2, block4 conv2, and block5 conv2,
whereas we matched the content features in layer block5_conv4 (Fig. S1b). In
this case, the PSNR of the recombining RFs seismogram reached 26.22, and
the SSIM reduced to 0.37 (Table S1). In the recombining RFs seismogram, the
noises look exceedingly similar to these of realistic RFs seismograms. Although
the amplitudes and arrivals of the conversions and the multiples were disturbed
slightly, the overall structure of the waveform was still preserved (Fig. S1b),
which was closer to the waveform characteristics of the real RFs. We processed
all synthetic RFs seismograms via the style transfer to gain the data set for the
next training step.
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Figure 2. The style transfer process of the simulated synthetic RFs and the
architecture of VGG-19. Modified from Gatys et al. (2016)

3.3 Architecture of the multitasking convolutional neural network

We built a multitasking convolutional neural network based on the hard param-
eter sharing. The network was comprised of a hard share bottom and three
task-specific layers (Fig. 3). The hard share bottom contained three convolu-
tion layers with a rectified linear unit (ReLU) activation function. Furthermore,
each layer was followed by a max pool to decrease the size of the convolved
feature map. The input of the model was the recombining synthetic RFs seis-
mogram with dimensions of 250 by 36 by 1, namely, the number of points per
data component x the number of traces in the RFs seismogram x the number
of channels (Fig. 3).

The three task-specific layers connected with the hard share bottom, and mainly
consisted of many fully connected layers. The depth task layers and the dip angle
task layers had a similar structure and shared the output of the hard share
bottom after the flatten operation, which can reduce learning parameters and
improve computing efficiency. As for the model in our case, the strike predictions
were very crucial due to the inaccurate strike leading to meaningless occurrence
representation although the dip angle was correctly constrained. Thus, the
structure of the strike task layers was more complicated than the other task



layers, and we intentionally added a convolution layer and three additional fully
connected layers and inserted two Batch Normalization in the last two layers. In
all task-specific layers, we selected ReLU as the activation function in each layer
except output layers. The depth task outputted the predicted result through
Sigmoid, whereas two regression tasks outputted their predicted result through
Hard-Tanh. Furthermore, L1 L2 class regularization for two regression tasks
improved the model generalization by penalizing the coefficients effectively. The
network needed to train a total of 169,990,720 parameters. Fig. 3 illustrated
more details of the network.
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Figure 3. The architecture of the multitasking convolutional neural network.

The hard share bottom on the left involves a key functional role in downsampling
and extracting features; The three task-specific layers on the right are in charge
of prediction of the Moho strike, dip angle, and depth, respectively.

4 Evaluation

To train the network, we utilized 32 epochs with a batch size of 300 and applied
20% of the training data as the validation data set in the training phase. The
learning rate kept 0.001 at the first ten epochs, and then the learning rate
scheduler became exponential decay as. The Adam algorithm was utilized to
optimize the loss function.

With training operation, the training and validation loss curves declined at the
first 10 epochs and then converged gradually(Fig. 4). The minimal gap between
the two sets of curves implied that the loss was lower on the training data set
than on the validation data set. The validation loss not curling upward obviously
was an expecting sign that we are not facing an over-fitting problem. Since the
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Moho depth prediction was a classification task, We preferred to evaluate the
predictive effect with the accuracy. The good thing was that the accuracy ran
up to above 90% after the 18th epoch, ultimately reaching 91.08% accuracy

after the last epoch.
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Figure 4. The training and validation loss curves for synthetic data. The strike
loss curves (green) and the dip angle loss curves (red) were almost at the same
lower level. The larger error coming from the depth loss curves (yellow) has
affected the total loss curves (blue).

100 new samples as the test set were regenerated to evaluate the model perfor-
mance further. The results were shown in Fig. 5a. 9 depth predictions deviate
from the rounding label values. Notably, these errors barely are 1km, which
indicates that the depth prediction is entirely acceptable, though the depth
loss curve was less than ideal. Besides, the average error between the actual
depth labels and the prediction was 0.289, which implied the prediction was also
credible.

The 100 occurrence predictions were drawn in Fig. 5b. The mean error of the
strike is 22.46°, and the mean error of the dip angle is 0.54°. In consideration
that the actual Moho is a velocity interface with a complex structure, it permits
us to elucidate the occurrence feature through a less precise strike and dip angle.
For this reason, the 22.46° mean error is not too large for the back azimuth range
of 0 to 360°.
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The colored lines represent error between the synthetic labels and the predictions
of the Moho information.

4 Application
4.1 Geological settings

The current TLFZ is a gigantic sinistral strike-slip fracture zone in eastern China
and acts as a connection between NCB and LYZB. Since Triassic, it has gone
through several intense tectonic movements. Indonesian movement led to plate
convergence and lithospheric thickening. While during the Yanshan movement
period, with the Izanaqi plate retreated, the stress field of the East Asian Main-
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land changed. The two-stage intense extension facilitated the development of
many normal faults and rifted basins along the stress direction in TLFZ and its
adjacencies (Zhang et al., 2003; Zhu et al., 2018), and contributed to lithosphere
thinning over 120km and crustal deformation (Chen et al., 2006, 2014; Menzies
et al., 1993; R. Zhu et al., 2012).

4.2 Data and Process

China earthquake administration established many permanent seismic stations
equipped with broadband seismometers. These stations covered the study region
well and recorded data throughout the year in a low-noise environment. We col-
lected waveform data of seismic events (2013 to 2015) with magnitudes greater
than Ms5.0 and epicentral distances ranging from 30° to 90° from 10 stations
(PZ HBE HNA BEB SH HUA JAS CHZ MAS BAS), and computed radial RFs
by time-domain iterative deconvolution (Ligorria & Ammon, 1999) with a Gaus-
sian width of 2.5 and iteration number of 200 after the routine procedure (De-
mean; Detrend; Bandpass-filtered (0.02-2Hz); Rotate coordinate system (NEZ
to RTZ); Moveout (0.06 s/km)). Then we discarded poor-quality RFs through
visual inspection and preserved more than 300 records. Subsequently, the data
of every station was average-stacked into per 10° back azimuthal bin and down-
sampled to 10Hz (eg. see Fig. 6a). Next, by setting the iteration number to 15,
the scale to 4, and the angle to 16, all the RFs seismograms were reconstructed
with the AJIM (eg. See Fig. 6b). The reconstructed RFs seismogram contained
250 sample points with 1 msec as the sampling interval along the time axis and
36 traces with 10° as the interval along the back azimuthal spatial direction. In
the end, 10 seismograms as the prediction set were sent into the model one by
one to output corresponding predicted results for further analysis.
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Figure 6. The realistic RFs seismogram and reconstructed RFs seismogram of
BEB. In (a), the back azimuthal behavior of the conversions and the multiples
are apparent and visible, whereas the missing traces are located in the back
azimuthal range of 60° to 90° and 320° to 360°. In (b), the missing traces
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can be reasonably recovered, and the Moho P-to-S converted phase and its the
multiples can be clearly identified.

4.3 Result

The predicted Moho depth and occurrence below 10 stations are listed in Table
1, which reveals that the Moho depths are 32km on average and vary from 30
to 36km (Table 1 and Fig7). The crust of the area close to TLFZ (PZ, SH,
JAS, CHZ, and BAS) is relatively thinner and not more than 34km. By way of
contrast, the deepest Moho is below HNA, reaching 36km. The two neighboring
stations, HNA and BEB, are located in the middle of the Hefei basin (Fig.7 see
A), and their Moho depths are 35km and 30km correspondingly, which implies
lateral inhomogeneity of regional crustal structure. HUA and MAS are situated
on LYZB, and corresponding Moho depths are 30km and 32km, individually.
To verify the reliability of the predicted depths, we comb the Moho depths from
previous researches on TLFZ with the H-kappa method and the improved H-
kappa method (Table 2). By comparison, our predicted depths are similar to
the results computed by those conventional methods, some of which even show
surprising consistency.

Most of the predicted strikes are near NE-SW and the strikes of BAS, BEB, and
MAS are near EW. BAS station is built on the intersection of three main tectonic
units: NCB, LYZB, and the Dabie orogeny belt (Fig. 7 see D). Especially, the
>40km crustal thickness of the Dabie orogeny belt could profoundly affect the
Moho deformation of adjacent areas. MAS station is located in the Ningwu
basin which is a part of the Yangtze River metallogenic belt (Fig. 7 see C) and
develops a complex crustal structure. A previous study (Lii et al., 2015) revealed
that a reflection structure called crocodile existed in the connection between the
upper and lower crust below the Ningwu basin, indicating contraction takes an
essential part in this formation of the crustal interior to a great extent. From
our perspective, on the other hand, the Moho strikes beneath BAS, BEB, and
MAS are most likely related to the second stage of Cretaceous extension, which
we expand on the discussion in the next section.

The variation range of predicted dip angles is from 13 to 20°, which is different
from previous results by other seismic imaging methods (Chen et al., 2006; Lii
et al., 2015; Tian et al., 2020). Previously, scholars generally believed that the
Moho below TFLZ is flat with low angle undulating. However, our predicted
dip angles implied that the undulation is relatively more obvious. Amongst the
predicted dip angles, the dip angles of JAS and CHZ are the largest (~20°),
which is probably mainly affected by the evolution of the Zhangbaling uplift
(Fig. 7 see B) except closer to TLFZ.

Table 1. The predictions and the fine tuned results

Results Strike Tuning Dip angle Tuning Depth
Station /° Strike /° dip angle  /km

/° /°
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Figure 7. The predicted results and the sketch map of the tectonic setting. A,
B, C, and D denote the Heifei basin, the Zhangbaling uplift, the Ningwu basin,
and the Dabie orogeny belt in that order. The red lines and arrows represent
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the faults and the stress orientation related to the first stage of continental
extension in the earlier and middle Early Cretaceous, and the orange lines and
arrows represent the faults and the stress orientation related to the second stage
of continental extension in the late Early Cretaceous, respectively.

Table 2. The predictions in this paper and the depth results from other re-
searches.

Han Wei Li Chen et  Han This
et al., et al., et al., al., et al., paper
2020 2020. 2021. 2022. 2022. /km
Han, Multifrequetego- H- /km H--c
2020. H- /km layer H- /km
H- /km /km

PZ -

HBE

HNA

BEB

SH -

HUA

JAS

CHZ

MAS

BAS

4.4 Synthetic modeling and the fine tuning

The seismic imaging of the profile from conventional methods hardly provides
accuracy validation to our predicted Moho occurrence. To verify the credibility
of the results, we attempted to set predicted results as initial parameters of
synthetic velocity model to observe whether the synthetic RFs seismogram was
roughly the same as the reconstructive RFs seismogram. Considering the effect
of unknown parameters, such as the wave velocity and anisotropy, we consulted
relevant references to determine appropriate initial parameters as realistic as
possible (Bem et al., 2022; Gu et al., 2020; Meng et al., 2019).

For better comparison, we performed synthetic modeling with two models: the
non-tuning model and the tuning model. For the non-tuning model, the syn-
thetic RFs seismograms were calculated in the case of the predicted results as
initial parameters (Fig. 8b). In fact, most of the calculated synthetic RFs
seismograms have presented high similarity with the reconstructed RFs seismo-
gram, which indicated our predictions are relatively accurate. Whereas for the
tuning model, we tuned more parameters including the predicted results, and
performed again so that the synthetic RFs seismogram reached more similar
features to the reconstructed RFs seismogram (Fig. 8c). We listed all tuned
values of occurrence in Table 2, and displayed the synthetic modeling results of
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HUA for it obtained the largest tuning efforts than other stations (Fig. 8).
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Figure 8. The comparison between the reconstructed RFs seismogram of HUA
and the forward synthetic RFs seismogram.

1. is the reconstructed RFs seismogram. The arrangement of the interface
phases is visible in their arrival time windows. Ps phase at around 4-5s
is clear; PpPp phase is slightly visible in the time window of 5-10s. PpPs
phase can be tracked continuously in the time window of 11-15s; A group
of indistinct PsPs + PpSs phases seems complicated to be recognized
precisely. (b) is the synthetic modeling RFs seismogram in the non-tuning
model. We set the predictions as initial parameters for synthetic modeling,
and estimate 3% azimuthal anisotropy with NE-striking in the velocity
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model. (b) shows a similar phase structure on both the conversions and
the multiples. We tune some parameters: the dip angle is reduced by
nearly 2° and the strike is increased by nearly 30°. To fit the phases, we
assign 14° dip angle and 90° strike to the bottom of the sedimentary layer,
and modify the crustal wave velocity and anisotropy appropriately. (c)
shows that the synthetic RFs seismogram with fine tuning parameters is
closer to (a) than (b), particularly in the sedimentary phases at 1-2s and
PpPs phases at 11-15s.

5 Discussion

Bai & Wang. (2006) found that no apparent discrimination in velocity distribu-
tion and boundary topography exhibits in the lower crust below the two sides
of TLFZ. Hence, it is inferred that the fault behavior in the lower crust had
disappeared, while the fault features in the rigid middle-upper crust have been
preserved up to the present. Furthermore, most seismic images presented a flat
and low angle undulating Moho beneath TLFZ (Chen et al., 2006; Lii et al.,
2015; Ma et al., 2020; Tian et al., 2020). Therefore, the current results from
traditional seismic methods hardly established a connection between the lower
crustal structure and the geological evolution.

G. Zhu et al. (2012; 2021) proved the principal extension direction evolved from
WNW-ESE in the earlier and middle Early Cretaceous to NW-SE in the late
Early Cretaceous. These two continental extensions are the most significant ge-
ological event during the period of the Yanshan movement, and also the reason
for the lithospheric thinning and crustal deformation (Chen et al., 2006; Men-
zies et al., 1993). Thus, the intense multi-extension resulted in the reactivation
of the great majority of normal faults accompanied by intensive magmatism.
Eventually, two fault systems with different strikes developed along the stress
field orientation in the middle-upper crust. Our predicted results unveil a sig-
nificant coincidence: the predicted strikes are almost parallel with those of the
most adjacent early Cretaceous normal faults (see Fig 7 labeled in red lines).
That is to say, they are nearly perpendicular to the stress orientation during
that period, which probably implies that the current crustal bottom structure
preserves some tectonic properties related to the early Cretaceous extension. In
other words, it seems to be indirect evidence that the stress field orientation
of the major geological event has been recorded and preserved till now in lower
crustal structures. The predicted 7 strikes (HBE, PZ, SH, JAS, HNA, HUA, and
CHZ) almost perfectly parallel the nearest NE-striking normal faults, which can
be viewed as a response to the stress field orientation of the first stage with in-
tense activity occurring from 135-115 Ma since the early Cretaceous (Zhang et
al., 2003; R. Zhu et al., 2012). The predicted strikes of BEB, MAS, and BAS
are near EW-striking, which can be regarded as another response to the stress
field orientation of the weaker second stage from 115-100Ma (Zhu et al., 2018).

The mantle-derived magma underplating and the partial melting of the lower
crust are widely acknowledged as reasonable explanations when discussing the
mechanism of the lower crustal deformation. Our views are not contradictory
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to those classical theories as lower crustal deformation certainly depends on the
interaction with deep heat flow to progress. Nevertheless, we pay more attention
to how the extension affects the physical deformation of the lower crust. Reston.
(1988) proposed lower crust boudinage as an answer to extension. Clerc et al.
(2018) illustrated that the lower crust is often much weaker than previously
thought, and its ductility shapes the representation of intensive extension. Their
studies largely are in support of our opinion because the viscosity is a key to
the deformation of the lower crust, while the composition, initial thermal state,
and extension rate determine the viscosity (Huismans & Beaumont 2011, 2014;
Brune et al., 2014). Nevertheless, there is no obvious boudinage tectonic below
TLFZ and adjacencies since the evolutionary model of the back-arc extension (G.
Zhu et al., 2012) is quite different from that of the rift breakup. The extension of
the TLFZ manifested as a complex multi-stages process including an additional
short-term compression, and was replaced by a sinistral strike-slip in round 100
Ma (G. Zhu et al., 2012).

We deduced the lower crustal deformation process of TLFZ and its adjacencies
(Fig. 9). Till the early Cretaceous, the lithosphere below TLFZ and its adja-
cencies kept a structural feature of thickening (Fig. 9a). After that, the stress
field began to transform since the rollback of the subducting Izanagi Plate, then
immediately the intensive extension caused the lithosphere thinning and crustal
deformation. Furthermore, many normal faults and rift basins developed along
the extensional orientation in the brittle upper crust. By comparison, the ductile
lower crust also had different responses to stress according to the differences of
each regional composition. The high viscosity region kept its structural feature
to a certain degree. In contrast, the low viscosity regions were under ongoing
deformation in the lower crust (Fig. 9b). Ultimately, the lower crustal base
of the middle-southern segment of TLFZ and its adjacencies present a tectonic
feature of undulation at the end of the extension, and the tectonic strike is
nearly parallel to the normal faults in the upper crust. We thus can regard
these structures as extensional tectonics relics preserved in the crust.

(a) ESE, (b)

Detachmentfault .. i station Continental extension

T BYNCHNG ettt e A

middle-upper crust Brittle fracture

- 4 A + it
+ low viscosity t ) +
A B + +
high viscosity + o+ Lower crust

Figure 9. The lower crustal evolution of TLFZ and adjacencies in Cretaceous.

Ductile deformation

1. represents the tectonic state before the early Cretaceous, and (b) repre-
sents the lower crustal deformation process. The grey cone shape under
the seismic station represents a rough predictive range. The density of
red plus signs indicate the level of the lower crustal viscosity (the denser
the red plus signs, the higher the regional viscosity, the weaker the ductile
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deformation, and vice versa).
5 Conclusions

We propose a deep learning scheme to achieve the depth and occurrence of the
Moho beneath the seismic stations. The scheme’s core is using a multitasking
convolutional neural network to learn the back azimuthal behavior of receiver
functions seismogram. Based on the style transfer on convolutional neural net-
work, we attain recombining synthetic RFs seismograms as the training set via
500 real noise data and 9000 synthetic RFs seismograms. Moreover, by introduc-
ing a data reconstruction method named the accelerated joint iterative method,
we restore the RFs seismograms with missing traces in partial back azimuth.

By applying the newly proposed scheme to 10 broadband seismic data, we
can elucidate the crust-mantle structure beneath the Tanlu fault zone (middle-
southern segment) and its adjacencies in detail. The predictions unveil that
bottom of the lower crust presents a structural behavior of undulation with
near NE-striking. Furthermore, these deep tectonics, on the one hand, imply
that intense continental extension can extensively affect the lower crustal defor-
mation. On the other hand, it illustrates that the stress field orientation of the
major geological event can be recorded and preserved in the lower crust.

Data Availability Statement

The raw data of the permanent seismic stations can be available by request
through the the Data Management Centre of China National Seismic Network
at the Institute of Geophysics, China Earthquake Administration (SEISDMC,
https://doi.org/10.11998 /SeisDmc/SN, http://www.seisdmc.ac.cn. Zheng et
al., 2010). The P receiver functions waveforms and the model for this study can
be downloaded at https://doi.org/10.11888/Geo.tpdc.271396 (Chen, 2021).
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