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Abstract

The meteorological characteristics of cloudy atmospheric columns can be very different from their clear counterparts. Thus,

when a forecast ensemble is uncertain about the presence/absence of clouds at a specific atmospheric column (i.e., some members

are clear while others are cloudy), that column’s ensemble statistics will contain a mixture of clear and cloudy statistics. Such

mixtures are inconsistent with the ensemble data assimilation algorithms currently used in numerical weather prediction. Hence,

ensemble data assimilation algorithms that can handle such mixtures can potentially outperform currently used algorithms.

In this study, we demonstrate the potential benefits of addressing such mixtures through a bi-Gaussian extension of the ensemble

Kalman filter (BGEnKF). The BGEnKF is compared against the commonly used ensemble Kalman filter (EnKF) using perfect

model observing system simulated experiments (OSSEs) with a realistic weather model (the Weather Research and Forecast

model). Synthetic all-sky infrared radiance observations are assimilated in this study. In these OSSEs, the BGEnKF outperforms

the EnKF in terms of the horizontal wind components, temperature, specific humidity, and simulated upper tropospheric water

vapor channel infrared brightness temperatures.

This study is one of the first to demonstrate the potential of a Gaussian mixture model EnKF with a realistic weather model.

Our results thus motivate future research towards improving numerical Earth system predictions though explicitly handling

mixture statistics.
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Key Points:14

• Current ensemble DA methods assume that forecasts follow a normal distribution.15

This assumption is often invalid.16

• In this study, we propose a computationally efficient ensemble DA method that han-17

dles clear and cloudy forecasts separately.18

• This study uses a realistic weather model (WRF) to show that this method can outper-19

form the EnKF.20
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Abstract21

The meteorological characteristics of cloudy atmospheric columns can be very dif-22

ferent from their clear counterparts. Thus, when a forecast ensemble is uncertain about the23

presence/absence of clouds at a specific atmospheric column (i.e., some members are clear24

while others are cloudy), that column’s ensemble statistics will contain a mixture of clear and25

cloudy statistics. Such mixtures are inconsistent with the ensemble data assimilation algo-26

rithms currently used in numerical weather prediction. Hence, ensemble data assimilation27

algorithms that can handle such mixtures can potentially outperform currently used algo-28

rithms.29

In this study, we demonstrate the potential benefits of addressing such mixtures through30

a bi-Gaussian extension of the ensemble Kalman filter (BGEnKF). The BGEnKF is com-31

pared against the commonly used ensemble Kalman filter (EnKF) using perfect model ob-32

serving system simulated experiments (OSSEs) with a realistic weather model (the Weather33

Research and Forecast model). Synthetic all-sky infrared radiance observations are assimi-34

lated in this study. In these OSSEs, the BGEnKF outperforms the EnKF in terms of the hor-35

izontal wind components, temperature, specific humidity, and simulated upper tropospheric36

water vapor channel infrared brightness temperatures.37

This study is one of the first to demonstrate the potential of a Gaussian mixture model38

EnKF with a realistic weather model. Our results thus motivate future research towards im-39

proving numerical Earth system predictions though explicitly handling mixture statistics.40

Plain Language Summary41

The accuracy of a computer weather forecast often depends on the accuracy of the in-42

formation inputted into the computer forecast system. The accuracy of the input in turn de-43

pends on the accuracy of the input-constructing algorithm. Such algorithms often use prob-44

abilistic forecasts from an earlier point in time and current atmospheric measurements to45

construct the inputs.46

A common assumption in input-constructing algorithms is that the probabilistic fore-47

casts follow multivariate normal distributions (henceforth called the normality assumption).48

However, in the frequent situation where the probabilistic forecasts are uncertain about the49

presence/absence of clouds, the normality assumption is violated. This is because clear at-50

mospheric columns and cloudy atmospheric columns have distinctly different thermody-51

namic and dynamic characteristics. Such probabilistic forecasts thus have mixed statistics52

(henceforth termed mixed probabilistic forecasts). Addressing these mixed statistics can po-53

tentially improve forecasts.54

In this study, we propose a new input-constructing algorithm that can explicitly han-55

dle mixed probabilistic forecasts. Compared to an existing popular algorithm, our algorithm56

is nearly as fast and can produced more accurate forecast inputs. Our work thus suggests57

that weather forecasts can be improved by upgrading input-constructing algorithms to treat58

a common situation where the normality assumption is violated.59
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1 Introduction60

Earth system analysis and forecasting systems rely on ensemble data assimilation (en-61

semble DA, or EDA) methods to convert observations into corrections for Earth system62

model variables (Keppenne et al., 2005; Reichle et al., 2009; Edwards et al., 2015; Stam-63

mer et al., 2016; Park & Xu, 2016; ECMWF, 2016; Helmert et al., 2018; Hersbach et al.,64

2020). Current operational EDA methods typically assume that every member in an input65

forecast ensemble is drawn from a distribution only containing a single Gaussian kernel [i.e.,66

a Gaussian distribution; henceforth termed the unmixed ensemble assumption; e.g., Geer et67

al. (2018) and Dowell et al. (2022)]. The effectiveness of such methods can thus can be lim-68

ited by the validity of this assumption.69

The unmixed ensemble assumption is violated for ensembles that are uncertain about70

the presence or absence of clouds at any model grid point. This is because clear atmospheric71

columns and cloudy atmospheric columns often have different dynamic, thermodynamic,72

and radiative properties [e.g., Emanuel (1994), Markowski and Richardson (2010)]. Cloudy73

statistics are thus often different from clear statistics [e.g., Grimes and Pardo-Igúzquiza (2010);74

Geer and Bauer (2011)]. If some ensemble members are cloudy at a location, and other75

members are clear at this location, the ensemble can exhibit mixed statistics (Harnisch et al.,76

2016; Minamide & Zhang, 2017; Honda et al., 2018; Chan, Anderson, & Chen, 2020). More77

evidence of mixed statistics can be found in the supporting information. The effectiveness of78

current operational EDA methods is likely limited in such situations.79

This limitation can be mitigated by extending current operational EDA methods to han-80

dle mixed statistics. One possibility is to extend the commonly used ensemble Kalman filter,81

or the EnKF (Evensen, 1994; P. L. Houtekamer & Mitchell, 1998; Burgers et al., 1998; Tip-82

pett et al., 2003; Anderson, 2003; Whitaker & Hamill, 2002; Keppenne et al., 2005; Hunt et83

al., 2007; Reichle et al., 2009; Stammer et al., 2016; Edwards et al., 2015; Park & Xu, 2016;84

Helmert et al., 2018), to handle members drawn from forecast distributions with two Gaus-85

sian kernels. Specifically, we assume that forecast members that are clear at an observation86

site (henceforth, clear members) are drawn from one Gaussian kernel, and forecast members87

that are cloudy at this site (henceforth, cloudy members) are drawn from a different Gaus-88

sian kernel. This bi-Gaussian extension of the EnKF (henceforth, the BGEnKF) allows the89

clear ensemble statistics to be handled separately from the cloudy ensemble statistics (Chan,90

Anderson, & Chen, 2020), thus addressing the issue of mixed statistics.91

We recently proposed a computationally efficient BGEnKF to handle mixtures of clear92

and cloudy members [Chan, Anderson, and Chen (2020); henceforth, the CAC20 BGEnKF].93

Unlike similar methods proposed in the past (Dovera & Della Rossa, 2011; Reich, 2012;94

Sondergaard & Lermusiaux, 2013a, 2013b), the CAC20 BGEnKF does not use an expecta-95

tion maximization (EM) algorithm to estimate the mean and covariances of the two Gaus-96

sian kernels. Instead, the CAC20 BGEnKF assigns the the sample mean and covariances97

of the cloudy members to one Gaussian kernel, and those of the clear members to the other98

Gaussian kernel. This assignment circumvents the computational cost and issues associated99

with using the EM algorithm in high dimensional spaces [see Chan, Anderson, and Chen100

(2020) for more information]. Furthermore, the CAC20 BGEnKF converts clear members101

into cloudy members, or vice versa, without involving the costly square-root computations or102

Cholesky decompositions of high-dimensional forecast covariance matrices.103

The purpose of this study is to demonstrate that a variant of the CAC20 BGEnKF can104

outperform the EnKF using a realistic high-order weather model (the Weather Research and105

Forecast model; WRF). To do so, this new BGEnKF is implemented into the state-of-the-art106

Pennsylvania State University EnKF system [henceforth, the PSU-EnKF system; Meng and107

Zhang (2007, 2008), Chan, Zhang, et al. (2020)]. This demonstration is done using perfect108

model observing system simulation experiments (OSSEs) of a case of tropical convection109

over the equatorial Indian Ocean. This case occurred during the onset of the active phase of110
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the October 2011 Madden-Julian Oscillation event [MJO; Madden and Julian (1971, 1972),111

and S. Wang et al. (2015)].112

The structure of this paper is as follows. In section 2, we will give an overview of the113

BGEnKF algorithm, discuss how clear and cloudy members are identified, and modifications114

made to the CAC20 BGEnKF algorithm. A detailed description of the current BGEnKF,115

along with suggestions on handling more than two Gaussian kernels, can be found in the sup-116

porting information. Following that, we will discuss the setup of our OSSEs in section 3 and117

the results in section 4. We will then conclude in section 5.118

2 On the BGEnKF algorithm119

2.1 On the identification of clear and cloudy members120

The BGEnKF requires identifying clear and cloudy members at each iteration of the121

serial data assimilation loop. A simple identification method is to check if the members’122

column-integrated liquid and/or frozen water mass contents exceed a threshold.123

The choice of which phase of water to include in the column integration depends on124

the specifics of the forecast model. As will be discussed in section 3.3, this study used a125

WRF model setup with a 9-km horizontal grid spacing and without convective parameter-126

ization. This WRF model setup cannot realistically resolve trade cumuli since the typical127

width of trade cumuli is ∼1-km. As such, we consider columns with trade cumuli and en-128

tirely cloud-free columns as clear member columns, and the remaining members as cloudy129

member columns. Since trade cumuli do not typically grow above the melting layer (Johnson130

et al., 1999), clear members do not possess frozen water. It thus seems appropriate to use131

column-integrated ice mass content (b) to distinguish between clear and cloudy member132

columns. To be precise, we compute b at a given model column via133

b ≡
∫ 𝑧𝑡𝑜𝑝

0
𝜌(𝑞𝑖 + 𝑞𝑠 + 𝑞𝑔)𝑑𝑧 (1)

where 𝑧𝑡𝑜𝑝 is the model top altitude and 𝜌 represents air density. Furthermore, 𝑞𝑖 , 𝑞𝑠 and 𝑞𝑔134

are the mass mixing ratios of ice, snow and graupel, respectively.135

In this study, we will consider model columns with b ≥ 1 g/m2 as cloudy, and model136

columns with b < 1 g/m2 as clear. The cloudy and clear infrared window channel simulated137

brightness temperature statistics (Window-BT; central wavelength of 10.5 `m) do not vary138

noticeably for model column b thresholds between 0.8-1.2 g/m2. Future studies can refine139

the threshold value or seek better ways to separate clear and cloudy column members.140

2.2 Overview of the BGEnKF algorithm141

This study’s BGEnKF (and the CAC20 BGEnKF) assimilates observations with Gaus-142

sian observation likelihoods under the assumption that clear members are drawn from one143

Gaussian kernel and cloudy members are drawn from another Gaussian kernel. Suppose we144

seek to constrain the following extended state vector 𝝍145

𝝍 ≡


𝒙
𝒉 (𝒙)
𝝃 (𝒙)

 (2)

where 𝒙 represents the model state, 𝒉 (𝒙) represents applying the observation operator 𝒉 on146

𝒙, and 𝝃 (𝒙) represents computing b at all observation sites [Eq. (1)]. Note that observation147

sites here refers to the latitude and longitude of the observation (i.e., the vertical position is148

not considered for now). Supposing there are 𝑁𝑥 elements in 𝒙 and 𝑁𝑦 observations, then 𝝍149

has 𝑁𝑥 + 2𝑁𝑦 elements.150
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Stage 1: Double EnKF

Stage 2: Delete members 
from shrinking cluster

Stage 3: Resample 
expanding cluster

(a)

(b) (c)

Figure 1. A bivariate demonstration of the three-stage process of the BGEnKF algorithm. The light red
ovals highlight cluster 1 members and the light blue ovals highlight cluster 2 members. Prior to running the
BGEnKF update, the prior members have already been separated into two clusters. The BGEnKF’s first stage
is to employ the EnKF update equations on the two clusters separately (panel a). In the second stage (panel
b), the BGEnKF identifies the shrinking cluster (the blue cluster 2 in this case), deletes an appropriate number
of members from this cluster, and adjusts the remaining members to prevent the deletion from changing this
cluster’s mean. The BGEnKF’s final stage (panel c) is to recreate the deleted members by resampling from the
expanding cluster (cluster 1).
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The BGEnKF assumes that the prior probability density function [pdf; 𝑝 (𝝍)] can be151

represented by the bi-Gaussian pdf152

𝑝 (𝝍) = 𝑤
𝑓

clr G
(
𝝍; 𝝍 𝒇

clr, 𝑷
𝒇
clr

)
+ 𝑤 𝑓

cld G
(
𝝍; 𝝍 𝒇

cld, 𝑷
𝒇
cld

)
. (3)

The subscript “clr" denotes clear cluster quantities, and the subscript “cld” denotes cloudy

cluster quantities. G
(
𝝍; 𝝍 𝒇

clr, 𝑷
𝒇
clr

)
denotes the clear cluster’s Gaussian kernel with mean

state 𝝍 𝒇
clr and covariance matrix 𝑷 𝒇

clr. Similarly, G
(
𝝍; 𝝍 𝒇

cld, 𝑷
𝒇
cld

)
denotes the cloudy clus-

ter’s Gaussian kernel with mean state 𝝍 𝒇
cld and covariance matrix 𝑷 𝒇

cld. The scalar quantities
𝑤

𝑓

clr and 𝑤
𝑓

cld are the respective weights of the clear and cloudy Gaussian kernels. Note that

𝑤
𝑓

clr + 𝑤
𝑓

cld = 1, 𝑤
𝑓

clr ≥ 0, and, 𝑤
𝑓

cld ≥ 0.

The various parameters in Eq. (3) can be estimated by the procedure described in CAC20 or153

in the supporting information.154

Upon assimilating an observation 𝑦𝑜 with Gaussian observation error, the BGEnKF155

produces an ensemble that is consistent with the analysis pdf156

𝑝 (𝝍 |𝑦𝑜) = 𝑤𝑎
clr G

(
𝝍; 𝝍𝒂

clr, 𝑷
𝒂
clr

)
+ 𝑤𝑎

cld G
(
𝝍; 𝝍𝒂

cld, 𝑷
𝒂
cld

)
. (4)

Here, 𝑤𝑎
clr and 𝑤𝑎

cld are the respective analysis weights of clear and cloudy Gaussian kernels,157

𝝍𝒂
clr and 𝝍𝒂

cld are the respective analysis means of the clear and cloudy Gaussian kernels, and158

𝑷𝒂
clr and 𝑷𝒂

cld are the respective analysis covariances of the clear and cloudy Gaussian ker-159

nels. See CAC20 [or the supporting information] for the equations relating the analysis pdf’s160

parameters to the forecast pdf’s parameters.161

The BGEnKF converts a forecast ensemble into an analysis ensemble through a three-162

stage process [illustrated in Figure 1]. First, two EnKF procedures are executed [Figure163

1(a)]: once for clear members using clear forecast statistics
(
𝝍 𝒇

clr, 𝑷
𝒇
clr

)
, and a second time164

for cloudy members using cloudy forecast statistics
(
𝝍 𝒇

cld, 𝑷
𝒇
cld

)
. Afterwards, to reflect the165

update to the bi-Gaussian pdf weights, clear members will be replaced with cloudy members,166

or vice versa. For example, if the BGEnKF increased the weight on the clear Gaussian distri-167

bution (i.e., 𝑤𝑎
clr > 𝑤

𝑓

clr and 𝑤𝑎
cld < 𝑤

𝑓

cld), some cloudy members will be replaced with clear168

members. This is achieved by deleting some cloudy members [Figure 1(b)] and replacing169

the deleted members with resampled clear members [Figure 1(c)]. Once these three stages170

are completed, the ensemble obeys Eq. (4). See the supporting information for a detailed171

description of these three stages.172

2.3 Revised extended state formulation for better scalable parallelism173

The most important modification to the original CAC20 BGEnKF lies in the defini-174

tion of 𝝍. The CAC20 BGEnKF’s 𝝍 only contains 𝒙 and a single observation. As such, the175

CAC20 BGEnKF algorithm is a sequential algorithm that scales inefficiently with paral-176

lelization on high latency clusters (Anderson & Collins, 2007). For more efficient scaling177

with parallelization, this study’s 𝝍 contains all of the information necessary to assimilate all178

observations [i.e., Eq. (2); Anderson and Collins (2007)].179

Since the definition of 𝝍 has been modified, we will redefine our forecast ensemble.180

Supposing an ensemble size of 𝑁𝐸 , the forecast 𝝍 ensemble is constructed by evaluating181

𝝍 𝒇
𝒏 ≡


𝒙 𝒇
𝒏

𝒉(𝒙 𝒇
𝒏)

𝝃
(

𝒙 𝒇
𝒏

)

 ∀ 𝑛 = 1, 2, . . . , 𝑁𝐸 (5)
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where 𝝍 𝒇
𝒏 is the 𝝍 of the 𝑛−th forecast member, and 𝒙 𝒇

𝒏 is the 𝒙 of the same forecast member.182

The revised formulation enhances the scalability of the BGEnKF by avoiding evalua-183

tions of 𝒉 (𝒙) and 𝝃 (𝒙) at each iteration of the serial assimilation loop. This is because such184

evaluations may require costly inter-process communications. The removal of such evalua-185

tions is achieved through two modifications to the CAC20 BGEnKF. First, the assimilation186

of an observation uses the BGEnKF update equations (see CAC20 or the supporting infor-187

mation) to update all model state elements, all simulated observation state elements and all b188

elements in the forecast ensemble. The CAC20 BGEnKF, in contrast, updates all model state189

elements and only a single simulated observation state element. This difference in updates190

leads to a second modification: to assimilate the 𝑚−th observation, instead of evaluating191

𝒉 (𝒙) and 𝝃 (𝒙), this study’s BGEnKF only needs to read the corresponding simulated obser-192

vation and the b values from 𝝍.193

2.4 Revised expanding cluster resampling procedure194

The other major change to the CAC20 BGEnKF lies in the resampling matrix 𝑻. 𝑻 is195

used to resample the Gaussian kernel that better agrees with the assimilated observation, thus196

representing the increase in the weight of this kernel. The CAC20 BGEnKF uses a stochastic197

procedure to construct 𝑻 [see Eq. (18) and Appendix B of CAC20]. Unfortunately, because198

random number generators are involved, the analysis ensemble generated on one computing199

cluster may not be easily replicated on another computing cluster.200

To ensure the replicability of the BGEnKF’s analysis ensembles, we replaced the stochas-201

tic component of the CAC20 BGEnKF’s 𝑻 [𝑾 in the Appendix B of Chan, Anderson, and202

Chen (2020)] with a deterministic one. Supposing that we want to add 𝑁new cloudy members203

to the ensemble to represent an increased weight of the cloudy Gaussian distribution, the new204

deterministic 𝑾 is defined as205

𝑾 ≡
[
𝑰𝑵 ∗

new 0𝑵 ∗
new×(𝑵new−𝑵 ∗

new)
]
− 1

𝑁new
1𝑵 ∗

new×𝑵new (6)

where

𝑁∗new ≡


𝑁new − 1 ∀ 𝑁new ≤ 𝑁pre

𝑁pre otherwise
,

and 𝑁pre is the number of cloudy members at the start of the resampling procedure. Further-206

more, 𝑰𝑵 ∗
new is an 𝑁∗new × 𝑁∗new identity matrix, 0𝑵 ∗

new×(𝑵new−𝑵 ∗
new) is an 𝑁∗new ×

(
𝑁new − 𝑁∗new

)
207

matrix of zeros, and 1𝑵 ∗
new×𝑵new is an 𝑁∗new×𝑁new matrix of ones. Note that Eq. (6) is also ap-208

plied in the situation where 𝑁new clear members are being added to the ensemble. A detailed209

description of the revised resampling procedure is provided in the supporting information.210

Note that an interesting property of Eq. (6) is that the resulting T is a mostly diago-211

nal matrix. Specifically, nearly all of the off-diagonal elements in T are either zero or much212

smaller than the diagonal elements (not shown). As a result, the resampled members are es-213

sentially copies of the pre-resampling members, plus some small perturbation. The CAC20214

stochastic W formulation does not have this property. Future work can investigate how the215

BGEnKF’s behavior changes with different W formulations.216

2.5 Heuristic measures217

2.5.1 Localization218

The BGEnKF is likely more susceptible to sampling noise than the EnKF because the219

sample size used to estimate each cluster’s mean state and Kalman gain are smaller than the220

sample size used to estimate the mean state and covariance matrix of the entire ensemble.221

As such, we employ two heuristic measures that are similar to those of CAC20. First, we222

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

spatially localize the BGEnKF analysis increment using the Gaspari-Cohn fifth order poly-223

nomial [GC99; Gaspari and Cohn (1999)]. If 𝝆 represents a vector of GC99 localization fac-224

tors, we construct the localized updated extended state vector for member 𝑛 via225

𝝍𝒂
𝒏 ← 𝝆 ◦

(
𝝍𝒂
𝒏 − 𝝍

𝒇
𝒏

)
+ 𝝍 𝒇

𝒏 (7)

where ◦ represents element-wise multiplication. In the cases where either 𝑤 𝑓

clr = 1 or 𝑤 𝑓

cld =226

1 (i.e., the bi-Gaussian prior p.d.f. turns Gaussian), this localization method is identical to227

Kalman gain localization [e.g., Anderson et al. (2009), Meng and Zhang (2008), Whitaker et228

al. (2008), P. L. Houtekamer and Zhang (2016)].229

Note that this localization method [Eq. (7)] localizes the impacts of replacing clear230

members with cloudy members (or vice versa). As an example, suppose the BGEnKF re-231

places a cloudy forecast member with a clear analysis member. The localization process232

[Eq. (7)] first computes the difference between the cloudy forecast member and the clear233

analysis member (i.e., the member’s change due to the BGEnKF). This difference is then lo-234

calized and applied to the cloudy forecast member. The resulting member follows the clear235

analysis member at the observation site and becomes increasingly like the cloudy forecast236

member with increasing distance from the observation site. Future work can examine other237

approaches to localize the impacts of deleting and replacing ensemble members.238

2.5.2 Handling overly small clusters239

The second heuristic sampling error mitigation measure is to switch from using the240

BGEnKF to using the EnKF whenever the pre-resampling expanding cluster is too small241

(𝑁pre < 0.8𝑁𝐸), or whenever any cluster is too small (less than 0.1𝑁𝐸). A similar heuris-242

tic measure is used in CAC20.243

2.5.3 Mitigating unphysical weight updates244

Another issue specific to the BGEnKF is its occasional tendency to generate unphys-245

ical weight updates. Specifically, the BGEnKF occasionally expands the clear cluster when246

a cloudy observation is assimilated, and vice versa. This is because the BGEnKF does not247

explicitly consider whether an observation is clear or cloudy when assimilating it.248

The BGEnKF is automatically switched to the EnKF whenever an unphysical weight249

update is detected. To do so, we first identify the whether the observation to be assimilated250

is definitively clear or cloudy. In the case of Window-BT values over tropical ocean, obser-251

vation values warmer than 290 K are definitively clear, and observation values cooler than252

280 K are definitively cloudy. If the observation is definitively clear, but the cloudy cluster is253

expanded by the BGEnKF, or vice versa, the BGEnKF will switch over to the EnKF.254

3 Materials and methods255

3.1 Description of October 2011 tropical convection case256

The BGEnKF was tested against the EnKF using a case of tropical convection over the257

equatorial Indian Ocean during the October 2011 MJO. This case is chosen because it can be258

reasonably replicated by regional WRF models (S. Wang et al., 2015; F. Zhang et al., 2017;259

Ying & Zhang, 2017; Fu et al., 2017; X. Chen, Pauluis, & Zhang, 2018; X. Chen & Zhang,260

2019; Ying & Zhang, 2018; Chan, Zhang, et al., 2020).261

Our experiments are conducted over a three day period during the onset of this MJO262

event (15 October 2011 to 18 October 2011). Two persistent regions of enhanced convection263

(henceforth, "convective regions") are observed in the 4-km Global IR Dataset of Janowiak264

et al. (2001) [henceforth, the MERG dataset]. The first convective region (blue rectangle)265

occurs between 60 ◦E and 75 ◦E and persists beyond the three-day period. Westward propa-266
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Figure 2. (a) Plot of our OSSE domain overlaid with the nature run’s simulated Window-BT field at 1200
UTC on 15th October 2011. The red box in panel (a) indicates our study domain. Also shown are longitude-
time diagrams for the MERG dataset (b) and nature run (c). In panels (b) and (c), the shadings indicate
Window-BT Hovmoller percentile values. These Window-BT Hovmoller percentile values are constructed by
first averaging Window-BT values between between 10°S and 10°N at every hour to produce a time-longitude
array of latitudinally-averaged Window-BT values. These arrays are then converted into percentiles before
producing the longitude-time percentile values. Note that the dashed black contours in (b) and (c) indicate
areas where the time-longitude arrays of latitudinally-averaged Window-BT values are below 260 K.
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gation is observed in some of the clouds in this region, most notably between 1200 UTC on267

16 October and 0000 UTC on 18 October. The second convective region (blue oval) appears268

on the eastern edge of the study domain at 1200 UTC on 16th October and exhibits a west-269

ward propagation that is similar to that of the first system. We will later assess our OSSE’s270

nature run simulation by checking the nature run against these two convective regions.271

3.2 Setup of WRF model272

The Advanced Research version of the WRF model (WRF-ARW) version 3.8 (Skamarock273

et al., 2008) is used in this study. Following Chan, Zhang, et al. (2020), we construct a 432×243274

WRF domain over the study domain [red box in Figure 2(a)] with 9-km horizontal grid spac-275

ing and 45 model levels. The bottommost 9 levels are within the lowest 1-km of the atmo-276

sphere and the pressure level at the top of the domain is set to 20 hPa. The WRF integration277

time step is set to 20 seconds.278

Our WRF model setup uses the following parameterization schemes. Cloud micro-279

physical processes are handled by the WRF double-moment 6-class scheme (WDM6) pro-280

posed by Lim and Hong (2010). The updated Goddard shortwave scheme of Chou and Suarez281

(1999) and the Rapid Radiative Transfer Model (Global Circulation Model version; RRMTG)282

longwave scheme of Iacono et al. (2008) are used to parameterize radiative processes. The283

unified Noah land surface physics scheme (F. Chen & Dudhia, 2001) handles surface process284

and the Yonsei University (YSU) boundary layer scheme (Hong et al., 2006) is employed.285

No cumulus parameterization is employed because many studies have demonstrated that the286

9-km grid spacing is sufficient to resolve tropical mesoscale convective systems (MCS) over287

the region (S. Wang et al., 2015; Ying & Zhang, 2017, 2018; F. Zhang et al., 2017; X. Chen,288

Pauluis, & Zhang, 2018; X. Chen, Pauluis, Leung, & Zhang, 2018; X. Chen & Zhang, 2019;289

X. Chen et al., 2020; Chan, Zhang, et al., 2020; Chan & Chen, 2021; X. Chen, Leung, Feng,290

& Song, 2021; X. Chen, Leung, Feng, Song, & Yang, 2021; X. Chen et al., 2022).291

3.3 Setup of WRF ensemble and nature run292

This study’s WRF ensemble and nature run are constructed by combining two datasets293

from the European Center for Medium-Range Forecasts (ECMWF): the ECMWF Reanalysis294

Version 5 [ERA5; Hersbach et al. (2020)] and the ECMWF’s 50-member perturbed forecasts295

(Swinbank et al., 2016). The ERA5 dataset is downloaded for every hour between 0000 UTC296

on 15 October to 1800 UTC on 18 October from the ECMWF’s Climate Data Store (CDS).297

The ECMWF’s perturbed forecasts are produced as part of The Observing System Research298

and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble [TIGGE;299

Swinbank et al. (2016)] and is downloaded for 0000 UTC on 15 October from the ECMWF’s300

Meteorological Archival and Retrieval System (MARS).301

The ERA5 and ECMWF’s 50-member perturbed forecasts (TIGGE ensemble) are pro-302

cessed using the WRF Preprocessing System and WRF’s real data processor (real.exe) to303

produce a set of 51 WRF initial conditions files. Note that the ERA5 is used to fill in the data304

missing from the TIGGE ensemble above 200 hPa. The 50 WRF initial conditions from the305

TIGGE ensemble are then recentered on the ERA5 WRF initial condition file. The end result306

is a 51-member ensemble of WRF initial conditions, where member 51 is based entirely on307

the ERA5 (i.e., the 51-st ensemble perturbation is zero). Note that this 51-st member is not308

used to initialize the nature run. One of the other initial conditions is used to initialize the309

nature run.310

The lower and lateral boundary conditions used in this study are based entirely on311

the hourly ERA5 dataset (i.e., the boundary conditions are unperturbed). While perturbed312

boundary conditions can increase the ensemble spread, the ensemble spread is usually rea-313

sonable even with unperturbed boundary conditions (not shown). Furthermore, as a first314

approach to studying the potential impacts of the BGEnKF in a high-order weather model315
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setting, we want the differences between the nature run (described later) and the OSSE en-316

semble to be entirely due to differences in the initial conditions. Future work can extend this317

study to situations with perturbed boundary conditions.318

We desire a nature run that is roughly one ensemble standard deviation from our ex-319

periments’ ensembles. To select an appropriate initial condition file for such a nature run,320

we first integrate the 51 members forward for 12 hours (from 0000 UTC to 1200 UTC on 15321

October 2011). This integration is performed to generate flow-dependent ensemble statis-322

tics that are consistent with the WRF model. After the 12-hour integration, we compute the323

following perturbation length metric (𝐷2) for each of the 51 ensemble members324

𝐷2 (𝑛) ≡ 1
𝑁𝑆 𝑁𝑖 𝑁 𝑗

∑︁
𝑣∈𝑆

𝑁𝑖∑︁
𝑖=1

𝑁 𝑗∑︁
𝑗=1

(
Λ (𝑖, 𝑗 , 𝑣, 𝑛) − ⟨Λ (𝑖, 𝑗 , 𝑣)⟩𝑛

𝜎𝑖, 𝑗 ,𝑣

)2
. (8)

Λ (𝑖, 𝑗 , 𝑣, 𝑛) here is the value of a WRF-derived field 𝑣 at horizontal index location (𝑖, 𝑗) for325

ensemble member 𝑛. Furthermore, ⟨Λ (𝑖, 𝑗 , 𝑣)⟩𝑛 is the ensemble average of Λ (𝑖, 𝑗 , 𝑣, 𝑛), and326

𝜎𝑖, 𝑗 ,𝑣 is the ensemble standard deviation of Λ (𝑖, 𝑗 , 𝑣, 𝑛). This means that the expression in327

the parentheses of Eq. (8) is the spread-normalized displacement of ensemble member 𝑛328

from the ensemble mean at location (𝑖, 𝑗) for variable field 𝑣. The set 𝑆 contains three 2D329

variables (precipitable water, column mass, and mass-integrated kinetic energy) and 𝑁𝑠 is330

the size of the set 𝑆 (i.e., 𝑁𝑆 = 3). Furthermore, 𝑁𝑖 (≡ 432) is the number of east-west grid331

points and 𝑁 𝑗 (≡ 243) is the number of north-south grid points. The metric in Eq. (8) can332

thus be interpreted as being proportional to the spread-normalized Euclidean length of the333

𝑛-th ensemble perturbation. As such, a 𝐷2 value of unity means that the ensemble member is334

generally displaced from the ensemble mean by 1 standard deviation.335

We define our nature run member to be the member whose 𝐷2 value is closest to unity336

at 1200 UTC on 15 October. As a result, the nature run is based on member 10 of the TIGGE337

ensemble. The remaining 50 WRF members will be used for our cycling OSSE DA experi-338

ments.339

3.4 Sanity check of nature run340

Before proceeding, the nature run is checked by comparing it against the MERG dataset.341

Figure 2(b & c) shows longitude-time diagrams of the Window-BT percentiles from the342

MERG dataset and our nature run. The construction of these percentiles is explained in sec-343

tion 3.1 and in the caption of Figure 2.344

We have opted to display the Window-BT percentiles instead of the Window-BT val-345

ues because the WRF model tends to under produce clouds (i.e., when compared to satellite346

observations, the nature run Window-BTs are warm biased). This is illustrated by the dashed347

contours in Figure 2(b & c), which highlights areas where the latitudinally-averaged values348

of Window-BT were cooler than 260 K. These areas are substantially larger in the MERG349

data than in the nature run, meaning that the nature run under produced clouds. Since con-350

verting the Window-BT values to percentile values weakens the visual interference from the351

cloud biases, we have opted to display the Window-BT percentiles over the Window-BT val-352

ues.353

Figure 2(c) indicates that the nature run also exhibits the two persistent convective re-354

gions observed in the MERG dataset (see section 3.1). These persistent convective regions355

are indicated by the blue rectangle and blue oval in Figure 2(c). Not only did the nature run’s356

two persistent convective regions occur in locations and times similar to those of the MERG357

dataset (Figure 2(b)), these nature run regions also exhibit westward propagation patterns358

similar to those of the MERG dataset. As such, the nature run simulation reasonably repli-359

cates the anomalous convective behavior of the real atmosphere between 15 October to 18360

October 2011.361
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3.5 Setup of DA experiments to test the BGEnKF362

To test the BGEnKF, three 50-member ensemble experiments are conducted. All three363

experiments start at 1200 UTC on 15 October and terminate at 1200 UTC on 18 October,364

with hourly DA cycling (73 cycles in total). The construction and spin-up of these 50 mem-365

bers are described in section 3.3.366

In the first experiment, no observations are assimilated (henceforth, NoDA experi-367

ment). The NoDA experiment serves as a baseline for comparing the performance of the368

EnKF and BGEnKF, and to measure imbalances induced by DA.369

The other two experiments are the EnKF and BGEnKF experiments. The only differ-370

ence between the EnKF and BGEnKF experiments is in the DA algorithm employed. The371

EnKF experiment will assimilate observations using the PSU-EnKF’s (Meng & Zhang,372

2007, 2008) default EnKF algorithm, and the BGEnKF experiment will assimilate obser-373

vations using a new implementation of the BGEnKF into the PSU-EnKF. Note that both the374

EnKF and the BGEnKF are implemented into the PSU-EnKF using the high-latency strategy375

proposed by Anderson and Collins (2007).376

As a first approach to testing the BGEnKF, only synthetic Meteorological Satellite 7377

Meteosat Visible Infra-Red Imager (MVIRI) Window-BT observations will be assimilated.378

Future work can investigate if our findings can be extended to situations where an entire suite379

of operationally-assimilated observations and observations from different infrared channels380

are assimilated.381

The synthetic Window-BT observations are constructed by first running the Commu-382

nity Radiative Transfer Model (CRTM) release 2.3.0 on the nature run (see sections 3.3 and383

3.4). The nature run’s Window-BT values are then thinned to a horizontal spacing of 27-384

km (∼11,500 observations per DA cycle). White noise with a standard deviation of 3 K is385

then added to the thinned nature run Window-BT values to simulate instrument noise, thus386

constructing the synthetic observations. Note that the observation errors are likely to be cor-387

related in reality. This means our use of white noise is an imperfect approximation to actual388

observation errors. Future work can investigate if our results can be extended to situations389

with correlated Window-BT observation errors.390

Common heuristic strategies are employed to assimilate the Window-BT observa-391

tions. To limit the impact of sampling errors, horizontal localization is applied using the392

Gaspari-Cohn fifth-order polynomial (Gaspari & Cohn, 1999) with a 100-km radius of in-393

fluence (P. L. Houtekamer & Mitchell, 2001; Greybush et al., 2011; P. L. Houtekamer &394

Zhang, 2016). No vertical localization is employed. We also employ the Adaptive Observa-395

tion Error Inflation scheme (AOEI) of Minamide and Zhang (2017) to limit the deleterious396

increments that can result from clear-cloudy disagreements between the prior and observa-397

tions (F. Zhang et al., 2016; Minamide & Zhang, 2017). To mitigate the tendency for en-398

semble under-dispersion to occur when the ensemble is clear and the observation is cloudy,399

the Adaptive Background Error Inflation scheme (ABEI) of Minamide and Zhang (2019) is400

applied. We also employ 80% relaxation to prior perturbations (RTPP) to maintain ensem-401

ble dispersion (F. Zhang et al., 2004). Similar combinations of heuristic strategies are com-402

monly seen in the EnKF-based DA of infrared radiance observations (F. Zhang et al., 2016;403

Minamide & Zhang, 2018; Chan, Zhang, et al., 2020; Y. Zhang et al., 2019; Chan & Chen,404

2021; Y. Zhang et al., 2021).405

Aside from these common strategies, we also restrict the BGEnKF/EnKF from up-406

dating the domain-averaged specific humidity (QVAPOR) using Window-BT observations.407

Without this measure, both the BGEnKF and the EnKF experience filter divergence that is408

related to DA-induced dry biases within 48 hours of cycling. These dry biases are likely in-409

duced by the ensemble’s tendency to be overly cloudy. The dry biases in the EnKF experi-410

ment are likely partly because of the EnKF’s inability to handle clear and cloudy members411

separately (see section 4.3). As for the BGEnKF experiment, the dry bias can be explained412
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by the fact that the BGEnKF algorithm frequently switches over to the EnKF algorithm413

(see section 4.2). Note that the BGEnKF generated smaller dry biases than the EnKF (not414

shown).415

To prevent filter divergence due to DA-induced dry biases, we replace the 3D posterior416

mean QVAPOR field (𝑞𝑎𝑣 ) with the following modified mean QVAPOR field (𝑞∗𝑣):417

𝑞∗𝑣 (𝑖, 𝑗 , 𝑘) ≡ 𝑞𝑎 (𝑖, 𝑗 , 𝑘) − 1
𝑁𝑖 𝑁 𝑗

𝑁𝑖∑︁
𝑖=1

𝑁 𝑗∑︁
𝑗=1

{
𝑞𝑎𝑣 (𝑖, 𝑗 , 𝑘) − 𝑞 𝑓

𝑣 (𝑖, 𝑗 , 𝑘)
}
. (9)

Here, (𝑖, 𝑗 , 𝑘) refer to the west-east, south-north and bottom-top indices of the 3D QVAPOR418

fields and 𝑞
𝑓
𝑣 refers to the 3D prior mean QVAPOR field.419

3.6 Execution wall-time of the BGEnKF420

Before proceeding, we should compare the execution wall-time of the BGEnKF and421

the EnKF. The BGEnKF algorithm took ∼30 seconds to assimilate ∼11,500 observations us-422

ing 228 Intel Knight’s Landing computer cores [distributed across 7 computational nodes on423

the National Energy Research Scientific Computing Center (NERSC) Cori supercomputer;424

each core has a clock rate of 1.4 GHz]. Assimilating the same observations via an EnKF al-425

gorithm took ∼20 seconds of wall-time. For a fair comparison, this EnKF algorithm used426

the exact same code structure and computing resources, but with the cluster transfer and aux-427

iliary variable update steps disabled. In other words, the BGEnKF used ∼10 seconds more428

wall-time than the EnKF.429

This ∼10-second difference should be assessed in the context of the wall-time for the430

entire PSU-EnKF executable. The other components of the PSU-EnKF took ∼100 seconds431

to execute. As such, the BGEnKF only added ∼10% wall-time to the entire PSU-EnKF exe-432

cutable. The BGEnKF algorithm is thus likely affordable for research and operational groups433

that are already running serially-assimilating EnKFs [e.g., Anderson et al. (2009)].434

4 Perfect model WRF OSSE results435

In the discussions to follow, we will be showing plots of normalized root-mean-square436

errors (nRMSEs) and normalized biases as functions of time and model level. The normal-437

ization is necessary for the ease of visualization, and uses the root-mean-square errors (RM-438

SEs) of the NoDA experiment. The EnKF experiment’s nRMSE at model level 𝑘 and date 𝑡439

is defined as440

EnKF nRMSE (𝑘, 𝑡) ≡ EnKF RMSE (𝑘, 𝑡)
NoDA RMSE (𝑘, 𝑡) (10)

and likewise for that of the BGEnKF and NoDA experiments (the NoDA’s nRMSE values are441

always 1). Note that if a filter results in nRMSEs > 1.0, the assimilation of Window-BT via442

this filter degraded the ensemble with respect to the NoDA experiment. The reverse is true443

for nRMSEs < 1.0. We also define the normalized bias of the EnKF experiment to be444

EnKF normalized bias (𝑘, 𝑡) ≡ EnKF bias (𝑘, 𝑡)
NoDA RMSE (𝑘, 𝑡) , (11)

and likewise for the BGEnKF and NoDA experiments. These biases are computed by sub-445

tracting the nature run fields from the forecast ensemble mean fields.446

The nRMSEs and normalized biases are examined for six variable fields: the zonal447

wind velocity component field (U), the meridional wind velocity component field (V), the448

temperature field (T), the QVAPOR field (Q), the Window-BT field, and the upper tropo-449

spheric infrared water vapor channel brightness temperature field (WV-BT; central wave-450

length of 6.2 `m). The nRMSEs are plotted in Figures 3 and 5(a & b) and the normalized bi-451

ases are plotted in Figures 4 and 5(c & d). All quantities are computed using forecast statis-452

tics.453
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Figure 3. Plots of various prior ensemble statistics as functions of time and model level. For ease of in-
terpretation, the model levels are displayed in terms of their approximate pressure levels (estimated using
the definition of eta levels in WRF and assuming a surface pressure of 1000 hPa). The shadings indicate the
NoDA-normalized RMSEs [nRMSEs; defined in Eq. (10)] for the EnKF (a, b, g & h) and BGEnKF (c, d, i
& j) experiments, as well as the nRMSE differences between the EnKF and BGEnKF experiments (e, f, k &
l). The nRMSEs and nRMSE differences are shown for the U field (a, c & e), V field (b, d & f), T field (g,
i & k), and Q field (h, j & l). The areas outlined with a black contour and filled with yellow hatching have
consistency ratios (spread/error) less than 0.75. Note that all displayed statistics are forecast statistics.

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

−0.5 −0.3 −0.1 0.1 0.3 0.5

Normalized prior minus truth biases

A
p

p
ro

xi
m

at
e 

m
o

d
el

 le
ve

l  
p

re
ss

u
re

 (
h

Pa
)

Zonal wind norm. biases Meridional wind norm. biases

(a) NoDA

(c) EnKF

(e) BGEnKF

(b) NoDA

(d) EnKF

(f) BGEnKF

A
p

p
ro

xi
m

at
e 

m
o

d
el

 le
ve

l p
re

ss
u

re
 (

h
Pa

)

A
p

p
ro

xi
m

at
e 

m
o

d
el

 le
ve

l  
p

re
ss

u
re

 (
h

Pa
)

Temperature norm. biases QVAPOR norm. biases

(g) NoDA

(i) EnKF

(k) BGEnKF

(h) NoDA

(j) EnKF

(l) BGEnKF

A
p

p
ro

xi
m

at
e 

m
o

d
el

 le
ve

l p
re

ss
u

re
 (

h
Pa

)

Figure 4. Plots of various prior ensemble normalized biases as functions of time and model level. These
normalized biases are displayed for the U field (a, c & e), V field (b, d & f), T field (g, i & k), and Q field (h, j
& l), for the NoDA (a, b, g & h), EnKF (c, d, i & j) and BGEnKF (e, f, k & l) experiments. Similar to Figure
3, the model levels are displayed in terms of approximate pressure levels. See the Eq. (11) for the definition of
the normalized biases.
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4.1 On differences in the BGEnKF’s and the EnKF’s performances during DA454

cycling455

The nRMSEs and normalized biases of the BGEnKF experiment are generally bet-456

ter than or comparable to those of the EnKF experiment (Figures 3 to 5). For the U, V, T457

and Q fields, subtracting the BGEnKF’s nRMSEs from the EnKF’s nRMSEs generally re-458

sults in positive values [Figure 3(e, f, k & l)]. The BGEnKF experiment also has better WV-459

BT nRMSEs than the EnKF experiment [Figure 5(b)]. The BGEnKF experiment also has460

smaller biases than the EnKF experiment in several places: the 100 hPa U field [Figure 4(c461

& e)], the 400–100 hPa T field [Figure 4(i & k)], the Window-BT field [Figure 5(e)], and462

WV-BT field [Figure 5(f)]. Otherwise, the BGEnKF and EnKF experiments have similar463

bias values. These results suggest that the BGEnKF is more suitable for assimilating all-sky464

Window-BT than the EnKF.465

The BGEnKF’s performance advantages over the EnKF can be separated into two466

types. In the first type, the BGEnKF generates larger improvements than the EnKF (i.e.,467

BGEnKF nRMSEs < EnKF nRMSEs < NoDA nRMSEs). This type of performance advan-468

tage occurs in multiple places (Figures 3 and 5): 1) the 800 hPa to 1000 hPa U field nRMSEs469

during the first 56 cycles, 2) the 100 hPa to 500 hPa U field nRMSEs during the last 36 DA470

cycles, 3) the near surface and ∼250 hPa V field nRMSEs from 0000 UTC on 16th October471

to 0000 UTC on 17th October, 4) between 100 hPa to 300 hPa in the T field nRMSEs for472

most cycles, 5) between 250 to 600 hPa in the Q field nRMSEs for most cycles, and in the473

WV-BT nRMSEs for most DA cycles after 0000 UTC on 16th October. These differences are474

likely due to the BGEnKF’s ability to handle mixture statistics, and suggest that the BGEnKF475

is more suitable for assimilating Window-BT than the EnKF.476

The BGEnKF experiment’s second type of performance advantage over the EnKF ex-477

periment is when the BGEnKF introduces milder degradations than the EnKF (i.e., NoDA478

nRMSEs < BGEnKF nRMSEs < EnKF nRMSEs). In terms of nRMSEs (Figure 3), such sit-479

uations are noticeable at the 100 hPa tropopause level and 500–700 hPa levels for the U and480

V fields, at the 200–500 hPa model levels for the T field, and at the 100 hPa level for the Q481

field. Such situations are also noticeable in the normalized biases of the ∼100 hPa U field,482

the 100–400 hPa T field (Figure 4), and in the Window-BT and WV-BT fields (Figure 5).483

These are likely because 1) the BGEnKF can handle mixture statistics whereas the EnKF484

cannot, and 2) the BGEnKF experiment has smaller increments than the EnKF experiment485

because the BGEnKF experiment has smaller dispersion. Figure 3(a & c) shows an example486

of the latter: the BGEnKF U field has larger areas of low spread-to-error ratios (0.75) than487

the EnKF. The likely origins of the RMSE and bias degradations are discussed in section 4.2.488

Nonetheless, these results further support the notion that the BGEnKF is more appropriate489

for assimilating Window-BT observations than the EnKF.490

The BGEnKF tends to result in smaller CRs than the EnKF because the BGEnKF can491

outright convert all clear member columns to cloudy member columns, or vice versa. Since492

clear and cloudy member columns are very different, having both types of columns present493

at the same time boosts the ensemble spread. If all clear member columns are converted to494

cloudy member columns, or vice versa, large perturbations relative to the ensemble mean495

are replaced with smaller perturbations. This replacement results in reduced ensemble dis-496

persion. Since the EnKF lacks this mechanism of ensemble spread removal, the BGEnKF497

can remove more ensemble spread than the EnKF, thus resulting in smaller CRs than the498

EnKF. Future work can investigate if stronger inflation schemes are more appropriate for the499

BGEnKF.500

Note that there are occasional situations where the EnKF outperforms the BGEnKF.501

For instance, at around 0000 UTC on 17th October the BGEnKF’s U nRMSEs are slightly502

higher than the EnKF at 250 hPa (Figure 3(e)). Other examples include the T nRMSEs around503

1200 UTC on 17th October (Figure 3). Nonetheless, if we integrate the forecast ensembles’504
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Figure 5. Time-series showing the performance statistics of the three experiments’ prior ensembles in
terms of Window-BT (a, c & e) and WV-BT (b, d & f). The definitions of nRMSEs (a & b) and normalized
prior minus truth (Norm. FmT bias; e & f) are the same as in Figures 5 to 8. Like Figures 5 and 6, the consis-
tency ratio (CR; c & d) here is defined as the ratio of spread to error.

nRMSEs with respect to pressure at every cycle, the resulting mass-weighted nRMSEs of the505

BGEnKF experiment will be lower than those of the EnKF experiment.506

We have also examined day-long deterministic forecasts that are initialized from the507

analysis means of the EnKF and BGEnKF experiments (not shown). The BGEnKF experi-508

ment’s RMSE performance advantage over the EnKF experiment persists for up to 9 hours509

of lead time in terms of the U, V and T fields. In terms of the 500–800 hPa Q field RMSEs,510

the BGEnKF experiment’s RMSE advantage over the EnKF experiment persists throughout511

the 24 hours of integration. These results are as expected since the BGEnKF experiment has512

lower RMSEs than the EnKF experiment during DA cycling.513

4.2 On the similar patterns observed in the performances of the BGEnKF and514

EnKF experiments515

Though the BGEnKF experiment generally outperformed the EnKF experiment, there516

are common spatiotemporal patterns in their nRMSEs and normalized biases. For instance,517

Window-BT DA with either algorithm tends to degrade the 500–800 hPa U nRMSEs, and518

improve the 100–500 hPa U nRMSEs (Figure 3(a & c)). These similarities are likely because519

the BGEnKF frequently switches over to the EnKF. Figure 6(a) shows that the BGEnKF al-520

gorithm is only called to assimilate ∼10% of the Window-BT observations, meaning that the521

switching occurred for the remaining ∼90% of Window-BT observations. Future work can522

investigate if reducing the occurrence of such switches (e.g., via weaker heuristic checks and523

larger ensembles) could improve the performance of the BGEnKF.524
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Figure 6. Plots showing the frequencies at which the two kernel BGEnKF update procedure is called in
the BGEnKF experiment (a), and the normalized imbalance metric statistics for both the BGEnKF and EnKF
experiments (b). For reference, 11502 IR observations are assimilated at each DA cycle. The normalized im-
balance metric is defined in the text. The solid curves in (b) indicate the ensemble average of every member’s
normalized imbalance metric and the half-width of the shadings in (b) indicate twice the standard error of the
members normalized imbalance metric.

It is notable that the BGEnKF outperforms the EnKF despite the high frequency of525

BGEnKF-to-EnKF switching. For instance, according to Figure 3(h, j & l), for the 24 cycles526

on 17th October and between 500 hPa to 700 hPa, the BGEnKF experiment has 0.06–0.1 less527

Q nRMSEs than the EnKF experiment. Since the EnKF experiment has Q nRMSEs of ∼1528

then, the BGEnKF is able to introduce a ∼6–10% improvement over the EnKF. These are529

considerable improvements since the BGEnKF is only called on ∼10% of the Window-BT530

observations.531

Given the frequent switching from the BGEnKF to the EnKF, the worse-than-NoDA532

RMSEs and biases in both the EnKF and BGEnKF experiments are likely caused by the533

EnKF algorithm. These degradations are likely caused by 1) non-Gaussian forecast statis-534

tics, 2) sampling errors, and 3) biases that are introduced by the assimilation of Window-BT.535

The first factor can originate from having mixtures of clear and cloudy members. Sampling536

errors can also introduce errors into the analysis, particularly over regions where the ensem-537

ble correlations are weak. This factor is likely present in our experiments because no vertical538

localization is used in this study. Future work can investigate if vertical localization can mit-539

igate some of the RMSE and bias degradations (Lei & Anderson, 2014; Lei & Whitaker,540

2015; Lei et al., 2016, 2020). Finally, since biases are a component of RMSEs [e.g., Ying541

and Zhang (2017), Ying and Zhang (2018), and Chan, Zhang, et al. (2020)], biases that are542

introduced by Window-BT DA can contribute towards worse-than-NoDA RMSEs. While543

the contribution of biases to worse-than-NoDA RMSEs can be easily inferred (see the next544

paragraphs), the contributions from the first two factors cannot be easily teased apart.545

To understand the contribution of biases to the occurrence of worse-than-NoDA RM-
SEs (i.e., nRMSEs > 1), we computed the following fraction as a function of model level and
time ( 𝑓bias (𝑘, 𝑡)). For the EnKF experiment, we defined

EnKF’s 𝑓bias (𝑘, 𝑡) ≡

√︄
[EnKF’s biases (𝑘, 𝑡)]2 − [NoDA’s biases (𝑘, 𝑡)]2

[EnKF’s RMSEs (𝑘, 𝑡)]2 − [NoDA’s RMSEs (𝑘, 𝑡)]2

and likewise for the BGEnKF experiment. 𝑓bias can be interpreted as the fractional contribu-546

tion of biases to the worse-than-NoDA RMSE performance.547
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We found that for about 25–45% of the worse-than-NoDA situations (nRMSEs > 1) in548

the U and T fields, the majority of the nRMSE degradation (i.e., 𝑓bias ≥ 0.6) can be explained549

by the the introduction of biases [i.e., 𝑝 ( 𝑓bias > 0.6 |nRMSE > 1) ∈ (0.25, 0.45)]. This550

suggests that though DA-induced biases are important contributors towards the worse-than-551

NoDA RMSEs of either DA filters, the net contribution coming from other factors is also552

important. Future work can examine separating and quantifying the relative importance of553

these three factors towards the worse-than-NoDA RMSEs.554

4.3 On the origin of biases in the EnKF and BGEnKF experiments555

We now turn our attention to the U, T, Q, Window-BT and WV-BT biases that are in-556

troduced by Window-BT DA. Since the Q analysis increments are subject to bias removal557

(see last paragraph of section 3.5), the Q biases will be discussed later. The U, T and WV-BT558

biases are likely related to 1) a cold forecast minus truth (FmT) Window-BT bias at the start559

of all experiments, and 2) the persistence of these FmT Window-BT biases throughout all560

cycles (Figure 5(e)). Item 1 is essentially the result of drawing a single member from an en-561

semble – it is difficult to obtain a nature run whose domain-averaged Window-BT is always562

the same as that of the forecast ensemble. This is supported by the fact that the NoDA exper-563

iment’s FmT Window-BT biases oscillate around zero (Figure 5(e)). More interestingly, item564

2 indicates an over abundance of clouds in both DA experiments. Since WV-BT is cooler in565

the presence of clouds, the WV-BT bias is explained by the over abundance of clouds.566

To understand the origin of the persistently cold FmT Window-BT biases, we examine567

the analysis ensembles’ Window-BT biases. Running the CRTM on the analysis ensembles568

of the Window-BT DA experiments reveals analysis minus truth (AmT) Window-BT nor-569

malized biases that are typically around −0.25 (not shown). These bias values are a factor570

of 5 larger than the FmT normalized biases of around −0.05 (Figure 5(e)). The large AmT571

biases suggest that Window-BT DA resulted in overly cloudy analysis ensembles. Though572

the time-integration of these analysis ensembles dramatically reduces the over cloudiness573

(the normalized biases typically go from −0.25 to −0.05), some over cloudiness likely re-574

main. As such, the U, T, Window-BT and WV-BT biases are likely caused by the EnKF and575

BGEnKF experiments introducing too many clouds into the analysis ensemble.576

The over introduction of clouds is likely a result of the EnKF’s inability to handle clear577

and cloudy members separately and the strong sensitivity of Window-BTs to hydrometeors.578

When both clear and cloudy members are present in the forecast ensemble, the EnKF’s fore-579

cast mean state will contain some amount of clouds. Suppose that the correlations between580

Window-BT and hydrometeor mixing ratios are negative. If Window-BT observations with581

either small or negative innovations are assimilated, the clouds in the EnKF’s mean state582

will either be unaffected (for small innovations) or be increased (for negative innovations).583

Since the EnKF will also reduce the size of the ensemble members’ perturbations, the en-584

semble thus contracts around a cloudy mean state. The result is that clear column forecast585

members gain some amount of clouds, even in situations where the innovations are close to586

zero. Since Window-BTs are sensitive to the presence of clouds, running the CRTM on such587

members will generate cold cloudy Window-BT values. This mechanism of EnKF-induced588

over-cloudiness warrants future investigation.589

Note that the BGEnKF experiment’s over-cloudiness is likely caused by the mecha-590

nism in the previous paragraph. This is because the BGEnKF algorithm frequently switches591

over to the EnKF (for ∼90% of assimilated observations). Since the BGEnKF can handle592

mixtures of clear and cloudy members, with less frequent switches, the BGEnKF is likely to593

have smaller biases. To test this possibility, smaller sampling errors are necessary to justify594

less frequent switches from the BGEnKF to the EnKF. Future work can thus investigate this595

possibility with larger ensembles.596

With regards to the Q biases, since the analysis increment cannot modify the Q biases597

[see Eq. (9)], these biases are induced during the forecast step of the DA procedure. We can598
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rule out the evaporation of DA-induced spurious clouds as an important source because the599

hydrometeor biases injected by the increment are an order of magnitude smaller than the600

Q bias growth during integration (not shown). Other processes are likely causing the Q bi-601

ases. Some possibilities include enhancements to the upward transport of Q from the surface602

and/or the latent fluxes from the ocean surface. The exact origin of these Q biases can be603

investigated in future work.604

4.4 On dynamical imbalances605

Note that the BGEnKF introduces less dynamical imbalances into the ensemble than606

the EnKF. To measure dynamical imbalance, we compute the root-mean-square of the sec-607

ond time derivative of surface pressure during the time integration phase of each DA cycle608

(P. Houtekamer & Mitchell, 2005; Temperton & Williamson, 1981). These derivatives are609

computed via centered differencing (Press & Flannery, 2010) on three consecutive snapshots610

of the surface pressure field. These snapshots are spaced 30-minutes apart. The resulting im-611

balance metric is normalized using the NoDA experiment’s imbalance metric. A normalized612

imbalance metric value of 1 indicates that a normal amount of fast-moving gravity waves is613

present. A value greater than 1 indicates that a higher than normal amount of fast-moving614

gravity waves is present, thus indicating DA-induced imbalances.615

Figure 6(b) indicates that the BGEnKF experiment generally has either statistically616

indistinguishable or milder imbalances than the EnKF experiment. The only exception to617

this trend happens between 0000 UTC to 1200 UTC on 17th October. The BGEnKF is thus618

likely more appropriate than the EnKF at assimilating Window-BT observations.619

5 Conclusions and future work620

In this study, we compare the BGEnKF against the EnKF using perfect model OSSEs621

with a realistic weather model (WRF) for a case of tropical convection. These OSSEs are622

executed using the state-of-the-art PSU-EnKF system. Our results indicate that the BGEnKF623

outperforms the EnKF at assimilating synthetic Window-BT observations. We observe this624

performance advantage in terms of the RMSEs and biases of the U, V, T, Q, Window-BT625

and WV-BT fields. This performance advantage is likely due to the BGEnKF’s ability to626

handle mixtures of clear and cloudy column members. These performance advantages are627

achieved even though the BGEnKF s only activated for ∼10% of the assimilated Window-BT628

observations. As such, these promising results motivate future work into the BGEnKF using629

real data.630

There are several large areas of future research for the BGEnKF. The first large area631

concerns refining the BGEnKF algorithm. Future work can, for instance, seek less heuristic632

approaches to sort the ensemble into clusters in a computationally efficient manner. One op-633

tion is to combine clustering algorithms [e.g., k-means (Forgy, 1965; Lloyd, 1982), support-634

vector machines (Cortes & Vapnik, 1995) and expectation maximization (Sondergaard &635

Lermusiaux, 2013b)] with dimension reduction methods [e.g., Sondergaard and Lermusiaux636

(2013b), Reddy et al. (2020), Albarakati et al. (2021)]. Since cluster sizes, and thus sampling637

errors, can vary in each iteration of the serial BGEnKF loop, future work can investigate us-638

ing adaptive or empirical localization methods (Anderson, 2012; Anderson & Lei, 2013; Lei639

& Anderson, 2014) to improve the BGEnKF’s performance. Future work can also examine640

more sophisticated methods to regulate when the BGEnKF switches over to the EnKF (e.g.,641

using the Shapiro-Wilk test for normality).642

Another area of future work is to hybridize the BGEnKF with other DA algorithms.643

Hybridization with kernel filters (Anderson & Anderson, 1999; Hoteit et al., 2008; Stordal644

et al., 2011; Hoteit et al., 2012; Liu et al., 2016; Stordal & Karlsen, 2017; Kotsuki et al.,645

2022) can be achieved by assigning the clear cluster’s covariance to clear member kernels646

and likewise for the cloudy member kernels. Existing ensemble-variational hybrid DA al-647
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gorithms (Hamill & Snyder, 2000; Lorenc, 2003; Buehner, 2005; X. Wang et al., 2007)648

can also be hybridized with the BGEnKF. For instance, the BGEnKF can replace the EnKF649

component of such methods. Hybridization with DA methods that employ transport meth-650

ods to update ensemble members (Reich, 2012; van Leeuwen, 2011; Marzouk et al., 2017;651

Hu & van Leeuwen, 2021; Evensen Geir et al., 2022) is also possible. This can provide652

a different method to shift members between clusters, as opposed to the current deletion-653

resampling method. Finally, the BGEnKF can be potentially hybridized with ensemble DA654

methods that allow non-parametric prior distributions. Such methods include particle fil-655

ters (van Leeuwen, 2009; Poterjoy, 2016; Vetra-Carvalho et al., 2018; Poterjoy et al., 2019;656

van Leeuwen et al., 2019), the quantile conserving ensemble filter (Anderson, 2022), and the657

rank histogram filter (Anderson, 2010, 2019, 2020).658

Since we have only tested the BGEnKF in a perfect model WRF OSSE using Window-659

BT observations, future work can test the BGEnKF in increasingly realistic scenarios, with660

other observation types, and/or in other Earth systems. For instance, since radar reflectivity661

observations are sensitive to the presence and absence of precipitation, the BGEnKF can662

potentially be better at assimilating such observations. The performance of the BGEnKF can663

also be compared with other popular DA algorithms in tests that assimilate the operational664

suite of atmospheric in-situ and remote observations. Imperfect model OSSEs and real data665

tests can also be done. The BGEnKF can also be tested in other Earth system components.666

This study is among the first to demonstrate the potential of the BGEnKF with a high-667

order weather model. Our BGEnKF is computationally efficient, scalable with paralleliza-668

tion, and likely straightforward to implement in existing serial EnKF DA systems. These669

algorithmic properties and our promising results motivate future research into developing,670

testing and applying the BGEnKF, or similar GMM-EnKFs, for Earth systems DA.671

6 Open Research672

The data and software used in this study are either publicly available or available upon673

request. The WRF model software can be found on the National Center for Atmospheric674

Research’s WRF website (https://www.mmm.ucar.edu/weather-research-and-forecasting-675

model). Our WRF ensemble is constructed using the ECMWF TIGGE data archived on the676

MARS system (https://apps.ecmwf.int/datasets/data/tigge) and the ERA5 data archived on677

the CDS system (https://cds.climate.copernicus.eu). The MERG data product is obtained678

from NASA’s GES DISC (https://disc.gsfc.nasa.gov/datasets/GPM_MERGIR_1/summary).679

We have archived this study’s experiments and a copy of the Fortran 90 BGEnKF module on680

the Pennsylvania State University’s Data Commons (http://doi.org/10.26208/XV41-7N75).681

The Fortran 90 source code of the PSU-EnKF system, including the implemented BGEnKF,682

is available upon request.683
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Key Points:14

• Current ensemble DA methods assume that forecasts follow a normal distribution.15
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form the EnKF.20

Corresponding author: Man-Yau Chan, chanmanyau@gmail.com

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract21

The meteorological characteristics of cloudy atmospheric columns can be very dif-22

ferent from their clear counterparts. Thus, when a forecast ensemble is uncertain about the23

presence/absence of clouds at a specific atmospheric column (i.e., some members are clear24

while others are cloudy), that column’s ensemble statistics will contain a mixture of clear and25

cloudy statistics. Such mixtures are inconsistent with the ensemble data assimilation algo-26

rithms currently used in numerical weather prediction. Hence, ensemble data assimilation27

algorithms that can handle such mixtures can potentially outperform currently used algo-28

rithms.29

In this study, we demonstrate the potential benefits of addressing such mixtures through30

a bi-Gaussian extension of the ensemble Kalman filter (BGEnKF). The BGEnKF is com-31

pared against the commonly used ensemble Kalman filter (EnKF) using perfect model ob-32

serving system simulated experiments (OSSEs) with a realistic weather model (the Weather33

Research and Forecast model). Synthetic all-sky infrared radiance observations are assimi-34

lated in this study. In these OSSEs, the BGEnKF outperforms the EnKF in terms of the hor-35

izontal wind components, temperature, specific humidity, and simulated upper tropospheric36

water vapor channel infrared brightness temperatures.37

This study is one of the first to demonstrate the potential of a Gaussian mixture model38

EnKF with a realistic weather model. Our results thus motivate future research towards im-39

proving numerical Earth system predictions though explicitly handling mixture statistics.40

Plain Language Summary41

The accuracy of a computer weather forecast often depends on the accuracy of the in-42

formation inputted into the computer forecast system. The accuracy of the input in turn de-43

pends on the accuracy of the input-constructing algorithm. Such algorithms often use prob-44

abilistic forecasts from an earlier point in time and current atmospheric measurements to45

construct the inputs.46

A common assumption in input-constructing algorithms is that the probabilistic fore-47

casts follow multivariate normal distributions (henceforth called the normality assumption).48

However, in the frequent situation where the probabilistic forecasts are uncertain about the49

presence/absence of clouds, the normality assumption is violated. This is because clear at-50

mospheric columns and cloudy atmospheric columns have distinctly di�erent thermody-51

namic and dynamic characteristics. Such probabilistic forecasts thus have mixed statistics52

(henceforth termed mixed probabilistic forecasts). Addressing these mixed statistics can po-53

tentially improve forecasts.54

In this study, we propose a new input-constructing algorithm that can explicitly han-55

dle mixed probabilistic forecasts. Compared to an existing popular algorithm, our algorithm56

is nearly as fast and can produced more accurate forecast inputs. Our work thus suggests57

that weather forecasts can be improved by upgrading input-constructing algorithms to treat58

a common situation where the normality assumption is violated.59
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1 Introduction60

Earth system analysis and forecasting systems rely on ensemble data assimilation (en-61

semble DA, or EDA) methods to convert observations into corrections for Earth system62

model variables (Keppenne et al., 2005; Reichle et al., 2009; Edwards et al., 2015; Stam-63

mer et al., 2016; Park & Xu, 2016; ECMWF, 2016; Helmert et al., 2018; Hersbach et al.,64

2020). Current operational EDA methods typically assume that every member in an input65

forecast ensemble is drawn from a distribution only containing a single Gaussian kernel [i.e.,66

a Gaussian distribution; henceforth termed the unmixed ensemble assumption; e.g., Geer et67

al. (2018) and Dowell et al. (2022)]. The e�ectiveness of such methods can thus can be lim-68

ited by the validity of this assumption.69

The unmixed ensemble assumption is violated for ensembles that are uncertain about70

the presence or absence of clouds at any model grid point. This is because clear atmospheric71

columns and cloudy atmospheric columns often have di�erent dynamic, thermodynamic,72

and radiative properties [e.g., Emanuel (1994), Markowski and Richardson (2010)]. Cloudy73

statistics are thus often di�erent from clear statistics [e.g., Grimes and Pardo-Igúzquiza (2010);74

Geer and Bauer (2011)]. If some ensemble members are cloudy at a location, and other75

members are clear at this location, the ensemble can exhibit mixed statistics (Harnisch et al.,76

2016; Minamide & Zhang, 2017; Honda et al., 2018; Chan, Anderson, & Chen, 2020). More77

evidence of mixed statistics can be found in the supporting information. The e�ectiveness of78

current operational EDA methods is likely limited in such situations.79

This limitation can be mitigated by extending current operational EDA methods to han-80

dle mixed statistics. One possibility is to extend the commonly used ensemble Kalman filter,81

or the EnKF (Evensen, 1994; P. L. Houtekamer & Mitchell, 1998; Burgers et al., 1998; Tip-82

pett et al., 2003; Anderson, 2003; Whitaker & Hamill, 2002; Keppenne et al., 2005; Hunt et83

al., 2007; Reichle et al., 2009; Stammer et al., 2016; Edwards et al., 2015; Park & Xu, 2016;84

Helmert et al., 2018), to handle members drawn from forecast distributions with two Gaus-85

sian kernels. Specifically, we assume that forecast members that are clear at an observation86

site (henceforth, clear members) are drawn from one Gaussian kernel, and forecast members87

that are cloudy at this site (henceforth, cloudy members) are drawn from a di�erent Gaus-88

sian kernel. This bi-Gaussian extension of the EnKF (henceforth, the BGEnKF) allows the89

clear ensemble statistics to be handled separately from the cloudy ensemble statistics (Chan,90

Anderson, & Chen, 2020), thus addressing the issue of mixed statistics.91

We recently proposed a computationally e�cient BGEnKF to handle mixtures of clear92

and cloudy members [Chan, Anderson, and Chen (2020); henceforth, the CAC20 BGEnKF].93

Unlike similar methods proposed in the past (Dovera & Della Rossa, 2011; Reich, 2012;94

Sondergaard & Lermusiaux, 2013a, 2013b), the CAC20 BGEnKF does not use an expecta-95

tion maximization (EM) algorithm to estimate the mean and covariances of the two Gaus-96

sian kernels. Instead, the CAC20 BGEnKF assigns the the sample mean and covariances97

of the cloudy members to one Gaussian kernel, and those of the clear members to the other98

Gaussian kernel. This assignment circumvents the computational cost and issues associated99

with using the EM algorithm in high dimensional spaces [see Chan, Anderson, and Chen100

(2020) for more information]. Furthermore, the CAC20 BGEnKF converts clear members101

into cloudy members, or vice versa, without involving the costly square-root computations or102

Cholesky decompositions of high-dimensional forecast covariance matrices.103

The purpose of this study is to demonstrate that a variant of the CAC20 BGEnKF can104

outperform the EnKF using a realistic high-order weather model (the Weather Research and105

Forecast model; WRF). To do so, this new BGEnKF is implemented into the state-of-the-art106

Pennsylvania State University EnKF system [henceforth, the PSU-EnKF system; Meng and107

Zhang (2007, 2008), Chan, Zhang, et al. (2020)]. This demonstration is done using perfect108

model observing system simulation experiments (OSSEs) of a case of tropical convection109

over the equatorial Indian Ocean. This case occurred during the onset of the active phase of110
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the October 2011 Madden-Julian Oscillation event [MJO; Madden and Julian (1971, 1972),111

and S. Wang et al. (2015)].112

The structure of this paper is as follows. In section 2, we will give an overview of the113

BGEnKF algorithm, discuss how clear and cloudy members are identified, and modifications114

made to the CAC20 BGEnKF algorithm. A detailed description of the current BGEnKF,115

along with suggestions on handling more than two Gaussian kernels, can be found in the sup-116

porting information. Following that, we will discuss the setup of our OSSEs in section 3 and117

the results in section 4. We will then conclude in section 5.118

2 On the BGEnKF algorithm119

2.1 On the identification of clear and cloudy members120

The BGEnKF requires identifying clear and cloudy members at each iteration of the121

serial data assimilation loop. A simple identification method is to check if the members’122

column-integrated liquid and/or frozen water mass contents exceed a threshold.123

The choice of which phase of water to include in the column integration depends on124

the specifics of the forecast model. As will be discussed in section 3.3, this study used a125

WRF model setup with a 9-km horizontal grid spacing and without convective parameter-126

ization. This WRF model setup cannot realistically resolve trade cumuli since the typical127

width of trade cumuli is ⇠1-km. As such, we consider columns with trade cumuli and en-128

tirely cloud-free columns as clear member columns, and the remaining members as cloudy129

member columns. Since trade cumuli do not typically grow above the melting layer (Johnson130

et al., 1999), clear members do not possess frozen water. It thus seems appropriate to use131

column-integrated ice mass content (b) to distinguish between clear and cloudy member132

columns. To be precise, we compute b at a given model column via133

b ⌘
π

IC>?

0
d(@8 + @B + @6)3I (1)

where IC>? is the model top altitude and d represents air density. Furthermore, @8 , @B and @6134

are the mass mixing ratios of ice, snow and graupel, respectively.135

In this study, we will consider model columns with b � 1 g/m2 as cloudy, and model136

columns with b < 1 g/m2 as clear. The cloudy and clear infrared window channel simulated137

brightness temperature statistics (Window-BT; central wavelength of 10.5 `m) do not vary138

noticeably for model column b thresholds between 0.8-1.2 g/m2. Future studies can refine139

the threshold value or seek better ways to separate clear and cloudy column members.140

2.2 Overview of the BGEnKF algorithm141

This study’s BGEnKF (and the CAC20 BGEnKF) assimilates observations with Gaus-142

sian observation likelihoods under the assumption that clear members are drawn from one143

Gaussian kernel and cloudy members are drawn from another Gaussian kernel. Suppose we144

seek to constrain the following extended state vector 7145

7 ⌘
266664

x

h (x)
/ (x)

377775
(2)

where x represents the model state, h (x) represents applying the observation operator h on146

x, and / (x) represents computing b at all observation sites [Eq. (1)]. Note that observation147

sites here refers to the latitude and longitude of the observation (i.e., the vertical position is148

not considered for now). Supposing there are #G elements in x and #H observations, then 7149

has #G + 2#H elements.150
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Stage 1: Double EnKF

Stage 2: Delete members 
from shrinking cluster

Stage 3: Resample 
expanding cluster

(a)

(b) (c)

Figure 1. A bivariate demonstration of the three-stage process of the BGEnKF algorithm. The light red

ovals highlight cluster 1 members and the light blue ovals highlight cluster 2 members. Prior to running the

BGEnKF update, the prior members have already been separated into two clusters. The BGEnKF’s first stage

is to employ the EnKF update equations on the two clusters separately (panel a). In the second stage (panel

b), the BGEnKF identifies the shrinking cluster (the blue cluster 2 in this case), deletes an appropriate number

of members from this cluster, and adjusts the remaining members to prevent the deletion from changing this

cluster’s mean. The BGEnKF’s final stage (panel c) is to recreate the deleted members by resampling from the

expanding cluster (cluster 1).
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The BGEnKF assumes that the prior probability density function [pdf; ? (7)] can be151

represented by the bi-Gaussian pdf152

? (7) = F
5

clr G
✓
7; 7

f
clr, V

f
clr

◆
+ F

5

cld G
✓
7; 7

f
cld, V

f
cld

◆
. (3)

The subscript “clr" denotes clear cluster quantities, and the subscript “cld” denotes cloudy

cluster quantities. G
✓
7; 7

f
clr, V

f
clr

◆
denotes the clear cluster’s Gaussian kernel with mean

state 7
f
clr and covariance matrix V

f
clr. Similarly, G

✓
7; 7

f
cld, V

f
cld

◆
denotes the cloudy clus-

ter’s Gaussian kernel with mean state 7
f
cld and covariance matrix V

f
cld. The scalar quantities

F
5

clr and F
5

cld are the respective weights of the clear and cloudy Gaussian kernels. Note that

F
5

clr + F
5

cld = 1, F
5

clr � 0, and, F
5

cld � 0.

The various parameters in Eq. (3) can be estimated by the procedure described in CAC20 or153

in the supporting information.154

Upon assimilating an observation H
> with Gaussian observation error, the BGEnKF155

produces an ensemble that is consistent with the analysis pdf156

? (7 |H>) = F
0

clr G
⇣
7; 7

a
clr, V

a
clr

⌘
+ F

0

cld G
⇣
7; 7

a
cld, V

a
cld

⌘
. (4)

Here, F0

clr and F
0

cld are the respective analysis weights of clear and cloudy Gaussian kernels,157

7
a
clr and 7

a
cld are the respective analysis means of the clear and cloudy Gaussian kernels, and158

V
a
clr and V

a
cld are the respective analysis covariances of the clear and cloudy Gaussian ker-159

nels. See CAC20 [or the supporting information] for the equations relating the analysis pdf’s160

parameters to the forecast pdf’s parameters.161

The BGEnKF converts a forecast ensemble into an analysis ensemble through a three-162

stage process [illustrated in Figure 1]. First, two EnKF procedures are executed [Figure163

1(a)]: once for clear members using clear forecast statistics
✓
7

f
clr, V

f
clr

◆
, and a second time164

for cloudy members using cloudy forecast statistics
✓
7

f
cld, V

f
cld

◆
. Afterwards, to reflect the165

update to the bi-Gaussian pdf weights, clear members will be replaced with cloudy members,166

or vice versa. For example, if the BGEnKF increased the weight on the clear Gaussian distri-167

bution (i.e., F0

clr > F
5

clr and F
0

cld < F
5

cld), some cloudy members will be replaced with clear168

members. This is achieved by deleting some cloudy members [Figure 1(b)] and replacing169

the deleted members with resampled clear members [Figure 1(c)]. Once these three stages170

are completed, the ensemble obeys Eq. (4). See the supporting information for a detailed171

description of these three stages.172

2.3 Revised extended state formulation for better scalable parallelism173

The most important modification to the original CAC20 BGEnKF lies in the defini-174

tion of 7. The CAC20 BGEnKF’s 7 only contains x and a single observation. As such, the175

CAC20 BGEnKF algorithm is a sequential algorithm that scales ine�ciently with paral-176

lelization on high latency clusters (Anderson & Collins, 2007). For more e�cient scaling177

with parallelization, this study’s 7 contains all of the information necessary to assimilate all178

observations [i.e., Eq. (2); Anderson and Collins (2007)].179

Since the definition of 7 has been modified, we will redefine our forecast ensemble.180

Supposing an ensemble size of #⇢ , the forecast 7 ensemble is constructed by evaluating181

7
f
n ⌘

2666664

x
f
n

h(x f
n)

/

⇣
x
f
n

⌘
3777775
8 = = 1, 2, . . . , #⇢ (5)
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where 7
f
n is the 7 of the =�th forecast member, and x

f
n is the x of the same forecast member.182

The revised formulation enhances the scalability of the BGEnKF by avoiding evalua-183

tions of h (x) and / (x) at each iteration of the serial assimilation loop. This is because such184

evaluations may require costly inter-process communications. The removal of such evalua-185

tions is achieved through two modifications to the CAC20 BGEnKF. First, the assimilation186

of an observation uses the BGEnKF update equations (see CAC20 or the supporting infor-187

mation) to update all model state elements, all simulated observation state elements and all b188

elements in the forecast ensemble. The CAC20 BGEnKF, in contrast, updates all model state189

elements and only a single simulated observation state element. This di�erence in updates190

leads to a second modification: to assimilate the <�th observation, instead of evaluating191

h (x) and / (x), this study’s BGEnKF only needs to read the corresponding simulated obser-192

vation and the b values from 7.193

2.4 Revised expanding cluster resampling procedure194

The other major change to the CAC20 BGEnKF lies in the resampling matrix Z. Z is195

used to resample the Gaussian kernel that better agrees with the assimilated observation, thus196

representing the increase in the weight of this kernel. The CAC20 BGEnKF uses a stochastic197

procedure to construct Z [see Eq. (18) and Appendix B of CAC20]. Unfortunately, because198

random number generators are involved, the analysis ensemble generated on one computing199

cluster cannot be easily replicated on another computing cluster.200

To ensure the replicability of the BGEnKF’s analysis ensembles, we replaced the stochas-201

tic component of the CAC20 BGEnKF’s Z [] in the Appendix B of Chan, Anderson, and202

Chen (2020)] with a deterministic one. Supposing that we want to add #new cloudy members203

to the ensemble to represent an increased weight of the cloudy Gaussian distribution, the new204

deterministic ] is defined as205

] ⌘
h
OT ⇤

new 0T ⇤
new⇥(Tnew�T ⇤

new)
i
� 1

#new
1T ⇤

new⇥Tnew (6)

where

#
⇤
new ⌘

8>>><
>>>:

#new � 1 8 #new  #pre

#pre otherwise

,

and #pre is the number of cloudy members at the start of the resampling procedure. Further-206

more, OT ⇤
new is an #

⇤
new ⇥ #

⇤
new identity matrix, 0T ⇤

new⇥(Tnew�T ⇤
new) is an #

⇤
new ⇥

�
#new � #

⇤
new

�
207

matrix of zeros, and 1T ⇤
new⇥Tnew is an #

⇤
new⇥#new matrix of ones. Note that Eq. (6) is also ap-208

plied in the situation where #new clear members are being added to the ensemble. A detailed209

description of the revised resampling procedure is provided in the supporting information.210

Note that an interesting property of Eq. (6) is that the resulting T is a mostly diago-211

nal matrix. Specifically, nearly all of the o�-diagonal elements in T are either zero or much212

smaller than the diagonal elements (not shown). As a result, the resampled members are es-213

sentially copies of the pre-resampling members, plus some small perturbation. The CAC20214

stochastic W formulation does not have this property. Future work can investigate how the215

BGEnKF’s behavior changes with di�erent W formulations.216

2.5 Heuristic measures217

2.5.1 Localization218

The BGEnKF is likely more susceptible to sampling noise than the EnKF because the219

sample size used to estimate each cluster’s mean state and Kalman gain are smaller than the220

sample size used to estimate the mean state and covariance matrix of the entire ensemble.221

As such, we employ two heuristic measures that are similar to those of CAC20. First, we222
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spatially localize the BGEnKF analysis increment using the Gaspari-Cohn fifth order poly-223

nomial [GC99; Gaspari and Cohn (1999)]. If 1 represents a vector of GC99 localization fac-224

tors, we construct the localized updated extended state vector for member = via225

7
a
n  1 �

⇣
7
a
n � 7

f
n

⌘
+ 7

f
n (7)

where � represents element-wise multiplication. In the cases where either F 5

clr = 1 or F 5

cld =226

1 (i.e., the bi-Gaussian prior p.d.f. turns Gaussian), this localization method is identical to227

Kalman gain localization [e.g., Anderson et al. (2009), Meng and Zhang (2008), Whitaker et228

al. (2008), P. L. Houtekamer and Zhang (2016)].229

Note that this localization method [Eq. (7)] localizes the impacts of replacing clear230

members with cloudy members (or vice versa). As an example, suppose the BGEnKF re-231

places a cloudy forecast member with a clear analysis member. The localization process232

[Eq. (7)] first computes the di�erence between the cloudy forecast member and the clear233

analysis member (i.e., the member’s change due to the BGEnKF). This di�erence is then lo-234

calized and applied to the cloudy forecast member. The resulting member follows the clear235

analysis member at the observation site and becomes increasingly like the cloudy forecast236

member with increasing distance from the observation site. Future work can examine other237

approaches to localize the impacts of deleting and replacing ensemble members.238

2.5.2 Handling overly small clusters239

The second heuristic sampling error mitigation measure is to switch from using the240

BGEnKF to using the EnKF whenever the pre-resampling expanding cluster is too small241

(#pre < 0.8#⇢), or whenever any cluster is too small (less than 0.1#⇢). A similar heuris-242

tic measure is used in CAC20.243

2.5.3 Mitigating unphysical weight updates244

Another issue specific to the BGEnKF is its occasional tendency to generate unphys-245

ical weight updates. Specifically, the BGEnKF occasionally expands the clear cluster when246

a cloudy observation is assimilated, and vice versa. This is because the BGEnKF does not247

explicitly consider whether an observation is clear or cloudy when assimilating it.248

The BGEnKF is automatically switched to the EnKF whenever an unphysical weight249

update is detected. To do so, we first identify the whether the observation to be assimilated250

is definitively clear or cloudy. In the case of Window-BT values over tropical ocean, obser-251

vation values warmer than 290 K are definitively clear, and observation values cooler than252

280 K are definitively cloudy. If the observation is definitively clear, but the cloudy cluster is253

expanded by the BGEnKF, or vice versa, the BGEnKF will switch over to the EnKF.254

3 Materials and methods255

3.1 Description of October 2011 tropical convection case256

The BGEnKF was tested against the EnKF using a case of tropical convection over the257

equatorial Indian Ocean during the October 2011 MJO. This case is chosen because it can be258

reasonably replicated by regional WRF models (S. Wang et al., 2015; F. Zhang et al., 2017;259

Ying & Zhang, 2017; Fu et al., 2017; X. Chen, Pauluis, & Zhang, 2018; X. Chen & Zhang,260

2019; Ying & Zhang, 2018; Chan, Zhang, et al., 2020).261

Our experiments are conducted over a three day period during the onset of this MJO262

event (15 October 2011 to 18 October 2011). Two persistent regions of enhanced convection263

(henceforth, "convective regions") are observed in the 4-km Global IR Dataset of Janowiak264

et al. (2001) [henceforth, the MERG dataset]. The first convective region (blue rectangle)265

occurs between 60 �E and 75 �E and persists beyond the three-day period. Westward propa-266
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Figure 2. (a) Plot of our OSSE domain overlaid with the nature run’s simulated Window-BT field at 1200

UTC on 15th October 2011. The red box in panel (a) indicates our study domain. Also shown are longitude-

time diagrams for the MERG dataset (b) and nature run (c). In panels (b) and (c), the shadings indicate

Window-BT Hovmoller percentile values. These Window-BT Hovmoller percentile values are constructed by

first averaging Window-BT values between between 10°S and 10°N at every hour to produce a time-longitude

array of latitudinally-averaged Window-BT values. These arrays are then converted into percentiles before

producing the longitude-time percentile values. Note that the dashed black contours in (b) and (c) indicate

areas where the time-longitude arrays of latitudinally-averaged Window-BT values are below 260 K.
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gation is observed in some of the clouds in this region, most notably between 1200 UTC on267

16 October and 0000 UTC on 18 October. The second convective region (blue oval) appears268

on the eastern edge of the study domain at 1200 UTC on 16th October and exhibits a west-269

ward propagation that is similar to that of the first system. We will later assess our OSSE’s270

nature run simulation by checking the nature run against these two convective regions.271

3.2 Setup of WRF model272

The Advanced Research version of the WRF model (WRF-ARW) version 3.8 (Skamarock273

et al., 2008) is used in this study. Following Chan, Zhang, et al. (2020), we construct a 432⇥243274

WRF domain over the study domain [red box in Figure 2(a)] with 9-km horizontal grid spac-275

ing and 45 model levels. The bottommost 9 levels are within the lowest 1-km of the atmo-276

sphere and the pressure level at the top of the domain is set to 20 hPa. The WRF integration277

time step is set to 20 seconds.278

Our WRF model setup uses the following parameterization schemes. Cloud micro-279

physical processes are handled by the WRF double-moment 6-class scheme (WDM6) pro-280

posed by Lim and Hong (2010). The updated Goddard shortwave scheme of Chou and Suarez281

(1999) and the Rapid Radiative Transfer Model (Global Circulation Model version; RRMTG)282

longwave scheme of Iacono et al. (2008) are used to parameterize radiative processes. The283

unified Noah land surface physics scheme (F. Chen & Dudhia, 2001) handles surface process284

and the Yonsei University (YSU) boundary layer scheme (Hong et al., 2006) is employed.285

No cumulus parameterization is employed because many studies have demonstrated that the286

9-km grid spacing is su�cient to resolve tropical mesoscale convective systems (MCS) over287

the region (S. Wang et al., 2015; Ying & Zhang, 2017, 2018; F. Zhang et al., 2017; X. Chen,288

Pauluis, & Zhang, 2018; X. Chen, Pauluis, Leung, & Zhang, 2018; X. Chen & Zhang, 2019;289

X. Chen et al., 2020; Chan, Zhang, et al., 2020; Chan & Chen, 2021; X. Chen, Leung, Feng,290

& Song, 2021; X. Chen, Leung, Feng, Song, & Yang, 2021; X. Chen et al., 2022).291

3.3 Setup of WRF ensemble and nature run292

This study’s WRF ensemble and nature run are constructed by combining two datasets293

from the European Center for Medium-Range Forecasts (ECMWF): the ECMWF Reanalysis294

Version 5 [ERA5; Hersbach et al. (2020)] and the ECMWF’s 50-member perturbed forecasts295

(Swinbank et al., 2016). The ERA5 dataset is downloaded for every hour between 0000 UTC296

on 15 October to 1800 UTC on 18 October from the ECMWF’s Climate Data Store (CDS).297

The ECMWF’s perturbed forecasts are produced as part of The Observing System Research298

and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble [TIGGE;299

Swinbank et al. (2016)] and is downloaded for 0000 UTC on 15 October from the ECMWF’s300

Meteorological Archival and Retrieval System (MARS).301

The ERA5 and ECMWF’s 50-member perturbed forecasts (TIGGE ensemble) are pro-302

cessed using the WRF Preprocessing System and WRF’s real data processor (real.exe) to303

produce a set of 51 WRF initial conditions files. Note that the ERA5 is used to fill in the data304

missing from the TIGGE ensemble above 200 hPa. The 50 WRF initial conditions from the305

TIGGE ensemble are then recentered on the ERA5 WRF initial condition file. The end result306

is a 51-member ensemble of WRF initial conditions, where member 51 is based entirely on307

the ERA5 (i.e., the 51-st ensemble perturbation is zero). Note that this 51-st member is not308

used to initialize the nature run. One of the other initial conditions is used to initialize the309

nature run.310

The lower and lateral boundary conditions used in this study are based entirely on311

the hourly ERA5 dataset (i.e., the boundary conditions are unperturbed). While perturbed312

boundary conditions can increase the ensemble spread, the ensemble spread is usually rea-313

sonable even with unperturbed boundary conditions (not shown). Furthermore, as a first314

approach to studying the potential impacts of the BGEnKF in a high-order weather model315
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setting, we want the di�erences between the nature run (described later) and the OSSE en-316

semble to be entirely due to di�erences in the initial conditions. Future work can extend this317

study to situations with perturbed boundary conditions.318

We desire a nature run that is roughly one ensemble standard deviation from our ex-319

periments’ ensembles. To select an appropriate initial condition file for such a nature run,320

we first integrate the 51 members forward for 12 hours (from 0000 UTC to 1200 UTC on 15321

October 2011). This integration is performed to generate flow-dependent ensemble statis-322

tics that are consistent with the WRF model. After the 12-hour integration, we compute the323

following perturbation length metric (⇡2) for each of the 51 ensemble members324

⇡
2 (=) ⌘ 1

#( #8 # 9

’
E2(

#8’
8=1

# 9’
9=1

✓
⇤ (8, 9 , E, =) � h⇤ (8, 9 , E)i

=

f8, 9 ,E

◆2

. (8)

⇤ (8, 9 , E, =) here is the value of a WRF-derived field E at horizontal index location (8, 9) for325

ensemble member =. Furthermore, h⇤ (8, 9 , E)i
=

is the ensemble average of ⇤ (8, 9 , E, =), and326

f8, 9 ,E is the ensemble standard deviation of ⇤ (8, 9 , E, =). This means that the expression in327

the parentheses of Eq. (8) is the spread-normalized displacement of ensemble member =328

from the ensemble mean at location (8, 9) for variable field E. The set ( contains three 2D329

variables (precipitable water, column mass, and mass-integrated kinetic energy) and #B is330

the size of the set ( (i.e., #( = 3). Furthermore, #8 (⌘ 432) is the number of east-west grid331

points and # 9 (⌘ 243) is the number of north-south grid points. The metric in Eq. (8) can332

thus be interpreted as being proportional to the spread-normalized Euclidean length of the333

=-th ensemble perturbation. As such, a ⇡
2 value of unity means that the ensemble member is334

generally displaced from the ensemble mean by 1 standard deviation.335

We define our nature run member to be the member whose ⇡
2 value is closest to unity336

at 1200 UTC on 15 October. As a result, the nature run is based on member 10 of the TIGGE337

ensemble. The remaining 50 WRF members will be used for our cycling OSSE DA experi-338

ments.339

3.4 Sanity check of nature run340

Before proceeding, the nature run is checked by comparing it against the MERG dataset.341

Figure 2(b & c) shows longitude-time diagrams of the Window-BT percentiles from the342

MERG dataset and our nature run. The construction of these percentiles is explained in sec-343

tion 3.1 and in the caption of Figure 2.344

We have opted to display the Window-BT percentiles instead of the Window-BT val-345

ues because the WRF model tends to under produce clouds (i.e., when compared to satellite346

observations, the nature run Window-BTs are warm biased). This is illustrated by the dashed347

contours in Figure 2(b & c), which highlights areas where the latitudinally-averaged values348

of Window-BT were cooler than 260 K. These areas are substantially larger in the MERG349

data than in the nature run, meaning that the nature run under produced clouds. Since con-350

verting the Window-BT values to percentile values weakens the visual interference from the351

cloud biases, we have opted to display the Window-BT percentiles over the Window-BT val-352

ues.353

Figure 2(c) indicates that the nature run also exhibits the two persistent convective re-354

gions observed in the MERG dataset (see section 3.1). These persistent convective regions355

are indicated by the blue rectangle and blue oval in Figure 2(c). Not only did the nature run’s356

two persistent convective regions occur in locations and times similar to those of the MERG357

dataset (Figure 2(b)), these nature run regions also exhibit westward propagation patterns358

similar to those of the MERG dataset. As such, the nature run simulation reasonably repli-359

cates the anomalous convective behavior of the real atmosphere between 15 October to 18360

October 2011.361
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3.5 Setup of DA experiments to test the BGEnKF362

To test the BGEnKF, three 50-member ensemble experiments are conducted. All three363

experiments start at 1200 UTC on 15 October and terminate at 1200 UTC on 18 October,364

with hourly DA cycling (73 cycles in total). The construction and spin-up of these 50 mem-365

bers are described in section 3.3.366

In the first experiment, no observations are assimilated (henceforth, NoDA experi-367

ment). The NoDA experiment serves as a baseline for comparing the performance of the368

EnKF and BGEnKF, and to measure imbalances induced by DA.369

The other two experiments are the EnKF and BGEnKF experiments. The only di�er-370

ence between the EnKF and BGEnKF experiments is in the DA algorithm employed. The371

EnKF experiment will assimilate observations using the PSU-EnKF’s (Meng & Zhang,372

2007, 2008) default EnKF algorithm, and the BGEnKF experiment will assimilate obser-373

vations using a new implementation of the BGEnKF into the PSU-EnKF. Note that both the374

EnKF and the BGEnKF are implemented into the PSU-EnKF using the high-latency strategy375

proposed by Anderson and Collins (2007).376

As a first approach to testing the BGEnKF, only synthetic Meteorological Satellite 7377

Meteosat Visible Infra-Red Imager (MVIRI) Window-BT observations will be assimilated.378

Future work can investigate if our findings can be extended to situations where an entire suite379

of operationally-assimilated observations and observations from di�erent infrared channels380

are assimilated.381

The synthetic Window-BT observations are constructed by first running the Commu-382

nity Radiative Transfer Model (CRTM) release 2.3.0 on the nature run (see sections 3.3 and383

3.4). The nature run’s Window-BT values are then thinned to a horizontal spacing of 27-384

km (⇠11,500 observations per DA cycle). White noise with a standard deviation of 3 K is385

then added to the thinned nature run Window-BT values to simulate instrument noise, thus386

constructing the synthetic observations. Note that the observation errors are likely to be cor-387

related in reality. This means our use of white noise is an imperfect approximation to actual388

observation errors. Future work can investigate if our results can be extended to situations389

with correlated Window-BT observation errors.390

Common heuristic strategies are employed to assimilate the Window-BT observa-391

tions. To limit the impact of sampling errors, horizontal localization is applied using the392

Gaspari-Cohn fifth-order polynomial (Gaspari & Cohn, 1999) with a 100-km radius of in-393

fluence (P. L. Houtekamer & Mitchell, 2001; Greybush et al., 2011; P. L. Houtekamer &394

Zhang, 2016). No vertical localization is employed. We also employ the Adaptive Observa-395

tion Error Inflation scheme (AOEI) of Minamide and Zhang (2017) to limit the deleterious396

increments that can result from clear-cloudy disagreements between the prior and observa-397

tions (F. Zhang et al., 2016; Minamide & Zhang, 2017). To mitigate the tendency for en-398

semble under-dispersion to occur when the ensemble is clear and the observation is cloudy,399

the Adaptive Background Error Inflation scheme (ABEI) of Minamide and Zhang (2019) is400

applied. We also employ 80% relaxation to prior perturbations (RTPP) to maintain ensem-401

ble dispersion (F. Zhang et al., 2004). Similar combinations of heuristic strategies are com-402

monly seen in the EnKF-based DA of infrared radiance observations (F. Zhang et al., 2016;403

Minamide & Zhang, 2018; Chan, Zhang, et al., 2020; Y. Zhang et al., 2019; Chan & Chen,404

2021; Y. Zhang et al., 2021).405

Aside from these common strategies, we also restrict the BGEnKF/EnKF from up-406

dating the domain-averaged specific humidity (QVAPOR) using Window-BT observations.407

Without this measure, both the BGEnKF and the EnKF experience filter divergence that is408

related to DA-induced dry biases within 48 hours of cycling. These dry biases are likely in-409

duced by the ensemble’s tendency to be overly cloudy. The dry biases in the EnKF experi-410

ment are likely partly because of the EnKF’s inability to handle clear and cloudy members411

separately (see section 4.3). As for the BGEnKF experiment, the dry bias can be explained412
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by the fact that the BGEnKF algorithm frequently switches over to the EnKF algorithm413

(see section 4.2). Note that the BGEnKF generated smaller dry biases than the EnKF (not414

shown).415

To prevent filter divergence due to DA-induced dry biases, we replace the 3D posterior416

mean QVAPOR field (@0
E
) with the following modified mean QVAPOR field (@⇤

E
):417

@
⇤
E
(8, 9 , :) ⌘ @

0 (8, 9 , :) � 1
#8 # 9

#8’
8=1

# 9’
9=1

⇢
@
0

E
(8, 9 , :) � @ 5

E
(8, 9 , :)

�
. (9)

Here, (8, 9 , :) refer to the west-east, south-north and bottom-top indices of the 3D QVAPOR418

fields and @
5

E
refers to the 3D prior mean QVAPOR field.419

3.6 Execution wall-time of the BGEnKF420

Before proceeding, we should compare the execution wall-time of the BGEnKF and421

the EnKF. The BGEnKF algorithm took ⇠30 seconds to assimilate ⇠11,500 observations us-422

ing 228 Intel Knight’s Landing computer cores [distributed across 7 computational nodes on423

the National Energy Research Scientific Computing Center (NERSC) Cori supercomputer;424

each core has a clock rate of 1.4 GHz]. Assimilating the same observations via an EnKF al-425

gorithm took ⇠20 seconds of wall-time. For a fair comparison, this EnKF algorithm used426

the exact same code structure and computing resources, but with the cluster transfer and aux-427

iliary variable update steps disabled. In other words, the BGEnKF used ⇠10 seconds more428

wall-time than the EnKF.429

This ⇠10-second di�erence should be assessed in the context of the wall-time for the430

entire PSU-EnKF executable. The other components of the PSU-EnKF took ⇠100 seconds431

to execute. As such, the BGEnKF only added ⇠10% wall-time to the entire PSU-EnKF exe-432

cutable. The BGEnKF algorithm is thus likely a�ordable for research and operational groups433

that are already running serially-assimilating EnKFs [e.g., Anderson et al. (2009)].434

4 Perfect model WRF OSSE results435

In the discussions to follow, we will be showing plots of normalized root-mean-square436

errors (nRMSEs) and normalized biases as functions of time and model level. The normal-437

ization is necessary for the ease of visualization, and uses the root-mean-square errors (RM-438

SEs) of the NoDA experiment. The EnKF experiment’s nRMSE at model level : and date C439

is defined as440

EnKF nRMSE (: , C) ⌘ EnKF RMSE (: , C)
NoDA RMSE (: , C) (10)

and likewise for that of the BGEnKF and NoDA experiments (the NoDA’s nRMSE values are441

always 1). Note that if a filter results in nRMSEs > 1.0, the assimilation of Window-BT via442

this filter degraded the ensemble with respect to the NoDA experiment. The reverse is true443

for nRMSEs < 1.0. We also define the normalized bias of the EnKF experiment to be444

EnKF normalized bias (: , C) ⌘ EnKF bias (: , C)
NoDA RMSE (: , C) , (11)

and likewise for the BGEnKF and NoDA experiments. These biases are computed by sub-445

tracting the nature run fields from the forecast ensemble mean fields.446

The nRMSEs and normalized biases are examined for six variable fields: the zonal447

wind velocity component field (U), the meridional wind velocity component field (V), the448

temperature field (T), the QVAPOR field (Q), the Window-BT field, and the upper tropo-449

spheric infrared water vapor channel brightness temperature field (WV-BT; central wave-450

length of 6.2 `m). The nRMSEs are plotted in Figures 3 and 5(a & b) and the normalized bi-451

ases are plotted in Figures 4 and 5(c & d). All quantities are computed using forecast statis-452

tics.453
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Figure 3. Plots of various prior ensemble statistics as functions of time and model level. For ease of in-

terpretation, the model levels are displayed in terms of their approximate pressure levels (estimated using

the definition of eta levels in WRF and assuming a surface pressure of 1000 hPa). The shadings indicate the

NoDA-normalized RMSEs [nRMSEs; defined in Eq. (10)] for the EnKF (a, b, g & h) and BGEnKF (c, d, i

& j) experiments, as well as the nRMSE di�erences between the EnKF and BGEnKF experiments (e, f, k &

l). The nRMSEs and nRMSE di�erences are shown for the U field (a, c & e), V field (b, d & f), T field (g,

i & k), and Q field (h, j & l). The areas outlined with a black contour and filled with yellow hatching have

consistency ratios (spread/error) less than 0.75. Note that all displayed statistics are forecast statistics.
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Figure 4. Plots of various prior ensemble normalized biases as functions of time and model level. These

normalized biases are displayed for the U field (a, c & e), V field (b, d & f), T field (g, i & k), and Q field (h, j

& l), for the NoDA (a, b, g & h), EnKF (c, d, i & j) and BGEnKF (e, f, k & l) experiments. Similar to Figure

3, the model levels are displayed in terms of approximate pressure levels. See the Eq. (11) for the definition of

the normalized biases.

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

4.1 On di�erences in the BGEnKF’s and the EnKF’s performances during DA454

cycling455

The nRMSEs and normalized biases of the BGEnKF experiment are generally bet-456

ter than or comparable to those of the EnKF experiment (Figures 3 to 5). For the U, V, T457

and Q fields, subtracting the BGEnKF’s nRMSEs from the EnKF’s nRMSEs generally re-458

sults in positive values [Figure 3(e, f, k & l)]. The BGEnKF experiment also has better WV-459

BT nRMSEs than the EnKF experiment [Figure 5(b)]. The BGEnKF experiment also has460

smaller biases than the EnKF experiment in several places: the 100 hPa U field [Figure 4(c461

& e)], the 400–100 hPa T field [Figure 4(i & k)], the Window-BT field [Figure 5(e)], and462

WV-BT field [Figure 5(f)]. Otherwise, the BGEnKF and EnKF experiments have similar463

bias values. These results suggest that the BGEnKF is more suitable for assimilating all-sky464

Window-BT than the EnKF.465

The BGEnKF’s performance advantages over the EnKF can be separated into two466

types. In the first type, the BGEnKF generates larger improvements than the EnKF (i.e.,467

BGEnKF nRMSEs < EnKF nRMSEs < NoDA nRMSEs). This type of performance advan-468

tage occurs in multiple places (Figures 3 and 5): 1) the 800 hPa to 1000 hPa U field nRMSEs469

during the first 56 cycles, 2) the 100 hPa to 500 hPa U field nRMSEs during the last 36 DA470

cycles, 3) the near surface and ⇠250 hPa V field nRMSEs from 0000 UTC on 16th October471

to 0000 UTC on 17th October, 4) between 100 hPa to 300 hPa in the T field nRMSEs for472

most cycles, 5) between 250 to 600 hPa in the Q field nRMSEs for most cycles, and in the473

WV-BT nRMSEs for most DA cycles after 0000 UTC on 16th October. These di�erences are474

likely due to the BGEnKF’s ability to handle mixture statistics, and suggest that the BGEnKF475

is more suitable for assimilating Window-BT than the EnKF.476

The BGEnKF experiment’s second type of performance advantage over the EnKF ex-477

periment is when the BGEnKF introduces milder degradations than the EnKF (i.e., NoDA478

nRMSEs < BGEnKF nRMSEs < EnKF nRMSEs). In terms of nRMSEs (Figure 3), such sit-479

uations are noticeable at the 100 hPa tropopause level and 500–700 hPa levels for the U and480

V fields, at the 200–500 hPa model levels for the T field, and at the 100 hPa level for the Q481

field. Such situations are also noticeable in the normalized biases of the ⇠100 hPa U field,482

the 100–400 hPa T field (Figure 4), and in the Window-BT and WV-BT fields (Figure 5).483

These are likely because 1) the BGEnKF can handle mixture statistics whereas the EnKF484

cannot, and 2) the BGEnKF experiment has smaller increments than the EnKF experiment485

because the BGEnKF experiment has smaller dispersion. Figure 3(a & c) shows an example486

of the latter: the BGEnKF U field has larger areas of low spread-to-error ratios (0.75) than487

the EnKF. The likely origins of the RMSE and bias degradations are discussed in section 4.2.488

Nonetheless, these results further support the notion that the BGEnKF is more appropriate489

for assimilating Window-BT observations than the EnKF.490

The BGEnKF tends to result in smaller CRs than the EnKF because the BGEnKF can491

outright convert all clear member columns to cloudy member columns, or vice versa. Since492

clear and cloudy member columns are very di�erent, having both types of columns present493

at the same time boosts the ensemble spread. If all clear member columns are converted to494

cloudy member columns, or vice versa, large perturbations relative to the ensemble mean495

are replaced with smaller perturbations. This replacement results in reduced ensemble dis-496

persion. Since the EnKF lacks this mechanism of ensemble spread removal, the BGEnKF497

can remove more ensemble spread than the EnKF, thus resulting in smaller CRs than the498

EnKF. Future work can investigate if stronger inflation schemes are more appropriate for the499

BGEnKF.500

Note that there are occasional situations where the EnKF outperforms the BGEnKF.501

For instance, at around 0000 UTC on 17th October the BGEnKF’s U nRMSEs are slightly502

higher than the EnKF at 250 hPa (Figure 3(e)). Other examples include the T nRMSEs around503

1200 UTC on 17th October (Figure 3). Nonetheless, if we integrate the forecast ensembles’504
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Figure 5. Time-series showing the performance statistics of the three experiments’ prior ensembles in

terms of Window-BT (a, c & e) and WV-BT (b, d & f). The definitions of nRMSEs (a & b) and normalized

prior minus truth (Norm. FmT bias; e & f) are the same as in Figures 5 to 8. Like Figures 5 and 6, the consis-

tency ratio (CR; c & d) here is defined as the ratio of spread to error.

nRMSEs with respect to pressure at every cycle, the resulting mass-weighted nRMSEs of the505

BGEnKF experiment will be lower than those of the EnKF experiment.506

We have also examined day-long deterministic forecasts that are initialized from the507

analysis means of the EnKF and BGEnKF experiments (not shown). The BGEnKF experi-508

ment’s RMSE performance advantage over the EnKF experiment persists for up to 9 hours509

of lead time in terms of the U, V and T fields. In terms of the 500–800 hPa Q field RMSEs,510

the BGEnKF experiment’s RMSE advantage over the EnKF experiment persists throughout511

the 24 hours of integration. These results are as expected since the BGEnKF experiment has512

lower RMSEs than the EnKF experiment during DA cycling.513

4.2 On the similar patterns observed in the performances of the BGEnKF and514

EnKF experiments515

Though the BGEnKF experiment generally outperformed the EnKF experiment, there516

are common spatiotemporal patterns in their nRMSEs and normalized biases. For instance,517

Window-BT DA with either algorithm tends to degrade the 500–800 hPa U nRMSEs, and518

improve the 100–500 hPa U nRMSEs (Figure 3(a & c)). These similarities are likely because519

the BGEnKF frequently switches over to the EnKF. Figure 6(a) shows that the BGEnKF al-520

gorithm is only called to assimilate ⇠10% of the Window-BT observations, meaning that the521

switching occurred for the remaining ⇠90% of Window-BT observations. Future work can522

investigate if reducing the occurrence of such switches (e.g., via weaker heuristic checks and523

larger ensembles) could improve the performance of the BGEnKF.524
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Figure 6. Plots showing the frequencies at which the two kernel BGEnKF update procedure is called in

the BGEnKF experiment (a), and the normalized imbalance metric statistics for both the BGEnKF and EnKF

experiments (b). For reference, 11502 IR observations are assimilated at each DA cycle. The normalized im-

balance metric is defined in the text. The solid curves in (b) indicate the ensemble average of every member’s

normalized imbalance metric and the half-width of the shadings in (b) indicate twice the standard error of the

members normalized imbalance metric.

It is notable that the BGEnKF outperforms the EnKF despite the high frequency of525

BGEnKF-to-EnKF switching. For instance, according to Figure 3(h, j & l), for the 24 cycles526

on 17th October and between 500 hPa to 700 hPa, the BGEnKF experiment has 0.06–0.1 less527

Q nRMSEs than the EnKF experiment. Since the EnKF experiment has Q nRMSEs of ⇠1528

then, the BGEnKF is able to introduce a ⇠6–10% improvement over the EnKF. These are529

considerable improvements since the BGEnKF is only called on ⇠10% of the Window-BT530

observations.531

Given the frequent switching from the BGEnKF to the EnKF, the worse-than-NoDA532

RMSEs and biases in both the EnKF and BGEnKF experiments are likely caused by the533

EnKF algorithm. These degradations are likely caused by 1) non-Gaussian forecast statis-534

tics, 2) sampling errors, and 3) biases that are introduced by the assimilation of Window-BT.535

The first factor can originate from having mixtures of clear and cloudy members. Sampling536

errors can also introduce errors into the analysis, particularly over regions where the ensem-537

ble correlations are weak. This factor is likely present in our experiments because no vertical538

localization is used in this study. Future work can investigate if vertical localization can mit-539

igate some of the RMSE and bias degradations (Lei & Anderson, 2014; Lei & Whitaker,540

2015; Lei et al., 2016, 2020). Finally, since biases are a component of RMSEs [e.g., Ying541

and Zhang (2017), Ying and Zhang (2018), and Chan, Zhang, et al. (2020)], biases that are542

introduced by Window-BT DA can contribute towards worse-than-NoDA RMSEs. While543

the contribution of biases to worse-than-NoDA RMSEs can be easily inferred (see the next544

paragraphs), the contributions from the first two factors cannot be easily teased apart.545

To understand the contribution of biases to the occurrence of worse-than-NoDA RM-
SEs (i.e., nRMSEs > 1), we computed the following fraction as a function of model level and
time ( 5bias (: , C)). For the EnKF experiment, we defined

EnKF’s 5bias (: , C) ⌘
s

[EnKF’s biases (: , C)]2 � [NoDA’s biases (: , C)]2

[EnKF’s RMSEs (: , C)]2 � [NoDA’s RMSEs (: , C)]2

and likewise for the BGEnKF experiment. 5bias can be interpreted as the fractional contribu-546

tion of biases to the worse-than-NoDA RMSE performance.547
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We found that for about 25–45% of the worse-than-NoDA situations (nRMSEs > 1) in548

the U and T fields, the majority of the nRMSE degradation (i.e., 5bias � 0.6) can be explained549

by the the introduction of biases [i.e., ? ( 5bias > 0.6 |nRMSE > 1) 2 (0.25, 0.45)]. This550

suggests that though DA-induced biases are important contributors towards the worse-than-551

NoDA RMSEs of either DA filters, the net contribution coming from other factors is also552

important. Future work can examine separating and quantifying the relative importance of553

these three factors towards the worse-than-NoDA RMSEs.554

4.3 On the origin of biases in the EnKF and BGEnKF experiments555

We now turn our attention to the U, T, Q, Window-BT and WV-BT biases that are in-556

troduced by Window-BT DA. Since the Q analysis increments are subject to bias removal557

(see last paragraph of section 3.5), the Q biases will be discussed later. The U, T and WV-BT558

biases are likely related to 1) a cold forecast minus truth (FmT) Window-BT bias at the start559

of all experiments, and 2) the persistence of these FmT Window-BT biases throughout all560

cycles (Figure 5(e)). Item 1 is essentially the result of drawing a single member from an en-561

semble – it is di�cult to obtain a nature run whose domain-averaged Window-BT is always562

the same as that of the forecast ensemble. This is supported by the fact that the NoDA exper-563

iment’s FmT Window-BT biases oscillate around zero (Figure 5(e)). More interestingly, item564

2 indicates an over abundance of clouds in both DA experiments. Since WV-BT is cooler in565

the presence of clouds, the WV-BT bias is explained by the over abundance of clouds.566

To understand the origin of the persistently cold FmT Window-BT biases, we examine567

the analysis ensembles’ Window-BT biases. Running the CRTM on the analysis ensembles568

of the Window-BT DA experiments reveals analysis minus truth (AmT) Window-BT nor-569

malized biases that are typically around �0.25 (not shown). These bias values are a factor570

of 5 larger than the FmT normalized biases of around �0.05 (Figure 5(e)). The large AmT571

biases suggest that Window-BT DA resulted in overly cloudy analysis ensembles. Though572

the time-integration of these analysis ensembles dramatically reduces the over cloudiness573

(the normalized biases typically go from �0.25 to �0.05), some over cloudiness likely re-574

main. As such, the U, T, Window-BT and WV-BT biases are likely caused by the EnKF and575

BGEnKF experiments introducing too many clouds into the analysis ensemble.576

The over introduction of clouds is likely a result of the EnKF’s inability to handle clear577

and cloudy members separately and the strong sensitivity of Window-BTs to hydrometeors.578

When both clear and cloudy members are present in the forecast ensemble, the EnKF’s fore-579

cast mean state will contain some amount of clouds. Suppose that the correlations between580

Window-BT and hydrometeor mixing ratios are negative. If Window-BT observations with581

either small or negative innovations are assimilated, the clouds in the EnKF’s mean state582

will either be una�ected (for small innovations) or be increased (for negative innovations).583

Since the EnKF will also reduce the size of the ensemble members’ perturbations, the en-584

semble thus contracts around a cloudy mean state. The result is that clear column forecast585

members gain some amount of clouds, even in situations where the innovations are close to586

zero. Since Window-BTs are sensitive to the presence of clouds, running the CRTM on such587

members will generate cold cloudy Window-BT values. This mechanism of EnKF-induced588

over-cloudiness warrants future investigation.589

Note that the BGEnKF experiment’s over-cloudiness is likely caused by the mecha-590

nism in the previous paragraph. This is because the BGEnKF algorithm frequently switches591

over to the EnKF (for ⇠90% of assimilated observations). Since the BGEnKF can handle592

mixtures of clear and cloudy members, with less frequent switches, the BGEnKF is likely to593

have smaller biases. To test this possibility, smaller sampling errors are necessary to justify594

less frequent switches from the BGEnKF to the EnKF. Future work can thus investigate this595

possibility with larger ensembles.596

With regards to the Q biases, since the analysis increment cannot modify the Q biases597

[see Eq. (9)], these biases are induced during the forecast step of the DA procedure. We can598
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rule out the evaporation of DA-induced spurious clouds as an important source because the599

hydrometeor biases injected by the increment are an order of magnitude smaller than the600

Q bias growth during integration (not shown). Other processes are likely causing the Q bi-601

ases. Some possibilities include enhancements to the upward transport of Q from the surface602

and/or the latent fluxes from the ocean surface. The exact origin of these Q biases can be603

investigated in future work.604

4.4 On dynamical imbalances605

Note that the BGEnKF introduces less dynamical imbalances into the ensemble than606

the EnKF. To measure dynamical imbalance, we compute the root-mean-square of the sec-607

ond time derivative of surface pressure during the time integration phase of each DA cycle608

(P. Houtekamer & Mitchell, 2005; Temperton & Williamson, 1981). These derivatives are609

computed via centered di�erencing (Press & Flannery, 2010) on three consecutive snapshots610

of the surface pressure field. These snapshots are spaced 30-minutes apart. The resulting im-611

balance metric is normalized using the NoDA experiment’s imbalance metric. A normalized612

imbalance metric value of 1 indicates that a normal amount of fast-moving gravity waves is613

present. A value greater than 1 indicates that a higher than normal amount of fast-moving614

gravity waves is present, thus indicating DA-induced imbalances.615

Figure 6(b) indicates that the BGEnKF experiment generally has either statistically616

indistinguishable or milder imbalances than the EnKF experiment. The only exception to617

this trend happens between 0000 UTC to 1200 UTC on 17th October. The BGEnKF is thus618

likely more appropriate than the EnKF at assimilating Window-BT observations.619

5 Conclusions and future work620

In this study, we compare the BGEnKF against the EnKF using perfect model OSSEs621

with a realistic weather model (WRF) for a case of tropical convection. These OSSEs are622

executed using the state-of-the-art PSU-EnKF system. Our results indicate that the BGEnKF623

outperforms the EnKF at assimilating synthetic Window-BT observations. We observe this624

performance advantage in terms of the RMSEs and biases of the U, V, T, Q, Window-BT625

and WV-BT fields. This performance advantage is likely due to the BGEnKF’s ability to626

handle mixtures of clear and cloudy column members. These performance advantages are627

achieved even though the BGEnKF s only activated for ⇠10% of the assimilated Window-BT628

observations. As such, these promising results motivate future work into the BGEnKF using629

real data.630

There are several large areas of future research for the BGEnKF. The first large area631

concerns refining the BGEnKF algorithm. Future work can, for instance, seek less heuristic632

approaches to sort the ensemble into clusters in a computationally e�cient manner. One op-633

tion is to combine clustering algorithms [e.g., k-means (Forgy, 1965; Lloyd, 1982), support-634

vector machines (Cortes & Vapnik, 1995) and expectation maximization (Sondergaard &635

Lermusiaux, 2013b)] with dimension reduction methods [e.g., Sondergaard and Lermusiaux636

(2013b), Reddy et al. (2020), Albarakati et al. (2021)]. Since cluster sizes, and thus sampling637

errors, can vary in each iteration of the serial BGEnKF loop, future work can investigate us-638

ing adaptive or empirical localization methods (Anderson, 2012; Anderson & Lei, 2013; Lei639

& Anderson, 2014) to improve the BGEnKF’s performance. Future work can also examine640

more sophisticated methods to regulate when the BGEnKF switches over to the EnKF (e.g.,641

using the Shapiro-Wilk test for normality).642

Another area of future work is to hybridize the BGEnKF with other DA algorithms.643

Hybridization with kernel filters (Anderson & Anderson, 1999; Hoteit et al., 2008; Stordal644

et al., 2011; Hoteit et al., 2012; Liu et al., 2016; Stordal & Karlsen, 2017; Kotsuki et al.,645

2022) can be achieved by assigning the clear cluster’s covariance to clear member kernels646

and likewise for the cloudy member kernels. Existing ensemble-variational hybrid DA al-647
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gorithms (Hamill & Snyder, 2000; Lorenc, 2003; Buehner, 2005; X. Wang et al., 2007)648

can also be hybridized with the BGEnKF. For instance, the BGEnKF can replace the EnKF649

component of such methods. Hybridization with DA methods that employ transport meth-650

ods to update ensemble members (Reich, 2012; van Leeuwen, 2011; Marzouk et al., 2017;651

Hu & van Leeuwen, 2021; Evensen Geir et al., 2022) is also possible. This can provide652

a di�erent method to shift members between clusters, as opposed to the current deletion-653

resampling method. Finally, the BGEnKF can be potentially hybridized with ensemble DA654

methods that allow non-parametric prior distributions. Such methods include particle fil-655

ters (van Leeuwen, 2009; Poterjoy, 2016; Vetra-Carvalho et al., 2018; Poterjoy et al., 2019;656

van Leeuwen et al., 2019), the quantile conserving ensemble filter (Anderson, 2022), and the657

rank histogram filter (Anderson, 2010, 2019, 2020).658

Since we have only tested the BGEnKF in a perfect model WRF OSSE using Window-659

BT observations, future work can test the BGEnKF in increasingly realistic scenarios, with660

other observation types, and/or in other Earth systems. For instance, since radar reflectivity661

observations are sensitive to the presence and absence of precipitation, the BGEnKF can662

potentially be better at assimilating such observations. The performance of the BGEnKF can663

also be compared with other popular DA algorithms in tests that assimilate the operational664

suite of atmospheric in-situ and remote observations. Imperfect model OSSEs and real data665

tests can also be done. The BGEnKF can also be tested in other Earth system components.666

This study is among the first to demonstrate the potential of the BGEnKF with a high-667

order weather model. Our BGEnKF is computationally e�cient, scalable with paralleliza-668

tion, and likely straightforward to implement in existing serial EnKF DA systems. These669

algorithmic properties and our promising results motivate future research into developing,670

testing and applying the BGEnKF, or similar GMM-EnKFs, for Earth systems DA.671

6 Open Research672

The data and software used in this study are either publicly available or available upon673

request. The WRF model software can be found on the National Center for Atmospheric674

Research’s WRF website (https://www.mmm.ucar.edu/weather-research-and-forecasting-675

model). Our WRF ensemble is constructed using the ECMWF TIGGE data archived on the676

MARS system (https://apps.ecmwf.int/datasets/data/tigge) and the ERA5 data archived on677

the CDS system (https://cds.climate.copernicus.eu). The MERG data product is obtained678

from NASA’s GES DISC (https://disc.gsfc.nasa.gov/datasets/GPM_MERGIR_1/summary).679

We have archived this study’s experiments and a copy of the Fortran 90 BGEnKF module on680

the Pennsylvania State University’s Data Commons (http://doi.org/10.26208/XV41-7N75).681

The Fortran 90 source code of the PSU-EnKF system, including the implemented BGEnKF,682

is available upon request.683
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Introduction

This document has several purposes. First, we will illustrate some differences between clear
ensemble statistics and cloudy ensemble statistics. Differences like these motivate research into
the BGEnKF and similar GMM-EnKFs. The second purpose is to provide a quick reference for
other scientists to understand the BGEnKF, independently re-create our BGEnKF algorithm,
and to support further development of the BGEnKF. To increase the accessibility of this area of
research, we have written this document with graduate students in mind.

1. Text S1: Some differences between clear and cloudy member statistics

To set the stage, we plotted maps of the ensemble averaged Window-BT [Figure S1(b)] and the
fraction of cloudy member columns in the ensemble [Figure S1(b)]. These ensemble quantities
are constructed from the spun-up 50-member WRF ensemble described in the main text. Though
the ensemble captured the general appearance of the organized convective features seen in the
nature run [Figures 2(a) and S1(a)], the ensemble was uncertain about the presence/absence of
clouds over much of the domain [Figure S1(b)]. This uncertainty is particularly noticeable over
regions where the ensemble averaged Window-BT was between 248 K and 280 K.

Several differences between clear and cloudy member columns can be seen from Figure S1.
First, the average Window-BT values of clear member columns are typically warmer than 280
K, whereas the average Window-BT values of cloudy member columns are cooler than 280 K
[Figure S1(c & d)]. This difference is well known. As such, the Window-BT ensemble statistics
of an ensemble of clear and cloudy member columns (henceforth, mixed ensemble) will exhibit
mixed statistics.

The clear and cloudy member columns also differ noticeably in terms of their humidity fields
and the Kalman gain linking Window-BT innovations to humidity increments. For the ease of

1
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visualization, we examined through a column-integrated measure of humidity that is a linear
function of the WRF model state: the pseudo precipitable water (PPW). The PPW is defined
as

PPW ≡ g

Psfc − Ptop

∫ 1

0

qvdη (1)

where qv refers to water vapor mass mixing ratio (QVAPOR), Psfc and Ptop refer to model
surface pressure and model top pressure, and η refers to the WRF model’s vertical coordinate.
The PPW can be derived from the definition of precipitable water by applying the hydrostatic
approximation, the definition of WRF η levels, and by assuming that Psfc and Ptop are constants
(Psfc ≡ 1000 hPa, Ptop ≡ 20 hPa).

We opted to use the linear PPW over precipitable water (PW) because PW is a nonlinear
function of the model state. Thus, the Kalman gain linking PW to Window-BT within the same
model column is not mathematically equivalent to taking a column-integral of the Kalman gain
linking QVAPOR to Window-BT. In contrast, said mathematical equivalence holds for PPW.
Looking at PPW over PW thus allows us to get an accurate sense of what the EnKF would do
to QVAPOR within a model column.

Figure S1(c & d) indicates that the PPW of cloudy member columns is higher than that of
clear member columns. This is because clouds require nearly saturated humidity to materialize.
As such, when the ensemble is mixed, mixture statistics in the humidity fields are likely.

We also examined the component of the Kalman gains responsible for propagating Window-BT
innovations to QVAPOR: the least squares linear regression coefficient linking Window-BT to
QVAPOR (Anderson, 2003). For the ease of visualization, we looked at the coefficient linking
Window-BT to PPW within the same column. This coefficient (β) is defined as

β ≡ Cov (PPW,BT)

Var (BT)
. (2)

Cov (PPW,BT) denotes the prior ensemble covariance between PPW and Window-BT within
said model column, and Var (BT) denotes the prior ensemble variance of Window-BT within
the same column. In the limit where Var(BT) is much smaller than the observation error, the
Kalman gain turns into β.

As can be seen from Figure S1(e & f), the clear member columns’ statistically significant β
values are generally an order of magnitude larger than those of the cloudy member columns.
This difference suggests that the statistical relationship between Window-BT and humidity can
vary dramatically depending on the absence/presence of clouds.

2. Text S2: Heuristic localized clustering of ensemble members

Since a mixture of clear and cloudy members results in a mixed prior distribution, it seems
appropriate to explore an ensemble DA method that explicitly treat mixture distributions. Since
the EnKF has been remarkably successful at assimilating infrared radiance observations (Otkin,
2012; F. Zhang et al., 2016; Honda et al., 2018; Minamide & Zhang, 2018; Y. Zhang et al., 2018;
Otkin & Potthast, 2019; F. Zhang et al., 2019; Geer et al., 2019; Chan, Zhang, et al., 2020; Jones
et al., 2020; Chan & Chen, 2021; Hartman et al., 2021; Y. Zhang et al., 2021), we will extend
the EnKF to handle clear members and cloudy members separately.

A complication in handling clear members and cloudy members separately lies in the fact every
member usually contains both clear model columns and cloudy model columns. Supposing we
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have Ni ∗Nj model columns in the domain, there can exist up to 2Ni∗Nj possible spatial combi-
nations of clear and cloudy columns in the domain. Sampling these 2Ni∗Nj combinations would
require more than 2Ni∗Nj ensemble members – a likely impractical proposition. Dimensional
reduction is necessary to reduce the required number of ensemble members.

A simple and natural dimensional reduction approach is to limit our clear/cloudy considera-
tions to small regions of the domain. This dimensional reduction approach is effectively a type of
spatial localization – a commonly employed heuristic method used to limit the effects of sampling
errors on EnKFs (Houtekamer & Zhang, 2016). As a first attempt at employing this localization,
suppose we are assimilating observations one-at-a-time (i.e., serial assimilation). When assimi-
lating the m-th observation, we will only consider model columns within 1 horizontal radius of
influence (HROI) surrounding the observed column. If there are Nloc columns within 1 HROI of
the observed column, the number of possible spatial combinations falls from 2Ni∗Nj to 2Nloc . For
commonly used HROI values, 2Nloc ≪ 2Ni∗Nj .

Though localization can dramatically reduce the number of spatial clear/cloudy combinations,
2Nloc is likely greater than the number of ensemble members NE. For instance, in the IR DA
experiments of Chan, Zhang, et al. (2020) and Chan and Chen (2021), the HROI is approximately
11 model grid spacings (100-km HROI, 9-km grid spacing), meaning that there exist ∼ π ∗ 112 ≈
363 model columns within the localization zone. A typical ensemble size of ∼ 50 is much less
than the number of spatial combinations in this example (∼ 2363). Another measure is necessary
to further simplify the problem.

We opted to assume that there are at most two clear/cloudy spatial combinations within the
localized zone. To understand the rationale, consider that localized serial EnKFs assume that
all ensemble members within 1 radius of influence (ROI) of an observation to be drawn from a
Gaussian distribution (Burgers et al., 1998; Whitaker & Hamill, 2002; Anderson, 2003). This
is equivalent to assuming that there exists only one spatial combination within 1 ROI of said
observation. Our two spatial combination assumption, though imperfect, is closer to the actual
number of spatial combinations (2Nloc) than the one spatial combination assumption.

We can now consider that the ensemble members are drawn from a mixture of two distributions
within the localized region. The EnKF can be extended to handle this mixture distribution
by replacing the EnKF’s Gaussian prior assumption. Specifically, we consider that some prior
members are drawn from one Gaussian distribution and the other members are drawn from a
different Gaussian distribution. The prior ensemble is thus assumed to be drawn from a bi-
Gaussian prior distribution. The resulting algorithm will be henceforth termed the bi-Gaussian
EnKF (BGEnKF).

For the BGEnKF to work, it is necessary to separate the ensemble members into two groups
(henceforth termed ”clusters”). The sample statistics of each cluster will correspond to one of two
Gaussian kernels. As a first approach, we will consider members that are clear at the observation
site to be drawn from one Gaussian distribution (henceforth termed the “clear kernel” or “clear
cluster”). The remaining members will be considered to be drawn from a different Gaussian
distribution (henceforth, the “cloudy kernel” or “cloudy cluster”). More advanced clustering
approaches, such as those involving machine learning (e.g., support vector machines), can be
considered at a later date.

3. Text S3: Bayes’ rule for the BGEnKF

We will now formulate a serially assimilating BGEnKF (i.e., the algorithm assimilates one
observation at a time) starting from Bayes’ rule and using a notation akin to that of Ide, Courtier,



X - 4 CHAN ET AL.: HANDLING OF CLEAR AND CLOUDY MIXED ENSEMBLES WITH BGENKF

Ghil, and Lorenc (1997). In our earlier study (Chan, Anderson, & Chen, 2020), the BGEnKF
was formulated as a model state space filter [or, in the terminology of Anderson and Collins
(2007), a sequential filter]. However, multi-process implementations of sequential filters require
inter-process communications at every iteration of the serial assimilation loop. The sequential
filter formulation thus does not scale well with parallelization (Anderson & Collins, 2007).

To ensure that the BGEnKF algorithm scales well with parallelization, the BGEnKF is for-
mulated to constrain an extended state vector ψ (Anderson & Collins, 2007). ψ will contain
all of the variables used in the BGEnKF. Aside from containing the model state x, ψ will also
contain the simulated observation values y that correspond to said model state. Furthermore,
since ξ [column-integrated frozen water mass content; see main text’s Eq. (1)] can be used to
discriminate clear column members from cloudy column members (see main text’s section 2.2),
we will include ξ at every observation site into ψ. The vector ξ will be used to denote the ξ
values at every observation site. We can thus define

ψ ≡

xy
ξ

 . (3)

Supposing Nx denotes the number of elements in x and Ny denotes the number of elements in y
(and in ξ), then ψ has Nx + 2Ny elements. For the ease of writing, we will define

Nψ ≡ Nx + 2Ny

With Eq. (3), we can construct an ensemble of forecasted ψ vectors. Supposing that we have

a forecast ensemble of NE model states
{
xf
1 ,x

f
2 , . . . ,x

f
NE

}
, we can define an ensemble of NE

forecasted extended state vectors via

ψf
n ≡

 xf
n

h(xf
n)

ξ
(
xf
n

)
 ∀ n = 1, 2, . . . , NE. (4)

Here, h(xf
n) represents calling the observation operator h on xf

n, and ξ
(
xf
n

)
represents eval-

uating ξ [Eq. (1) of main text] at every observation site using the using the information in
xf
n.

Since the BGEnKF will be formulated as a serial assimilation algorithm, we can outline the
essence of the algorithm by considering what happens when a single observation (yo) is assimilated
into an ensemble of forecasted ψ vectors. Like typical serially assimilating EnKF algorithms [e.g.,
Whitaker, Hamill, Wei, Song, and Toth (2008), Anderson et al. (2009), and Meng and Zhang
(2007)], the serially assimilating BGEnKF algorithm is of the form:
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1. Construct an ensemble of forecasted ψ vectors (i.e.,
{
ψf

1 ,ψ
f
2 , . . . ,ψ

f
NE

}
).

2. Select an unassimilated observation.

3. Divide the ensemble into the clear and cloudy clusters using the procedure described the main

text’s section 2.2.

4. Assimilate the selected observation using the BGEnKF to construct an ensemble of analyzed

ψ vectors (i.e.,
{
ψa

1 ,ψ
a
2 , . . . ,ψ

a
NE

}
)

5. If there are unassimilated observations remaining,

(i) Overwrite the forecast ensemble with the posterior ensemble (i.e., ψf
n ← ψa

n ∀n =

1, 2, . . . , NE).

(ii) Return to step 2..

6. Exit.

We will thus formulate the BGEnKF equations by considering the assimilation of yo into{
ψf

1 ,ψ
f
2 , . . . ,ψ

f
NE

}
. Supposing that the ensemble members have been sorted into the clear and

cloudy clusters based on the ξ value at the observation site, the BGEnKF assumes that the prior
probability density function [pdf; p (ψ)] can be represented by the bi-Gaussian pdf

p (ψ) = wf
clr G

(
ψ; ψf

clr,P
f
clr

)
+ wf

cld G
(
ψ; ψf

cld,P
f
cld

)
. (5)

Throughout this document, we will use the subscript “clr” to denote clear cluster quantities,

and the subscript “cld” to denote cloudy cluster quantities. G
(
ψ; ψf

clr,P
f
clr

)
denotes the

clear cluster’s Gaussian kernel with mean state ψf
clr and covariance matrix P f

clr. Similarly,

G
(
ψ; ψf

cld,P
f
cld

)
denotes the cloudy cluster’s Gaussian kernel with mean state ψf

cld and co-

variance matrix P f
cld. In general, the Gaussian pdf for a K-dimensional state p vector with some

mean µ and covariance matrix C is defined as

G (p; µ,C) ≡ 1√
(2π)Kdet (C)

exp

{
−1

2
(p− µ)⊤C−1 (p− µ)

}
.

The scalar quantities wf
clr and wf

cld are the respective weights of the clear and cloudy Gaussian
kernels. Note that

wf
clr + wf

cld = 1, wf
clr ≥ 0, and, wf

cld ≥ 0.

The various parameters in the prior pdf [Eq. (5)] are estimated from the clustered forecast
ensemble of ψ vectors. Suppose the set Sclr contains the ensemble member indices of clear
cluster members [i.e., the index n in Eq. (4)] and the set Scld contains the ensemble member
indices of cloudy cluster members. We first compute the number of members in the clear cluster
(N f

clr) and the number of members in the clear cluster (N f
cld) via

N f
clr ≡ count (Sclr) , and, N f

cld ≡ count (Scld) (6)
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Supposing g is a placeholder that can be replaced with ”clr” or ”cld”, count (Sg) counts the
number of elements in the set Sg. The parameters of Eq. (5) can then be estimated via

ψf
g ≡

1

N f
g

∑
n∈Sg

ψf
n, P f

g ≡
1

N f
g − 1

∑
n∈Sg

(
ψf

n −ψf
g

)(
ψf

n −ψf
g

)⊤
, and, wf

g ≡
N f
g

N f
clr +N f

cld

.

(7)
Note that the BGEnKF does not require any explicit estimate of the large matrices P f

cld and
P f

clr. Instead, like the typical serially assimilating EnKF, the BGEnKF only requires calculating
a column of these matrices. This will be discussed in Text S4.

To assimilate yo into
{
ψf

1 , . . . ,ψ
f
NE

}
, consider Bayes’ rule:

p (ψ|yo) = p (ψ) p (yo|ψ)
p (yo)

(8)

where the marginal p (yo) normalizes the numerator of Eq. (8) [e.g., Lorenc (1986)]. As we
will show later, this normalization property is central to deriving the posterior weights of the
clear and cloudy posterior kernels. Note that though the normalization property is used in the
derivation, there is no need to explicit compute p (yo) at all in the BGEnKF algorithm.

If we assume Gaussian observation errors, the observation likelihood p (yo|ψ) can be written
as

p (yo|ψ) ≡ G
(
Hψ; yo, σo2

)
(9)

where σo2 is the observation error variance and H is a matrix that extracts the simulated
observation from ψ. Specifically, if yo corresponds to the (Nx +m)-th element in ψ, H is an
1×Nψ matrix of the form

H ≡
[
0 0 . . . 0 1 0 . . . 0 0

]
where the only non-zero element (unity) is the (Nx +m)-th element.

Before proceeding further, note that the observation likelihoods for IR-BTs are not strictly
Gaussian. The associated observation errors are known to be dependent on the presence/absence
of clouds in the observed atmospheric columns (Geer & Bauer, 2011; Harnisch et al., 2016; Mi-
namide & Zhang, 2017; Otkin et al., 2018). Furthermore, IR-BT values are bounded. Nonethe-
less, the successes seen in assimilating IR-BTs with EnKFs suggest that the imperfect Gaussian
observation likelihood assumption is at least somewhat functional (Otkin, 2012; F. Zhang et al.,
2016; Honda et al., 2018; Minamide & Zhang, 2018; Y. Zhang et al., 2018; Otkin & Potthast,
2019; F. Zhang et al., 2019; Geer et al., 2019; Chan, Zhang, et al., 2020; Jones et al., 2020; Chan
& Chen, 2021; Hartman et al., 2021; Y. Zhang et al., 2021). We will thus proceed with the
assumption that the observation likelihood is Gaussian.

For the ease of future reference, we will sketch out the main steps to derive the posterior pdf.
Combining the bi-Gaussian forecast pdf [Eq. (5)] with the Gaussian observation likelihood [Eq.
(9)] through Bayes rule [Eq. (8)] will result in

p (ψ|yo) =wf
clr G

(
ψ; ψf

clr,P
f
clr

)
G
(
Hψ; yo, σo2

)
/p (yo)

+ wf
cld G

(
ψ; ψf

cld,P
f
cld

)
G
(
Hψ; yo, σo2

)
/p (yo) (10)

To proceed further, a well-known property is used: the multiplication of two Gaussian pdfs results
in a scaled Gaussian pdf. This property is foundational to EnKFs (Evensen, 1994; Burgers et al.,
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1998; Houtekamer & Mitchell, 2001; Anderson, 2001; Bishop et al., 2001; Whitaker & Hamill,
2002; Tippett et al., 2003; Hunt et al., 2007). In this situation, for the term associated with
cluster g [e.g., Anderson and Anderson (1999)],

G
(
ψ; ψf

g ,P
f
g

)
G
(
Hψ; yo, σo2

)
= αg G

(
ψ; ψa

g ,P
a
g

)
(11)

where ψa
g represents the analyzed average state of cluster g, P a

g represents the analyzed covari-

ance matrices of said cluster, and αg is a scaling factor. ψa
g and P a

g are related to ψf
g and P f

g

via the Kalman filter (KF) equations [e.g., Lorenc (1986)]

ψa
g = ψf

g +Kg

(
yo −Hψf

g

)
, and, P a

g = (I −KgH)P f
g , (12)

where Kg is the Kalman gain matrix for cluster g. Kg can be computed via

Kg ≡ P f
g H

⊤
(
H P f

g H
⊤ + σo2

)−1

=
Cov

(
ψf

g , Hψ
f
g

)
Var

(
Hψf

g

)
+ σo2

(13)

where

Cov
(
ψf

g , Hψ
f
g

)
≡ 1

N f
g − 1

∑
ng∈Sg

(
Hψf

n −Hψf
g

)(
ψf

n −ψf
g

)
,

Var
(
Hψf

g

)
≡ 1

N f
g − 1

∑
ng∈Sg

(
Hψf

n −Hψf
g

)2
,

and ng is a dummy index that iterates over the member indices contained in Sg. The scaling
factor αg in Eq. (11) can be shown to be [e.g., Anderson and Anderson (1999)]:

αg = G
(
yo; H ψf

g , σo2 +HP f
g H

⊤
)
. (14)

Note that H ψf
n, H ψf

g , and Var
(
Hψf

g

)
are scalars. Furthermore, if yo corresponds to the

(Nx +m)-th element of ψ, then Cov
(
ψf

g , Hψ
f
g

)
is equal to the (Nx +m)-th column of P f

g .

Substituting Eq. (11) into Eq. (10) and results in

p (ψ|yo) =
wf

clr αclr G
(
ψ; ψa

clr,P
a
clr

)
+ wf

cld αcld G
(
ψ; ψa

cld,P
a
cld

)
p (yo)

. (15)

Since p (yo) normalizes Eq. (15), then,

p (yo) =

∫
R
Nψ

{
wf

clr αclr G
(
ψ; ψa

clr,P
a
clr

)
+ wf

cld αcld G
(
ψ; ψa

cld,P
a
cld

)}
dNψψ

= wf
clr αclr + wf

cld αcld (16)

where
∫
R
Nψ {·} dNψψ is an infinite Nψ-dimensional volume integral of {·} over the Nψ-dimensional

space that ψ lives in [i.e., an RNψ space]. Substituting the marginal [Eq. (16)] back into Bayes’
rule [Eq. (15)] gives us the following bi-Gaussian posterior pdf

p (ψ|yo) = wa
clr G

(
ψ; ψa

clr,P
a
clr

)
+ wa

cld G
(
ψ; ψa

cld,P
a
cld

)
(17)



X - 8 CHAN ET AL.: HANDLING OF CLEAR AND CLOUDY MIXED ENSEMBLES WITH BGENKF

where

wa
clr =

wf
clr αclr

wf
clr αclr + wf

cld αcld

, and, wa
cld =

wf
cld αcld

wf
clr αclr + wf

cld αcld

. (18)

Like the EnKF, the BGEnKF will update the forecast ensemble to become consistent with the
posterior bi-Gaussian pdf [Eq. (17)].

4. Text S4: Detailed description of the three-stage BGEnKF algorithm

The BGEnKF’s updates to the ensemble is done through a three-stage update process (illus-
trated in the main text’s Figure 1). In order of execution, these stages are: 1) the double EnKF
stage, 2) the shrinking cluster member deletion stage, and 3) the expanding cluster member
resampling stage. An outline of this three-stage BGEnKF update procedure can be found at the
end of this section.

The double EnKF stage

The first stage [Figure 1(a)] is to represent the KF updates to the clusters’ mean states and
covariance matrices. We can thus use the ensemble square root filter of Whitaker and Hamill
(2002) (EnSRF) to update each cluster’s members. The EnSRF update equation (Whitaker &
Hamill, 2002) for members in cluster g is

ψa
ng

= ψf
ng

+Kg

(
yo −Hψg

)
− ϕgKg

(
Hψf

ng
−Hψf

g

)
∀ ng ∈ Sg. (19)

The Kalman gain matrix of cluster g (Kg) can be computed via Eq. (13). ϕg is the EnSRF’s
square-root modification factor (Whitaker & Hamill, 2002), which can be computed via

ϕg ≡

1 +

√√√√ σo2

σo2 +Var
(
Hψf

g

)


−1

. (20)

Note that the EnSRF-based cluster update equations can be replaced with those from the two-
step ensemble adjustment Kalman filter (EAKF) of Anderson (2003). This is because the two
filters have mathematically identical ensemble member update procedures.

The member deletion stage

In the second and third stages of the BGEnKF (Figure 1(b & c)), the number of ensemble
members in each cluster (i.e., cluster sizes) is updated to be consistent with the cluster’s posterior
weight [Eq. (18)]. The post-BGEnKF size of cluster g (Na

g ) can be determined by

Na
g ≡ round (NE ∗Wg) (21)

where round (·) indicates rounding · to the nearest integer.

If the size of a cluster is reduced by the assimilation of yo, we will delete members from said
cluster (Figure 1(b)). The number of members to be deleted Ndel is defined as

Ndel ≡


N f

clr −Na
clr if Na

clr < N f
clr,

N f
cld −Na

cld if Na
cld < N f

cld.

(22)
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For simplicity, we will delete the members with the smallest Ndel forecast-simulated observation
perturbations. Since the deletion will cause the cluster’s mean state to deviate from the the-
oretical mean state [Eq. (12)], we will recenter the remaining members around the theoretical
value. Note that no heuristic adjustments were made to mitigate the changes in the cluster’s
sample covariance matrix due to the deletion process. This is because it is impossible to prevent
such changes in practical situations [for NE < Nψ, the rank of the pre-deletion sample covariance
matrix is guaranteed to be higher than the rank of the post-deletion sample covariance matrix;
Chan, Anderson, and Chen (2020)].

The resampling stage

If the size of one cluster is reduced by the assimilation of yo, the other cluster’s size will increase
to compensate for the reduction. This ensures that the total number of ensemble members is
unchanged. To do so, the expanding cluster’s ensemble members are resampled. The expanding
cluster’s sample mean state and sample covariance matrix should not be altered by resampling.

The computationally efficient resampling strategy proposed in Chan, Anderson, and Chen
(2020) is to resample within the extended state subspace spanned by the expanding cluster’s
ensemble members (henceforth referred to as the subspace resampling strategy). This is the
easiest to formulate in terms of the perturbations of the expanding cluster’s members. Supposing
that the subscript “pre” denotes expanding cluster quantities before resampling, we can compute

the pre-resampling perturbations
{
ψa

′

n |n ∈ Spre

}
via

ψa
′

n ≡ ψa
n −ψa

pre ∀ n ∈ Spre (23)

where ψa
pre is the expanding cluster’s mean state and Spre is the set of member indices in the

expanding cluster before resampling.

The central idea of the subspace resampling strategy is to construct a new set of perturbations
via linear combinations of the pre-resampling perturbations. We will denote all post-resampling
expanding cluster quantities with the subscript “post”. Let Spost denote the set of member indices
in the post-resampling expanding cluster. Spost thus includes the member indices in Spre and the
indices of the members deleted in the deletion stage. If we represent the set of post-resampling
perturbation vectors as

{
ψa∗

n∗|n∗ ∈ Spost

}
, the strategy’s central idea can then be mathematically

expressed as

ψa∗

n∗ ≡
∑
n∈Spre

ψa
′

n Tn,n∗ ∀ n∗ ∈ Spost

where Tn,n∗ is a to-be-determined scalar factor controlling how the n-th pre-resampling pertur-
bation contributes to the n∗-th post-resampling perturbation. This linear combination idea can
be more succinctly expressed as

Ψpost ≡ ΨpreT . (24)

Here, Ψpre is a matrix where each column contains a pre-resampling perturbation, and Ψpost

is a matrix where each column contains a post-resampling perturbation. Supposing the pre-
resampling cluster size is denoted by Npre and the post-resampling cluster size is denoted by
Npost, then Ψpre is an Nψ×Npre matrix and Ψpost is an Nψ×Npost matrix. If we denote the ℓ-th
member index in Spre as npre,ℓ, and likewise for the ℓ-th member index in Spost, we can explicitly
write out Ψpre and Ψpost:

Ψpre ≡
[
ψa

′

npre,1
ψa

′

npre,2
· · · ψa

′

npre,Npre

]
,

Ψpost ≡
[
ψa∗

npost,1
ψa∗

npost,2
· · · ψa∗

npost,Npost

]
.

(25)
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Finally, T is an Npre ×Npost matrix containing all of the Tn,n∗ values [i.e., element (n, n∗) of T
is equal to Tn,n∗ ].

T should be constructed such that the post-resampling perturbations have a mean of zero and
have a covariance matrix equal to that of pre-resampling perturbations. As discussed in Chan,
Anderson, and Chen (2020), there are an infinite number of possible T ’s that satisfy these two
conditions. Following the discussions and heuristic arguments in Chan, Anderson, and Chen
(2020), we chose to use

T ≡

 kINpre−N∗
new

0(Npre−N∗
new)×N∗

new
0(Npre−N∗

new)×Nnew

0N
∗
new×(Npre−N∗

new) IN∗
new

E

 (26)

where

Nnew ≡ Npost −Npre, and, N∗
new ≡


Nnew − 1 ∀ Nnew ≤ Npre

Npre otherwise

. (27)

Furthermore, for arbitrary integers η and µ, Iη is an η × η identity matrix, 0η×µ is an η × µ
matrix of zeros. k is the following scalar inflation factor

k ≡

√
Nnew +Npre − 1

Npre − 1
(note that k ≥ 1). (28)

The matrixE in Eq. (26) is anN∗
new×Nnew matrix that will be defined shortly. SinceN∗

new < Nnew

[see Eq. (27)], E is a rectangular matrix with more columns than rows. Note that whenever
Nnew > Npre, the kINpre−N∗

new
component vanishes from T . Furthermore, whenever Nnew = 1,

the IN∗
new

and E components vanish from T .

Our choice of E is nearly identical to that of Chan, Anderson, and Chen (2020):

E ≡ k − 1

Nnew

1N∗
new×Nnew +LE(LW )−1W . (29)

Here, 1N∗
new×Nnew denotes an N∗

new×Nnew matrix whose elements are all set to unity. Furthermore,
W is an N∗

new ×Nnew matrix of the form

W ≡
[
IN∗

new
0N∗

new×(Nnew−N∗
new)

]
− 1

Nnew

1N∗
new×Nnew . (30)

Supposing that Chol (S) denotes the Cholesky decomposition of an arbitrary symmetric matrix
S, following appendix B of Chan, Anderson, and Chen (2020), we define

LW ≡ Chol
(
WW⊤) , (31)

and

LE ≡ Chol

(
Nnew

Npre − 1
IN∗

new
− (k − 1)2

Nnew

1N∗
new×N∗

new

)
. (32)

The only difference between the current formulation of E and that of Chan, Anderson, and Chen
(2020) lies in the W matrix. In Chan, Anderson, and Chen (2020), W is created from vectors
of random white noise. For the ease of parallelization and to ensure replicability (i.e., reruns of
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the BGEnKF should give the same result), we replaced that stochasticW generation procedure
with a deterministic one [i.e., Eq. (30)].

As discussed in Chan, Anderson, and Chen (2020), the resampled perturbations generated
by the T defined in Eq. (26) has the property of preserving the pre-resampling perturbations
(up to an inflation factor). More specifically, the first Npre − N∗

new resampled perturbations are
inflated versions of the first Npre−N∗

new pre-resampling perturbations. The next N∗
new resampled

perturbations are copies of N∗
new of the pre-resampling perturbations. Finally, the remaining

Nnew resampled perturbations are linear combinations of the copied perturbations.

Outline of three-stage BGEnKF update procedure to assimilate an observation

The outline of the three-stage BGEnKF procedure is as follows. Note that this outline assumes
that the members have already been sorted into the clear and cloudy clusters (see the last
paragraph of Text S2 for how members are sorted into the two clusters).

Stage 1: Double EnKF [illustrated in Figure 1(a)]

1. Do g = clr, cld

(i) For cluster g, compute the Kalman gain [Kg; Eq. (13)] and square-root modification

factor [ϕg; Eq. (20)].

(ii) Evaluate Eq. (19) for every ensemble member in cluster g.

Stage 2: Shrinking cluster member deletion [illustrated in Figure 1(b)]

1. Evaluate Eq. (21) to determine the targeted cluster sizes after assimilating the observation

2. If Na
clr < N f

clr, the clear cluster will be considered as the shrinking cluster.

3. If Na
cld < N f

cld, the cloudy cluster will be considered as the shrinking cluster.

4. If no shrinking cluster has been identified, terminate the current stage.

5. Compute Ndel using Eq. (22).

6. Compute the current mean state of the shrinking cluster.

7. Delete the members with the smallest Ndel forecast-simulated observation perturbations within

the shrinking cluster.

8. Compute the mean state of the remaining members in the shrinking cluster.

9. Subtract the mean computed in step 8 from the mean computed in step 6.

10. Add the difference computed in step 9 to each of the remaining members in the shrinking

cluster to recenter said members on the pre-deletion shrinking cluster mean state.
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Stage 3: Resample expanding cluster members [illustrated in Figure 1(c)]

1. Evaluate Eq. (21) to determine the targeted cluster sizes after assimilating the observation

2. If Na
clr > N f

clr, the clear cluster will be considered as the expanding cluster.

3. If Na
cld > N f

cld, the cloudy cluster will be considered as the expanding cluster.

4. If no expanding cluster has been identified, terminate the current stage.

5. Compute Nnew and N∗
new using Eq. (27).

6. Compute the expanding cluster’s mean state vector.

7. Construct the expanding cluster’s perturbation vectors via Eq. (23).

8. Construct matrix W by evaluating Eq. (30).

9. Construct LW and LE by evaluating Eqs. (31) and (32).

10. Construct E by evaluating Eq. (29).

11. Construct T by evaluating Eq. (26).

12. Evaluate Eq. (24) to resample the expanding cluster perturbations.

13. Add the expanding cluster’s mean state (computed in step 6) to the resampled perturbations

to construct the resampled expanding cluster ensemble members.

5. Text S5: Outline of the BGEnKF algorithm serial filtering workflow

We will now outline the workflow of the serially assimilating BGEnKF algorithm (illustrated
in Figure S2). The serially assimilating BGEnKF algorithm executes the following list of steps.

1. Construct an ensemble of forecast ψ vectors from the prior ensemble using Eq. (4).

2. Select the first observation by setting m = 1.

3. Employ the adaptive observation error inflation (AOEI) of Minamide and Zhang (2017) to

mitigate representation errors.

4. Extract an ensemble of ξ values from the ensemble of ψ vectors that corresponds to the m-th

observation site. Members whose extracted ξ values are smaller than 1 g/m2 are considered as

clear members. The remaining members are considered as cloudy members.

5. Run through the heuristic checks in the main text’s sections 2.5.2 and 2.5.3 to determine

whether the BGEnKF or its single-kernel form (essentially an EnKF) should be used.

6. If any of the heuristic checks in step 5 fail, put all ensemble members into the clear cluster.

7. Apply the three-stage algorithm described in Text S4 to update the ensemble of ψ vectors.

8. Localize the ψ vector updates using the main text’s Eq. (7).

9. Increment m (i.e., m← m+ 1).

10. If there are unassimilated observations remaining, go back to step 3.

11. Extract the model states contained in the ensemble of ψ vectors, output said model states,

and terminate the algorithm.
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To implement this algorithm with parallelization on the PSU-EnKF system, we employed the
low-latency computing cluster strategy proposed by Anderson and Collins (2007). Specifically,
every process will receive a sub-domain’s worth of model state variables, an entire domain of
observation and simulated observation values, and an entire domain of ξ values. To assimilate
an observation, each process will then update its sub-domain of model state variables, all of its
simulated observations, and all of its ξ values. As such, no inter-process communications are
needed within the serial assimilation loop.

6. Text S6: On generalizing the BGEnKF algorithm to handle more clusters

The BGEnKF algorithm can be generalized to handle an arbitrary number of ensemble clusters
(e.g., a three-cluster GMM-EnKF). We did not use more than two clusters in this study because
this study is a first approach to testing a cluster GMM-EnKF with a realistic weather model.
Furthermore, using more clusters means that each cluster will contain fewer members. With
smaller cluster sizes, the deleterious impacts of sampling errors on each cluster’s sample statistics
are likely stronger. Considering the small ensemble size that will be used in this first-approach
study (50 members), we opted to use two clusters for now.

To generalize the BGEnKF to handle Nc clusters, only a few modifications are needed: 1) the
ensemble clustering method needs to be adjusted to sort the ensemble into the Nc clusters, and
2) a slightly different method would be needed to infer the posterior cluster sizes [Eq. (22)]. The
latter modification is necessary because using Eq. (22) with more than 2 clusters can cause the
total number of ensemble members to change. This change arises from the use of the rounding
function. For instance, suppose we have 3 clusters with equal posterior weights (0.333333 each)
and the ensemble size is 10. Using Eq. (22) will result in 3 members in each cluster, or 9 members
in total. A different approach to convert the non-integer weights into integer cluster sizes is thus
necessary for Nc > 2.
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Figure S1: Latitude-longitude plots of various ensemble statistics at 1200 UTC on 15 October
2011 to illustrate the differences between clear and cloudy sky members at every model column. These
quantities are generated using the 50-member ensemble described in the main text. The y-axes indicate
latitude (degrees North), and the x-axes indicate longitude (degrees East). The plotted quantities are:
the prior ensemble mean Window-BT (a), the fraction of cloudy member columns in the prior ensemble
at every grid column (b), the mean Window-BTs of clear member columns (c), the mean Window-
BT of cloudy member columns (d), the mean pseudo precipitable water (PPW) for clear member
columns (e), the mean PPW for cloudy member columns (f), the linear regression coefficient between
Window-BT and PPW (β) for clear member columns (g), and the β values for cloudy member columns
(h). The gray shadings in panels c, e & g indicate locations where there are either less than 5 clear
member columns, the clear member columns’ Window-BT sample variance is zero, or the clear member
columns’ PPW sample variance is zero. The gray shadings in panels d, f & h indicate locations where
there are either less than 5 cloudy member columns, the cloudy member columns’ Window-BT sample
variance is zero, or the cloudy member columns’ PPW sample variance is zero. The white shadings
in panels g indicate areas where the clear member columns’ sample correlation between PPW and
Window-BT is statistically insignificant, and likewise for the white shadings in panel h.
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Figure S2: Workflow of the BGEnKF module implemented in the PSU DA system. “Obs” stands for
“observations” and Nobs stands for the total number of observations. See the text for the definitions
of the extended state vector ψ [Eq. (3)], the list of heuristic checks used to select between the EnKF
and BGEnKF (main text section 2.5), and for a description of the BGEnKF update procedure (Text
S4). The three-stage BGEnKF update procedure is illustrated in Figure 1 of the main text.
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