The potential benefits of handling mixture statistics via a bi-Gaussian EnKF: tests with all-sky satellite infrared radiances

Man-Yau Chan¹, Xingchao Chen², and Jeffrey L. Anderson³

¹The Pennsylvania State University ²Pennsylvania State University ³National Center for Atmospheric Research (UCAR)

November 22, 2022

Abstract

The meteorological characteristics of cloudy atmospheric columns can be very different from their clear counterparts. Thus, when a forecast ensemble is uncertain about the presence/absence of clouds at a specific atmospheric column (*i.e.*, some members are clear while others are cloudy), that column's ensemble statistics will contain a mixture of clear and cloudy statistics. Such mixtures are inconsistent with the ensemble data assimilation algorithms currently used in numerical weather prediction. Hence, ensemble data assimilation algorithms that can handle such mixtures can potentially outperform currently used algorithms. In this study, we demonstrate the potential benefits of addressing such mixtures through a bi-Gaussian extension of the ensemble Kalman filter (BGEnKF). The BGEnKF is compared against the commonly used ensemble Kalman filter (EnKF) using perfect model observing system simulated experiments (OSSEs) with a realistic weather model (the Weather Research and Forecast model). Synthetic all-sky infrared radiance observations are assimilated in this study. In these OSSEs, the BGEnKF outperforms the EnKF in terms of the horizontal wind components, temperature, specific humidity, and simulated upper tropospheric water vapor channel infrared brightness temperatures.

This study is one of the first to demonstrate the potential of a Gaussian mixture model EnKF with a realistic weather model. Our results thus motivate future research towards improving numerical Earth system predictions though explicitly handling mixture statistics.

The potential benefits of handling mixture statistics via a bi-Gaussian EnKF: tests with all-sky satellite infrared radiances

1

2

14

Key Points:

3	Man-Yau Chan ^{1,2} , Xingchao Chen ^{1,2} , Jeffrey L. Anderson ³
4	¹ Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania,
5	USA
6	
8	² Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park,
9	Pennsylvania, USA
10	
12	³ Data Assimilation Research Section, Computational Information Systems Laboratory, National Center for Atmospheric
13	Research, Boulder, Colorado, USA

15	• Current ensemble DA methods assume that forecasts follow a normal distrib	ution.
16	This assumption is often invalid.	
17	• In this study, we propose a computationally efficient ensemble DA method the	nat han-
18	dles clear and cloudy forecasts separately.	
19	• This study uses a realistic weather model (WRF) to show that this method ca	an outper-
20	form the EnKF.	

 $Corresponding \ author: \ Man-Yau \ Chan, \ {\tt chanmanyau@gmail.com}$

21 Abstract

The meteorological characteristics of cloudy atmospheric columns can be very dif-22 ferent from their clear counterparts. Thus, when a forecast ensemble is uncertain about the 23 presence/absence of clouds at a specific atmospheric column (*i.e.*, some members are clear 24 while others are cloudy), that column's ensemble statistics will contain a mixture of clear and 25 cloudy statistics. Such mixtures are inconsistent with the ensemble data assimilation algo-26 rithms currently used in numerical weather prediction. Hence, ensemble data assimilation 27 algorithms that can handle such mixtures can potentially outperform currently used algo-28 rithms. 29

In this study, we demonstrate the potential benefits of addressing such mixtures through 30 a bi-Gaussian extension of the ensemble Kalman filter (BGEnKF). The BGEnKF is com-31 pared against the commonly used ensemble Kalman filter (EnKF) using perfect model ob-32 serving system simulated experiments (OSSEs) with a realistic weather model (the Weather 33 Research and Forecast model). Synthetic all-sky infrared radiance observations are assimi-34 lated in this study. In these OSSEs, the BGEnKF outperforms the EnKF in terms of the hor-35 izontal wind components, temperature, specific humidity, and simulated upper tropospheric 36 water vapor channel infrared brightness temperatures. 37

This study is one of the first to demonstrate the potential of a Gaussian mixture model EnKF with a realistic weather model. Our results thus motivate future research towards improving numerical Earth system predictions though explicitly handling mixture statistics.

41 Plain Language Summary

The accuracy of a computer weather forecast often depends on the accuracy of the information inputted into the computer forecast system. The accuracy of the input in turn depends on the accuracy of the input-constructing algorithm. Such algorithms often use probabilistic forecasts from an earlier point in time and current atmospheric measurements to construct the inputs.

A common assumption in input-constructing algorithms is that the probabilistic forecasts follow multivariate normal distributions (henceforth called the normality assumption). However, in the frequent situation where the probabilistic forecasts are uncertain about the presence/absence of clouds, the normality assumption is violated. This is because clear atmospheric columns and cloudy atmospheric columns have distinctly different thermodynamic and dynamic characteristics. Such probabilistic forecasts thus have mixed statistics (henceforth termed mixed probabilistic forecasts). Addressing these mixed statistics can potentially improve forecasts.

In this study, we propose a new input-constructing algorithm that can explicitly handle mixed probabilistic forecasts. Compared to an existing popular algorithm, our algorithm is nearly as fast and can produced more accurate forecast inputs. Our work thus suggests that weather forecasts can be improved by upgrading input-constructing algorithms to treat a common situation where the normality assumption is violated.

60 **1 Introduction**

Earth system analysis and forecasting systems rely on ensemble data assimilation (ensemble DA, or EDA) methods to convert observations into corrections for Earth system model variables (Keppenne et al., 2005; Reichle et al., 2009; Edwards et al., 2015; Stammer et al., 2016; Park & Xu, 2016; ECMWF, 2016; Helmert et al., 2018; Hersbach et al., 2020). Current operational EDA methods typically assume that every member in an input forecast ensemble is drawn from a distribution only containing a single Gaussian kernel [*i.e.*, a Gaussian distribution; henceforth termed the unmixed ensemble assumption; *e.g.*, Geer et al. (2018) and Dowell et al. (2022)]. The effectiveness of such methods can thus can be limited by the validity of this assumption.

The unmixed ensemble assumption is violated for ensembles that are uncertain about 70 the presence or absence of clouds at any model grid point. This is because clear atmospheric 71 columns and cloudy atmospheric columns often have different dynamic, thermodynamic, 72 and radiative properties [e.g., Emanuel (1994), Markowski and Richardson (2010)]. Cloudy 73 statistics are thus often different from clear statistics [e.g., Grimes and Pardo-Igúzquiza (2010); 74 Geer and Bauer (2011)]. If some ensemble members are cloudy at a location, and other 75 members are clear at this location, the ensemble can exhibit mixed statistics (Harnisch et al., 76 2016; Minamide & Zhang, 2017; Honda et al., 2018; Chan, Anderson, & Chen, 2020). More 77 evidence of mixed statistics can be found in the supporting information. The effectiveness of 78 current operational EDA methods is likely limited in such situations. 79

This limitation can be mitigated by extending current operational EDA methods to han-80 dle mixed statistics. One possibility is to extend the commonly used ensemble Kalman filter, or the EnKF (Evensen, 1994; P. L. Houtekamer & Mitchell, 1998; Burgers et al., 1998; Tip-82 pett et al., 2003; Anderson, 2003; Whitaker & Hamill, 2002; Keppenne et al., 2005; Hunt et 83 al., 2007; Reichle et al., 2009; Stammer et al., 2016; Edwards et al., 2015; Park & Xu, 2016; 84 Helmert et al., 2018), to handle members drawn from forecast distributions with two Gaus-85 sian kernels. Specifically, we assume that forecast members that are clear at an observation 86 site (henceforth, clear members) are drawn from one Gaussian kernel, and forecast members that are cloudy at this site (henceforth, cloudy members) are drawn from a different Gaus-00 sian kernel. This bi-Gaussian extension of the EnKF (henceforth, the BGEnKF) allows the 89 clear ensemble statistics to be handled separately from the cloudy ensemble statistics (Chan, 90 Anderson, & Chen, 2020), thus addressing the issue of mixed statistics. 91

We recently proposed a computationally efficient BGEnKF to handle mixtures of clear 92 and cloudy members [Chan, Anderson, and Chen (2020); henceforth, the CAC20 BGEnKF]. 93 Unlike similar methods proposed in the past (Dovera & Della Rossa, 2011; Reich, 2012; Sondergaard & Lermusiaux, 2013a, 2013b), the CAC20 BGEnKF does not use an expecta-95 tion maximization (EM) algorithm to estimate the mean and covariances of the two Gaussian kernels. Instead, the CAC20 BGEnKF assigns the the sample mean and covariances 97 of the cloudy members to one Gaussian kernel, and those of the clear members to the other Gaussian kernel. This assignment circumvents the computational cost and issues associated 99 with using the EM algorithm in high dimensional spaces [see Chan, Anderson, and Chen 100 (2020) for more information]. Furthermore, the CAC20 BGEnKF converts clear members 101 into cloudy members, or vice versa, without involving the costly square-root computations or 102 Cholesky decompositions of high-dimensional forecast covariance matrices. 103

The purpose of this study is to demonstrate that a variant of the CAC20 BGEnKF can outperform the EnKF using a realistic high-order weather model (the Weather Research and Forecast model; WRF). To do so, this new BGEnKF is implemented into the state-of-the-art Pennsylvania State University EnKF system [henceforth, the PSU-EnKF system; Meng and Zhang (2007, 2008), Chan, Zhang, et al. (2020)]. This demonstration is done using perfect model observing system simulation experiments (OSSEs) of a case of tropical convection over the equatorial Indian Ocean. This case occurred during the onset of the active phase of the October 2011 Madden-Julian Oscillation event [MJO; Madden and Julian (1971, 1972), and S. Wang et al. (2015)].

The structure of this paper is as follows. In section 2, we will give an overview of the BGEnKF algorithm, discuss how clear and cloudy members are identified, and modifications made to the CAC20 BGEnKF algorithm. A detailed description of the current BGEnKF, along with suggestions on handling more than two Gaussian kernels, can be found in the supporting information. Following that, we will discuss the setup of our OSSEs in section 3 and the results in section 4. We will then conclude in section 5.

119 2 On the BGEnKF algorithm

2.1 On the identification of clear and cloudy members

The BGEnKF requires identifying clear and cloudy members at each iteration of the serial data assimilation loop. A simple identification method is to check if the members' column-integrated liquid and/or frozen water mass contents exceed a threshold.

The choice of which phase of water to include in the column integration depends on 124 the specifics of the forecast model. As will be discussed in section 3.3, this study used a 125 WRF model setup with a 9-km horizontal grid spacing and without convective parameter-126 ization. This WRF model setup cannot realistically resolve trade cumuli since the typical 127 width of trade cumuli is ~1-km. As such, we consider columns with trade cumuli and en-128 tirely cloud-free columns as clear member columns, and the remaining members as cloudy 129 member columns. Since trade cumuli do not typically grow above the melting layer (Johnson 130 et al., 1999), clear members do not possess frozen water. It thus seems appropriate to use 131 column-integrated ice mass content (ξ) to distinguish between clear and cloudy member 132 columns. To be precise, we compute ξ at a given model column via 133

$$\xi \equiv \int_0^{z_{top}} \rho(q_i + q_s + q_g) dz \tag{1}$$

where z_{top} is the model top altitude and ρ represents air density. Furthermore, q_i , q_s and q_g are the mass mixing ratios of ice, snow and graupel, respectively.

In this study, we will consider model columns with $\xi \ge 1 \text{ g/m}^2$ as cloudy, and model columns with $\xi < 1 \text{ g/m}^2$ as clear. The cloudy and clear infrared window channel simulated brightness temperature statistics (Window-BT; central wavelength of 10.5 μ m) do not vary noticeably for model column ξ thresholds between 0.8-1.2 g/m². Future studies can refine the threshold value or seek better ways to separate clear and cloudy column members.

141

120

2.2 Overview of the BGEnKF algorithm

This study's BGEnKF (and the CAC20 BGEnKF) assimilates observations with Gaussian observation likelihoods under the assumption that clear members are drawn from one Gaussian kernel and cloudy members are drawn from another Gaussian kernel. Suppose we seek to constrain the following extended state vector $\boldsymbol{\psi}$

$$\boldsymbol{\psi} \equiv \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{h} (\boldsymbol{x}) \\ \boldsymbol{\xi} (\boldsymbol{x}) \end{bmatrix}$$
(2)

where x represents the model state, h(x) represents applying the observation operator h on x, and $\xi(x)$ represents computing ξ at all observation sites [Eq. (1)]. Note that observation sites here refers to the latitude and longitude of the observation (*i.e.*, the vertical position is not considered for now). Supposing there are N_x elements in x and N_y observations, then ψ has $N_x + 2N_y$ elements.

Figure 1. A bivariate demonstration of the three-stage process of the BGEnKF algorithm. The light red ovals highlight cluster 1 members and the light blue ovals highlight cluster 2 members. Prior to running the BGEnKF update, the prior members have already been separated into two clusters. The BGEnKF's first stage is to employ the EnKF update equations on the two clusters separately (panel a). In the second stage (panel b), the BGEnKF identifies the shrinking cluster (the blue cluster 2 in this case), deletes an appropriate number of members from this cluster, and adjusts the remaining members to prevent the deletion from changing this cluster's mean. The BGEnKF's final stage (panel c) is to recreate the deleted members by resampling from the expanding cluster (cluster 1).

151 152 The BGEnKF assumes that the prior probability density function [pdf; $p(\psi)$] can be represented by the bi-Gaussian pdf

$$p(\boldsymbol{\psi}) = w_{\text{clr}}^{f} \mathcal{G}\left(\boldsymbol{\psi}; \ \overline{\boldsymbol{\psi}_{\text{clr}}^{f}}, \boldsymbol{P}_{\text{clr}}^{f}\right) + w_{\text{cld}}^{f} \mathcal{G}\left(\boldsymbol{\psi}; \ \overline{\boldsymbol{\psi}_{\text{cld}}^{f}}, \boldsymbol{P}_{\text{cld}}^{f}\right).$$
(3)

The subscript "clr" denotes clear cluster quantities, and the subscript "cld" denotes cloudy cluster quantities. $\mathcal{G}\left(\psi; \ \overline{\psi_{clr}^f}, P_{clr}^f\right)$ denotes the clear cluster's Gaussian kernel with mean state $\overline{\psi_{clr}^f}$ and covariance matrix P_{clr}^f . Similarly, $\mathcal{G}\left(\psi; \ \overline{\psi_{cld}^f}, P_{cld}^f\right)$ denotes the cloudy cluster's Gaussian kernel with mean state $\overline{\psi_{cld}^f}$ and covariance matrix P_{cld}^f and covariance matrix P_{cld}^f . The scalar quantities w_{clr}^f and w_{cld}^f are the respective weights of the clear and cloudy Gaussian kernels. Note that

$$w_{\text{clr}}^f + w_{\text{cld}}^f = 1, \qquad w_{\text{clr}}^f \ge 0, \quad \text{and}, \quad w_{\text{cld}}^f \ge 0.$$

The various parameters in Eq. (3) can be estimated by the procedure described in CAC20 or in the supporting information.

¹⁵⁵ Upon assimilating an observation y^o with Gaussian observation error, the BGEnKF ¹⁵⁶ produces an ensemble that is consistent with the analysis pdf

$$p\left(\boldsymbol{\psi}|\boldsymbol{y}^{o}\right) = w_{clr}^{a} \mathcal{G}\left(\boldsymbol{\psi}; \ \overline{\boldsymbol{\psi}_{clr}^{a}}, \boldsymbol{P}_{clr}^{a}\right) + w_{cld}^{a} \mathcal{G}\left(\boldsymbol{\psi}; \ \overline{\boldsymbol{\psi}_{cld}^{a}}, \boldsymbol{P}_{cld}^{a}\right).$$
(4)

Here, w_{clr}^a and w_{cld}^a are the respective analysis weights of clear and cloudy Gaussian kernels, ψ_{clr}^a and ψ_{cld}^a are the respective analysis means of the clear and cloudy Gaussian kernels, and P_{clr}^a and P_{cld}^a are the respective analysis covariances of the clear and cloudy Gaussian kernels. See CAC20 [or the supporting information] for the equations relating the analysis pdf's parameters to the forecast pdf's parameters.

The BGEnKF converts a forecast ensemble into an analysis ensemble through a three-162 stage process [illustrated in Figure 1]. First, two EnKF procedures are executed [Figure 163 1(a)]: once for clear members using clear forecast statistics $\left(\overline{\psi_{clr}^f}, P_{clr}^f\right)$, and a second time for cloudy members using cloudy forecast statistics $\left(\overline{\psi_{cld}^f}, P_{cld}^f\right)$. Afterwards, to reflect the 164 165 update to the bi-Gaussian pdf weights, clear members will be replaced with cloudy members, 166 or vice versa. For example, if the BGEnKF increased the weight on the clear Gaussian distribution (*i.e.*, $w_{clr}^a > w_{clr}^f$ and $w_{cld}^a < w_{cld}^f$), some cloudy members will be replaced with clear 167 168 members. This is achieved by deleting some cloudy members [Figure 1(b)] and replacing 169 the deleted members with resampled clear members [Figure 1(c)]. Once these three stages 170 are completed, the ensemble obeys Eq. (4). See the supporting information for a detailed 171 description of these three stages. 172

173

2.3 Revised extended state formulation for better scalable parallelism

The most important modification to the original CAC20 BGEnKF lies in the definition of ψ . The CAC20 BGEnKF's ψ only contains x and a single observation. As such, the CAC20 BGEnKF algorithm is a sequential algorithm that scales inefficiently with parallelization on high latency clusters (Anderson & Collins, 2007). For more efficient scaling with parallelization, this study's ψ contains all of the information necessary to assimilate all observations [*i.e.*, Eq. (2); Anderson and Collins (2007)].

¹⁸⁰ Since the definition of ψ has been modified, we will redefine our forecast ensemble. ¹⁸¹ Supposing an ensemble size of N_E , the forecast ψ ensemble is constructed by evaluating

$$\psi_n^f \equiv \begin{bmatrix} x_n^f \\ h(x_n^f) \\ \xi \left(x_n^f \right) \end{bmatrix} \quad \forall \ n = 1, 2, \dots, N_E$$
(5)

where ψ_n^f is the ψ of the *n*-th forecast member, and x_n^f is the *x* of the same forecast member.

The revised formulation enhances the scalability of the BGEnKF by avoiding evalua-183 tions of h(x) and $\xi(x)$ at each iteration of the serial assimilation loop. This is because such 184 evaluations may require costly inter-process communications. The removal of such evalua-185 tions is achieved through two modifications to the CAC20 BGEnKF. First, the assimilation 186 of an observation uses the BGEnKF update equations (see CAC20 or the supporting infor-187 mation) to update all model state elements, all simulated observation state elements and all ξ 188 elements in the forecast ensemble. The CAC20 BGEnKF, in contrast, updates all model state 189 elements and only a single simulated observation state element. This difference in updates 190 leads to a second modification: to assimilate the m-th observation, instead of evaluating 191 h(x) and $\xi(x)$, this study's BGEnKF only needs to read the corresponding simulated obser-192 vation and the ξ values from ψ . 193

194

2.4 Revised expanding cluster resampling procedure

The other major change to the CAC20 BGEnKF lies in the resampling matrix T. T is used to resample the Gaussian kernel that better agrees with the assimilated observation, thus representing the increase in the weight of this kernel. The CAC20 BGEnKF uses a stochastic procedure to construct T [see Eq. (18) and Appendix B of CAC20]. Unfortunately, because random number generators are involved, the analysis ensemble generated on one computing cluster may not be easily replicated on another computing cluster.

To ensure the replicability of the BGEnKF's analysis ensembles, we replaced the stochastic component of the CAC20 BGEnKF's T [W in the Appendix B of Chan, Anderson, and Chen (2020)] with a deterministic one. Supposing that we want to add N_{new} cloudy members to the ensemble to represent an increased weight of the cloudy Gaussian distribution, the new deterministic W is defined as

$$W \equiv \begin{bmatrix} I_{N_{\text{new}}^*} & \mathbf{0}_{N_{\text{new}}^* \times (N_{\text{new}} - N_{\text{new}}^*)} \end{bmatrix} - \frac{1}{N_{\text{new}}} \mathbf{1}_{N_{\text{new}}^* \times N_{\text{new}}}$$
(6)

where

$$N_{\text{new}}^* \equiv \begin{cases} N_{\text{new}} - 1 & \forall \ N_{\text{new}} \le N_{\text{pre}} \\ \\ N_{\text{pre}} & \text{otherwise} \end{cases}$$

and N_{pre} is the number of cloudy members at the start of the resampling procedure. Furthermore, $I_{N_{\text{new}}^*}$ is an $N_{\text{new}}^* \times N_{\text{new}}^*$ identity matrix, $\mathbf{0}_{N_{\text{new}}^* \times (N_{\text{new}} - N_{\text{new}}^*)}$ is an $N_{\text{new}}^* \times (N_{\text{new}} - N_{\text{new}}^*)$ matrix of zeros, and $\mathbf{1}_{N_{\text{new}}^* \times N_{\text{new}}}$ is an $N_{\text{new}}^* \times N_{\text{new}}$ matrix of ones. Note that Eq. (6) is also applied in the situation where N_{new} clear members are being added to the ensemble. A detailed description of the revised resampling procedure is provided in the supporting information.

Note that an interesting property of Eq. (6) is that the resulting **T** is a mostly diagonal matrix. Specifically, nearly all of the off-diagonal elements in **T** are either zero or much smaller than the diagonal elements (not shown). As a result, the resampled members are essentially copies of the pre-resampling members, plus some small perturbation. The CAC20 stochastic **W** formulation does not have this property. Future work can investigate how the BGEnKF's behavior changes with different **W** formulations.

2.5 Heuristic measures

218 **2.5.1** Localization

217

The BGEnKF is likely more susceptible to sampling noise than the EnKF because the sample size used to estimate each cluster's mean state and Kalman gain are smaller than the sample size used to estimate the mean state and covariance matrix of the entire ensemble. As such, we employ two heuristic measures that are similar to those of CAC20. First, we

spatially localize the BGEnKF analysis increment using the Gaspari-Cohn fifth order poly-223

nomial [GC99; Gaspari and Cohn (1999)]. If ρ represents a vector of GC99 localization fac-224

tors, we construct the localized updated extended state vector for member n via 225

$$\boldsymbol{\psi}_{n}^{a} \leftarrow \rho \circ \left(\boldsymbol{\psi}_{n}^{a} - \boldsymbol{\psi}_{n}^{f}\right) + \boldsymbol{\psi}_{n}^{f} \tag{7}$$

where \circ represents element-wise multiplication. In the cases where either $w_{clr}^f = 1$ or $w_{cld}^f = 1$ 226

1 (i.e., the bi-Gaussian prior p.d.f. turns Gaussian), this localization method is identical to 227

Kalman gain localization [e.g., Anderson et al. (2009), Meng and Zhang (2008), Whitaker et 228 al. (2008), P. L. Houtekamer and Zhang (2016)]. 229

Note that this localization method [Eq. (7)] localizes the impacts of replacing clear 230 members with cloudy members (or vice versa). As an example, suppose the BGEnKF re-231 places a cloudy forecast member with a clear analysis member. The localization process 222 [Eq. (7)] first computes the difference between the cloudy forecast member and the clear 233 analysis member (*i.e.*, the member's change due to the BGEnKF). This difference is then lo-234 calized and applied to the cloudy forecast member. The resulting member follows the clear 235 analysis member at the observation site and becomes increasingly like the cloudy forecast member with increasing distance from the observation site. Future work can examine other 237 approaches to localize the impacts of deleting and replacing ensemble members. 238

2.5.2 Handling overly small clusters

The second heuristic sampling error mitigation measure is to switch from using the 240 BGEnKF to using the EnKF whenever the pre-resampling expanding cluster is too small 241 $(N_{\rm pre} < 0.8N_E)$, or whenever any cluster is too small (less than $0.1N_E$). A similar heuris-242 tic measure is used in CAC20. 243

244

239

2.5.3 Mitigating unphysical weight updates

Another issue specific to the BGEnKF is its occasional tendency to generate unphys-245 ical weight updates. Specifically, the BGEnKF occasionally expands the clear cluster when 246 a cloudy observation is assimilated, and vice versa. This is because the BGEnKF does not 247 explicitly consider whether an observation is clear or cloudy when assimilating it. 248

The BGEnKF is automatically switched to the EnKF whenever an unphysical weight 249 update is detected. To do so, we first identify the whether the observation to be assimilated 250 is definitively clear or cloudy. In the case of Window-BT values over tropical ocean, obser-251 vation values warmer than 290 K are definitively clear, and observation values cooler than 252 280 K are definitively cloudy. If the observation is definitively clear, but the cloudy cluster is 253 expanded by the BGEnKF, or vice versa, the BGEnKF will switch over to the EnKF. 254

- **3** Materials and methods 255
- 256

3.1 Description of October 2011 tropical convection case

The BGEnKF was tested against the EnKF using a case of tropical convection over the 257 equatorial Indian Ocean during the October 2011 MJO. This case is chosen because it can be 258 reasonably replicated by regional WRF models (S. Wang et al., 2015; F. Zhang et al., 2017; 259 Ying & Zhang, 2017; Fu et al., 2017; X. Chen, Pauluis, & Zhang, 2018; X. Chen & Zhang, 260 2019; Ying & Zhang, 2018; Chan, Zhang, et al., 2020). 261

Our experiments are conducted over a three day period during the onset of this MJO 262 event (15 October 2011 to 18 October 2011). Two persistent regions of enhanced convection 263 (henceforth, "convective regions") are observed in the 4-km Global IR Dataset of Janowiak 264 et al. (2001) [henceforth, the MERG dataset]. The first convective region (blue rectangle) 265 occurs between 60 °E and 75 °E and persists beyond the three-day period. Westward propa-266

Figure 2. (a) Plot of our OSSE domain overlaid with the nature run's simulated Window-BT field at 1200 UTC on 15th October 2011. The red box in panel (a) indicates our study domain. Also shown are longitudetime diagrams for the MERG dataset (b) and nature run (c). In panels (b) and (c), the shadings indicate Window-BT Hovmoller percentile values. These Window-BT Hovmoller percentile values are constructed by first averaging Window-BT values between between 10°S and 10°N at every hour to produce a time-longitude array of latitudinally-averaged Window-BT values. These arrays are then converted into percentiles before producing the longitude-time percentile values. Note that the dashed black contours in (b) and (c) indicate areas where the time-longitude arrays of latitudinally-averaged Window-BT values are below 260 K.

gation is observed in some of the clouds in this region, most notably between 1200 UTC on
16 October and 0000 UTC on 18 October. The second convective region (blue oval) appears
on the eastern edge of the study domain at 1200 UTC on 16th October and exhibits a westward propagation that is similar to that of the first system. We will later assess our OSSE's
nature run simulation by checking the nature run against these two convective regions.

3.2 Setup of WRF model

The Advanced Research version of the WRF model (WRF-ARW) version 3.8 (Skamarock et al., 2008) is used in this study. Following Chan, Zhang, et al. (2020), we construct a 432×243 WRF domain over the study domain [red box in Figure 2(a)] with 9-km horizontal grid spacing and 45 model levels. The bottommost 9 levels are within the lowest 1-km of the atmosphere and the pressure level at the top of the domain is set to 20 hPa. The WRF integration time step is set to 20 seconds.

Our WRF model setup uses the following parameterization schemes. Cloud micro-279 physical processes are handled by the WRF double-moment 6-class scheme (WDM6) pro-280 posed by Lim and Hong (2010). The updated Goddard shortwave scheme of Chou and Suarez 281 (1999) and the Rapid Radiative Transfer Model (Global Circulation Model version; RRMTG) 282 longwave scheme of Iacono et al. (2008) are used to parameterize radiative processes. The 283 unified Noah land surface physics scheme (F. Chen & Dudhia, 2001) handles surface process and the Yonsei University (YSU) boundary layer scheme (Hong et al., 2006) is employed. 285 No cumulus parameterization is employed because many studies have demonstrated that the 286 9-km grid spacing is sufficient to resolve tropical mesoscale convective systems (MCS) over 287 the region (S. Wang et al., 2015; Ying & Zhang, 2017, 2018; F. Zhang et al., 2017; X. Chen, Pauluis, & Zhang, 2018; X. Chen, Pauluis, Leung, & Zhang, 2018; X. Chen & Zhang, 2019; 289 X. Chen et al., 2020; Chan, Zhang, et al., 2020; Chan & Chen, 2021; X. Chen, Leung, Feng, 290 & Song, 2021; X. Chen, Leung, Feng, Song, & Yang, 2021; X. Chen et al., 2022). 291

292

272

3.3 Setup of WRF ensemble and nature run

This study's WRF ensemble and nature run are constructed by combining two datasets 293 from the European Center for Medium-Range Forecasts (ECMWF): the ECMWF Reanalysis 294 Version 5 [ERA5; Hersbach et al. (2020)] and the ECMWF's 50-member perturbed forecasts 295 (Swinbank et al., 2016). The ERA5 dataset is downloaded for every hour between 0000 UTC 296 on 15 October to 1800 UTC on 18 October from the ECMWF's Climate Data Store (CDS). The ECMWF's perturbed forecasts are produced as part of The Observing System Research 298 and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble [TIGGE; 299 Swinbank et al. (2016)] and is downloaded for 0000 UTC on 15 October from the ECMWF's 300 Meteorological Archival and Retrieval System (MARS).

The ERA5 and ECMWF's 50-member perturbed forecasts (TIGGE ensemble) are pro-302 cessed using the WRF Preprocessing System and WRF's real data processor (real.exe) to produce a set of 51 WRF initial conditions files. Note that the ERA5 is used to fill in the data 304 missing from the TIGGE ensemble above 200 hPa. The 50 WRF initial conditions from the 305 TIGGE ensemble are then recentered on the ERA5 WRF initial condition file. The end result 306 is a 51-member ensemble of WRF initial conditions, where member 51 is based entirely on 307 the ERA5 (*i.e.*, the 51-st ensemble perturbation is zero). Note that this 51-st member is not 308 used to initialize the nature run. One of the other initial conditions is used to initialize the 309 nature run. 310

The lower and lateral boundary conditions used in this study are based entirely on the hourly ERA5 dataset (*i.e.*, the boundary conditions are unperturbed). While perturbed boundary conditions can increase the ensemble spread, the ensemble spread is usually reasonable even with unperturbed boundary conditions (not shown). Furthermore, as a first approach to studying the potential impacts of the BGEnKF in a high-order weather model setting, we want the differences between the nature run (described later) and the OSSE en-

semble to be entirely due to differences in the initial conditions. Future work can extend this
 study to situations with perturbed boundary conditions.

We desire a nature run that is roughly one ensemble standard deviation from our experiments' ensembles. To select an appropriate initial condition file for such a nature run, we first integrate the 51 members forward for 12 hours (from 0000 UTC to 1200 UTC on 15 October 2011). This integration is performed to generate flow-dependent ensemble statistics that are consistent with the WRF model. After the 12-hour integration, we compute the

following perturbation length metric (D^2) for each of the 51 ensemble members

$$D^{2}(n) \equiv \frac{1}{N_{S} N_{i} N_{j}} \sum_{v \in S} \sum_{i=1}^{N_{i}} \sum_{j=1}^{N_{j}} \left(\frac{\Lambda(i, j, v, n) - \langle \Lambda(i, j, v) \rangle_{n}}{\sigma_{i, j, v}} \right)^{2}.$$
(8)

 $\Lambda(i, j, v, n)$ here is the value of a WRF-derived field v at horizontal index location (i, j) for 325 ensemble member n. Furthermore, $\langle \Lambda(i, j, v) \rangle_n$ is the ensemble average of $\Lambda(i, j, v, n)$, and 326 $\sigma_{i,i,v}$ is the ensemble standard deviation of $\Lambda(i, j, v, n)$. This means that the expression in 327 the parentheses of Eq. (8) is the spread-normalized displacement of ensemble member n328 from the ensemble mean at location (i, j) for variable field v. The set S contains three 2D 329 variables (precipitable water, column mass, and mass-integrated kinetic energy) and N_s is 330 the size of the set S (*i.e.*, $N_S = 3$). Furthermore, $N_i (\equiv 432)$ is the number of east-west grid 331 points and $N_i \equiv 243$ is the number of north-south grid points. The metric in Eq. (8) can thus be interpreted as being proportional to the spread-normalized Euclidean length of the 333 *n*-th ensemble perturbation. As such, a D^2 value of unity means that the ensemble member is 334 generally displaced from the ensemble mean by 1 standard deviation. 335

We define our nature run member to be the member whose D^2 value is closest to unity at 1200 UTC on 15 October. As a result, the nature run is based on member 10 of the TIGGE ensemble. The remaining 50 WRF members will be used for our cycling OSSE DA experiments.

340 **3.4 Sanity check of nature run**

Before proceeding, the nature run is checked by comparing it against the MERG dataset. Figure 2(b & c) shows longitude-time diagrams of the Window-BT percentiles from the MERG dataset and our nature run. The construction of these percentiles is explained in section 3.1 and in the caption of Figure 2.

We have opted to display the Window-BT percentiles instead of the Window-BT val-345 ues because the WRF model tends to under produce clouds (*i.e.*, when compared to satellite 346 observations, the nature run Window-BTs are warm biased). This is illustrated by the dashed 347 contours in Figure 2(b & c), which highlights areas where the latitudinally-averaged values 348 of Window-BT were cooler than 260 K. These areas are substantially larger in the MERG data than in the nature run, meaning that the nature run under produced clouds. Since con-350 verting the Window-BT values to percentile values weakens the visual interference from the 351 cloud biases, we have opted to display the Window-BT percentiles over the Window-BT val-352 ues. 353

Figure 2(c) indicates that the nature run also exhibits the two persistent convective re-354 gions observed in the MERG dataset (see section 3.1). These persistent convective regions 355 are indicated by the blue rectangle and blue oval in Figure 2(c). Not only did the nature run's 356 two persistent convective regions occur in locations and times similar to those of the MERG 357 dataset (Figure 2(b)), these nature run regions also exhibit westward propagation patterns 358 similar to those of the MERG dataset. As such, the nature run simulation reasonably repli-359 cates the anomalous convective behavior of the real atmosphere between 15 October to 18 360 October 2011. 361

3.5 Setup of DA experiments to test the BGEnKF

362

To test the BGEnKF, three 50-member ensemble experiments are conducted. All three experiments start at 1200 UTC on 15 October and terminate at 1200 UTC on 18 October, with hourly DA cycling (73 cycles in total). The construction and spin-up of these 50 members are described in section 3.3.

In the first experiment, no observations are assimilated (henceforth, NoDA experiment). The NoDA experiment serves as a baseline for comparing the performance of the EnKF and BGEnKF, and to measure imbalances induced by DA.

The other two experiments are the EnKF and BGEnKF experiments. The only difference between the EnKF and BGEnKF experiments is in the DA algorithm employed. The EnKF experiment will assimilate observations using the PSU-EnKF's (Meng & Zhang, 2007, 2008) default EnKF algorithm, and the BGEnKF experiment will assimilate observations using a new implementation of the BGEnKF into the PSU-EnKF. Note that both the EnKF and the BGEnKF are implemented into the PSU-EnKF using the high-latency strategy proposed by Anderson and Collins (2007).

As a first approach to testing the BGEnKF, only synthetic *Meteorological Satellite* 7 Meteosat Visible Infra-Red Imager (MVIRI) Window-BT observations will be assimilated. Future work can investigate if our findings can be extended to situations where an entire suite of operationally-assimilated observations and observations from different infrared channels are assimilated.

The synthetic Window-BT observations are constructed by first running the Commu-382 nity Radiative Transfer Model (CRTM) release 2.3.0 on the nature run (see sections 3.3 and 383 3.4). The nature run's Window-BT values are then thinned to a horizontal spacing of 27-38/ km (~11,500 observations per DA cycle). White noise with a standard deviation of 3 K is 385 then added to the thinned nature run Window-BT values to simulate instrument noise, thus 386 constructing the synthetic observations. Note that the observation errors are likely to be cor-387 related in reality. This means our use of white noise is an imperfect approximation to actual 388 observation errors. Future work can investigate if our results can be extended to situations 389 with correlated Window-BT observation errors. 390

Common heuristic strategies are employed to assimilate the Window-BT observa-391 tions. To limit the impact of sampling errors, horizontal localization is applied using the 392 Gaspari-Cohn fifth-order polynomial (Gaspari & Cohn, 1999) with a 100-km radius of in-393 fluence (P. L. Houtekamer & Mitchell, 2001; Greybush et al., 2011; P. L. Houtekamer & Zhang, 2016). No vertical localization is employed. We also employ the Adaptive Observa-395 tion Error Inflation scheme (AOEI) of Minamide and Zhang (2017) to limit the deleterious 396 increments that can result from clear-cloudy disagreements between the prior and observa-397 tions (F. Zhang et al., 2016; Minamide & Zhang, 2017). To mitigate the tendency for ensemble under-dispersion to occur when the ensemble is clear and the observation is cloudy, 399 the Adaptive Background Error Inflation scheme (ABEI) of Minamide and Zhang (2019) is 400 applied. We also employ 80% relaxation to prior perturbations (RTPP) to maintain ensem-401 ble dispersion (F. Zhang et al., 2004). Similar combinations of heuristic strategies are com-402 monly seen in the EnKF-based DA of infrared radiance observations (F. Zhang et al., 2016; 403 Minamide & Zhang, 2018; Chan, Zhang, et al., 2020; Y. Zhang et al., 2019; Chan & Chen, 404 2021; Y. Zhang et al., 2021). 405

Aside from these common strategies, we also restrict the BGEnKF/EnKF from updating the domain-averaged specific humidity (QVAPOR) using Window-BT observations. Without this measure, both the BGEnKF and the EnKF experience filter divergence that is related to DA-induced dry biases within 48 hours of cycling. These dry biases are likely induced by the ensemble's tendency to be overly cloudy. The dry biases in the EnKF experiment are likely partly because of the EnKF's inability to handle clear and cloudy members separately (see section 4.3). As for the BGEnKF experiment, the dry bias can be explained

- by the fact that the BGEnKF algorithm frequently switches over to the EnKF algorithm
 (see section 4.2). Note that the BGEnKF generated smaller dry biases than the EnKF (not
 shown).
- To prevent filter divergence due to DA-induced dry biases, we replace the 3D posterior mean QVAPOR field $(\overline{q_v^a})$ with the following modified mean QVAPOR field $(\overline{q_v^*})$:

$$\overline{q_{\nu}^{*}(i,j,k)} \equiv \overline{q^{a}(i,j,k)} - \frac{1}{N_{i} N_{j}} \sum_{i=1}^{N_{i}} \sum_{j=1}^{N_{j}} \left\{ \overline{q_{\nu}^{a}(i,j,k)} - \overline{q_{\nu}^{f}(i,j,k)} \right\}.$$
(9)

Here, (i, j, k) refer to the west-east, south-north and bottom-top indices of the 3D QVAPOR fields and q_v^f refers to the 3D prior mean QVAPOR field.

3.6 Execution wall-time of the BGEnKF

Before proceeding, we should compare the execution wall-time of the BGEnKF and 421 the EnKF. The BGEnKF algorithm took ~30 seconds to assimilate ~11,500 observations us-422 ing 228 Intel Knight's Landing computer cores [distributed across 7 computational nodes on 423 the National Energy Research Scientific Computing Center (NERSC) Cori supercomputer; 424 each core has a clock rate of 1.4 GHz]. Assimilating the same observations via an EnKF al-425 gorithm took ~20 seconds of wall-time. For a fair comparison, this EnKF algorithm used 426 the exact same code structure and computing resources, but with the cluster transfer and aux-427 iliary variable update steps disabled. In other words, the BGEnKF used ~10 seconds more 428 wall-time than the EnKF. 429

This ~10-second difference should be assessed in the context of the wall-time for the entire PSU-EnKF executable. The other components of the PSU-EnKF took ~100 seconds to execute. As such, the BGEnKF only added ~10% wall-time to the entire PSU-EnKF executable. The BGEnKF algorithm is thus likely affordable for research and operational groups that are already running serially-assimilating EnKFs [*e.g.*, Anderson et al. (2009)].

435 **4** Perfect model WRF OSSE results

In the discussions to follow, we will be showing plots of normalized root-mean-square errors (nRMSEs) and normalized biases as functions of time and model level. The normalization is necessary for the ease of visualization, and uses the root-mean-square errors (RM-SEs) of the NoDA experiment. The EnKF experiment's nRMSE at model level k and date tis defined as

$$EnKF nRMSE(k, t) \equiv \frac{EnKF RMSE(k, t)}{NoDA RMSE(k, t)}$$
(10)

and likewise for that of the BGEnKF and NoDA experiments (the NoDA's nRMSE values are
always 1). Note that if a filter results in nRMSEs > 1.0, the assimilation of Window-BT via
this filter degraded the ensemble with respect to the NoDA experiment. The reverse is true
for nRMSEs < 1.0. We also define the normalized bias of the EnKF experiment to be

EnKF normalized bias
$$(k, t) \equiv \frac{\text{EnKF bias}(k, t)}{\text{NoDA RMSE}(k, t)},$$
 (11)

and likewise for the BGEnKF and NoDA experiments. These biases are computed by sub tracting the nature run fields from the forecast ensemble mean fields.

The nRMSEs and normalized biases are examined for six variable fields: the zonal wind velocity component field (U), the meridional wind velocity component field (V), the temperature field (T), the QVAPOR field (Q), the Window-BT field, and the upper tropospheric infrared water vapor channel brightness temperature field (WV-BT; central wavelength of 6.2 μ m). The nRMSEs are plotted in Figures 3 and 5(a & b) and the normalized biases are plotted in Figures 4 and 5(c & d). All quantities are computed using forecast statistics.

Figure 3. Plots of various prior ensemble statistics as functions of time and model level. For ease of interpretation, the model levels are displayed in terms of their approximate pressure levels (estimated using the definition of eta levels in WRF and assuming a surface pressure of 1000 hPa). The shadings indicate the NoDA-normalized RMSEs [nRMSEs; defined in Eq. (10)] for the EnKF (a, b, g & h) and BGEnKF (c, d, i & j) experiments, as well as the nRMSE differences between the EnKF and BGEnKF experiments (e, f, k & l). The nRMSEs and nRMSE differences are shown for the U field (a, c & e), V field (b, d & f), T field (g, i & k), and Q field (h, j & l). The areas outlined with a black contour and filled with yellow hatching have consistency ratios (spread/error) less than 0.75. Note that all displayed statistics are forecast statistics.

Figure 4. Plots of various prior ensemble normalized biases as functions of time and model level. These normalized biases are displayed for the U field (a, c & e), V field (b, d & f), T field (g, i & k), and Q field (h, j & l), for the NoDA (a, b, g & h), EnKF (c, d, i & j) and BGEnKF (e, f, k & l) experiments. Similar to Figure 3, the model levels are displayed in terms of approximate pressure levels. See the Eq. (11) for the definition of the normalized biases.

454 455

4.1 On differences in the BGEnKF's and the EnKF's performances during DA cycling

The nRMSEs and normalized biases of the BGEnKF experiment are generally bet-456 ter than or comparable to those of the EnKF experiment (Figures 3 to 5). For the U, V, T 457 and Q fields, subtracting the BGEnKF's nRMSEs from the EnKF's nRMSEs generally results in positive values [Figure 3(e, f, k & l)]. The BGEnKF experiment also has better WV-459 BT nRMSEs than the EnKF experiment [Figure 5(b)]. The BGEnKF experiment also has 460 smaller biases than the EnKF experiment in several places: the 100 hPa U field [Figure 4(c 461 & e)], the 400–100 hPa T field [Figure 4(i & k)], the Window-BT field [Figure 5(e)], and WV-BT field [Figure 5(f)]. Otherwise, the BGEnKF and EnKF experiments have similar 463 bias values. These results suggest that the BGEnKF is more suitable for assimilating all-sky 464 Window-BT than the EnKF. 465

The BGEnKF's performance advantages over the EnKF can be separated into two 466 types. In the first type, the BGEnKF generates larger improvements than the EnKF (i.e., BGEnKF nRMSEs < EnKF nRMSEs < NoDA nRMSEs). This type of performance advan-468 tage occurs in multiple places (Figures 3 and 5): 1) the 800 hPa to 1000 hPa U field nRMSEs 469 during the first 56 cycles, 2) the 100 hPa to 500 hPa U field nRMSEs during the last 36 DA 470 cycles, 3) the near surface and ~250 hPa V field nRMSEs from 0000 UTC on 16th October to 0000 UTC on 17th October, 4) between 100 hPa to 300 hPa in the T field nRMSEs for 472 most cycles, 5) between 250 to 600 hPa in the Q field nRMSEs for most cycles, and in the 473 WV-BT nRMSEs for most DA cycles after 0000 UTC on 16th October. These differences are 474 likely due to the BGEnKF's ability to handle mixture statistics, and suggest that the BGEnKF is more suitable for assimilating Window-BT than the EnKF. 476

The BGEnKF experiment's second type of performance advantage over the EnKF ex-477 periment is when the BGEnKF introduces milder degradations than the EnKF (i.e., NoDA 478 nRMSEs < BGEnKF nRMSEs < EnKF nRMSEs). In terms of nRMSEs (Figure 3), such sit-479 uations are noticeable at the 100 hPa tropopause level and 500-700 hPa levels for the U and 480 V fields, at the 200-500 hPa model levels for the T field, and at the 100 hPa level for the Q 481 field. Such situations are also noticeable in the normalized biases of the ~ 100 hPa U field, 482 the 100–400 hPa T field (Figure 4), and in the Window-BT and WV-BT fields (Figure 5). 483 These are likely because 1) the BGEnKF can handle mixture statistics whereas the EnKF cannot, and 2) the BGEnKF experiment has smaller increments than the EnKF experiment 485 because the BGEnKF experiment has smaller dispersion. Figure 3(a & c) shows an example 486 of the latter: the BGEnKF U field has larger areas of low spread-to-error ratios (0.75) than 487 the EnKF. The likely origins of the RMSE and bias degradations are discussed in section 4.2. Nonetheless, these results further support the notion that the BGEnKF is more appropriate 489 for assimilating Window-BT observations than the EnKF. 490

The BGEnKF tends to result in smaller CRs than the EnKF because the BGEnKF can 491 outright convert all clear member columns to cloudy member columns, or vice versa. Since 492 clear and cloudy member columns are very different, having both types of columns present 493 at the same time boosts the ensemble spread. If all clear member columns are converted to cloudy member columns, or *vice versa*, large perturbations relative to the ensemble mean 495 are replaced with smaller perturbations. This replacement results in reduced ensemble dis-496 persion. Since the EnKF lacks this mechanism of ensemble spread removal, the BGEnKF 497 can remove more ensemble spread than the EnKF, thus resulting in smaller CRs than the 498 EnKF. Future work can investigate if stronger inflation schemes are more appropriate for the 499 BGEnKF. 500

Note that there are occasional situations where the EnKF outperforms the BGEnKF.
 For instance, at around 0000 UTC on 17th October the BGEnKF's U nRMSEs are slightly
 higher than the EnKF at 250 hPa (Figure 3(e)). Other examples include the T nRMSEs around
 1200 UTC on 17th October (Figure 3). Nonetheless, if we integrate the forecast ensembles'

Figure 5. Time-series showing the performance statistics of the three experiments' prior ensembles in terms of Window-BT (a, c & e) and WV-BT (b, d & f). The definitions of nRMSEs (a & b) and normalized prior minus truth (Norm. FmT bias; e & f) are the same as in Figures 5 to 8. Like Figures 5 and 6, the consistency ratio (CR; c & d) here is defined as the ratio of spread to error.

nRMSEs with respect to pressure at every cycle, the resulting mass-weighted nRMSEs of the BGEnKF experiment will be lower than those of the EnKF experiment.

We have also examined day-long deterministic forecasts that are initialized from the analysis means of the EnKF and BGEnKF experiments (not shown). The BGEnKF experiment's RMSE performance advantage over the EnKF experiment persists for up to 9 hours of lead time in terms of the U, V and T fields. In terms of the 500–800 hPa Q field RMSEs, the BGEnKF experiment's RMSE advantage over the EnKF experiment persists throughout the 24 hours of integration. These results are as expected since the BGEnKF experiment has lower RMSEs than the EnKF experiment during DA cycling.

514 515

4.2 On the similar patterns observed in the performances of the BGEnKF and EnKF experiments

Though the BGEnKF experiment generally outperformed the EnKF experiment, there 516 are common spatiotemporal patterns in their nRMSEs and normalized biases. For instance, 517 Window-BT DA with either algorithm tends to degrade the 500-800 hPa U nRMSEs, and 518 improve the 100–500 hPa U nRMSEs (Figure 3(a & c)). These similarities are likely because 519 the BGEnKF frequently switches over to the EnKF. Figure 6(a) shows that the BGEnKF al-520 gorithm is only called to assimilate $\sim 10\%$ of the Window-BT observations, meaning that the 521 switching occurred for the remaining $\sim 90\%$ of Window-BT observations. Future work can 522 investigate if reducing the occurrence of such switches (e.g., via weaker heuristic checks and 523 larger ensembles) could improve the performance of the BGEnKF. 524

Figure 6. Plots showing the frequencies at which the two kernel BGEnKF update procedure is called in the BGEnKF experiment (a), and the normalized imbalance metric statistics for both the BGEnKF and EnKF experiments (b). For reference, 11502 IR observations are assimilated at each DA cycle. The normalized imbalance metric is defined in the text. The solid curves in (b) indicate the ensemble average of every member's normalized imbalance metric and the half-width of the shadings in (b) indicate twice the standard error of the members normalized imbalance metric.

It is notable that the BGEnKF outperforms the EnKF despite the high frequency of 525 BGEnKF-to-EnKF switching. For instance, according to Figure 3(h, j & l), for the 24 cycles 526 on 17th October and between 500 hPa to 700 hPa, the BGEnKF experiment has 0.06–0.1 less 527 Q nRMSEs than the EnKF experiment. Since the EnKF experiment has Q nRMSEs of ~1 528 then, the BGEnKF is able to introduce a $\sim 6-10\%$ improvement over the EnKF. These are 529 considerable improvements since the BGEnKF is only called on $\sim 10\%$ of the Window-BT 530 observations. 531

Given the frequent switching from the BGEnKF to the EnKF, the worse-than-NoDA 532 RMSEs and biases in both the EnKF and BGEnKF experiments are likely caused by the 533 EnKF algorithm. These degradations are likely caused by 1) non-Gaussian forecast statis-534 tics, 2) sampling errors, and 3) biases that are introduced by the assimilation of Window-BT. 535 The first factor can originate from having mixtures of clear and cloudy members. Sampling 536 errors can also introduce errors into the analysis, particularly over regions where the ensem-537 ble correlations are weak. This factor is likely present in our experiments because no vertical 538 localization is used in this study. Future work can investigate if vertical localization can mit-539 igate some of the RMSE and bias degradations (Lei & Anderson, 2014; Lei & Whitaker, 540 2015; Lei et al., 2016, 2020). Finally, since biases are a component of RMSEs [e.g., Ying 541 and Zhang (2017), Ying and Zhang (2018), and Chan, Zhang, et al. (2020)], biases that are 542 introduced by Window-BT DA can contribute towards worse-than-NoDA RMSEs. While 543 the contribution of biases to worse-than-NoDA RMSEs can be easily inferred (see the next 544 paragraphs), the contributions from the first two factors cannot be easily teased apart. 545

To understand the contribution of biases to the occurrence of worse-than-NoDA RM-SEs (*i.e.*, nRMSEs > 1), we computed the following fraction as a function of model level and time $(f_{\text{bias}}(k, t))$. For the EnKF experiment, we defined

EnKF's
$$f_{\text{bias}}(k,t) \equiv \sqrt{\frac{[\text{EnKF's biases}(k,t)]^2 - [\text{NoDA's biases}(k,t)]^2}{[\text{EnKF's RMSEs}(k,t)]^2 - [\text{NoDA's RMSEs}(k,t)]^2}}$$

and likewise for the BGEnKF experiment. f_{bias} can be interpreted as the fractional contribu-546

tion of biases to the worse-than-NoDA RMSE performance. 547

⁵⁴⁸ We found that for about 25–45% of the worse-than-NoDA situations (nRMSEs > 1) in ⁵⁴⁹ the U and T fields, the majority of the nRMSE degradation (*i.e.*, $f_{\text{bias}} \ge 0.6$) can be explained ⁵⁵⁰ by the the introduction of biases [*i.e.*, $p(f_{\text{bias}} > 0.6 | \text{nRMSE} > 1) \in (0.25, 0.45)$]. This ⁵⁵¹ suggests that though DA-induced biases are important contributors towards the worse-than-⁵⁵² NoDA RMSEs of either DA filters, the net contribution coming from other factors is also ⁵⁵³ important. Future work can examine separating and quantifying the relative importance of ⁵⁵⁴ these three factors towards the worse-than-NoDA RMSEs.

555

4.3 On the origin of biases in the EnKF and BGEnKF experiments

We now turn our attention to the U, T, Q, Window-BT and WV-BT biases that are in-556 troduced by Window-BT DA. Since the Q analysis increments are subject to bias removal 557 (see last paragraph of section 3.5), the Q biases will be discussed later. The U, T and WV-BT 558 biases are likely related to 1) a cold forecast minus truth (FmT) Window-BT bias at the start 550 of all experiments, and 2) the persistence of these FmT Window-BT biases throughout all 560 cycles (Figure 5(e)). Item 1 is essentially the result of drawing a single member from an en-561 semble – it is difficult to obtain a nature run whose domain-averaged Window-BT is always 562 the same as that of the forecast ensemble. This is supported by the fact that the NoDA experiment's FmT Window-BT biases oscillate around zero (Figure 5(e)). More interestingly, item 564 2 indicates an over abundance of clouds in both DA experiments. Since WV-BT is cooler in 565 the presence of clouds, the WV-BT bias is explained by the over abundance of clouds. 566

To understand the origin of the persistently cold FmT Window-BT biases, we examine 567 the analysis ensembles' Window-BT biases. Running the CRTM on the analysis ensembles 568 of the Window-BT DA experiments reveals analysis minus truth (AmT) Window-BT normalized biases that are typically around -0.25 (not shown). These bias values are a factor 570 of 5 larger than the FmT normalized biases of around -0.05 (Figure 5(e)). The large AmT 571 biases suggest that Window-BT DA resulted in overly cloudy analysis ensembles. Though 572 the time-integration of these analysis ensembles dramatically reduces the over cloudiness 573 (the normalized biases typically go from -0.25 to -0.05), some over cloudiness likely re-574 main. As such, the U, T, Window-BT and WV-BT biases are likely caused by the EnKF and 575 BGEnKF experiments introducing too many clouds into the analysis ensemble. 576

The over introduction of clouds is likely a result of the EnKF's inability to handle clear 577 and cloudy members separately and the strong sensitivity of Window-BTs to hydrometeors. 578 When both clear and cloudy members are present in the forecast ensemble, the EnKF's fore-579 cast mean state will contain some amount of clouds. Suppose that the correlations between 580 Window-BT and hydrometeor mixing ratios are negative. If Window-BT observations with 581 either small or negative innovations are assimilated, the clouds in the EnKF's mean state will either be unaffected (for small innovations) or be increased (for negative innovations). 583 Since the EnKF will also reduce the size of the ensemble members' perturbations, the ensemble thus contracts around a cloudy mean state. The result is that clear column forecast 585 members gain some amount of clouds, even in situations where the innovations are close to zero. Since Window-BTs are sensitive to the presence of clouds, running the CRTM on such 587 members will generate cold cloudy Window-BT values. This mechanism of EnKF-induced 588 over-cloudiness warrants future investigation. 589

Note that the BGEnKF experiment's over-cloudiness is likely caused by the mecha nism in the previous paragraph. This is because the BGEnKF algorithm frequently switches
 over to the EnKF (for ~90% of assimilated observations). Since the BGEnKF can handle
 mixtures of clear and cloudy members, with less frequent switches, the BGEnKF is likely to
 have smaller biases. To test this possibility, smaller sampling errors are necessary to justify
 less frequent switches from the BGEnKF to the EnKF. Future work can thus investigate this
 possibility with larger ensembles.

⁵⁹⁷ With regards to the Q biases, since the analysis increment cannot modify the Q biases ⁵⁹⁸ [see Eq. (9)], these biases are induced during the forecast step of the DA procedure. We can rule out the evaporation of DA-induced spurious clouds as an important source because the hydrometeor biases injected by the increment are an order of magnitude smaller than the Q bias growth during integration (not shown). Other processes are likely causing the Q biases. Some possibilities include enhancements to the upward transport of Q from the surface and/or the latent fluxes from the ocean surface. The exact origin of these Q biases can be investigated in future work.

605

4.4 On dynamical imbalances

Note that the BGEnKF introduces less dynamical imbalances into the ensemble than 606 the EnKF. To measure dynamical imbalance, we compute the root-mean-square of the sec-607 ond time derivative of surface pressure during the time integration phase of each DA cycle 608 (P. Houtekamer & Mitchell, 2005; Temperton & Williamson, 1981). These derivatives are 609 computed via centered differencing (Press & Flannery, 2010) on three consecutive snapshots 610 of the surface pressure field. These snapshots are spaced 30-minutes apart. The resulting im-611 balance metric is normalized using the NoDA experiment's imbalance metric. A normalized 612 imbalance metric value of 1 indicates that a normal amount of fast-moving gravity waves is 613 present. A value greater than 1 indicates that a higher than normal amount of fast-moving gravity waves is present, thus indicating DA-induced imbalances. 615

Figure 6(b) indicates that the BGEnKF experiment generally has either statistically indistinguishable or milder imbalances than the EnKF experiment. The only exception to this trend happens between 0000 UTC to 1200 UTC on 17th October. The BGEnKF is thus likely more appropriate than the EnKF at assimilating Window-BT observations.

5 Conclusions and future work

In this study, we compare the BGEnKF against the EnKF using perfect model OSSEs 621 with a realistic weather model (WRF) for a case of tropical convection. These OSSEs are 622 executed using the state-of-the-art PSU-EnKF system. Our results indicate that the BGEnKF 623 outperforms the EnKF at assimilating synthetic Window-BT observations. We observe this 624 performance advantage in terms of the RMSEs and biases of the U, V, T, Q, Window-BT 625 and WV-BT fields. This performance advantage is likely due to the BGEnKF's ability to 626 handle mixtures of clear and cloudy column members. These performance advantages are 627 achieved even though the BGEnKF s only activated for $\sim 10\%$ of the assimilated Window-BT 628 observations. As such, these promising results motivate future work into the BGEnKF using real data. 630

There are several large areas of future research for the BGEnKF. The first large area 631 concerns refining the BGEnKF algorithm. Future work can, for instance, seek less heuristic 632 approaches to sort the ensemble into clusters in a computationally efficient manner. One op-633 tion is to combine clustering algorithms [e.g., k-means (Forgy, 1965; Lloyd, 1982), support-634 vector machines (Cortes & Vapnik, 1995) and expectation maximization (Sondergaard & Lermusiaux, 2013b)] with dimension reduction methods [e.g., Sondergaard and Lermusiaux 636 (2013b), Reddy et al. (2020), Albarakati et al. (2021)]. Since cluster sizes, and thus sampling 637 errors, can vary in each iteration of the serial BGEnKF loop, future work can investigate us-638 ing adaptive or empirical localization methods (Anderson, 2012; Anderson & Lei, 2013; Lei 639 & Anderson, 2014) to improve the BGEnKF's performance. Future work can also examine 640 more sophisticated methods to regulate when the BGEnKF switches over to the EnKF (e.g., 641 using the Shapiro-Wilk test for normality). 642

Another area of future work is to hybridize the BGEnKF with other DA algorithms.
Hybridization with kernel filters (Anderson & Anderson, 1999; Hoteit et al., 2008; Stordal
et al., 2011; Hoteit et al., 2012; Liu et al., 2016; Stordal & Karlsen, 2017; Kotsuki et al.,
2022) can be achieved by assigning the clear cluster's covariance to clear member kernels
and likewise for the cloudy member kernels. Existing ensemble-variational hybrid DA al-

gorithms (Hamill & Snyder, 2000; Lorenc, 2003; Buehner, 2005; X. Wang et al., 2007) 648 can also be hybridized with the BGEnKF. For instance, the BGEnKF can replace the EnKF 649 component of such methods. Hybridization with DA methods that employ transport methods to update ensemble members (Reich, 2012; van Leeuwen, 2011; Marzouk et al., 2017; 651 Hu & van Leeuwen, 2021; Evensen Geir et al., 2022) is also possible. This can provide 652 a different method to shift members between clusters, as opposed to the current deletion-653 resampling method. Finally, the BGEnKF can be potentially hybridized with ensemble DA methods that allow non-parametric prior distributions. Such methods include particle fil-655 ters (van Leeuwen, 2009; Poterjoy, 2016; Vetra-Carvalho et al., 2018; Poterjoy et al., 2019; 656 van Leeuwen et al., 2019), the quantile conserving ensemble filter (Anderson, 2022), and the 657 rank histogram filter (Anderson, 2010, 2019, 2020). 658

Since we have only tested the BGEnKF in a perfect model WRF OSSE using Window-659 BT observations, future work can test the BGEnKF in increasingly realistic scenarios, with 660 other observation types, and/or in other Earth systems. For instance, since radar reflectivity 661 observations are sensitive to the presence and absence of precipitation, the BGEnKF can 662 potentially be better at assimilating such observations. The performance of the BGEnKF can 663 also be compared with other popular DA algorithms in tests that assimilate the operational 664 suite of atmospheric in-situ and remote observations. Imperfect model OSSEs and real data 665 tests can also be done. The BGEnKF can also be tested in other Earth system components. 666

This study is among the first to demonstrate the potential of the BGEnKF with a highorder weather model. Our BGEnKF is computationally efficient, scalable with parallelization, and likely straightforward to implement in existing serial EnKF DA systems. These algorithmic properties and our promising results motivate future research into developing, testing and applying the BGEnKF, or similar GMM-EnKFs, for Earth systems DA.

672 6 Open Research

The data and software used in this study are either publicly available or available upon 673 request. The WRF model software can be found on the National Center for Atmospheric 674 Research's WRF website (https://www.mmm.ucar.edu/weather-research-and-forecastingmodel). Our WRF ensemble is constructed using the ECMWF TIGGE data archived on the 676 MARS system (https://apps.ecmwf.int/datasets/data/tigge) and the ERA5 data archived on 677 the CDS system (https://cds.climate.copernicus.eu). The MERG data product is obtained 678 from NASA's GES DISC (https://disc.gsfc.nasa.gov/datasets/GPM_MERGIR_1/summary). We have archived this study's experiments and a copy of the Fortran 90 BGEnKF module on 680 the Pennsylvania State University's Data Commons (http://doi.org/10.26208/XV41-7N75). 681 The Fortran 90 source code of the PSU-EnKF system, including the implemented BGEnKF, 682 is available upon request. 683

684 Acknowledgments

This work is supported by the Office of Naval Research (ONR) Grant N00014-18-1-2517, the National Aeronautics and Space Administration (NASA) Grant 80NSSC22K0613, 686 the National Center for Atmospheric Research (NCAR) Advanced Study Program Graduate 687 Visitor Program (ASP GVP), and the Water Cycle and Climate Extremes Modeling (WAC-600 CEM) project. WACCEM is funded by the U.S. Department of Energy Office of Science 689 Biological and Environmental Research, as part of the Regional and Global Climate Mod-690 eling program, and NCAR is sponsored by the National Science Foundation. Any opinions, 691 findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. Finally, 693 the computations in this study are performed using the Texas Advanced Computing Center 694 (TACC) Stampede2 supercomputer and the National Energy Research Scientific Comput-695

⁶⁹⁶ ing Center (NERSC) Cori supercomputer. NERSC is a U.S. Department of Energy Office of

⁶⁹⁷ Science User Facility operated under Contract DE-AC02-05CH11231.

698 References

	Albarakati A Budičić M Cracker D Class Klaiber I Jams S Macleon I
699	Van Vleck F. S. (2021) Model and data reduction for data assimilation: Particle fil
700	ters employing projected forecasts and data with application to a shallow water model
701	Computers and Mathematics with Applications doi: 10.1016/j.camwa.2021.05.026
702	Anderson I. J. (2003. 4) A Local Least Squares Framework for Ensemble Filtering
703	Monthly Weather Paview 131(4) 634 642 Petrieved from http://journals
704	$\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{100000}$ $\frac{1}{10000000000000000000000000000000000$
705	d_{0i} : 10 1175/1520-0493(2003)131<0634: ALL SEE>2.0 CO:2
706	Anderson I. J. (2010, 11) A Non-Gaussian Ensemble Filter Undate for Data Assimilation
707	Monthly Weather Review 138(11) A186-A108 Retrieved from http://journals
708	ametsoc org/doi/10 1175/2010MWR3253 1 doi: 10.1175/2010MWR3253 1
709	Anderson I. J. (2012) Localization and sampling error correction in ensemble Kalman
710	filter data assimilation Monthly Weather Review 140(7) doi: 10.1175/MWR-D-11
711	
712	Anderson I. J. (2019) A nonlinear rank regression method for ensemble Kalman filter data
713	assimilation (Vol. 147) (No. 8) doi: 10.1175/MWB-D-18-0448.1
714	Anderson I. J. (2020) A marginal adjustment rank histogram filter for non-Gaussian
715	ensemble data assimilation Monthly Weather Review 148(8) doi: 10.1175/
/16	MWR_D_19_0307 1
717	Anderson I. J. (2022) A Quantile-Conserving Ensemble Filter Framework Part I: Undating
/18	an Observed Variable Monthly Weather Review 150(5) doi: 10.1175/mwr.d.21.0229
719	1
720	Anderson I.I. & Anderson S.I. (1999) A Monte Carlo implementation of the nonlinear
721	filtering problem to produce ensemble assimilations and forecasts <i>Monthly Weather</i>
722	Review doi: 10.1175/1520-0493(1999)127<2741: AMCIOT>2.0 CO:2
723	Anderson I. J. & Collins N (2007.8) Scalable Implementations of Ensemble Filter Algo-
724	rithms for Data Assimilation <i>Journal of Atmospheric and Oceanic Technology</i> 24(8)
725	1452–1463 Retrieved from https://journals.ametsoc.org/view/journals/
720	atot/24/8/itech2049 1 xml doi: 10.1175/ITECH2049.1
728	Anderson I.L. Hoar T. Raeder K. Liu H. Collins N. Torn R. & Avellano A. (2009
729	9). The data assimilation research testbed a community facility. <i>Bulletin of the Amer-</i>
730	ican Meteorological Society, 90(9), 1283–1296. Retrieved from https://iournals
731	.ametsoc.org/doi/10.1175/2009BAMS2618.1 doi: 10.1175/2009BAMS2618.1
732	Anderson, J. L., & Lei, L. (2013). Empirical localization of observation impact in ensemble
733	Kalman filters. <i>Monthly Weather Review</i> . 141(11). doi: 10.1175/MWR-D-12-00330
734	.1
735	Buehner, M. (2005). Ensemble-derived stationary and flow-dependent background-error
736	covariances: Evaluation in a quasi-operational NWP setting. <i>Ouarterly Journal of the</i>
737	Royal Meteorological Society, $131(607)$. doi: 10.1256/gj.04.15
738	Burgers, G., Jan van Leeuwen, P., Evensen, G., Van Leeuwen, P. J., & Evensen, G. (1998,
739	6). Analysis scheme in the ensemble Kalman filter. <i>Monthly Weather Review</i> , 126(6),
740	1719–1724. Retrieved from http://journals.ametsoc.org/doi/10.1175/1520
741	-0493(1998)126%3C1719:ASITEK%3E2.0.C0;2 doi: 10.1175/1520-0493(1998)
742	126<1719:ASITEK>2.0.CO;2
743	Chan, MY., Anderson, J. L., & Chen, X. (2020). An efficient bi-Gaussian ensemble Kalman
744	filter for satellite infrared radiance data assimilation. Monthly Weather Review. doi:
745	10.1175/mwr-d-20-0142.1
746	Chan, MY., & Chen, X. (2021). Improving Analyses and Forecasts of a Tropical Squall
747	Line using Upper Tropospheric Infrared Satellite Observations. Advances in Atmo-
748	spheric Sciences, Accepted Manuscript. Retrieved from http://www.iapjournals

749	.ac.cn/aas/en/article/doi/10.1007/s00376-021-0449-8http://www
750	.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-021-0449-8
751	?viewType=HTML doi: 10.1007/S00376-021-0449-8
752	Chan, MY., Zhang, F., Chen, X., & Leung, L. R. (2020). Potential Impacts of Assimilating
753	All-sky Satellite Infrared Radiances on Convection-Permitting Analysis and Prediction
754	of Tropical Convection. <i>Monthly Weather Review</i> , doi: 10.1175/mwr-d-19-0343.1
755	Chen E & Dudhia I (2001). Counting and advanced land surface-hydrology model
/55	with the Donn State NCAP MM5 modeling system. Dort I: Model implementation
756	and consistivity. Monthly Words on Provingendary day, 10, 1175/1520, 0402(2001) 120 (0560)
757	and sensitivity. Monunity weather Keview. doi: $10.1175/1520-0495(2001)129<0509$.
758	CAALSH>2.0.CU;2
759	Chen, X., Leung, L. R., Feng, Z., & Song, F. (2021, 10). Crucial Role of Mesoscale Con-
760	vective Systems in the Vertical Mass, Water and Energy Transports of the South Asian
761	Summer Monsoon. <i>Journal of Climate</i> , - <i>I</i> (aop), 1–46. Retrieved from https://
762	journals.ametsoc.org/view/journals/clim/aop/JCLI-D-21-0124.1/
763	JCLI-D-21-0124.1.xml doi: 10.1175/JCLI-D-21-0124.1
764	Chen, X., Leung, L. R., Feng, Z., Song, F., & Yang, Q. (2021, 9). Mesoscale Convec-
765	tive Systems Dominate the Energetics of the South Asian Summer Monsoon Onset.
766	Geophysical Research Letters, 48(17), e2021GL094873. Retrieved from https://
767	onlinelibrary.wiley.com/doi/full/10.1029/2021GL094873https://
768	onlinelibrary.wiley.com/doi/abs/10.1029/2021GL094873https://
769	<pre>agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094873 doi:</pre>
770	10.1029/2021GL094873
771	Chen, X., Leung, L. R., Feng, Z., & Yang, Q. (2022, 4). Precipitation-Moisture Coupling
772	Over Tropical Oceans: Sequential Roles of Shallow, Deep, and Mesoscale Convec-
773	tive Systems. Geophysical Research Letters, 49(7). Retrieved from https://
774	onlinelibrary.wiley.com/doi/10.1029/2022GL097836 doi: 10.1029/
775	2022GL097836
776	Chen X Nystrom R G Davis C A & Zarzycki C M (2020–12) Dynamical Struc-
770	tures of Cross-Domain Forecast Error Covariance of a Simulated Tronical Cyclone in
770	a Convection-Permitting Coupled Atmosphere-Ocean Model Monthly Weather Re-
770	view 149(1) 41_63 Retrieved from https://journals.ametsoc.org/view/
779	$i_{0,1}$ i_{0
780	Chan X Pauluis O M Laung L P & Zhang E (2018) Multiscale atmospheric over
781	turning of the Indian summer monscon as soon through isontronic analysis. <i>Lowrool</i> of
782	the Atmospheric Sciences, doi: 10.1175/JAS D.18.0068.1
783	ine Aimospheric Sciences. doi: 10.11/3/JAS-D-18-0008.1
784	Chen, X., Pauluis, O. M., & Zhang, F. (2018). Atmospheric overturning across multiple
785	scales of an MJO event during the CINDY/DY NAMO campaign. <i>Journal of the Atmo-</i>
786	spheric Sciences. doi: 10.11/5/JAS-D-1/-0060.1
787	Chen, X., & Zhang, F. (2019). Relative Roles of Preconditioning Moistening and Global
788	Circumnavigating Mode on the MJO Convective Initiation During DYNAMO. Geo-
789	physical Research Letters. doi: 10.1029/2018GL080987
790	Chou, MD., & Suarez, M. J. (1999). A Solar Radiation Parameterization Atmospheric
791	Studies. Technical Report Series on Global Modeling and Data Assimilation.
792	Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3). doi:
793	10.1023/A:1022627411411
794	Dovera, L., & Della Rossa, E. (2011). Multimodal ensemble Kalman filtering using Gaussian
795	mixture models. Computational Geosciences, 15(2), 307-323. doi: 10.1007/s10596
796	-010-9205-3
797	Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S., Benjamin, S. G., Manikin.
798	G. S., Alcott, T. I. (2022). The High-Resolution Rapid Refresh (HRRR): An
799	Hourly Updating Convection-Allowing Forecast Model. Part 1: Motivation and System
800	Description. Weather and Forecasting. Retrieved from https://journals.ametsoc
801	.org/view/journals/wefo/aop/WAF-D-21-0151.1/WAF-D-21-0151.1.xml
802	doi: 10.1175/WAF-D-21-0151.1
002	ECMWE (2016) IES Documentation CY41R2 - Part I: Observations ECMWE In Its doc
003	2010, 10 2010 , 10 2000 10 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

804 805	<pre>umentation cy41r2 (chap. 1). ECMWF. Retrieved from https://www.ecmwf.int/ en/elibrary/16646-ifs-documentation-cy41r2-part-i-observations</pre>
806	Edwards, C. A., Moore, A. M., Hoteit, I., & Cornuelle, B. D. (2015). Regional ocean data
807	assimilation. Annual Review of Marine Science, 7. doi: 10.1146/annurev-marine
808	-010814-015821
809	Emanuel, K. A. (1994). Atmospheric Convection.
810	Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic
811	model using Monte Carlo methods to forecast error statistics. Journal of Geo-
812	physical Research, 99(C5), 10143–10162. Retrieved from https://doi.org/
813	10.1029/94JC00572http://doi.wiley.com/10.1029/94JC00572 doi:
814	10.1029/94JC005/2
815	Evensen Geir, Vossepoel Femke C., & van Leeuwen Peter Jan. (2022). Particle Flow
816	for a Quasi-Geostrophic Model. In <i>Data assimilation fundamentals: A unified for-</i>
817	mulation of the state and parameter estimation problem (pp. 199–206). Cham:
818	978_{3}_{0}
819	For $y \in W$ (1965). Cluster analysis of multivariate data: efficiency versus interpretability
820	of classifications <i>Riometrics</i> 21(3)
021	Fu I X Wang W Shinoda T Ren H L & Jia X (2017) Toward Understanding the
823	Diverse Impacts of Air-Sea Interactions on MIO Simulations. <i>Journal of Geophysical</i>
824	Research: Oceans. 122(11). doi: 10.1002/2017JC013187
825	Gaspari, G., & Cohn, S. E. (1999, 1). Construction of correlation functions in two and three
826	dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 723–
827	757. Retrieved from http://doi.wiley.com/10.1002/qj.49712555417 doi:
828	10.1256/smsqj.55416
829	Geer, A. J., & Bauer, P. (2011, 10). Observation errors in all-sky data assimilation. <i>Quarterly</i>
830	Journal of the Royal Meteorological Society, 137(661), 2024–2037. Retrieved from
831	http://doi.wiley.com/10.1002/qj.830 doi: 10.1002/qj.830
832	Geer, A. J., Lonitz, K., Weston, P., Kazumori, M., Okamoto, K., Zhu, Y., Schraff, C.
833	(2018). All-sky satellite data assimilation at operational weather forecasting centres.
834	Quarterly Journal of the Royal Meteorological Society. doi: 10.1002/qj.3202
835	Greybush, S. J., Kalnay, E., Miyoshi, T., Ide, K., & Hunt, B. R. (2011). Balance and ensem-
836	doi: 10.1175/2010MWR3328.1
838	Grimes, D. L. & Pardo-Igúzquiza, E. (2010). Geostatistical analysis of rainfall. <i>Geographical</i>
839	Analysis, 42(2). doi: 10.1111/j.1538-4632.2010.00787.x
840	Hamill, T. M., & Snyder, C. (2000). A hybrid ensemble Kalman filter-3D variational anal-
841	ysis scheme. Monthly Weather Review, 128(8 II). doi: 10.1175/1520-0493(2000)
842	128<2905:ahekfv>2.0.co;2
843	Harnisch, F., Weissmann, M., & Periáñez. (2016). Error model for the assimilation of cloud-
844	affected infrared satellite observations in an ensemble data assimilation system. Quar-
845	terly Journal of the Royal Meteorological Society. doi: 10.1002/qj.2776
846	Helmert, J., Şorman, A., Montero, R. A., De Michele, C., de Rosnay, P., Dumont, M.,
847	Arslan, A. N. (2018). Review of snow data assimilation methods for hydrological, land
848	surface, meteorological and climate models: Results from a COST harmosnow survey
849	(Vol. 8) (No. 12). doi: 10.3390/geosciences8120489
850	Hersbach, H., Bell, B., Berristord, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Thé-
851	paut, J. N. (2020). The ERAS global reanalysis. Quarterly Journal of the Royal
852	mereororogical society, aoi. 10.1002/4J.5805 Honda T. Miyoshi T. Lian G. V. Nishizawa S. Voshida D. Adashi S. A. – Possha
853	K (2018 1) Assimilating all-sky Himawari-8 satellite infrared radiances: A case of
d54 855	Typhoon Soudelor (2015) Monthly Weather Review 146(1) 213–229 doi: 10.1175/
856	
000	MWR-D-16-0357.1

plicit treatment of entrainment processes. *Monthly Weather Review*. doi: 10.1175/

859	MWR3199.1
860	Hoteit, I., Luo, X., & Pham, DT. (2012, 2). Particle Kalman Filtering: A Nonlinear
861	Bayesian Framework for Ensemble Kalman Filters. Monthly Weather Review, 140(2),
862	528-542. Retrieved from https://journals.ametsoc.org/doi/10.1175/
863	2011MWR3640.1 doi: 10.1175/2011MWR3640.1
864	Hoteit, I., Pham, D. T., Triantafyllou, G., & Korres, G. (2008). A new approximate solution
865	of the optimal nonlinear filter for data assimilation in meteorology and oceanography.
966	Monthly Weather Review 136(1) doi: 10 1175/2007MWR1927 1
000	Houtekamer P. & Mitchell H. I. (2005, 10) Ensemble Kalman filtering. Quartarhy Journal
867	of the Poyal Meteorological Society 121(612) 2260, 2280, doi: 10.1256/gi 05.125
868	<i>Of the Royal Meteorological Society, 151</i> (015), 5209–5269. doi: 10.1250/qj.05.155
869	Houlekamer, P. L., & Milchell, H. L. (1998). Data assimilation using an ensemble
870	Kaiman filter technique. <i>Monthly Weather Review</i> , 120(3), 196–811. doi: 10.1175/
871	1520-0493(1998)126<0/96:DAUAEK>2.0.CU;2
872	Houtekamer, P. L., & Mitchell, H. L. (2001). A sequential ensemble Kalman filter for
873	atmospheric data assimilation. <i>Monthly Weather Review</i> , 129(1), 123–137. doi:
874	10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
875	Houtekamer, P. L., & Zhang, F. (2016). Review of the ensemble Kalman filter for at-
876	mospheric data assimilation. Monthly Weather Review, 144(12), 4489-4532. doi:
877	10.1175/MWR-D-15-0440.1
878	Hu, C. C., & van Leeuwen, P. J. (2021). A particle flow filter for high-dimensional system
879	applications. Quarterly Journal of the Royal Meteorological Society, 147(737). doi:
880	10.1002/qj.4028
881	Hunt, B. R., Kostelich, E. J., & Szunyogh, I. (2007, 6). Efficient data assimilation for spa-
882	tiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear
883	Phenomena, 230(1-2), 112–126. Retrieved from https://linkinghub.elsevier
884	.com/retrieve/pii/S0167278906004647 doi: 10.1016/j.physd.2006.11.008
885	Jacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins,
886	W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the
887	AER radiative transfer models. <i>Journal of Geophysical Research Atmospheres</i> , doi:
888	10.1029/2008JD009944
889	Janowiak J E Joyce R J & Yarosh Y (2001) A real-time global half-hourly pixel-
890	resolution infrared dataset and its applications. <i>Bulletin of the American Meteorologi</i> -
891	<i>cal Society</i> , 82(2), doi: 10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO:2
000	Johnson R H Rickenbach T M Rutledge S A Ciesielski P E & Schubert W H
092	(1000) Trimodal characteristics of Tropical convection <i>Journal of Climate</i> 12(8
893	(1777). Trinodal characteristics of Tropical convection. <i>Journal of Cumate</i> , 12(0) PAPT 1). doi: 10.1175/1520.04/2(1000)012<2307:tcote>2.0.co:2
894	Kannanna C I. Dianackar M M. Kurkowski N D & Adamac D A (2005) Encamble
895	Keppenne, C. L., Klenecker, M. M., Kurkowski, N. F., & Audinec, D. A. (2003). Ensemble
896	complication to account mediction. Newlinean Processes in Coonhugies, 12(4), doi:
897	application to seasonal prediction. <i>Nonlinear Processes in Geophysics</i> , 12(4). doi:
898	10.5194/IIPg = 12-491-2005
899	Kotsuki, S., Wilyoshi, I., Kondo, K., & Pounasi, K. (2022). A Local Particle Filter and Its
900	Gaussian Mixture Extension Implemented with Minor Modifications to the LETKF.
901	Geoscientific Model Development Discussions, 2022, 1–38. Retrieved from https://
902	gmd.copernicus.org/preprints/gmd-2022-69/ doi: 10.5194/gmd-2022-69
903	Lei, L., & Anderson, J. L. (2014). Comparisons of empirical localization techniques for
904	serial ensemble kalman filters in a simple atmospheric general circulation model.
905	Monthly Weather Review, 142(2). doi: 10.1175/MWR-D-13-00152.1
906	Lei, L., Anderson, J. L., & Whitaker, J. S. (2016). Localizing the impact of satellite radiance
907	observations using a global group ensemble filter. Journal of Advances in Modeling
908	Earth Systems, 8(2). doi: 10.1002/2016MS000627
909	Lei, L., & Whitaker, J. S. (2015). Model space localization is not always better than observa-
910	tion space localization for assimilation of satellite radiances. Monthly Weather Review,
911	143(10). doi: 10.1175/MWR-D-14-00413.1
912	Lei, L., Whitaker, J. S., Anderson, J. L., & Tan, Z. (2020). Adaptive Localization for Satel-
913	lite Radiance Observations in an Ensemble Kalman Filter. Journal of Advances in

914	Modeling Earth Systems, 12(8). doi: 10.1029/2019MS001693
915	Lim, K. S. S., & Hong, S. Y. (2010). Development of an effective double-moment cloud
916	microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather
917	and climate models. <i>Monthly Weather Review</i> . doi: 10.1175/2009MWR2968.1
918	Liu, B., Ait-El-Fquih, B., & Hoteit, I. (2016). Efficient kernel-based ensemble Gaussian
919	mixture filtering. Monthly Weather Review, 144(2). doi: 10.1175/MWR-D-14-00292
920	.1
921	Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information
922	Theory, 28(2). doi: 10.1109/TIT.1982.1056489
923	Lorenc, A. C. (2003). Modelling of error covariances by 4D-Var data assimilation. <i>Quarterly</i>
924	Journal of the Royal Meteorological Society, 129(595 PART B), 3167-3182. doi:
925	10.1256/qj.02.131
926	Madden, R. A., & Julian, P. R. (1971). Detection of a 40–50 Day Oscillation in the Zonal
927	Wind in the Tropical Pacific. Journal of the Atmospheric Sciences. doi: 10.1175/
928	1520-0469(1971)028<0702:doadoi>2.0.co;2
929	Madden, R. A., & Julian, P. R. (1972). Description of Global-Scale Circulation Cells in the
930	Tropics with a 40-50 Day Period. Journal of the Atmospheric Sciences. doi: 10.1175/
931	1520-0469(1972)029<1109:dogscc>2.0.co;2
932	Markowski, P., & Richardson, Y. (2010). Mesoscale Meteorology in Midlatitudes. doi:
933	10.1002/9780470682104
934	Marzouk, Y., Moselhy, T., Parno, M., & Spantini, A. (2017). Sampling via measure trans-
935	port: An introduction. In Handbook of uncertainty quantification. doi: 10.1007/
936	978-3-319-12385-1{_}23
937	Meng, Z., & Zhang, F. (2007). Tests of an ensemble Kalman filter for mesoscale and
938	regional-scale data assimilation. Part II: Imperfect model experiments. Monthly
939	Weather Review, 135(4), 1403–1423. doi: 10.1175/MWR3352.1
940	Meng, Z., & Zhang, F. (2008). Tests of an ensemble Kalman filter for mesoscale and
941	regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case
942	study. <i>Monthly Weather Review</i> . doi: 10.1175/2007MWR2106.1
943	Minamide, M., & Zhang, F. (2017). Adaptive observation error inflation for assimilating
944	all-Sky satellite radiance. <i>Monthly Weather Review</i> , 145(3), 1063–1081. doi: 10.1175/
945	MWR-D-16-0257.1
946	Minamide, M., & Zhang, F. (2018). Assimilation of all-sky infrared radiances from
947	Himawari-8 and impacts of moisture and hydrometer initialization on convection-
948	permitting tropical cyclone prediction. <i>Monthly weather Review</i> , 140(10), 3241–3258.
949	doi: 10.11/5/MWK-D-1/-036/.1
950	Minamide, M., & Zhang, F. (2019). An adaptive background error inflation method for
951	assimilating all-sky radiances. Quarterly Journal of the Royal Meteorological Society,
952	143(719), 803-825. (0): 10.1002/(J).3400
953	Park, S. K., & Xu, L. (2016). Data assimilation for atmospheric, oceanic and hydrologic
954	applications (vol. 11). doi: 10.100//9/8-5-519-45415-5
955	toms Monthly Weather Paview 144(1) 50.76 Detrived from http://ioumals
956	ametroes ang/doi/10 1175/MUD D 15 0162 1 doi: 10.1175/MUD D 15 0162
957	1
300	Poteriov I Wicker I & Ruehner M (2019) Progress toward the application of a local
959	ized particle filter for numerical weather prediction Monthly Weather Review doi:
961	10 1175/MWR-D-17-0344 1
961	Press W & Flannery B (2010) Numerical Regines in Fortran 90 (Vol. 35) (No. 6)
302	Reddy G T Reddy M P K Lakshmanna K Kaluri R Rainut D S Srivactava G &
606	Baker T (2020) Analysis of Dimensionality Reduction Techniques on Rig Data
965	IEEE Access. 8. doi: 10.1109/ACCESS.2020.2980942
966	Reich, S. (2012). A Gaussian-mixture ensemble transform filter. <i>Quarterly Journal of the</i>
967	Royal Meteorological Society, 138(662), doi: 10.1002/ai.898

969	S. P. P., & Zaitchik, B. F. (2009). Recent Advances in Land Data Assimilation at
970	the NASA Global Modeling and Assimilation Office. In Data assimilation for atmo-
971	spheric, oceanic and hydrologic applications. doi: 10.1007/978-3-540-71056-1{\
972	_}21
973	Skamarock, W., Klemp, J., Dudhi, J., Gill, D., Barker, D., Duda, M., Powers, J.
974	(2008). A Description of the Advanced Research WRF Version 3. NCAR Tech.
975	Note NCAR/TN-468+STR, 113 pp. NCAR TECHNICAL NOTE. doi: 10.5065/
976	D68S4MVH
977	Sondergaard, T., & Lermusiaux, P. F. (2013a). Data assimilation with gaussian mixture mod-
978	els using the dynamically orthogonal field equations. Part II: Applications. <i>Monthly</i>
979	Weather Review, 141(6), 1761–1785, doi: 10.1175/MWR-D-11-00296.1
090	Sondergaard T & Lermusiaux P F (2013b 6) Data assimilation with gaussian mixture
001	models using the dynamically orthogonal field equations. Part I: Theory and scheme
982	Monthly Weather Review 141(6) 1737–1760 Retrieved from https://iournals
083	ametsoc.org/view/journals/mwre/141/6/mwr-d-11-00295.1.xml doi
984	10 1175/MWR-D-11-00295 1
005	Stammer D. Balmaseda M. Heimhach P. Köhl A. & Weaver A. (2016). Ocean Data
900	Assimilation in Support of Climate Applications: Status and Perspectives Annual
900	Review of Marine Science & doi: 10.1146/annurey-marine-122414-034113
000	Stordal A S & Karlsen H A (2017) Large sample properties of the adaptive gaussian
989	mixture filter. <i>Monthly Weather Review</i> . 145(7). doi: 10.1175/MWR-D-15-0372.1
990	Stordal A S Karlsen H A Næydal G Skaug H I & Vallès B (2011) Bridging
991	the ensemble Kalman filter and particle filters. The adaptive Gaussian mixture filter
992	Computational Geosciences, 15(2), doi: 10.1007/s10596-010-9207-1
003	Swinbank R Kyouda M Buchanan P Froude L Hamill T M Hewson T D Ya-
994	maguchi M (2016) The TIGGE project and its achievements <i>Bulletin of the Ameri-</i>
995	can Meteorological Society. doi: 10.1175/BAMS-D-13-00191.1
996	Temperton, C., & Williamson, D. L. (1981). Normal mode initialization for a multilevel
997	grid-noint model Part I: Linear aspects Monthly Weather Review 109(4) doi: 10
998	.1175/1520-0493(1981)109<0729:NMIFAM>2.0.CO;2
999	Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., & Whitaker, J. S. (2003, 7).
1000	Ensemble Square Root Filters. <i>Monthly Weather Review</i> , 131(7), 1485–1490. Re-
1001	trieved from http://journals.ametsoc.org/doi/10.1175/1520-0493(2003)
1002	131%3C1485:ESRF%3E2.0.C0;2 doi: 10.1175/1520-0493(2003)131<1485:
1003	ESRF>2.0.CO;2
1004 1005	van Leeuwen, P. J. (2009). Particle filtering in geophysical systems. doi: 10.1175/ 2009MWR2835.1
1006	van Leeuwen, P. J. (2011). Efficient nonlinear data assimilation for oceanic models of in-
1007	termediate complexity. In <i>leee workshop on statistical signal processing proceedings</i> .
1008	doi: 10.1109/SSP.2011.5967700
1009	van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., & Reich, S. (2019, 7). Particle
1010	filters for high-dimensional geoscience applications: A review (Vol. 145) (No. 723).
1011	John Wiley and Sons Ltd. doi: 10.1002/qj.3551
1012	Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf, M. U., Brasseur, P.,
1013	Beckers, J. M. (2018). State-of-the-art stochastic data assimilation methods for high-
1014	dimensional non-Gaussian problems. Tellus, Series A: Dynamic Meteorology and
1015	Oceanography. doi: 10.1080/16000870.2018.1445364
1016	Wang, S., Sobel, A. H., Zhang, F., Qiang Sun, Y., Yue, Y., & Zhou, L. (2015). Re-
1017	gional simulation of the october and november MJO events observed during the
1018	CINDY/DYNAMO field campaign at gray zone resolution. Journal of Climate, 28(6),
1019	2097–2119. doi: 10.1175/JCLI-D-14-00294.1
1020	Wang, X., Snyder, C., & Hamill, T. M. (2007). On the theoretical equivalence of differ-
1021	ently proposed ensemble - 3DVAR hybrid analysis schemes. Monthly Weather Review,
1022	135(1). doi: 10.1175/MWR3282.1
1023	Whitaker, J. S., & Hamill, T. M. (2002, 7). Ensemble data assimilation without perturbed

1024	observations. Monthly Weather Review, 130(7), 1913–1924. Retrieved from http://
1025	journals.ametsoc.org/doi/10.1175/1520-0493(2002)130%3C1913:EDAWPO%
1026	3E2.0.C0;2 doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
1027	Whitaker, J. S., Hamill, T. M., Wei, X., Song, Y., & Toth, Z. (2008). Ensemble data assim-
1028	ilation with the NCEP global forecast system. Monthly Weather Review, 136(2). doi:
1029	10.1175/2007MWR2018.1
1030	Ying, Y., & Zhang, F. (2017). Practical and intrinsic predictability of multiscale weather and
1031	convectively coupled equatorial waves during the active phase of an MJO. Journal of
1032	the Atmospheric Sciences, 74(11), 3771-3785. doi: 10.1175/JAS-D-17-0157.1
1033	Ying, Y., & Zhang, F. (2018). Potentials in improving predictability of multiscale tropical
1034	weather systems evaluated through ensemble assimilation of simulated satellite-based
1035	observations. Journal of the Atmospheric Sciences, 75(5), 1675–1698. doi: 10.1175/
1036	JAS-D-17-0245.1
1037	Zhang, F., Minamide, M., & Clothiaux, E. E. (2016). Potential impacts of assimilating all-
1038	sky infrared satellite radiances from GOES-R on convection-permitting analysis and
1039	prediction of tropical cyclones. Geophysical Research Letters, 43(6), 2954–2963. doi:
1040	10.1002/2016GL068468
1041	Zhang, F., Snyder, C., & Sun, J. (2004, 5). Impacts of initial estimate and observation avail-
1042	ability on convective-scale data assimilation with an ensemble Kalman filter. Monthly
1043	Weather Review, 132(5), 1238–1253. doi: 10.1175/1520-0493(2004)132<1238:
1044	IOIEAO>2.0.CO;2
1045	Zhang, F., Taraphdar, S., & Wang, S. (2017). The role of global circumnavigating mode in
1046	the MJO initiation and propagation. Journal of Geophysical Research, 122(11), 5837-
1047	5856. doi: 10.1002/2016JD025665
1048	Zhang, Y., Sieron, S. B., Lu, Y., Chen, X., Nystrom, R. G., Minamide, M., Zhang, F.
1049	(2021, 12). Ensemble-Based Assimilation of Satellite All-Sky Microwave Radiances
1050	Improves Intensity and Rainfall Predictions for Hurricane Harvey (2017) (Vol. 48)
1051	(No. 24). John Wiley and Sons Inc. doi: 10.1029/2021GL096410
1052	Zhang, Y., Stensrud, D. J., & Zhang, F. (2019, 12). Simultaneous Assimilation of Radar and
1053	All-Sky Satellite Infrared Radiance Observations for Convection-Allowing Ensemble
1054	Analysis and Prediction of Severe Thunderstorms. Monthly Weather Review, 147(12),
1055	4389-4409. Retrieved from https://journals.ametsoc.org/view/journals/
1056	mwre/147/12/mwr-d-19-0163.1.xml doi: 10.1175/MWR-D-19-0163.1

Figure 1.

Figure 6.

Figure 2.

Figure 5.

Figure 4.

Figure 3.

The potential benefits of handling mixture statistics via a bi-Gaussian EnKF: tests with all-sky satellite infrared radiances

1

2

14

Key Points:

3	Man-Yau Chan ^{1,2} , Xingchao Chen ^{1,2} , Jeffrey L. Anderson ³
4	¹ Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania,
5	USA
6	
8	² Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park,
9	Pennsylvania, USA
10	
12	³ Data Assimilation Research Section, Computational Information Systems Laboratory, National Center for Atmospheric
13	Research, Boulder, Colorado, USA

15	• Current ensemble DA methods assume that forecasts follow a normal distrib	ution.
16	This assumption is often invalid.	
17	• In this study, we propose a computationally efficient ensemble DA method the	nat han-
18	dles clear and cloudy forecasts separately.	
19	• This study uses a realistic weather model (WRF) to show that this method ca	an outper-
20	form the EnKF.	

 $Corresponding \ author: \ Man-Yau \ Chan, \ {\tt chanmanyau@gmail.com}$

21 Abstract

The meteorological characteristics of cloudy atmospheric columns can be very dif-22 ferent from their clear counterparts. Thus, when a forecast ensemble is uncertain about the 23 presence/absence of clouds at a specific atmospheric column (*i.e.*, some members are clear 24 while others are cloudy), that column's ensemble statistics will contain a mixture of clear and 25 cloudy statistics. Such mixtures are inconsistent with the ensemble data assimilation algo-26 rithms currently used in numerical weather prediction. Hence, ensemble data assimilation 27 algorithms that can handle such mixtures can potentially outperform currently used algo-28 rithms. 29

In this study, we demonstrate the potential benefits of addressing such mixtures through 30 a bi-Gaussian extension of the ensemble Kalman filter (BGEnKF). The BGEnKF is com-31 pared against the commonly used ensemble Kalman filter (EnKF) using perfect model ob-32 serving system simulated experiments (OSSEs) with a realistic weather model (the Weather 33 Research and Forecast model). Synthetic all-sky infrared radiance observations are assimi-34 lated in this study. In these OSSEs, the BGEnKF outperforms the EnKF in terms of the hor-35 izontal wind components, temperature, specific humidity, and simulated upper tropospheric 36 water vapor channel infrared brightness temperatures. 37

This study is one of the first to demonstrate the potential of a Gaussian mixture model EnKF with a realistic weather model. Our results thus motivate future research towards improving numerical Earth system predictions though explicitly handling mixture statistics.

41 Plain Language Summary

The accuracy of a computer weather forecast often depends on the accuracy of the information inputted into the computer forecast system. The accuracy of the input in turn depends on the accuracy of the input-constructing algorithm. Such algorithms often use probabilistic forecasts from an earlier point in time and current atmospheric measurements to construct the inputs.

A common assumption in input-constructing algorithms is that the probabilistic forecasts follow multivariate normal distributions (henceforth called the normality assumption). However, in the frequent situation where the probabilistic forecasts are uncertain about the presence/absence of clouds, the normality assumption is violated. This is because clear atmospheric columns and cloudy atmospheric columns have distinctly different thermodynamic and dynamic characteristics. Such probabilistic forecasts thus have mixed statistics (henceforth termed mixed probabilistic forecasts). Addressing these mixed statistics can potentially improve forecasts.

In this study, we propose a new input-constructing algorithm that can explicitly handle mixed probabilistic forecasts. Compared to an existing popular algorithm, our algorithm is nearly as fast and can produced more accurate forecast inputs. Our work thus suggests that weather forecasts can be improved by upgrading input-constructing algorithms to treat a common situation where the normality assumption is violated.

60 **1 Introduction**

Earth system analysis and forecasting systems rely on ensemble data assimilation (ensemble DA, or EDA) methods to convert observations into corrections for Earth system model variables (Keppenne et al., 2005; Reichle et al., 2009; Edwards et al., 2015; Stammer et al., 2016; Park & Xu, 2016; ECMWF, 2016; Helmert et al., 2018; Hersbach et al., 2020). Current operational EDA methods typically assume that every member in an input forecast ensemble is drawn from a distribution only containing a single Gaussian kernel [*i.e.*, a Gaussian distribution; henceforth termed the unmixed ensemble assumption; *e.g.*, Geer et al. (2018) and Dowell et al. (2022)]. The effectiveness of such methods can thus can be limited by the validity of this assumption.

The unmixed ensemble assumption is violated for ensembles that are uncertain about 70 the presence or absence of clouds at any model grid point. This is because clear atmospheric 71 columns and cloudy atmospheric columns often have different dynamic, thermodynamic, 72 and radiative properties [e.g., Emanuel (1994), Markowski and Richardson (2010)]. Cloudy 73 statistics are thus often different from clear statistics [e.g., Grimes and Pardo-Igúzquiza (2010); 74 Geer and Bauer (2011)]. If some ensemble members are cloudy at a location, and other 75 members are clear at this location, the ensemble can exhibit mixed statistics (Harnisch et al., 76 2016; Minamide & Zhang, 2017; Honda et al., 2018; Chan, Anderson, & Chen, 2020). More 77 evidence of mixed statistics can be found in the supporting information. The effectiveness of 78 current operational EDA methods is likely limited in such situations. 79

This limitation can be mitigated by extending current operational EDA methods to han-80 dle mixed statistics. One possibility is to extend the commonly used ensemble Kalman filter, or the EnKF (Evensen, 1994; P. L. Houtekamer & Mitchell, 1998; Burgers et al., 1998; Tip-82 pett et al., 2003; Anderson, 2003; Whitaker & Hamill, 2002; Keppenne et al., 2005; Hunt et 83 al., 2007; Reichle et al., 2009; Stammer et al., 2016; Edwards et al., 2015; Park & Xu, 2016; 84 Helmert et al., 2018), to handle members drawn from forecast distributions with two Gaus-85 sian kernels. Specifically, we assume that forecast members that are clear at an observation 86 site (henceforth, clear members) are drawn from one Gaussian kernel, and forecast members that are cloudy at this site (henceforth, cloudy members) are drawn from a different Gaus-00 sian kernel. This bi-Gaussian extension of the EnKF (henceforth, the BGEnKF) allows the 89 clear ensemble statistics to be handled separately from the cloudy ensemble statistics (Chan, 90 Anderson, & Chen, 2020), thus addressing the issue of mixed statistics. 91

We recently proposed a computationally efficient BGEnKF to handle mixtures of clear 92 and cloudy members [Chan, Anderson, and Chen (2020); henceforth, the CAC20 BGEnKF]. 93 Unlike similar methods proposed in the past (Dovera & Della Rossa, 2011; Reich, 2012; Sondergaard & Lermusiaux, 2013a, 2013b), the CAC20 BGEnKF does not use an expecta-95 tion maximization (EM) algorithm to estimate the mean and covariances of the two Gaussian kernels. Instead, the CAC20 BGEnKF assigns the the sample mean and covariances 97 of the cloudy members to one Gaussian kernel, and those of the clear members to the other Gaussian kernel. This assignment circumvents the computational cost and issues associated 99 with using the EM algorithm in high dimensional spaces [see Chan, Anderson, and Chen 100 (2020) for more information]. Furthermore, the CAC20 BGEnKF converts clear members 101 into cloudy members, or vice versa, without involving the costly square-root computations or 102 Cholesky decompositions of high-dimensional forecast covariance matrices. 103

The purpose of this study is to demonstrate that a variant of the CAC20 BGEnKF can outperform the EnKF using a realistic high-order weather model (the Weather Research and Forecast model; WRF). To do so, this new BGEnKF is implemented into the state-of-the-art Pennsylvania State University EnKF system [henceforth, the PSU-EnKF system; Meng and Zhang (2007, 2008), Chan, Zhang, et al. (2020)]. This demonstration is done using perfect model observing system simulation experiments (OSSEs) of a case of tropical convection over the equatorial Indian Ocean. This case occurred during the onset of the active phase of the October 2011 Madden-Julian Oscillation event [MJO; Madden and Julian (1971, 1972), and S. Wang et al. (2015)].

The structure of this paper is as follows. In section 2, we will give an overview of the BGEnKF algorithm, discuss how clear and cloudy members are identified, and modifications made to the CAC20 BGEnKF algorithm. A detailed description of the current BGEnKF, along with suggestions on handling more than two Gaussian kernels, can be found in the supporting information. Following that, we will discuss the setup of our OSSEs in section 3 and the results in section 4. We will then conclude in section 5.

119 2 On the BGEnKF algorithm

2.1 On the identification of clear and cloudy members

The BGEnKF requires identifying clear and cloudy members at each iteration of the serial data assimilation loop. A simple identification method is to check if the members' column-integrated liquid and/or frozen water mass contents exceed a threshold.

The choice of which phase of water to include in the column integration depends on 124 the specifics of the forecast model. As will be discussed in section 3.3, this study used a 125 WRF model setup with a 9-km horizontal grid spacing and without convective parameter-126 ization. This WRF model setup cannot realistically resolve trade cumuli since the typical 127 width of trade cumuli is ~1-km. As such, we consider columns with trade cumuli and en-128 tirely cloud-free columns as clear member columns, and the remaining members as cloudy 129 member columns. Since trade cumuli do not typically grow above the melting layer (Johnson 130 et al., 1999), clear members do not possess frozen water. It thus seems appropriate to use 131 column-integrated ice mass content (ξ) to distinguish between clear and cloudy member 132 columns. To be precise, we compute ξ at a given model column via 133

$$\xi \equiv \int_0^{z_{top}} \rho(q_i + q_s + q_g) dz \tag{1}$$

where z_{top} is the model top altitude and ρ represents air density. Furthermore, q_i , q_s and q_g are the mass mixing ratios of ice, snow and graupel, respectively.

In this study, we will consider model columns with $\xi \ge 1 \text{ g/m}^2$ as cloudy, and model columns with $\xi < 1 \text{ g/m}^2$ as clear. The cloudy and clear infrared window channel simulated brightness temperature statistics (Window-BT; central wavelength of 10.5 μ m) do not vary noticeably for model column ξ thresholds between 0.8-1.2 g/m². Future studies can refine the threshold value or seek better ways to separate clear and cloudy column members.

141

120

2.2 Overview of the BGEnKF algorithm

This study's BGEnKF (and the CAC20 BGEnKF) assimilates observations with Gaussian observation likelihoods under the assumption that clear members are drawn from one Gaussian kernel and cloudy members are drawn from another Gaussian kernel. Suppose we seek to constrain the following extended state vector $\boldsymbol{\psi}$

$$\boldsymbol{\psi} \equiv \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{h} (\boldsymbol{x}) \\ \boldsymbol{\xi} (\boldsymbol{x}) \end{bmatrix}$$
(2)

where x represents the model state, h(x) represents applying the observation operator h on x, and $\xi(x)$ represents computing ξ at all observation sites [Eq. (1)]. Note that observation sites here refers to the latitude and longitude of the observation (*i.e.*, the vertical position is not considered for now). Supposing there are N_x elements in x and N_y observations, then ψ has $N_x + 2N_y$ elements.

Figure 1. A bivariate demonstration of the three-stage process of the BGEnKF algorithm. The light red ovals highlight cluster 1 members and the light blue ovals highlight cluster 2 members. Prior to running the BGEnKF update, the prior members have already been separated into two clusters. The BGEnKF's first stage is to employ the EnKF update equations on the two clusters separately (panel a). In the second stage (panel b), the BGEnKF identifies the shrinking cluster (the blue cluster 2 in this case), deletes an appropriate number of members from this cluster, and adjusts the remaining members to prevent the deletion from changing this cluster's mean. The BGEnKF's final stage (panel c) is to recreate the deleted members by resampling from the expanding cluster (cluster 1).

151 152 The BGEnKF assumes that the prior probability density function [pdf; $p(\psi)$] can be represented by the bi-Gaussian pdf

$$p(\boldsymbol{\psi}) = w_{\text{clr}}^{f} \mathcal{G}\left(\boldsymbol{\psi}; \ \overline{\boldsymbol{\psi}_{\text{clr}}^{f}}, \boldsymbol{P}_{\text{clr}}^{f}\right) + w_{\text{cld}}^{f} \mathcal{G}\left(\boldsymbol{\psi}; \ \overline{\boldsymbol{\psi}_{\text{cld}}^{f}}, \boldsymbol{P}_{\text{cld}}^{f}\right).$$
(3)

The subscript "clr" denotes clear cluster quantities, and the subscript "cld" denotes cloudy cluster quantities. $\mathcal{G}\left(\psi; \ \overline{\psi_{clr}^f}, P_{clr}^f\right)$ denotes the clear cluster's Gaussian kernel with mean state $\overline{\psi_{clr}^f}$ and covariance matrix P_{clr}^f . Similarly, $\mathcal{G}\left(\psi; \ \overline{\psi_{cld}^f}, P_{cld}^f\right)$ denotes the cloudy cluster's Gaussian kernel with mean state $\overline{\psi_{cld}^f}$ and covariance matrix P_{cld}^f and covariance matrix P_{cld}^f . The scalar quantities w_{clr}^f and w_{cld}^f are the respective weights of the clear and cloudy Gaussian kernels. Note that

$$w_{\text{clr}}^f + w_{\text{cld}}^f = 1, \qquad w_{\text{clr}}^f \ge 0, \quad \text{and}, \quad w_{\text{cld}}^f \ge 0.$$

The various parameters in Eq. (3) can be estimated by the procedure described in CAC20 or in the supporting information.

¹⁵⁵ Upon assimilating an observation y^o with Gaussian observation error, the BGEnKF ¹⁵⁶ produces an ensemble that is consistent with the analysis pdf

$$p\left(\boldsymbol{\psi}|\boldsymbol{y}^{o}\right) = w_{clr}^{a} \mathcal{G}\left(\boldsymbol{\psi}; \ \overline{\boldsymbol{\psi}_{clr}^{a}}, \boldsymbol{P}_{clr}^{a}\right) + w_{cld}^{a} \mathcal{G}\left(\boldsymbol{\psi}; \ \overline{\boldsymbol{\psi}_{cld}^{a}}, \boldsymbol{P}_{cld}^{a}\right).$$
(4)

Here, w_{clr}^a and w_{cld}^a are the respective analysis weights of clear and cloudy Gaussian kernels, ψ_{clr}^a and ψ_{cld}^a are the respective analysis means of the clear and cloudy Gaussian kernels, and P_{clr}^a and P_{cld}^a are the respective analysis covariances of the clear and cloudy Gaussian kernels. See CAC20 [or the supporting information] for the equations relating the analysis pdf's parameters to the forecast pdf's parameters.

The BGEnKF converts a forecast ensemble into an analysis ensemble through a three-162 stage process [illustrated in Figure 1]. First, two EnKF procedures are executed [Figure 163 1(a)]: once for clear members using clear forecast statistics $\left(\overline{\psi_{clr}^f}, P_{clr}^f\right)$, and a second time for cloudy members using cloudy forecast statistics $\left(\overline{\psi_{cld}^f}, P_{cld}^f\right)$. Afterwards, to reflect the 164 165 update to the bi-Gaussian pdf weights, clear members will be replaced with cloudy members, 166 or vice versa. For example, if the BGEnKF increased the weight on the clear Gaussian distribution (*i.e.*, $w_{clr}^a > w_{clr}^f$ and $w_{cld}^a < w_{cld}^f$), some cloudy members will be replaced with clear 167 168 members. This is achieved by deleting some cloudy members [Figure 1(b)] and replacing 169 the deleted members with resampled clear members [Figure 1(c)]. Once these three stages 170 are completed, the ensemble obeys Eq. (4). See the supporting information for a detailed 171 description of these three stages. 172

173

2.3 Revised extended state formulation for better scalable parallelism

The most important modification to the original CAC20 BGEnKF lies in the definition of ψ . The CAC20 BGEnKF's ψ only contains x and a single observation. As such, the CAC20 BGEnKF algorithm is a sequential algorithm that scales inefficiently with parallelization on high latency clusters (Anderson & Collins, 2007). For more efficient scaling with parallelization, this study's ψ contains all of the information necessary to assimilate all observations [*i.e.*, Eq. (2); Anderson and Collins (2007)].

¹⁸⁰ Since the definition of ψ has been modified, we will redefine our forecast ensemble. ¹⁸¹ Supposing an ensemble size of N_E , the forecast ψ ensemble is constructed by evaluating

$$\psi_n^f \equiv \begin{bmatrix} x_n^f \\ h(x_n^f) \\ \xi \left(x_n^f \right) \end{bmatrix} \quad \forall \ n = 1, 2, \dots, N_E$$
(5)

where ψ_n^f is the ψ of the *n*-th forecast member, and x_n^f is the *x* of the same forecast member.

The revised formulation enhances the scalability of the BGEnKF by avoiding evalua-183 tions of h(x) and $\xi(x)$ at each iteration of the serial assimilation loop. This is because such 184 evaluations may require costly inter-process communications. The removal of such evalua-185 tions is achieved through two modifications to the CAC20 BGEnKF. First, the assimilation 186 of an observation uses the BGEnKF update equations (see CAC20 or the supporting infor-187 mation) to update all model state elements, all simulated observation state elements and all ξ 188 elements in the forecast ensemble. The CAC20 BGEnKF, in contrast, updates all model state 189 elements and only a single simulated observation state element. This difference in updates 190 leads to a second modification: to assimilate the m-th observation, instead of evaluating 191 h(x) and $\xi(x)$, this study's BGEnKF only needs to read the corresponding simulated obser-192 vation and the ξ values from ψ . 193

194

2.4 Revised expanding cluster resampling procedure

The other major change to the CAC20 BGEnKF lies in the resampling matrix T. T is used to resample the Gaussian kernel that better agrees with the assimilated observation, thus representing the increase in the weight of this kernel. The CAC20 BGEnKF uses a stochastic procedure to construct T [see Eq. (18) and Appendix B of CAC20]. Unfortunately, because random number generators are involved, the analysis ensemble generated on one computing cluster cannot be easily replicated on another computing cluster.

To ensure the replicability of the BGEnKF's analysis ensembles, we replaced the stochastic component of the CAC20 BGEnKF's T [W in the Appendix B of Chan, Anderson, and Chen (2020)] with a deterministic one. Supposing that we want to add N_{new} cloudy members to the ensemble to represent an increased weight of the cloudy Gaussian distribution, the new deterministic W is defined as

$$W \equiv \begin{bmatrix} I_{N_{\text{new}}^*} & \mathbf{0}_{N_{\text{new}}^* \times (N_{\text{new}} - N_{\text{new}}^*)} \end{bmatrix} - \frac{1}{N_{\text{new}}} \mathbf{1}_{N_{\text{new}}^* \times N_{\text{new}}}$$
(6)

where

$$N_{\text{new}}^* \equiv \begin{cases} N_{\text{new}} - 1 & \forall \ N_{\text{new}} \le N_{\text{pre}} \\ \\ N_{\text{pre}} & \text{otherwise} \end{cases}$$

and N_{pre} is the number of cloudy members at the start of the resampling procedure. Furthermore, $I_{N_{\text{new}}^*}$ is an $N_{\text{new}}^* \times N_{\text{new}}^*$ identity matrix, $\mathbf{0}_{N_{\text{new}}^* \times (N_{\text{new}} - N_{\text{new}}^*)}$ is an $N_{\text{new}}^* \times (N_{\text{new}} - N_{\text{new}}^*)$ matrix of zeros, and $\mathbf{1}_{N_{\text{new}}^* \times N_{\text{new}}}$ is an $N_{\text{new}}^* \times N_{\text{new}}$ matrix of ones. Note that Eq. (6) is also applied in the situation where N_{new} clear members are being added to the ensemble. A detailed description of the revised resampling procedure is provided in the supporting information.

Note that an interesting property of Eq. (6) is that the resulting **T** is a mostly diagonal matrix. Specifically, nearly all of the off-diagonal elements in **T** are either zero or much smaller than the diagonal elements (not shown). As a result, the resampled members are essentially copies of the pre-resampling members, plus some small perturbation. The CAC20 stochastic **W** formulation does not have this property. Future work can investigate how the BGEnKF's behavior changes with different **W** formulations.

2.5 Heuristic measures

218 **2.5.1** Localization

217

The BGEnKF is likely more susceptible to sampling noise than the EnKF because the sample size used to estimate each cluster's mean state and Kalman gain are smaller than the sample size used to estimate the mean state and covariance matrix of the entire ensemble. As such, we employ two heuristic measures that are similar to those of CAC20. First, we spatially localize the BGEnKF analysis increment using the Gaspari-Cohn fifth order poly-

nomial [GC99; Gaspari and Cohn (1999)]. If ρ represents a vector of GC99 localization fac-

tors, we construct the localized updated extended state vector for member n via

$$\boldsymbol{\psi}_{n}^{a} \leftarrow \rho \circ \left(\boldsymbol{\psi}_{n}^{a} - \boldsymbol{\psi}_{n}^{f}\right) + \boldsymbol{\psi}_{n}^{f} \tag{7}$$

where \circ represents element-wise multiplication. In the cases where either $w_{clr}^f = 1$ or $w_{cld}^f = 1$

1 (*i.e.*, the bi-Gaussian prior p.d.f. turns Gaussian), this localization method is identical to

Kalman gain localization [*e.g.*, Anderson et al. (2009), Meng and Zhang (2008), Whitaker et al. (2008), P. L. Houtekamer and Zhang (2016)].

Note that this localization method [Eq. (7)] localizes the impacts of replacing clear 230 members with cloudy members (or vice versa). As an example, suppose the BGEnKF re-231 places a cloudy forecast member with a clear analysis member. The localization process 222 [Eq. (7)] first computes the difference between the cloudy forecast member and the clear 233 analysis member (*i.e.*, the member's change due to the BGEnKF). This difference is then lo-234 calized and applied to the cloudy forecast member. The resulting member follows the clear 235 analysis member at the observation site and becomes increasingly like the cloudy forecast member with increasing distance from the observation site. Future work can examine other 237 approaches to localize the impacts of deleting and replacing ensemble members. 238

2.5.2 Handling overly small clusters

The second heuristic sampling error mitigation measure is to switch from using the BGEnKF to using the EnKF whenever the pre-resampling expanding cluster is too small $(N_{\text{pre}} < 0.8N_E)$, or whenever any cluster is too small (less than $0.1N_E$). A similar heuristic measure is used in CAC20.

244

239

2.5.3 Mitigating unphysical weight updates

Another issue specific to the BGEnKF is its occasional tendency to generate unphysical weight updates. Specifically, the BGEnKF occasionally expands the clear cluster when a cloudy observation is assimilated, and *vice versa*. This is because the BGEnKF does not explicitly consider whether an observation is clear or cloudy when assimilating it.

The BGEnKF is automatically switched to the EnKF whenever an unphysical weight update is detected. To do so, we first identify the whether the observation to be assimilated is definitively clear or cloudy. In the case of Window-BT values over tropical ocean, observation values warmer than 290 K are definitively clear, and observation values cooler than 280 K are definitively cloudy. If the observation is definitively clear, but the cloudy cluster is expanded by the BGEnKF, or *vice versa*, the BGEnKF will switch over to the EnKF.

- **3** Materials and methods
- 256

3.1 Description of October 2011 tropical convection case

The BGEnKF was tested against the EnKF using a case of tropical convection over the equatorial Indian Ocean during the October 2011 MJO. This case is chosen because it can be reasonably replicated by regional WRF models (S. Wang et al., 2015; F. Zhang et al., 2017; Ying & Zhang, 2017; Fu et al., 2017; X. Chen, Pauluis, & Zhang, 2018; X. Chen & Zhang, 2019; Ying & Zhang, 2018; Chan, Zhang, et al., 2020).

Cur experiments are conducted over a three day period during the onset of this MJO event (15 October 2011 to 18 October 2011). Two persistent regions of enhanced convection (henceforth, "convective regions") are observed in the 4-km Global IR Dataset of Janowiak et al. (2001) [henceforth, the MERG dataset]. The first convective region (blue rectangle) occurs between 60 °E and 75 °E and persists beyond the three-day period. Westward propa-

Figure 2. (a) Plot of our OSSE domain overlaid with the nature run's simulated Window-BT field at 1200 UTC on 15th October 2011. The red box in panel (a) indicates our study domain. Also shown are longitudetime diagrams for the MERG dataset (b) and nature run (c). In panels (b) and (c), the shadings indicate Window-BT Hovmoller percentile values. These Window-BT Hovmoller percentile values are constructed by first averaging Window-BT values between between 10°S and 10°N at every hour to produce a time-longitude array of latitudinally-averaged Window-BT values. These arrays are then converted into percentiles before producing the longitude-time percentile values. Note that the dashed black contours in (b) and (c) indicate areas where the time-longitude arrays of latitudinally-averaged Window-BT values are below 260 K.

gation is observed in some of the clouds in this region, most notably between 1200 UTC on
16 October and 0000 UTC on 18 October. The second convective region (blue oval) appears
on the eastern edge of the study domain at 1200 UTC on 16th October and exhibits a westward propagation that is similar to that of the first system. We will later assess our OSSE's
nature run simulation by checking the nature run against these two convective regions.

3.2 Setup of WRF model

The Advanced Research version of the WRF model (WRF-ARW) version 3.8 (Skamarock et al., 2008) is used in this study. Following Chan, Zhang, et al. (2020), we construct a 432×243 WRF domain over the study domain [red box in Figure 2(a)] with 9-km horizontal grid spacing and 45 model levels. The bottommost 9 levels are within the lowest 1-km of the atmosphere and the pressure level at the top of the domain is set to 20 hPa. The WRF integration time step is set to 20 seconds.

Our WRF model setup uses the following parameterization schemes. Cloud micro-279 physical processes are handled by the WRF double-moment 6-class scheme (WDM6) pro-280 posed by Lim and Hong (2010). The updated Goddard shortwave scheme of Chou and Suarez 281 (1999) and the Rapid Radiative Transfer Model (Global Circulation Model version; RRMTG) 282 longwave scheme of Iacono et al. (2008) are used to parameterize radiative processes. The 283 unified Noah land surface physics scheme (F. Chen & Dudhia, 2001) handles surface process and the Yonsei University (YSU) boundary layer scheme (Hong et al., 2006) is employed. 285 No cumulus parameterization is employed because many studies have demonstrated that the 286 9-km grid spacing is sufficient to resolve tropical mesoscale convective systems (MCS) over 287 the region (S. Wang et al., 2015; Ying & Zhang, 2017, 2018; F. Zhang et al., 2017; X. Chen, Pauluis, & Zhang, 2018; X. Chen, Pauluis, Leung, & Zhang, 2018; X. Chen & Zhang, 2019; 289 X. Chen et al., 2020; Chan, Zhang, et al., 2020; Chan & Chen, 2021; X. Chen, Leung, Feng, 290 & Song, 2021; X. Chen, Leung, Feng, Song, & Yang, 2021; X. Chen et al., 2022). 291

292

272

3.3 Setup of WRF ensemble and nature run

This study's WRF ensemble and nature run are constructed by combining two datasets 293 from the European Center for Medium-Range Forecasts (ECMWF): the ECMWF Reanalysis 294 Version 5 [ERA5; Hersbach et al. (2020)] and the ECMWF's 50-member perturbed forecasts 295 (Swinbank et al., 2016). The ERA5 dataset is downloaded for every hour between 0000 UTC 296 on 15 October to 1800 UTC on 18 October from the ECMWF's Climate Data Store (CDS). The ECMWF's perturbed forecasts are produced as part of The Observing System Research 298 and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble [TIGGE; 299 Swinbank et al. (2016)] and is downloaded for 0000 UTC on 15 October from the ECMWF's 300 Meteorological Archival and Retrieval System (MARS).

The ERA5 and ECMWF's 50-member perturbed forecasts (TIGGE ensemble) are pro-302 cessed using the WRF Preprocessing System and WRF's real data processor (real.exe) to produce a set of 51 WRF initial conditions files. Note that the ERA5 is used to fill in the data 304 missing from the TIGGE ensemble above 200 hPa. The 50 WRF initial conditions from the 305 TIGGE ensemble are then recentered on the ERA5 WRF initial condition file. The end result 306 is a 51-member ensemble of WRF initial conditions, where member 51 is based entirely on 307 the ERA5 (*i.e.*, the 51-st ensemble perturbation is zero). Note that this 51-st member is not 308 used to initialize the nature run. One of the other initial conditions is used to initialize the 309 nature run. 310

The lower and lateral boundary conditions used in this study are based entirely on the hourly ERA5 dataset (*i.e.*, the boundary conditions are unperturbed). While perturbed boundary conditions can increase the ensemble spread, the ensemble spread is usually reasonable even with unperturbed boundary conditions (not shown). Furthermore, as a first approach to studying the potential impacts of the BGEnKF in a high-order weather model setting, we want the differences between the nature run (described later) and the OSSE en-

semble to be entirely due to differences in the initial conditions. Future work can extend this
 study to situations with perturbed boundary conditions.

We desire a nature run that is roughly one ensemble standard deviation from our experiments' ensembles. To select an appropriate initial condition file for such a nature run, we first integrate the 51 members forward for 12 hours (from 0000 UTC to 1200 UTC on 15 October 2011). This integration is performed to generate flow-dependent ensemble statistics that are consistent with the WRF model. After the 12-hour integration, we compute the

following perturbation length metric (D^2) for each of the 51 ensemble members

$$D^{2}(n) \equiv \frac{1}{N_{S} N_{i} N_{j}} \sum_{\nu \in S} \sum_{i=1}^{N_{i}} \sum_{j=1}^{N_{j}} \left(\frac{\Lambda(i, j, \nu, n) - \langle \Lambda(i, j, \nu) \rangle_{n}}{\sigma_{i, j, \nu}} \right)^{2}.$$
(8)

 $\Lambda(i, j, v, n)$ here is the value of a WRF-derived field v at horizontal index location (i, j) for 325 ensemble member n. Furthermore, $\langle \Lambda(i, j, v) \rangle_n$ is the ensemble average of $\Lambda(i, j, v, n)$, and 326 $\sigma_{i,i,v}$ is the ensemble standard deviation of $\Lambda(i, j, v, n)$. This means that the expression in 327 the parentheses of Eq. (8) is the spread-normalized displacement of ensemble member n328 from the ensemble mean at location (i, j) for variable field v. The set S contains three 2D 329 variables (precipitable water, column mass, and mass-integrated kinetic energy) and N_s is 330 the size of the set S (*i.e.*, $N_S = 3$). Furthermore, $N_i (\equiv 432)$ is the number of east-west grid 331 points and $N_i \equiv 243$ is the number of north-south grid points. The metric in Eq. (8) can thus be interpreted as being proportional to the spread-normalized Euclidean length of the 333 *n*-th ensemble perturbation. As such, a D^2 value of unity means that the ensemble member is 334 generally displaced from the ensemble mean by 1 standard deviation. 335

We define our nature run member to be the member whose D^2 value is closest to unity at 1200 UTC on 15 October. As a result, the nature run is based on member 10 of the TIGGE ensemble. The remaining 50 WRF members will be used for our cycling OSSE DA experiments.

340 **3.4 Sanity check of nature run**

Before proceeding, the nature run is checked by comparing it against the MERG dataset. Figure 2(b & c) shows longitude-time diagrams of the Window-BT percentiles from the MERG dataset and our nature run. The construction of these percentiles is explained in section 3.1 and in the caption of Figure 2.

We have opted to display the Window-BT percentiles instead of the Window-BT val-345 ues because the WRF model tends to under produce clouds (*i.e.*, when compared to satellite 346 observations, the nature run Window-BTs are warm biased). This is illustrated by the dashed 347 contours in Figure 2(b & c), which highlights areas where the latitudinally-averaged values 348 of Window-BT were cooler than 260 K. These areas are substantially larger in the MERG data than in the nature run, meaning that the nature run under produced clouds. Since con-350 verting the Window-BT values to percentile values weakens the visual interference from the 351 cloud biases, we have opted to display the Window-BT percentiles over the Window-BT val-352 ues. 353

Figure 2(c) indicates that the nature run also exhibits the two persistent convective re-354 gions observed in the MERG dataset (see section 3.1). These persistent convective regions 355 are indicated by the blue rectangle and blue oval in Figure 2(c). Not only did the nature run's 356 two persistent convective regions occur in locations and times similar to those of the MERG 357 dataset (Figure 2(b)), these nature run regions also exhibit westward propagation patterns 358 similar to those of the MERG dataset. As such, the nature run simulation reasonably repli-359 cates the anomalous convective behavior of the real atmosphere between 15 October to 18 360 October 2011. 361

3.5 Setup of DA experiments to test the BGEnKF

362

To test the BGEnKF, three 50-member ensemble experiments are conducted. All three experiments start at 1200 UTC on 15 October and terminate at 1200 UTC on 18 October, with hourly DA cycling (73 cycles in total). The construction and spin-up of these 50 members are described in section 3.3.

In the first experiment, no observations are assimilated (henceforth, NoDA experiment). The NoDA experiment serves as a baseline for comparing the performance of the EnKF and BGEnKF, and to measure imbalances induced by DA.

The other two experiments are the EnKF and BGEnKF experiments. The only difference between the EnKF and BGEnKF experiments is in the DA algorithm employed. The EnKF experiment will assimilate observations using the PSU-EnKF's (Meng & Zhang, 2007, 2008) default EnKF algorithm, and the BGEnKF experiment will assimilate observations using a new implementation of the BGEnKF into the PSU-EnKF. Note that both the EnKF and the BGEnKF are implemented into the PSU-EnKF using the high-latency strategy proposed by Anderson and Collins (2007).

As a first approach to testing the BGEnKF, only synthetic *Meteorological Satellite* 7 Meteosat Visible Infra-Red Imager (MVIRI) Window-BT observations will be assimilated. Future work can investigate if our findings can be extended to situations where an entire suite of operationally-assimilated observations and observations from different infrared channels are assimilated.

The synthetic Window-BT observations are constructed by first running the Commu-382 nity Radiative Transfer Model (CRTM) release 2.3.0 on the nature run (see sections 3.3 and 383 3.4). The nature run's Window-BT values are then thinned to a horizontal spacing of 27-38/ km (~11,500 observations per DA cycle). White noise with a standard deviation of 3 K is 385 then added to the thinned nature run Window-BT values to simulate instrument noise, thus 386 constructing the synthetic observations. Note that the observation errors are likely to be cor-387 related in reality. This means our use of white noise is an imperfect approximation to actual 388 observation errors. Future work can investigate if our results can be extended to situations 389 with correlated Window-BT observation errors. 390

Common heuristic strategies are employed to assimilate the Window-BT observa-391 tions. To limit the impact of sampling errors, horizontal localization is applied using the 392 Gaspari-Cohn fifth-order polynomial (Gaspari & Cohn, 1999) with a 100-km radius of in-393 fluence (P. L. Houtekamer & Mitchell, 2001; Greybush et al., 2011; P. L. Houtekamer & Zhang, 2016). No vertical localization is employed. We also employ the Adaptive Observa-395 tion Error Inflation scheme (AOEI) of Minamide and Zhang (2017) to limit the deleterious 396 increments that can result from clear-cloudy disagreements between the prior and observa-397 tions (F. Zhang et al., 2016; Minamide & Zhang, 2017). To mitigate the tendency for ensemble under-dispersion to occur when the ensemble is clear and the observation is cloudy, 399 the Adaptive Background Error Inflation scheme (ABEI) of Minamide and Zhang (2019) is 400 applied. We also employ 80% relaxation to prior perturbations (RTPP) to maintain ensem-401 ble dispersion (F. Zhang et al., 2004). Similar combinations of heuristic strategies are com-402 monly seen in the EnKF-based DA of infrared radiance observations (F. Zhang et al., 2016; 403 Minamide & Zhang, 2018; Chan, Zhang, et al., 2020; Y. Zhang et al., 2019; Chan & Chen, 404 2021; Y. Zhang et al., 2021). 405

Aside from these common strategies, we also restrict the BGEnKF/EnKF from updating the domain-averaged specific humidity (QVAPOR) using Window-BT observations. Without this measure, both the BGEnKF and the EnKF experience filter divergence that is related to DA-induced dry biases within 48 hours of cycling. These dry biases are likely induced by the ensemble's tendency to be overly cloudy. The dry biases in the EnKF experiment are likely partly because of the EnKF's inability to handle clear and cloudy members separately (see section 4.3). As for the BGEnKF experiment, the dry bias can be explained

- by the fact that the BGEnKF algorithm frequently switches over to the EnKF algorithm
 (see section 4.2). Note that the BGEnKF generated smaller dry biases than the EnKF (not shown).
- To prevent filter divergence due to DA-induced dry biases, we replace the 3D posterior mean QVAPOR field $(\overline{q_v^a})$ with the following modified mean QVAPOR field $(\overline{q_v^*})$:

$$\overline{q_{\nu}^{*}(i,j,k)} \equiv \overline{q^{a}(i,j,k)} - \frac{1}{N_{i} N_{j}} \sum_{i=1}^{N_{i}} \sum_{j=1}^{N_{j}} \left\{ \overline{q_{\nu}^{a}(i,j,k)} - \overline{q_{\nu}^{f}(i,j,k)} \right\}.$$
(9)

Here, (i, j, k) refer to the west-east, south-north and bottom-top indices of the 3D QVAPOR fields and q_v^f refers to the 3D prior mean QVAPOR field.

3.6 Execution wall-time of the BGEnKF

Before proceeding, we should compare the execution wall-time of the BGEnKF and 421 the EnKF. The BGEnKF algorithm took ~30 seconds to assimilate ~11,500 observations us-422 ing 228 Intel Knight's Landing computer cores [distributed across 7 computational nodes on 423 the National Energy Research Scientific Computing Center (NERSC) Cori supercomputer; 424 each core has a clock rate of 1.4 GHz]. Assimilating the same observations via an EnKF al-425 gorithm took ~20 seconds of wall-time. For a fair comparison, this EnKF algorithm used 426 the exact same code structure and computing resources, but with the cluster transfer and aux-427 iliary variable update steps disabled. In other words, the BGEnKF used ~10 seconds more 428 wall-time than the EnKF. 429

This ~10-second difference should be assessed in the context of the wall-time for the entire PSU-EnKF executable. The other components of the PSU-EnKF took ~100 seconds to execute. As such, the BGEnKF only added ~10% wall-time to the entire PSU-EnKF executable. The BGEnKF algorithm is thus likely affordable for research and operational groups that are already running serially-assimilating EnKFs [*e.g.*, Anderson et al. (2009)].

435 **4** Perfect model WRF OSSE results

In the discussions to follow, we will be showing plots of normalized root-mean-square errors (nRMSEs) and normalized biases as functions of time and model level. The normalization is necessary for the ease of visualization, and uses the root-mean-square errors (RM-SEs) of the NoDA experiment. The EnKF experiment's nRMSE at model level k and date tis defined as

$$EnKF nRMSE(k, t) \equiv \frac{EnKF RMSE(k, t)}{NoDA RMSE(k, t)}$$
(10)

and likewise for that of the BGEnKF and NoDA experiments (the NoDA's nRMSE values are
always 1). Note that if a filter results in nRMSEs > 1.0, the assimilation of Window-BT via
this filter degraded the ensemble with respect to the NoDA experiment. The reverse is true
for nRMSEs < 1.0. We also define the normalized bias of the EnKF experiment to be

EnKF normalized bias
$$(k, t) \equiv \frac{\text{EnKF bias}(k, t)}{\text{NoDA RMSE}(k, t)},$$
 (11)

and likewise for the BGEnKF and NoDA experiments. These biases are computed by sub tracting the nature run fields from the forecast ensemble mean fields.

The nRMSEs and normalized biases are examined for six variable fields: the zonal wind velocity component field (U), the meridional wind velocity component field (V), the temperature field (T), the QVAPOR field (Q), the Window-BT field, and the upper tropospheric infrared water vapor channel brightness temperature field (WV-BT; central wavelength of 6.2 μ m). The nRMSEs are plotted in Figures 3 and 5(a & b) and the normalized biases are plotted in Figures 4 and 5(c & d). All quantities are computed using forecast statistics.

Figure 3. Plots of various prior ensemble statistics as functions of time and model level. For ease of interpretation, the model levels are displayed in terms of their approximate pressure levels (estimated using the definition of eta levels in WRF and assuming a surface pressure of 1000 hPa). The shadings indicate the NoDA-normalized RMSEs [nRMSEs; defined in Eq. (10)] for the EnKF (a, b, g & h) and BGEnKF (c, d, i & j) experiments, as well as the nRMSE differences between the EnKF and BGEnKF experiments (e, f, k & l). The nRMSEs and nRMSE differences are shown for the U field (a, c & e), V field (b, d & f), T field (g, i & k), and Q field (h, j & l). The areas outlined with a black contour and filled with yellow hatching have consistency ratios (spread/error) less than 0.75. Note that all displayed statistics are forecast statistics.

Figure 4. Plots of various prior ensemble normalized biases as functions of time and model level. These normalized biases are displayed for the U field (a, c & e), V field (b, d & f), T field (g, i & k), and Q field (h, j & l), for the NoDA (a, b, g & h), EnKF (c, d, i & j) and BGEnKF (e, f, k & l) experiments. Similar to Figure 3, the model levels are displayed in terms of approximate pressure levels. See the Eq. (11) for the definition of the normalized biases.

454 455

4.1 On differences in the BGEnKF's and the EnKF's performances during DA cycling

The nRMSEs and normalized biases of the BGEnKF experiment are generally bet-456 ter than or comparable to those of the EnKF experiment (Figures 3 to 5). For the U, V, T 457 and Q fields, subtracting the BGEnKF's nRMSEs from the EnKF's nRMSEs generally results in positive values [Figure 3(e, f, k & l)]. The BGEnKF experiment also has better WV-459 BT nRMSEs than the EnKF experiment [Figure 5(b)]. The BGEnKF experiment also has 460 smaller biases than the EnKF experiment in several places: the 100 hPa U field [Figure 4(c 461 & e)], the 400–100 hPa T field [Figure 4(i & k)], the Window-BT field [Figure 5(e)], and WV-BT field [Figure 5(f)]. Otherwise, the BGEnKF and EnKF experiments have similar 463 bias values. These results suggest that the BGEnKF is more suitable for assimilating all-sky 464 Window-BT than the EnKF. 465

The BGEnKF's performance advantages over the EnKF can be separated into two 466 types. In the first type, the BGEnKF generates larger improvements than the EnKF (i.e., BGEnKF nRMSEs < EnKF nRMSEs < NoDA nRMSEs). This type of performance advan-468 tage occurs in multiple places (Figures 3 and 5): 1) the 800 hPa to 1000 hPa U field nRMSEs 469 during the first 56 cycles, 2) the 100 hPa to 500 hPa U field nRMSEs during the last 36 DA 470 cycles, 3) the near surface and ~250 hPa V field nRMSEs from 0000 UTC on 16th October to 0000 UTC on 17th October, 4) between 100 hPa to 300 hPa in the T field nRMSEs for 472 most cycles, 5) between 250 to 600 hPa in the Q field nRMSEs for most cycles, and in the 473 WV-BT nRMSEs for most DA cycles after 0000 UTC on 16th October. These differences are 474 likely due to the BGEnKF's ability to handle mixture statistics, and suggest that the BGEnKF is more suitable for assimilating Window-BT than the EnKF. 476

The BGEnKF experiment's second type of performance advantage over the EnKF ex-477 periment is when the BGEnKF introduces milder degradations than the EnKF (i.e., NoDA 478 nRMSEs < BGEnKF nRMSEs < EnKF nRMSEs). In terms of nRMSEs (Figure 3), such sit-479 uations are noticeable at the 100 hPa tropopause level and 500-700 hPa levels for the U and 480 V fields, at the 200-500 hPa model levels for the T field, and at the 100 hPa level for the Q 481 field. Such situations are also noticeable in the normalized biases of the ~ 100 hPa U field, 482 the 100–400 hPa T field (Figure 4), and in the Window-BT and WV-BT fields (Figure 5). 483 These are likely because 1) the BGEnKF can handle mixture statistics whereas the EnKF cannot, and 2) the BGEnKF experiment has smaller increments than the EnKF experiment 485 because the BGEnKF experiment has smaller dispersion. Figure 3(a & c) shows an example 486 of the latter: the BGEnKF U field has larger areas of low spread-to-error ratios (0.75) than 487 the EnKF. The likely origins of the RMSE and bias degradations are discussed in section 4.2. Nonetheless, these results further support the notion that the BGEnKF is more appropriate 489 for assimilating Window-BT observations than the EnKF. 490

The BGEnKF tends to result in smaller CRs than the EnKF because the BGEnKF can 491 outright convert all clear member columns to cloudy member columns, or vice versa. Since 492 clear and cloudy member columns are very different, having both types of columns present 493 at the same time boosts the ensemble spread. If all clear member columns are converted to cloudy member columns, or *vice versa*, large perturbations relative to the ensemble mean 495 are replaced with smaller perturbations. This replacement results in reduced ensemble dis-496 persion. Since the EnKF lacks this mechanism of ensemble spread removal, the BGEnKF 497 can remove more ensemble spread than the EnKF, thus resulting in smaller CRs than the 498 EnKF. Future work can investigate if stronger inflation schemes are more appropriate for the 499 BGEnKF. 500

Note that there are occasional situations where the EnKF outperforms the BGEnKF.
 For instance, at around 0000 UTC on 17th October the BGEnKF's U nRMSEs are slightly
 higher than the EnKF at 250 hPa (Figure 3(e)). Other examples include the T nRMSEs around
 1200 UTC on 17th October (Figure 3). Nonetheless, if we integrate the forecast ensembles'

Figure 5. Time-series showing the performance statistics of the three experiments' prior ensembles in terms of Window-BT (a, c & e) and WV-BT (b, d & f). The definitions of nRMSEs (a & b) and normalized prior minus truth (Norm. FmT bias; e & f) are the same as in Figures 5 to 8. Like Figures 5 and 6, the consistency ratio (CR; c & d) here is defined as the ratio of spread to error.

nRMSEs with respect to pressure at every cycle, the resulting mass-weighted nRMSEs of the BGEnKF experiment will be lower than those of the EnKF experiment.

We have also examined day-long deterministic forecasts that are initialized from the analysis means of the EnKF and BGEnKF experiments (not shown). The BGEnKF experiment's RMSE performance advantage over the EnKF experiment persists for up to 9 hours of lead time in terms of the U, V and T fields. In terms of the 500–800 hPa Q field RMSEs, the BGEnKF experiment's RMSE advantage over the EnKF experiment persists throughout the 24 hours of integration. These results are as expected since the BGEnKF experiment has lower RMSEs than the EnKF experiment during DA cycling.

514 515

4.2 On the similar patterns observed in the performances of the BGEnKF and EnKF experiments

Though the BGEnKF experiment generally outperformed the EnKF experiment, there 516 are common spatiotemporal patterns in their nRMSEs and normalized biases. For instance, 517 Window-BT DA with either algorithm tends to degrade the 500-800 hPa U nRMSEs, and 518 improve the 100–500 hPa U nRMSEs (Figure 3(a & c)). These similarities are likely because 519 the BGEnKF frequently switches over to the EnKF. Figure 6(a) shows that the BGEnKF al-520 gorithm is only called to assimilate $\sim 10\%$ of the Window-BT observations, meaning that the 521 switching occurred for the remaining $\sim 90\%$ of Window-BT observations. Future work can 522 investigate if reducing the occurrence of such switches (e.g., via weaker heuristic checks and 523 larger ensembles) could improve the performance of the BGEnKF. 524

Figure 6. Plots showing the frequencies at which the two kernel BGEnKF update procedure is called in the BGEnKF experiment (a), and the normalized imbalance metric statistics for both the BGEnKF and EnKF experiments (b). For reference, 11502 IR observations are assimilated at each DA cycle. The normalized imbalance metric is defined in the text. The solid curves in (b) indicate the ensemble average of every member's normalized imbalance metric and the half-width of the shadings in (b) indicate twice the standard error of the members normalized imbalance metric.

It is notable that the BGEnKF outperforms the EnKF despite the high frequency of 525 BGEnKF-to-EnKF switching. For instance, according to Figure 3(h, j & l), for the 24 cycles 526 on 17th October and between 500 hPa to 700 hPa, the BGEnKF experiment has 0.06-0.1 less 527 Q nRMSEs than the EnKF experiment. Since the EnKF experiment has Q nRMSEs of ~1 528 then, the BGEnKF is able to introduce a $\sim 6-10\%$ improvement over the EnKF. These are 529 considerable improvements since the BGEnKF is only called on $\sim 10\%$ of the Window-BT 530 observations. 531

Given the frequent switching from the BGEnKF to the EnKF, the worse-than-NoDA 532 RMSEs and biases in both the EnKF and BGEnKF experiments are likely caused by the 533 EnKF algorithm. These degradations are likely caused by 1) non-Gaussian forecast statis-534 tics, 2) sampling errors, and 3) biases that are introduced by the assimilation of Window-BT. 535 The first factor can originate from having mixtures of clear and cloudy members. Sampling 536 errors can also introduce errors into the analysis, particularly over regions where the ensem-537 ble correlations are weak. This factor is likely present in our experiments because no vertical 538 localization is used in this study. Future work can investigate if vertical localization can mit-539 igate some of the RMSE and bias degradations (Lei & Anderson, 2014; Lei & Whitaker, 540 2015; Lei et al., 2016, 2020). Finally, since biases are a component of RMSEs [e.g., Ying 541 and Zhang (2017), Ying and Zhang (2018), and Chan, Zhang, et al. (2020)], biases that are 542 introduced by Window-BT DA can contribute towards worse-than-NoDA RMSEs. While 543 the contribution of biases to worse-than-NoDA RMSEs can be easily inferred (see the next 544 paragraphs), the contributions from the first two factors cannot be easily teased apart. 545

To understand the contribution of biases to the occurrence of worse-than-NoDA RM-SEs (*i.e.*, nRMSEs > 1), we computed the following fraction as a function of model level and time $(f_{\text{bias}}(k, t))$. For the EnKF experiment, we defined

EnKF's
$$f_{\text{bias}}(k,t) \equiv \sqrt{\frac{[\text{EnKF's biases}(k,t)]^2 - [\text{NoDA's biases}(k,t)]^2}{[\text{EnKF's RMSEs}(k,t)]^2 - [\text{NoDA's RMSEs}(k,t)]^2}}$$

and likewise for the BGEnKF experiment. f_{bias} can be interpreted as the fractional contribu-546

tion of biases to the worse-than-NoDA RMSE performance. 547

⁵⁴⁸ We found that for about 25–45% of the worse-than-NoDA situations (nRMSEs > 1) in ⁵⁴⁹ the U and T fields, the majority of the nRMSE degradation (*i.e.*, $f_{\text{bias}} \ge 0.6$) can be explained ⁵⁵⁰ by the the introduction of biases [*i.e.*, $p(f_{\text{bias}} > 0.6 | \text{nRMSE} > 1) \in (0.25, 0.45)$]. This ⁵⁵¹ suggests that though DA-induced biases are important contributors towards the worse-than-⁵⁵² NoDA RMSEs of either DA filters, the net contribution coming from other factors is also ⁵⁵³ important. Future work can examine separating and quantifying the relative importance of ⁵⁵⁴ these three factors towards the worse-than-NoDA RMSEs.

555

4.3 On the origin of biases in the EnKF and BGEnKF experiments

We now turn our attention to the U, T, Q, Window-BT and WV-BT biases that are in-556 troduced by Window-BT DA. Since the Q analysis increments are subject to bias removal 557 (see last paragraph of section 3.5), the Q biases will be discussed later. The U, T and WV-BT 558 biases are likely related to 1) a cold forecast minus truth (FmT) Window-BT bias at the start 550 of all experiments, and 2) the persistence of these FmT Window-BT biases throughout all 560 cycles (Figure 5(e)). Item 1 is essentially the result of drawing a single member from an en-561 semble – it is difficult to obtain a nature run whose domain-averaged Window-BT is always 562 the same as that of the forecast ensemble. This is supported by the fact that the NoDA experiment's FmT Window-BT biases oscillate around zero (Figure 5(e)). More interestingly, item 564 2 indicates an over abundance of clouds in both DA experiments. Since WV-BT is cooler in 565 the presence of clouds, the WV-BT bias is explained by the over abundance of clouds. 566

To understand the origin of the persistently cold FmT Window-BT biases, we examine 567 the analysis ensembles' Window-BT biases. Running the CRTM on the analysis ensembles 568 of the Window-BT DA experiments reveals analysis minus truth (AmT) Window-BT normalized biases that are typically around -0.25 (not shown). These bias values are a factor 570 of 5 larger than the FmT normalized biases of around -0.05 (Figure 5(e)). The large AmT 571 biases suggest that Window-BT DA resulted in overly cloudy analysis ensembles. Though 572 the time-integration of these analysis ensembles dramatically reduces the over cloudiness 573 (the normalized biases typically go from -0.25 to -0.05), some over cloudiness likely re-574 main. As such, the U, T, Window-BT and WV-BT biases are likely caused by the EnKF and 575 BGEnKF experiments introducing too many clouds into the analysis ensemble. 576

The over introduction of clouds is likely a result of the EnKF's inability to handle clear 577 and cloudy members separately and the strong sensitivity of Window-BTs to hydrometeors. 578 When both clear and cloudy members are present in the forecast ensemble, the EnKF's fore-579 cast mean state will contain some amount of clouds. Suppose that the correlations between 580 Window-BT and hydrometeor mixing ratios are negative. If Window-BT observations with 581 either small or negative innovations are assimilated, the clouds in the EnKF's mean state will either be unaffected (for small innovations) or be increased (for negative innovations). 583 Since the EnKF will also reduce the size of the ensemble members' perturbations, the ensemble thus contracts around a cloudy mean state. The result is that clear column forecast 585 members gain some amount of clouds, even in situations where the innovations are close to zero. Since Window-BTs are sensitive to the presence of clouds, running the CRTM on such 587 members will generate cold cloudy Window-BT values. This mechanism of EnKF-induced 588 over-cloudiness warrants future investigation. 589

Note that the BGEnKF experiment's over-cloudiness is likely caused by the mecha nism in the previous paragraph. This is because the BGEnKF algorithm frequently switches
 over to the EnKF (for ~90% of assimilated observations). Since the BGEnKF can handle
 mixtures of clear and cloudy members, with less frequent switches, the BGEnKF is likely to
 have smaller biases. To test this possibility, smaller sampling errors are necessary to justify
 less frequent switches from the BGEnKF to the EnKF. Future work can thus investigate this
 possibility with larger ensembles.

⁵⁹⁷ With regards to the Q biases, since the analysis increment cannot modify the Q biases ⁵⁹⁸ [see Eq. (9)], these biases are induced during the forecast step of the DA procedure. We can rule out the evaporation of DA-induced spurious clouds as an important source because the hydrometeor biases injected by the increment are an order of magnitude smaller than the Q bias growth during integration (not shown). Other processes are likely causing the Q biases. Some possibilities include enhancements to the upward transport of Q from the surface and/or the latent fluxes from the ocean surface. The exact origin of these Q biases can be investigated in future work.

605

4.4 On dynamical imbalances

Note that the BGEnKF introduces less dynamical imbalances into the ensemble than 606 the EnKF. To measure dynamical imbalance, we compute the root-mean-square of the sec-607 ond time derivative of surface pressure during the time integration phase of each DA cycle 608 (P. Houtekamer & Mitchell, 2005; Temperton & Williamson, 1981). These derivatives are 609 computed via centered differencing (Press & Flannery, 2010) on three consecutive snapshots 610 of the surface pressure field. These snapshots are spaced 30-minutes apart. The resulting im-611 balance metric is normalized using the NoDA experiment's imbalance metric. A normalized 612 imbalance metric value of 1 indicates that a normal amount of fast-moving gravity waves is 613 present. A value greater than 1 indicates that a higher than normal amount of fast-moving gravity waves is present, thus indicating DA-induced imbalances. 615

Figure 6(b) indicates that the BGEnKF experiment generally has either statistically indistinguishable or milder imbalances than the EnKF experiment. The only exception to this trend happens between 0000 UTC to 1200 UTC on 17th October. The BGEnKF is thus likely more appropriate than the EnKF at assimilating Window-BT observations.

5 Conclusions and future work

In this study, we compare the BGEnKF against the EnKF using perfect model OSSEs 621 with a realistic weather model (WRF) for a case of tropical convection. These OSSEs are 622 executed using the state-of-the-art PSU-EnKF system. Our results indicate that the BGEnKF 623 outperforms the EnKF at assimilating synthetic Window-BT observations. We observe this 624 performance advantage in terms of the RMSEs and biases of the U, V, T, Q, Window-BT 625 and WV-BT fields. This performance advantage is likely due to the BGEnKF's ability to 626 handle mixtures of clear and cloudy column members. These performance advantages are 627 achieved even though the BGEnKF s only activated for $\sim 10\%$ of the assimilated Window-BT 628 observations. As such, these promising results motivate future work into the BGEnKF using real data. 630

There are several large areas of future research for the BGEnKF. The first large area 631 concerns refining the BGEnKF algorithm. Future work can, for instance, seek less heuristic 632 approaches to sort the ensemble into clusters in a computationally efficient manner. One op-633 tion is to combine clustering algorithms [e.g., k-means (Forgy, 1965; Lloyd, 1982), support-634 vector machines (Cortes & Vapnik, 1995) and expectation maximization (Sondergaard & Lermusiaux, 2013b)] with dimension reduction methods [e.g., Sondergaard and Lermusiaux 636 (2013b), Reddy et al. (2020), Albarakati et al. (2021)]. Since cluster sizes, and thus sampling 637 errors, can vary in each iteration of the serial BGEnKF loop, future work can investigate us-638 ing adaptive or empirical localization methods (Anderson, 2012; Anderson & Lei, 2013; Lei 639 & Anderson, 2014) to improve the BGEnKF's performance. Future work can also examine 640 more sophisticated methods to regulate when the BGEnKF switches over to the EnKF (e.g., 641 using the Shapiro-Wilk test for normality). 642

Another area of future work is to hybridize the BGEnKF with other DA algorithms.
Hybridization with kernel filters (Anderson & Anderson, 1999; Hoteit et al., 2008; Stordal
et al., 2011; Hoteit et al., 2012; Liu et al., 2016; Stordal & Karlsen, 2017; Kotsuki et al.,
2022) can be achieved by assigning the clear cluster's covariance to clear member kernels
and likewise for the cloudy member kernels. Existing ensemble-variational hybrid DA al-

gorithms (Hamill & Snyder, 2000; Lorenc, 2003; Buehner, 2005; X. Wang et al., 2007) 648 can also be hybridized with the BGEnKF. For instance, the BGEnKF can replace the EnKF 649 component of such methods. Hybridization with DA methods that employ transport methods to update ensemble members (Reich, 2012; van Leeuwen, 2011; Marzouk et al., 2017; 651 Hu & van Leeuwen, 2021; Evensen Geir et al., 2022) is also possible. This can provide 652 a different method to shift members between clusters, as opposed to the current deletion-653 resampling method. Finally, the BGEnKF can be potentially hybridized with ensemble DA methods that allow non-parametric prior distributions. Such methods include particle fil-655 ters (van Leeuwen, 2009; Poterjoy, 2016; Vetra-Carvalho et al., 2018; Poterjoy et al., 2019; 656 van Leeuwen et al., 2019), the quantile conserving ensemble filter (Anderson, 2022), and the 657 rank histogram filter (Anderson, 2010, 2019, 2020). 658

Since we have only tested the BGEnKF in a perfect model WRF OSSE using Window-659 BT observations, future work can test the BGEnKF in increasingly realistic scenarios, with 660 other observation types, and/or in other Earth systems. For instance, since radar reflectivity 661 observations are sensitive to the presence and absence of precipitation, the BGEnKF can 662 potentially be better at assimilating such observations. The performance of the BGEnKF can 663 also be compared with other popular DA algorithms in tests that assimilate the operational 664 suite of atmospheric in-situ and remote observations. Imperfect model OSSEs and real data 665 tests can also be done. The BGEnKF can also be tested in other Earth system components. 666

This study is among the first to demonstrate the potential of the BGEnKF with a highorder weather model. Our BGEnKF is computationally efficient, scalable with parallelization, and likely straightforward to implement in existing serial EnKF DA systems. These algorithmic properties and our promising results motivate future research into developing, testing and applying the BGEnKF, or similar GMM-EnKFs, for Earth systems DA.

672 6 Open Research

The data and software used in this study are either publicly available or available upon 673 request. The WRF model software can be found on the National Center for Atmospheric 674 Research's WRF website (https://www.mmm.ucar.edu/weather-research-and-forecastingmodel). Our WRF ensemble is constructed using the ECMWF TIGGE data archived on the 676 MARS system (https://apps.ecmwf.int/datasets/data/tigge) and the ERA5 data archived on 677 the CDS system (https://cds.climate.copernicus.eu). The MERG data product is obtained 678 from NASA's GES DISC (https://disc.gsfc.nasa.gov/datasets/GPM_MERGIR_1/summary). We have archived this study's experiments and a copy of the Fortran 90 BGEnKF module on 680 the Pennsylvania State University's Data Commons (http://doi.org/10.26208/XV41-7N75). 681 The Fortran 90 source code of the PSU-EnKF system, including the implemented BGEnKF, 682 is available upon request. 683

684 Acknowledgments

This work is supported by the Office of Naval Research (ONR) Grant N00014-18-1-2517, the National Aeronautics and Space Administration (NASA) Grant 80NSSC22K0613, 686 the National Center for Atmospheric Research (NCAR) Advanced Study Program Graduate 687 Visitor Program (ASP GVP), and the Water Cycle and Climate Extremes Modeling (WAC-600 CEM) project. WACCEM is funded by the U.S. Department of Energy Office of Science 689 Biological and Environmental Research, as part of the Regional and Global Climate Mod-690 eling program, and NCAR is sponsored by the National Science Foundation. Any opinions, 691 findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. Finally, 693 the computations in this study are performed using the Texas Advanced Computing Center 694 (TACC) Stampede2 supercomputer and the National Energy Research Scientific Comput-695

ing Center (NERSC) Cori supercomputer. NERSC is a U.S. Department of Energy Office of

⁶⁹⁷ Science User Facility operated under Contract DE-AC02-05CH11231.

698 **References**

 Van Vleck, E. S. (2021). Model and data reduction for data assimilation ters employing projected forecasts and data with application to a shall <i>Computers and Mathematics with Applications</i>. doi: 10.1016/j.camwa 	ion: Particle fil- ow water model.
701ters employing projected forecasts and data with application to a shall702Computers and Mathematics with Applications. doi: 10.1016/j.camwa	ow water model.
⁷⁰² Computers and Mathematics with Applications. doi: 10.1016/j.camwa	- 2021 05 026
	a.2021.03.020
Anderson, J. L. (2003, 4). A Local Least Squares Framework for Ensembl	le Filtering.
704 Monthly Weather Review, 131(4), 634–642. Retrieved from http://	/journals
.ametsoc.org/doi/10.1175/1520-0493(2003)131<0634:ALLS	FF>2.0.CO;2
⁷⁰⁶ doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2	
⁷⁰⁷ Anderson, J. L. (2010, 11). A Non-Gaussian Ensemble Filter Update for Da	ata Assimilation.
⁷⁰⁸ <i>Monthly Weather Review</i> , <i>138</i> (11), 4186–4198. Retrieved from http	://journals
.ametsoc.org/doi/10.1175/2010MWR3253.1 doi: 10.1175/2010)MWR3253.1
Anderson, J. L. (2012). Localization and sampling error correction in ense	emble Kalman
filter data assimilation. <i>Monthly Weather Review</i> , 140(7). doi: 10.11	75/MWR-D-11
-00013.1	
713 Anderson, J. L. (2019). A nonlinear rank regression method for ensemble K	Calman filter data
714 assimilation (Vol. 147) (No. 8). doi: 10.1175/MWR-D-18-0448.1	
Anderson, J. L. (2020). A marginal adjustment rank histogram filter for no	on-Gaussian
ensemble data assimilation. <i>Monthly Weather Review</i> , 148(8). doi:	10.1175/
717 MWR-D-19-0307.1	
Anderson, J. L. (2022). A Quantile-Conserving Ensemble Filter Framework	. Part I: Updating
an Observed Variable. <i>Monthly Weather Review</i> , 150(5). doi: 10.1175	5/mwr-d-21-0229
720 .1	
Anderson, J. L., & Anderson, S. L. (1999). A Monte Carlo implementation	of the nonlinear
filtering problem to produce ensemble assimilations and forecasts. <i>M</i>	onthly Weather
<i>Review.</i> doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO	;2
Anderson, J. L., & Collins, N. (2007, 8). Scalable Implementations of Enser	mble Filter Algo-
rithms for Data Assimilation. <i>Journal of Atmospheric and Oceanic Te</i>	echnology, 24(8),
⁷²⁶ 1452–1463. Retrieved from https://journals.ametsoc.org/vie	ew/journals/
atot/24/8/jtech2049_1.xml doi: 10.1175/JTECH2049.1	
Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Avella	ano, A. (2009,
9). The data assimilation research testbed a community facility. <i>Bulle</i>	etin of the Amer-
<i>ican Meteorological Society</i> , <i>90</i> (9), 1283–1296. Retrieved from http	s://journals
.ametsoc.org/doi/10.1175/2009BAMS2618.1 doi: 10.11/5/200	99BAMS2618.1
Anderson, J. L., & Lei, L. (2013). Empirical localization of observation imp	pact in ensemble
⁷³³ Kalman filters. <i>Monthly Weather Review</i> , <i>141</i> (11). doi: 10.11/5/MW	/R-D-12-00330
734 .1	
Buehner, M. (2005). Ensemble-derived stationary and flow-dependent back	kground-error
⁷³⁶ covariances: Evaluation in a quasi-operational NWP setting. <i>Quarteri</i>	ly Journal of the
⁷³⁷ <i>Royal Meteorological Society</i> , <i>131</i> (607). doi: 10.1256/qj.04.15	C (1000
⁷³⁸ Burgers, G., Jan van Leeuwen, P., Evensen, G., Van Leeuwen, P. J., & Evens	sen, G. $(1998, 126(6))$
⁷³⁹ 0). Analysis scheme in the ensemble Kalman litter. <i>Monthly wedther</i>	(10, 1175/1520)
⁷⁴⁰ 1/19–1/24. Keineven nom nicip:// journais.ametsoc.org/uoi/	710.1175/1520
-0495(1996)12065(1719.AS11EK/5E2.0.C0,2 doi: $10.1175/152$	20-0493(1998)
742 $I_{20} = I_{10} = I_{10}$	ancomble Volmon
⁷⁴³ Chail, M1., Anderson, J. L., & Chen, A. (2020). An encient of-Gaussian e	Paviau doi:
10 1175/mwr-d-20-0142 1	i neview. u01.
⁷⁴⁵ Chan M-Y & Chen X (2021) Improving Analyses and Forecasts of a T	ropical Squall
⁷⁴⁰ Line using Unper Tronospheric Infrared Satellite Observations Adva	inces in Atmo-
⁷⁴⁸ spheric Sciences, Accepted Manuscript. Retrieved from http://www	.iapjournals

749	.ac.cn/aas/en/article/doi/10.1007/s00376-021-0449-8http://www
750	.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-021-0449-8
751	?viewType=HTML doi: 10.1007/S00376-021-0449-8
752	Chan, MY., Zhang, F., Chen, X., & Leung, L. R. (2020). Potential Impacts of Assimilating
753	All-sky Satellite Infrared Radiances on Convection-Permitting Analysis and Prediction
754	of Tropical Convection. <i>Monthly Weather Review</i> , doi: 10.1175/mwr-d-19-0343.1
755	Chen E & Dudhia I (2001). Counting and advanced land surface-hydrology model
/55	with the Donn State NCAP MM5 modeling system. Part I: Model implementation
756	and consistivity. Monthly Words on Provingendary day, 10, 1175/1520, 0402(2001) 120 (0560)
757	and sensitivity. Monunity weather Keview. doi: $10.1175/1520-0495(2001)129<0509$.
758	CAALSH>2.0.CU;2
759	Chen, X., Leung, L. R., Feng, Z., & Song, F. (2021, 10). Crucial Role of Mesoscale Con-
760	vective Systems in the Vertical Mass, Water and Energy Transports of the South Asian
761	Summer Monsoon. <i>Journal of Climate</i> , -1(aop), 1–46. Retrieved from https://
762	journals.ametsoc.org/view/journals/clim/aop/JCLI-D-21-0124.1/
763	JCLI-D-21-0124.1.xml doi: 10.1175/JCLI-D-21-0124.1
764	Chen, X., Leung, L. R., Feng, Z., Song, F., & Yang, Q. (2021, 9). Mesoscale Convec-
765	tive Systems Dominate the Energetics of the South Asian Summer Monsoon Onset.
766	Geophysical Research Letters, 48(17), e2021GL094873. Retrieved from https://
767	onlinelibrary.wiley.com/doi/full/10.1029/2021GL094873https://
768	onlinelibrary.wiley.com/doi/abs/10.1029/2021GL094873https://
769	<pre>agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL094873 doi:</pre>
770	10.1029/2021GL094873
771	Chen, X., Leung, L. R., Feng, Z., & Yang, O. (2022, 4). Precipitation-Moisture Coupling
772	Over Tronical Oceans: Sequential Roles of Shallow Deep, and Mesoscale Convec-
779	tive Systems Geophysical Research Letters 49(7) Retrieved from https://
774	onlinelibrary wiley com/doi/10 1029/2022CL097836 doi: 10.1029/
774	2022GL 007836
//5	Chen X Nystrom P. G. Davis C. A. & Zarzycki C. M. (2020–12). Dynamical Struc
776	tures of Cross Domain Forecast Error Covariance of a Simulated Tranical Cyclone in
777	a Convertion Domnitting Counted Atmoorphore Ocean Model Monthly Worth on De
778	a convection-refiniting coupled Annosphere-ocean Model. Monany weather Re-
779	view, 149(1), 41–05. Retrieved from https://journals.ametsoc.org/view/
780	Journals/mwre/149/1/mwr-a-20-0116.1.xmi doi: 10.11/5/mwr-a-20-0116.1
781	Chen, X., Pauluis, O. M., Leung, L. R., & Zhang, F. (2018). Multiscale atmospheric over-
782	turning of the Indian summer monsoon as seen through isentropic analysis. <i>Journal of</i>
783	the Atmospheric Sciences. doi: 10.1175/JAS-D-18-0068.1
784	Chen, X., Pauluis, O. M., & Zhang, F. (2018). Atmospheric overturning across multiple
785	scales of an MJO event during the CINDY/DYNAMO campaign. Journal of the Atmo-
786	spheric Sciences. doi: 10.1175/JAS-D-17-0060.1
787	Chen, X., & Zhang, F. (2019). Relative Roles of Preconditioning Moistening and Global
788	Circumnavigating Mode on the MJO Convective Initiation During DYNAMO. Geo-
789	physical Research Letters. doi: 10.1029/2018GL080987
790	Chou, MD., & Suarez, M. J. (1999). A Solar Radiation Parameterization Atmospheric
791	Studies. Technical Report Series on Global Modeling and Data Assimilation.
792	Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. <i>Machine Learning</i> . 20(3). doi:
793	10.1023/A:1022627411411
79/	Dovera L. & Della Rossa E. (2011) Multimodal ensemble Kalman filtering using Gaussian
705	mixture models Computational Geosciences 15(2) 307-323 doi: 10.1007/s10506
795	_010_9205_3
/90	Dowall D C Alexander C R James F D Waygandt S S Daniamin S G Maniluin
797	Dowell, D. C., Alexandel, C. K., James, E. F., Weyganul, S. S., Denjannin, S. G., Manikin,
798	U. S., Alcou, I. I. (2022). The High-Resolution Rapid Kellesh (HKKK): An
799	nouny Opdating Convection-Allowing Forecast Model. Part 1: Motivation and System
800	Description. <i>Weather and Forecasting</i> . Retrieved from https://journals.ametsoc
801	.org/view/journais/wei0/a0p/war-D-21-0151.1/war-D-21-0151.1.xml
802	doi: 10.11/5/WAF-D-21-0151.1
803	ECMWF. (2016). IFS Documentation CY41R2 - Part I: Observations ECMWF. In <i>Ifs doc</i> -

804 805	<pre>umentation cy41r2 (chap. 1). ECMWF. Retrieved from https://www.ecmwf.int/ en/elibrary/16646-ifs-documentation-cy41r2-part-i-observations</pre>
806	Edwards, C. A., Moore, A. M., Hoteit, I., & Cornuelle, B. D. (2015). Regional ocean data
807	assimilation. Annual Review of Marine Science, 7. doi: 10.1146/annurev-marine
808	-010814-015821
809	Emanuel, K. A. (1994). Atmospheric Convection.
810	Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic
811	model using Monte Carlo methods to forecast error statistics. Journal of Geo-
812	physical Research, 99(C5), 10143–10162. Retrieved from https://doi.org/
813	10.1029/94JC00572http://doi.wiley.com/10.1029/94JC00572 doi:
814	10.1029/94JC00572
815	Evensen Geir, Vossepoel Femke C., & van Leeuwen Peter Jan. (2022). Particle Flow
816	for a Quasi-Geostrophic Model. In Data assimilation fundamentals: A unified for-
817	mulation of the state and parameter estimation problem (pp. 199–206). Cham:
818	Springer International Publishing. Retrieved from https://doi.org/10.1007/
819	978-3-030-96709-3_20 doi: 10.1007/978-3-030-96709-3{_}20
820	Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability
821	of classifications. <i>Biometrics</i> , 21(3).
822	Fu, J. X., Wang, W., Shinoda, T., Ren, H. L., & Jia, X. (2017). Toward Understanding the
823	Diverse Impacts of Air-Sea Interactions on MJO Simulations. <i>Journal of Geophysical</i>
824	Research: Oceans, 122(11). doi: 10.1002/201/JC01318/
825	Gaspari, G., & Cohn, S. E. (1999, 1). Construction of correlation functions in two and three
826	dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 123–
827	/5/. Retrieved from http://doi.wiley.com/10.1002/qj.49/1255541/ doi:
828	10.1230/sillsqj.33410
829	Geer, A. J., & Bauer, P. (2011, 10). Observation errors in all-sky data assimilation. <i>Quarterly</i>
830	bttp://doi.wilow.com/10.1002/gi.820.doi: 10.1002/gi.820
831	Geer A. L. Lonitz K. Westen D. Kezumeri M. Okemete K. Zhu V. Schreff C.
832	(2018) All sky satellite data assimilation at operational weather forecasting centres
833	(2016). All-sky satellite data assimilation at operational weather forecasting centres.
834	Gravhush S. I. Kalnay, F. Miyoshi, T. Ida, K. & Hunt, B. R. (2011). Balance and ensem
835	ble Kalman filter localization techniques Monthly Weather Review 139(2) 511–522
835	doi: 10.1175/2010MWR3328.1
838	Grimes D I & Pardo-Jgúzquiza E (2010) Geostatistical analysis of rainfall <i>Geographical</i>
839	<i>Analysis</i> , 42(2), doi: 10.1111/j.1538-4632.2010.00787.x
840	Hamill, T. M., & Snyder, C. (2000). A hybrid ensemble Kalman filter-3D variational anal-
841	vsis scheme. Monthly Weather Review, 128(8 II). doi: 10.1175/1520-0493(2000)
842	128<2905:ahekfv>2.0.co;2
843	Harnisch, F., Weissmann, M., & Periáñez, (2016). Error model for the assimilation of cloud-
844	affected infrared satellite observations in an ensemble data assimilation system. <i>Quar-</i>
845	terly Journal of the Royal Meteorological Society. doi: 10.1002/qj.2776
846	Helmert, J., Sorman, A., Montero, R. A., De Michele, C., de Rosnay, P., Dumont, M.,
847	Arslan, A. N. (2018). Review of snow data assimilation methods for hydrological, land
848	surface, meteorological and climate models: Results from a COST harmosnow survey
849	(Vol. 8) (No. 12). doi: 10.3390/geosciences8120489
850	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Thé-
851	paut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal
852	Meteorological Society. doi: 10.1002/qj.3803
853	Honda, T., Miyoshi, T., Lien, G. Y., Nishizawa, S., Yoshida, R., Adachi, S. A., Bessho,
854	K. (2018, 1). Assimilating all-sky Himawari-8 satellite infrared radiances: A case of
855	Typhoon Soudelor (2015). Monthly Weather Review, 146(1), 213-229. doi: 10.1175/
856	MWR-D-16-0357.1
857	Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an ex-

plicit treatment of entrainment processes. *Monthly Weather Review*. doi: 10.1175/

859	MWR3199.1
860	Hoteit, I., Luo, X., & Pham, DT. (2012, 2). Particle Kalman Filtering: A Nonlinear
861	Bayesian Framework for Ensemble Kalman Filters. Monthly Weather Review, 140(2),
862	528-542. Retrieved from https://journals.ametsoc.org/doi/10.1175/
863	2011MWR3640.1 doi: 10.1175/2011MWR3640.1
864	Hoteit, I., Pham, D. T., Triantafyllou, G., & Korres, G. (2008). A new approximate solution
865	of the optimal nonlinear filter for data assimilation in meteorology and oceanography.
966	Monthly Weather Review 136(1) doi: 10 1175/2007MWR1927 1
000	Houtekamer P. & Mitchell H. I. (2005, 10) Ensemble Kalman filtering. Quartarly Journal
867	of the Poyal Meteorological Society 121(612) 2260, 2280, doi: 10.1256/gi 05.125
868	<i>Of the Royal Meteorological Society, 151</i> (015), 5209–5269. doi: 10.1250/qj.05.155
869	Houlekamer, P. L., & Milchell, H. L. (1998). Data assimilation using an ensemble
870	Kaiman filter technique. <i>Monthly Weather Review</i> , 120(3), 196–811. doi: 10.1175/
871	1520-0493(1998)126<0/96:DAUAEK>2.0.CU;2
872	Houtekamer, P. L., & Mitchell, H. L. (2001). A sequential ensemble Kalman filter for
873	atmospheric data assimilation. <i>Monthly Weather Review</i> , 129(1), 123–137. doi:
874	10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
875	Houtekamer, P. L., & Zhang, F. (2016). Review of the ensemble Kalman filter for at-
876	mospheric data assimilation. Monthly Weather Review, 144(12), 4489–4532. doi:
877	10.1175/MWR-D-15-0440.1
878	Hu, C. C., & van Leeuwen, P. J. (2021). A particle flow filter for high-dimensional system
879	applications. Quarterly Journal of the Royal Meteorological Society, 147(737). doi:
880	10.1002/qj.4028
881	Hunt, B. R., Kostelich, E. J., & Szunyogh, I. (2007, 6). Efficient data assimilation for spa-
882	tiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear
883	Phenomena, 230(1-2), 112–126. Retrieved from https://linkinghub.elsevier
884	.com/retrieve/pii/S0167278906004647 doi: 10.1016/j.physd.2006.11.008
885	Jacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins,
886	W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the
887	AER radiative transfer models. <i>Journal of Geophysical Research Atmospheres</i> , doi:
888	10.1029/2008JD009944
889	Janowiak J E Joyce R J & Yarosh Y (2001) A real-time global half-hourly pixel-
890	resolution infrared dataset and its applications. <i>Bulletin of the American Meteorologi</i> -
891	<i>cal Society</i> , 82(2), doi: 10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO:2
000	Johnson R H Rickenbach T M Rutledge S A Ciesielski P E & Schubert W H
092	(1000) Trimodal characteristics of Tropical convection <i>Journal of Climate</i> 12(8
893	(1777). Trinodal characteristics of Tropical convection. <i>Journal of Cumate</i> , 12(0) PAPT 1). doi: 10.1175/1520.04/2(1000)012<2307:tcote>2.0.co:2
894	Kannanna C I. Dianackar M M. Kurkowski N D & Adamac D A (2005) Encamble
895	Keppenne, C. L., Klenecker, M. M., Kurkowski, N. F., & Audinec, D. A. (2003). Ensemble
896	complication to account mediction. Newlinean Processes in Coonhugies, 12(4), doi:
897	application to seasonal prediction. <i>Nonlinear Processes in Geophysics</i> , 12(4). doi:
898	10.5194/IIPg = 12-491-2005
899	Kotsuki, S., Wilyoshi, I., Kondo, K., & Pounasi, K. (2022). A Local Particle Filter and Its
900	Gaussian Mixture Extension Implemented with Minor Modifications to the LETKF.
901	Geoscientific Model Development Discussions, 2022, 1–38. Retrieved from https://
902	gmd.copernicus.org/preprints/gmd-2022-69/ doi: 10.5194/gmd-2022-69
903	Lei, L., & Anderson, J. L. (2014). Comparisons of empirical localization techniques for
904	serial ensemble kalman filters in a simple atmospheric general circulation model.
905	Monthly Weather Review, 142(2). doi: 10.1175/MWR-D-13-00152.1
906	Lei, L., Anderson, J. L., & Whitaker, J. S. (2016). Localizing the impact of satellite radiance
907	observations using a global group ensemble filter. Journal of Advances in Modeling
908	Earth Systems, 8(2). doi: 10.1002/2016MS000627
909	Lei, L., & Whitaker, J. S. (2015). Model space localization is not always better than observa-
910	tion space localization for assimilation of satellite radiances. Monthly Weather Review,
911	143(10). doi: 10.1175/MWR-D-14-00413.1
912	Lei, L., Whitaker, J. S., Anderson, J. L., & Tan, Z. (2020). Adaptive Localization for Satel-
913	lite Radiance Observations in an Ensemble Kalman Filter. Journal of Advances in

914	Modeling Earth Systems, 12(8). doi: 10.1029/2019MS001693
915	Lim, K. S. S., & Hong, S. Y. (2010). Development of an effective double-moment cloud
916	microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather
917	and climate models. <i>Monthly Weather Review</i> . doi: 10.1175/2009MWR2968.1
918	Liu, B., Ait-El-Fauih, B., & Hoteit, I. (2016). Efficient kernel-based ensemble Gaussian
919	mixture filtering. <i>Monthly Weather Review</i> , 144(2), doi: 10.1175/MWR-D-14-00292
920	.1
921	Llovd S P (1982) Least Squares Quantization in PCM <i>IEEE Transactions on Information</i>
922	<i>Theory</i> , 28(2), doi: 10.1109/TIT.1982.1056489
923	Lorenc A C (2003) Modelling of error covariances by 4D-Var data assimilation <i>Quarterly</i>
924	<i>Journal of the Royal Meteorological Society</i> 129(595 PART B) 3167–3182 doi:
925	10 1256/gi 02 131
026	Madden R A & Julian P R (1971) Detection of a 40–50 Day Oscillation in the Zonal
920	Wind in the Tropical Pacific <i>Journal of the Atmospheric Sciences</i> doi: 10.1175/
029	1520-0469(1971)028<0702:doadoi>2.0 co:2
920	Madden R A & Julian P R (1972) Description of Global-Scale Circulation Cells in the
929	Tropics with a 40-50 Day Period Journal of the Atmospheric Sciences, doi: 10.1175/
930	$1520_{-}0.020(1072)0.020 \times 1100 \cdot dousces 2.0 \text{ co} \cdot 2$
931	Markowski P & Richardson V (2010) Mesoscale Meteorology in Midlatitudes doi:
932	10 1002/0780/7068210/
933	Marzoul V Masalhy T Darna M & Spontini A (2017) Sampling via massure trans
934	port: An introduction In Handbook of uncertainty quantification doi: 10.1007/
935	port. An infoduction. In <i>Handbook of uncertainty quantification</i> . doi: $10.1007/$
936	$\frac{7}{6}$ $\frac{7}{6}$ $\frac{1}{2}$ $\frac{1}$
937	regional scale data assimilation. Dort II: Imporfact model experiments. Monthly
938	Weighten Deview, 125(4), 1402, 1402, doi: 10.1175/MWD2252.1
939	Weather Review, 155(4), 1405-1425. doi: 10.1175/WW K5552.1
940	Meng, Z., & Zhang, F. (2008). Tests of an ensemble Kalman filter for mesoscale and
941	regional-scale data assimilation. Part III: Comparison with 5DVAK in a real-data case
942	study. <i>Monthly weather Review</i> . doi: 10.1175/2007MWR2106.1
943	Minamide, M., & Zhang, F. (2017). Adaptive observation error inflation for assimilating
944 945	MWR-D-16-0257.1
946	Minamide, M., & Zhang, F. (2018). Assimilation of all-sky infrared radiances from
947	Himawari-8 and impacts of moisture and hydrometer initialization on convection-
948	permitting tropical cyclone prediction. Monthly Weather Review, 146(10), 3241-3258.
949	doi: 10.1175/MWR-D-17-0367.1
950	Minamide, M., & Zhang, F. (2019). An adaptive background error inflation method for
951	assimilating all-sky radiances. Quarterly Journal of the Royal Meteorological Society,
952	145(719), 805–823. doi: 10.1002/qj.3466
953	Park, S. K., & Xu, L. (2016). Data assimilation for atmospheric, oceanic and hydrologic
954	applications (Vol. III). doi: 10.1007/978-3-319-43415-5
955	Poterjoy, J. (2016, 1). A localized particle filter for high-dimensional nonlinear sys-
956	tems. Monthly Weather Review, 144(1), 59–76. Retrieved from http://journals
957	.ametsoc.org/doi/10.1175/MWR-D-15-0163.1 doi: 10.1175/MWR-D-15-0163
958	.1
959	Poterjoy, J., Wicker, L., & Buehner, M. (2019). Progress toward the application of a local-
960	ized particle filter for numerical weather prediction. Monthly Weather Review. doi:
961	10.1175/MWR-D-17-0344.1
962	Press, W., & Flannery, B. (2010). Numerical Recipes in Fortran 90 (Vol. 35) (No. 6).
963	Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Raiput, D. S., Srivastava. G., &
964	Baker, T. (2020). Analysis of Dimensionality Reduction Techniques on Big Data.
965	IEEE Access, 8. doi: 10.1109/ACCESS.2020.2980942
966	Reich, S. (2012). A Gaussian-mixture ensemble transform filter. <i>Quarterly Journal of the</i>
967	Royal Meteorological Society, 138(662). doi: 10.1002/qi.898
968	Reichle, R. H., Bosilovich, M. G., Crow, W. T., Koster, R. D., Kumar, S. V., Mahanama,

969	S. P. P., & Zaitchik, B. F. (2009). Recent Advances in Land Data Assimilation at
970	the NASA Global Modeling and Assimilation Office. In Data assimilation for atmo-
971	spheric, oceanic and hydrologic applications. doi: 10.1007/978-3-540-71056-1{\
972	_}21
973	Skamarock, W., Klemp, J., Dudhi, J., Gill, D., Barker, D., Duda, M., Powers, J.
974	(2008). A Description of the Advanced Research WRF Version 3. NCAR Tech.
975	Note NCAR/TN-468+STR, 113 pp. NCAR TECHNICAL NOTE. doi: 10.5065/
976	D68S4MVH
977	Sondergaard, T., & Lermusiaux, P. F. (2013a). Data assimilation with gaussian mixture mod-
978	els using the dynamically orthogonal field equations. Part II: Applications. <i>Monthly</i>
979	Weather Review, 141(6), 1761–1785, doi: 10.1175/MWR-D-11-00296.1
090	Sondergaard T & Lermusiaux P F (2013b 6) Data assimilation with gaussian mixture
001	models using the dynamically orthogonal field equations. Part I: Theory and scheme
982	Monthly Weather Review 141(6) 1737–1760 Retrieved from https://iournals
083	ametsoc.org/view/journals/mwre/141/6/mwr-d-11-00295.1.xml doi
984	10 1175/MWR-D-11-00295 1
005	Stammer D. Balmaseda M. Heimhach P. Köhl A. & Weaver A. (2016). Ocean Data
900	Assimilation in Support of Climate Applications: Status and Perspectives Annual
900	Review of Marine Science & doi: 10.1146/annurey-marine-122414-034113
000	Stordal A S & Karlsen H A (2017) Large sample properties of the adaptive gaussian
989	mixture filter. <i>Monthly Weather Review</i> . 145(7). doi: 10.1175/MWR-D-15-0372.1
990	Stordal A S Karlsen H A Næydal G Skaug H I & Vallès B (2011) Bridging
991	the ensemble Kalman filter and particle filters. The adaptive Gaussian mixture filter
992	Computational Geosciences, 15(2), doi: 10.1007/s10596-010-9207-1
002	Swinbank R Kyouda M Buchanan P Froude L Hamill T M Hewson T D Ya-
994	maguchi M (2016) The TIGGE project and its achievements <i>Bulletin of the Ameri-</i>
995	can Meteorological Society. doi: 10.1175/BAMS-D-13-00191.1
996	Temperton, C., & Williamson, D. L. (1981). Normal mode initialization for a multilevel
997	grid-noint model Part I: Linear aspects Monthly Weather Review 109(4) doi: 10
998	.1175/1520-0493(1981)109<0729:NMIFAM>2.0.CO;2
999	Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., & Whitaker, J. S. (2003, 7).
1000	Ensemble Square Root Filters. <i>Monthly Weather Review</i> , 131(7), 1485–1490. Re-
1001	trieved from http://journals.ametsoc.org/doi/10.1175/1520-0493(2003)
1002	131%3C1485:ESRF%3E2.0.C0;2 doi: 10.1175/1520-0493(2003)131<1485:
1003	ESRF>2.0.CO;2
1004 1005	van Leeuwen, P. J. (2009). Particle filtering in geophysical systems. doi: 10.1175/ 2009MWR2835.1
1006	van Leeuwen, P. J. (2011). Efficient nonlinear data assimilation for oceanic models of in-
1007	termediate complexity. In <i>leee workshop on statistical signal processing proceedings</i> .
1008	doi: 10.1109/SSP.2011.5967700
1009	van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., & Reich, S. (2019, 7). Particle
1010	filters for high-dimensional geoscience applications: A review (Vol. 145) (No. 723).
1011	John Wiley and Sons Ltd. doi: 10.1002/qj.3551
1012	Vetra-Carvalho, S., van Leeuwen, P. J., Nerger, L., Barth, A., Altaf, M. U., Brasseur, P.,
1013	Beckers, J. M. (2018). State-of-the-art stochastic data assimilation methods for high-
1014	dimensional non-Gaussian problems. Tellus, Series A: Dynamic Meteorology and
1015	Oceanography. doi: 10.1080/16000870.2018.1445364
1016	Wang, S., Sobel, A. H., Zhang, F., Qiang Sun, Y., Yue, Y., & Zhou, L. (2015). Re-
1017	gional simulation of the october and november MJO events observed during the
1018	CINDY/DYNAMO field campaign at gray zone resolution. Journal of Climate, 28(6),
1019	2097–2119. doi: 10.1175/JCLI-D-14-00294.1
1020	Wang, X., Snyder, C., & Hamill, T. M. (2007). On the theoretical equivalence of differ-
1021	ently proposed ensemble - 3DVAR hybrid analysis schemes. Monthly Weather Review,
1022	135(1). doi: 10.1175/MWR3282.1
1023	Whitaker, J. S., & Hamill, T. M. (2002, 7). Ensemble data assimilation without perturbed

1024	observations. Monthly Weather Review, 130(7), 1913–1924. Retrieved from http://
1025	journals.ametsoc.org/doi/10.1175/1520-0493(2002)130%3C1913:EDAWPO%
1026	3E2.0.C0;2 doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
1027	Whitaker, J. S., Hamill, T. M., Wei, X., Song, Y., & Toth, Z. (2008). Ensemble data assim-
1028	ilation with the NCEP global forecast system. Monthly Weather Review, 136(2). doi:
1029	10.1175/2007MWR2018.1
1030	Ying, Y., & Zhang, F. (2017). Practical and intrinsic predictability of multiscale weather and
1031	convectively coupled equatorial waves during the active phase of an MJO. Journal of
1032	the Atmospheric Sciences, 74(11), 3771-3785. doi: 10.1175/JAS-D-17-0157.1
1033	Ying, Y., & Zhang, F. (2018). Potentials in improving predictability of multiscale tropical
1034	weather systems evaluated through ensemble assimilation of simulated satellite-based
1035	observations. Journal of the Atmospheric Sciences, 75(5), 1675–1698. doi: 10.1175/
1036	JAS-D-17-0245.1
1037	Zhang, F., Minamide, M., & Clothiaux, E. E. (2016). Potential impacts of assimilating all-
1038	sky infrared satellite radiances from GOES-R on convection-permitting analysis and
1039	prediction of tropical cyclones. Geophysical Research Letters, 43(6), 2954–2963. doi:
1040	10.1002/2016GL068468
1041	Zhang, F., Snyder, C., & Sun, J. (2004, 5). Impacts of initial estimate and observation avail-
1042	ability on convective-scale data assimilation with an ensemble Kalman filter. Monthly
1043	Weather Review, 132(5), 1238–1253. doi: 10.1175/1520-0493(2004)132<1238:
1044	IOIEAO>2.0.CO;2
1045	Zhang, F., Taraphdar, S., & Wang, S. (2017). The role of global circumnavigating mode in
1046	the MJO initiation and propagation. Journal of Geophysical Research, 122(11), 5837-
1047	5856. doi: 10.1002/2016JD025665
1048	Zhang, Y., Sieron, S. B., Lu, Y., Chen, X., Nystrom, R. G., Minamide, M., Zhang, F.
1049	(2021, 12). Ensemble-Based Assimilation of Satellite All-Sky Microwave Radiances
1050	Improves Intensity and Rainfall Predictions for Hurricane Harvey (2017) (Vol. 48)
1051	(No. 24). John Wiley and Sons Inc. doi: 10.1029/2021GL096410
1052	Zhang, Y., Stensrud, D. J., & Zhang, F. (2019, 12). Simultaneous Assimilation of Radar and
1053	All-Sky Satellite Infrared Radiance Observations for Convection-Allowing Ensemble
1054	Analysis and Prediction of Severe Thunderstorms. Monthly Weather Review, 147(12),
1055	4389-4409. Retrieved from https://journals.ametsoc.org/view/journals/
1056	mwre/147/12/mwr-d-19-0163.1.xml doi: 10.1175/MWR-D-19-0163.1

Supporting Information for "Potential benefits of handling mixture statistics via a bi-Gaussian EnKF: tests with all-sky satellite infrared radiances "

Man-Yau Chan^{1,2}, Xingchao Chen^{1,2}, Jeffrey L. Anderson³

¹Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania, USA ²Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania, USA

³Data Assimilation Research Section, Computational Information Systems Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA

Contents of this file

- 1. Text S1: Some differences between clear and cloudy member statistics
- 2. Text S2: Discussion on heuristic clustering
- 3. Text S3: Bayes' rule for the BGEnKF
- 4. Text S4: A detailed description of the BGEnKF algorithm
- 5. Text S5: Outline of the BGEnKF algorithm serial filtering workflow
- 6. Text S6: On generalizing the BGEnKF algorithm to handle more clusters
- 7. Figure S1: Illustration of the differences between clear and cloudy ensemble statistics
- 8. Figure S2: Illustration of the BGEnKF algorithm serial filtering workflow

Introduction

This document has several purposes. First, we will illustrate some differences between clear ensemble statistics and cloudy ensemble statistics. Differences like these motivate research into the BGEnKF and similar GMM-EnKFs. The second purpose is to provide a quick reference for other scientists to understand the BGEnKF, independently re-create our BGEnKF algorithm, and to support further development of the BGEnKF. To increase the accessibility of this area of research, we have written this document with graduate students in mind.

1. Text S1: Some differences between clear and cloudy member statistics

To set the stage, we plotted maps of the ensemble averaged Window-BT [Figure S1(b)] and the fraction of cloudy member columns in the ensemble [Figure S1(b)]. These ensemble quantities are constructed from the spun-up 50-member WRF ensemble described in the main text. Though the ensemble captured the general appearance of the organized convective features seen in the nature run [Figures 2(a) and S1(a)], the ensemble was uncertain about the presence/absence of clouds over much of the domain [Figure S1(b)]. This uncertainty is particularly noticeable over regions where the ensemble averaged Window-BT was between 248 K and 280 K.

Several differences between clear and cloudy member columns can be seen from Figure S1. First, the average Window-BT values of clear member columns are typically warmer than 280 K, whereas the average Window-BT values of cloudy member columns are cooler than 280 K [Figure S1(c & d)]. This difference is well known. As such, the Window-BT ensemble statistics of an ensemble of clear and cloudy member columns (henceforth, mixed ensemble) will exhibit mixed statistics.

The clear and cloudy member columns also differ noticeably in terms of their humidity fields and the Kalman gain linking Window-BT innovations to humidity increments. For the ease of visualization, we examined through a column-integrated measure of humidity that is a linear function of the WRF model state: the pseudo precipitable water (PPW). The PPW is defined as

$$PPW \equiv \frac{g}{P_{\rm sfc} - P_{\rm top}} \int_0^1 q_v d\eta \tag{1}$$

where q_v refers to water vapor mass mixing ratio (QVAPOR), $P_{\rm sfc}$ and $P_{\rm top}$ refer to model surface pressure and model top pressure, and η refers to the WRF model's vertical coordinate. The PPW can be derived from the definition of precipitable water by applying the hydrostatic approximation, the definition of WRF η levels, and by assuming that $P_{\rm sfc}$ and $P_{\rm top}$ are constants ($P_{\rm sfc} \equiv 1000$ hPa, $P_{\rm top} \equiv 20$ hPa).

We opted to use the linear PPW over precipitable water (PW) because PW is a nonlinear function of the model state. Thus, the Kalman gain linking PW to Window-BT within the same model column is not mathematically equivalent to taking a column-integral of the Kalman gain linking QVAPOR to Window-BT. In contrast, said mathematical equivalence holds for PPW. Looking at PPW over PW thus allows us to get an accurate sense of what the EnKF would do to QVAPOR within a model column.

Figure S1(c & d) indicates that the PPW of cloudy member columns is higher than that of clear member columns. This is because clouds require nearly saturated humidity to materialize. As such, when the ensemble is mixed, mixture statistics in the humidity fields are likely.

We also examined the component of the Kalman gains responsible for propagating Window-BT innovations to QVAPOR: the least squares linear regression coefficient linking Window-BT to QVAPOR (Anderson, 2003). For the ease of visualization, we looked at the coefficient linking Window-BT to PPW within the same column. This coefficient (β) is defined as

$$\beta \equiv \frac{\text{Cov}\left(\text{PPW}, \text{BT}\right)}{\text{Var}\left(\text{BT}\right)}.$$
(2)

Cov (PPW, BT) denotes the prior ensemble covariance between PPW and Window-BT within said model column, and Var (BT) denotes the prior ensemble variance of Window-BT within the same column. In the limit where Var(BT) is much smaller than the observation error, the Kalman gain turns into β .

As can be seen from Figure S1(e & f), the clear member columns' statistically significant β values are generally an order of magnitude larger than those of the cloudy member columns. This difference suggests that the statistical relationship between Window-BT and humidity can vary dramatically depending on the absence/presence of clouds.

2. Text S2: Heuristic localized clustering of ensemble members

Since a mixture of clear and cloudy members results in a mixed prior distribution, it seems appropriate to explore an ensemble DA method that explicitly treat mixture distributions. Since the EnKF has been remarkably successful at assimilating infrared radiance observations (Otkin, 2012; F. Zhang et al., 2016; Honda et al., 2018; Minamide & Zhang, 2018; Y. Zhang et al., 2018; Otkin & Potthast, 2019; F. Zhang et al., 2019; Geer et al., 2019; Chan, Zhang, et al., 2020; Jones et al., 2020; Chan & Chen, 2021; Hartman et al., 2021; Y. Zhang et al., 2021), we will extend the EnKF to handle clear members and cloudy members separately.

A complication in handling clear members and cloudy members separately lies in the fact every member usually contains both clear model columns and cloudy model columns. Supposing we have $N_i * N_j$ model columns in the domain, there can exist up to $2^{N_i * N_j}$ possible spatial combinations of clear and cloudy columns in the domain. Sampling these $2^{N_i * N_j}$ combinations would require more than $2^{N_i * N_j}$ ensemble members – a likely impractical proposition. Dimensional reduction is necessary to reduce the required number of ensemble members.

A simple and natural dimensional reduction approach is to limit our clear/cloudy considerations to small regions of the domain. This dimensional reduction approach is effectively a type of spatial localization – a commonly employed heuristic method used to limit the effects of sampling errors on EnKFs (Houtekamer & Zhang, 2016). As a first attempt at employing this localization, suppose we are assimilating observations one-at-a-time (*i.e.*, serial assimilation). When assimilating the *m*-th observation, we will only consider model columns within 1 horizontal radius of influence (HROI) surrounding the observed column. If there are N_{loc} columns within 1 HROI of the observed column, the number of possible spatial combinations falls from $2^{N_i * N_j}$ to $2^{N_{loc}}$. For commonly used HROI values, $2^{N_{loc}} \ll 2^{N_i * N_j}$.

Though localization can dramatically reduce the number of spatial clear/cloudy combinations, $2^{N_{loc}}$ is likely greater than the number of ensemble members N_E . For instance, in the IR DA experiments of Chan, Zhang, et al. (2020) and Chan and Chen (2021), the HROI is approximately 11 model grid spacings (100-km HROI, 9-km grid spacing), meaning that there exist $\sim \pi * 11^2 \approx$ 363 model columns within the localization zone. A typical ensemble size of \sim 50 is much less than the number of spatial combinations in this example ($\sim 2^{363}$). Another measure is necessary to further simplify the problem.

We opted to assume that there are at most two clear/cloudy spatial combinations within the localized zone. To understand the rationale, consider that localized serial EnKFs assume that all ensemble members within 1 radius of influence (ROI) of an observation to be drawn from a Gaussian distribution (Burgers et al., 1998; Whitaker & Hamill, 2002; Anderson, 2003). This is equivalent to assuming that there exists only one spatial combination within 1 ROI of said observation. Our two spatial combination assumption, though imperfect, is closer to the actual number of spatial combinations $(2^{N_{loc}})$ than the one spatial combination assumption.

We can now consider that the ensemble members are drawn from a mixture of two distributions within the localized region. The EnKF can be extended to handle this mixture distribution by replacing the EnKF's Gaussian prior assumption. Specifically, we consider that some prior members are drawn from one Gaussian distribution and the other members are drawn from a different Gaussian distribution. The prior ensemble is thus assumed to be drawn from a bi-Gaussian prior distribution. The resulting algorithm will be henceforth termed the bi-Gaussian EnKF (BGEnKF).

For the BGEnKF to work, it is necessary to separate the ensemble members into two groups (henceforth termed "clusters"). The sample statistics of each cluster will correspond to one of two Gaussian kernels. As a first approach, we will consider members that are clear at the observation site to be drawn from one Gaussian distribution (henceforth termed the "clear kernel" or "clear cluster"). The remaining members will be considered to be drawn from a different Gaussian distribution (henceforth, the "cloudy kernel" or "cloudy cluster"). More advanced clustering approaches, such as those involving machine learning (e.g., support vector machines), can be considered at a later date.

3. Text S3: Bayes' rule for the BGEnKF

We will now formulate a serially assimilating BGEnKF (*i.e.*, the algorithm assimilates one observation at a time) starting from Bayes' rule and using a notation akin to that of Ide, Courtier,
Ghil, and Lorenc (1997). In our earlier study (Chan, Anderson, & Chen, 2020), the BGEnKF was formulated as a model state space filter [or, in the terminology of Anderson and Collins (2007), a sequential filter]. However, multi-process implementations of sequential filters require inter-process communications at every iteration of the serial assimilation loop. The sequential filter formulation thus does not scale well with parallelization (Anderson & Collins, 2007).

To ensure that the BGEnKF algorithm scales well with parallelization, the BGEnKF is formulated to constrain an extended state vector $\boldsymbol{\psi}$ (Anderson & Collins, 2007). $\boldsymbol{\psi}$ will contain all of the variables used in the BGEnKF. Aside from containing the model state $\boldsymbol{x}, \boldsymbol{\psi}$ will also contain the simulated observation values \boldsymbol{y} that correspond to said model state. Furthermore, since $\boldsymbol{\xi}$ [column-integrated frozen water mass content; see main text's Eq. (1)] can be used to discriminate clear column members from cloudy column members (see main text's section 2.2), we will include $\boldsymbol{\xi}$ at every observation site into $\boldsymbol{\psi}$. The vector $\boldsymbol{\xi}$ will be used to denote the $\boldsymbol{\xi}$ values at every observation site. We can thus define

$$\boldsymbol{\psi} \equiv \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{\xi} \end{bmatrix}. \tag{3}$$

Supposing N_x denotes the number of elements in \boldsymbol{x} and N_y denotes the number of elements in \boldsymbol{y} (and in $\boldsymbol{\xi}$), then $\boldsymbol{\psi}$ has $N_x + 2N_y$ elements. For the ease of writing, we will define

$$N_{\psi} \equiv N_x + 2N_y$$

With Eq. (3), we can construct an ensemble of forecasted ψ vectors. Supposing that we have a forecast ensemble of N_E model states $\left\{ \boldsymbol{x_1^f, x_2^f, \ldots, x_{N_E}^f} \right\}$, we can define an ensemble of N_E forecasted extended state vectors via

$$\boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{f}} \equiv \begin{bmatrix} \boldsymbol{x}_{\boldsymbol{n}}^{\boldsymbol{f}} \\ \boldsymbol{h}(\boldsymbol{x}_{\boldsymbol{n}}^{\boldsymbol{f}}) \\ \boldsymbol{\xi} \left(\boldsymbol{x}_{\boldsymbol{n}}^{\boldsymbol{f}} \right) \end{bmatrix} \quad \forall \quad \boldsymbol{n} = 1, 2, \dots, N_{E}.$$

$$\tag{4}$$

Here, $h(x_n^f)$ represents calling the observation operator h on x_n^f , and $\xi(x_n^f)$ represents evaluating ξ [Eq. (1) of main text] at every observation site using the using the information in x_n^f .

Since the BGEnKF will be formulated as a serial assimilation algorithm, we can outline the essence of the algorithm by considering what happens when a single observation (y^o) is assimilated into an ensemble of forecasted ψ vectors. Like typical serially assimilating EnKF algorithms [*e.g.*, Whitaker, Hamill, Wei, Song, and Toth (2008), Anderson et al. (2009), and Meng and Zhang (2007)], the serially assimilating BGEnKF algorithm is of the form:

- 1. Construct an ensemble of forecasted $\boldsymbol{\psi}$ vectors $(i.e., \left\{ \boldsymbol{\psi}_1^f, \boldsymbol{\psi}_2^f, \dots, \boldsymbol{\psi}_{N_E}^f \right\})$.
- 2. Select an unassimilated observation.
- 3. Divide the ensemble into the clear and cloudy clusters using the procedure described the main text's section 2.2.
- 4. Assimilate the selected observation using the BGEnKF to construct an ensemble of analyzed ψ vectors (*i.e.*, $\{\psi_1^a, \psi_2^a, \dots, \psi_{N_F}^a\}$)
- 5. If there are unassimilated observations remaining,
 - (i) Overwrite the forecast ensemble with the posterior ensemble (*i.e.*, $\boldsymbol{\psi}_n^f \leftarrow \boldsymbol{\psi}_n^a \quad \forall n = 1, 2, \ldots, N_E$).
 - (ii) Return to step 2..
- 6. Exit.

We will thus formulate the BGEnKF equations by considering the assimilation of y^o into $\left\{\psi_1^f, \psi_2^f, \ldots, \psi_{N_E}^f\right\}$. Supposing that the ensemble members have been sorted into the clear and cloudy clusters based on the ξ value at the observation site, the BGEnKF assumes that the prior probability density function [pdf; $p(\psi)$] can be represented by the bi-Gaussian pdf

$$p(\boldsymbol{\psi}) = w_{\text{clr}}^{f} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{\text{clr}}^{f}}, \boldsymbol{P}_{\text{clr}}^{f}\right) + w_{\text{cld}}^{f} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{\text{cld}}^{f}}, \boldsymbol{P}_{\text{cld}}^{f}\right).$$
(5)

Throughout this document, we will use the subscript "clr" to denote clear cluster quantities, and the subscript "cld" to denote cloudy cluster quantities. $\mathcal{G}\left(\psi; \ \overline{\psi}_{clr}^{f}, P_{clr}^{f}\right)$ denotes the clear cluster's Gaussian kernel with mean state $\overline{\psi}_{clr}^{f}$ and covariance matrix P_{clr}^{f} . Similarly, $\mathcal{G}\left(\psi; \ \overline{\psi}_{cld}^{f}, P_{cld}^{f}\right)$ denotes the cloudy cluster's Gaussian kernel with mean state ψ_{clr}^{f} and covariance matrix \mathcal{P}_{cld}^{f} . Similarly, $\mathcal{G}\left(\psi; \ \overline{\psi}_{cld}^{f}, P_{cld}^{f}\right)$ denotes the cloudy cluster's Gaussian kernel with mean state ψ_{cld}^{f} and covariance matrix \mathcal{P}_{cld}^{f} . In general, the Gaussian pdf for a K-dimensional state p vector with some mean μ and covariance matrix C is defined as

$$\mathcal{G}(\boldsymbol{p}; \boldsymbol{\mu}, \boldsymbol{C}) \equiv \frac{1}{\sqrt{(2\pi)^{K} \det(\boldsymbol{C})}} \exp\left\{-\frac{1}{2}(\boldsymbol{p} - \boldsymbol{\mu})^{\top} \boldsymbol{C}^{-1}(\boldsymbol{p} - \boldsymbol{\mu})\right\}.$$

The scalar quantities w_{clr}^f and w_{cld}^f are the respective weights of the clear and cloudy Gaussian kernels. Note that

$$w_{\text{clr}}^f + w_{\text{cld}}^f = 1, \quad w_{\text{clr}}^f \ge 0, \quad \text{and}, \quad w_{\text{cld}}^f \ge 0.$$

The various parameters in the prior pdf [Eq. (5)] are estimated from the clustered forecast ensemble of $\boldsymbol{\psi}$ vectors. Suppose the set $S_{\rm clr}$ contains the ensemble member indices of clear cluster members [*i.e.*, the index *n* in Eq. (4)] and the set $S_{\rm cld}$ contains the ensemble member indices of cloudy cluster members. We first compute the number of members in the clear cluster $(N_{\rm clr}^f)$ and the number of members in the clear cluster $(N_{\rm cld}^f)$ via

$$N_{\rm clr}^f \equiv {\rm count}\left(S_{\rm clr}\right), \quad {\rm and}, \quad N_{\rm cld}^f \equiv {\rm count}\left(S_{\rm cld}\right)$$
(6)

Supposing g is a placeholder that can be replaced with "clr" or "cld", count (S_g) counts the number of elements in the set S_g . The parameters of Eq. (5) can then be estimated via

$$\overline{\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}} \equiv \frac{1}{N_{g}^{f}} \sum_{n \in S_{g}} \boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{f}}, \quad \overline{\boldsymbol{P}_{\boldsymbol{g}}^{\boldsymbol{f}}} \equiv \frac{1}{N_{g}^{f} - 1} \sum_{n \in S_{g}} \left(\boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{f}} - \overline{\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}} \right) \left(\boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{f}} - \overline{\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}} \right)^{\top}, \text{ and, } w_{g}^{f} \equiv \frac{N_{g}^{f}}{N_{clr}^{f} + N_{cld}^{f}}.$$

(7) Note that the BGEnKF does not require any explicit estimate of the large matrices P_{cld}^{f} and P_{clr}^{f} . Instead, like the typical serially assimilating EnKF, the BGEnKF only requires calculating a column of these matrices. This will be discussed in Text S4.

To assimilate y^o into $\left\{ \psi_1^f, \ldots, \psi_{N_E}^f \right\}$, consider Bayes' rule:

$$p(\boldsymbol{\psi}|\boldsymbol{y}^{o}) = \frac{p(\boldsymbol{\psi}) \ p(\boldsymbol{y}^{o}|\boldsymbol{\psi})}{p(\boldsymbol{y}^{o})}$$
(8)

where the marginal $p(y^o)$ normalizes the numerator of Eq. (8) [e.g., Lorenc (1986)]. As we will show later, this normalization property is central to deriving the posterior weights of the clear and cloudy posterior kernels. Note that though the normalization property is used in the derivation, there is no need to explicit compute $p(y^o)$ at all in the BGEnKF algorithm.

If we assume Gaussian observation errors, the observation likelihood $p(y^o|\psi)$ can be written as

$$p(y^{o}|\boldsymbol{\psi}) \equiv \mathcal{G}\left(\boldsymbol{H}\boldsymbol{\psi}; \quad y^{o}, \sigma^{o2}\right)$$
(9)

where σ^{o^2} is the observation error variance and \boldsymbol{H} is a matrix that extracts the simulated observation from $\boldsymbol{\psi}$. Specifically, if y^o corresponds to the $(N_x + m)$ -th element in $\boldsymbol{\psi}$, \boldsymbol{H} is an $1 \times N_{\psi}$ matrix of the form

$$\boldsymbol{H} \equiv \begin{bmatrix} 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0 & 0 \end{bmatrix}$$

where the only non-zero element (unity) is the $(N_x + m)$ -th element.

Before proceeding further, note that the observation likelihoods for IR-BTs are not strictly Gaussian. The associated observation errors are known to be dependent on the presence/absence of clouds in the observed atmospheric columns (Geer & Bauer, 2011; Harnisch et al., 2016; Minamide & Zhang, 2017; Otkin et al., 2018). Furthermore, IR-BT values are bounded. Nonetheless, the successes seen in assimilating IR-BTs with EnKFs suggest that the imperfect Gaussian observation likelihood assumption is at least somewhat functional (Otkin, 2012; F. Zhang et al., 2016; Honda et al., 2018; Minamide & Zhang, 2018; Y. Zhang et al., 2018; Otkin & Potthast, 2019; F. Zhang et al., 2019; Geer et al., 2019; Chan, Zhang, et al., 2020; Jones et al., 2020; Chan & Chen, 2021; Hartman et al., 2021; Y. Zhang et al., 2021). We will thus proceed with the assumption that the observation likelihood is Gaussian.

For the ease of future reference, we will sketch out the main steps to derive the posterior pdf. Combining the bi-Gaussian forecast pdf [Eq. (5)] with the Gaussian observation likelihood [Eq. (9)] through Bayes rule [Eq. (8)] will result in

$$p(\boldsymbol{\psi}|y^{o}) = w_{clr}^{f} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{clr}^{f}}, \boldsymbol{P}_{clr}^{f}\right) \mathcal{G}\left(\boldsymbol{H}\boldsymbol{\psi}; \quad y^{o}, \sigma^{o2}\right) / p(y^{o}) + w_{cld}^{f} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{cld}^{f}}, \boldsymbol{P}_{cld}^{f}\right) \mathcal{G}\left(\boldsymbol{H}\boldsymbol{\psi}; \quad y^{o}, \sigma^{o2}\right) / p(y^{o})$$
(10)

To proceed further, a well-known property is used: the multiplication of two Gaussian pdfs results in a scaled Gaussian pdf. This property is foundational to EnKFs (Evensen, 1994; Burgers et al., 1998; Houtekamer & Mitchell, 2001; Anderson, 2001; Bishop et al., 2001; Whitaker & Hamill, 2002; Tippett et al., 2003; Hunt et al., 2007). In this situation, for the term associated with cluster g [e.g., Anderson and Anderson (1999)],

$$\mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}}, \boldsymbol{P}_{\boldsymbol{g}}^{\boldsymbol{f}}\right) \quad \mathcal{G}\left(\boldsymbol{H}\boldsymbol{\psi}; \quad \boldsymbol{y}^{o}, \sigma^{o2}\right) = \alpha_{g} \, \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{a}}}, \boldsymbol{P}_{\boldsymbol{g}}^{\boldsymbol{a}}\right) \tag{11}$$

where $\overline{\psi_g^a}$ represents the analyzed average state of cluster g, P_g^a represents the analyzed covariance matrices of said cluster, and α_g is a scaling factor. $\overline{\psi_g^a}$ and P_g^a are related to $\overline{\psi_g^f}$ and P_g^f via the Kalman filter (KF) equations [e.g., Lorenc (1986)]

$$\overline{\psi_g^a} = \overline{\psi_g^f} + K_g \left(y^o - H \overline{\psi_g^f} \right), \quad \text{and}, \quad P_g^a = \left(I - K_g H \right) P_g^f, \tag{12}$$

where K_g is the Kalman gain matrix for cluster g. K_g can be computed via

$$\boldsymbol{K}_{\boldsymbol{g}} \equiv \boldsymbol{P}_{\boldsymbol{g}}^{\boldsymbol{f}} \boldsymbol{H}^{\top} \left(\boldsymbol{H} \, \boldsymbol{P}_{\boldsymbol{g}}^{\boldsymbol{f}} \boldsymbol{H}^{\top} + \sigma^{o2} \right)^{-1} = \frac{\operatorname{Cov} \left(\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}, \, \boldsymbol{H} \boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}} \right)}{\operatorname{Var} \left(\boldsymbol{H} \boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}} \right) + \sigma^{o2}}$$
(13)

where

$$\operatorname{Cov}\left(\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}, \boldsymbol{H}\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}\right) \equiv \frac{1}{N_{g}^{f} - 1} \sum_{n_{g} \in S_{g}} \left(\boldsymbol{H}\boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{f}} - \boldsymbol{H}\overline{\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}}\right) \left(\boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{f}} - \overline{\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}}\right),$$
$$\operatorname{Var}\left(\boldsymbol{H}\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}\right) \equiv \frac{1}{N_{g}^{f} - 1} \sum_{n_{g} \in S_{g}} \left(\boldsymbol{H}\boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{f}} - \boldsymbol{H}\overline{\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}}\right)^{2},$$

and n_g is a dummy index that iterates over the member indices contained in S_g . The scaling factor α_g in Eq. (11) can be shown to be [e.g., Anderson and Anderson (1999)]:

$$\alpha_g = \mathcal{G}\left(y^o; \quad \boldsymbol{H} \ \overline{\boldsymbol{\psi}_g^f}, \ \sigma^{o2} + \boldsymbol{H} \boldsymbol{P}_g^f \boldsymbol{H}^\top\right).$$
(14)

Note that $\boldsymbol{H} \boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{f}}, \ \boldsymbol{H} \overline{\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}}, \ \text{and Var} \left(\boldsymbol{H} \boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}\right)$ are scalars. Furthermore, if y^{o} corresponds to the $(N_{x} + m)$ -th element of $\boldsymbol{\psi}$, then $\operatorname{Cov} \left(\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}, \ \boldsymbol{H} \boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}\right)$ is equal to the $(N_{x} + m)$ -th column of $\boldsymbol{P}_{\boldsymbol{g}}^{\boldsymbol{f}}$.

Substituting Eq. (11) into Eq. (10) and results in

$$p(\boldsymbol{\psi}|\boldsymbol{y}^{o}) = \frac{w_{\mathrm{clr}}^{f} \alpha_{\mathrm{clr}} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{\mathrm{clr}}^{a}}, \boldsymbol{P}_{\mathrm{clr}}^{a}\right) + w_{\mathrm{cld}}^{f} \alpha_{\mathrm{cld}} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{\mathrm{cld}}^{a}}, \boldsymbol{P}_{\mathrm{cld}}^{a}\right)}{p\left(\boldsymbol{y}^{o}\right)}.$$
(15)

Since $p(y^{o})$ normalizes Eq. (15), then,

$$p(y^{o}) = \int_{R^{N_{\psi}}} \left\{ w_{clr}^{f} \alpha_{clr} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{clr}^{a}}, \boldsymbol{P}_{clr}^{a}\right) + w_{cld}^{f} \alpha_{cld} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{cld}^{a}}, \boldsymbol{P}_{cld}^{a}\right) \right\} d^{N_{\psi}} \boldsymbol{\psi}$$
$$= w_{clr}^{f} \alpha_{clr} + w_{cld}^{f} \alpha_{cld}$$
(16)

where $\int_{\mathbb{R}^{N_{\psi}}} \{\cdot\} d^{N_{\psi}} \psi$ is an infinite N_{ψ} -dimensional volume integral of $\{\cdot\}$ over the N_{ψ} -dimensional space that ψ lives in [*i.e.*, an $\mathbb{R}^{N_{\psi}}$ space]. Substituting the marginal [Eq. (16)] back into Bayes' rule [Eq. (15)] gives us the following bi-Gaussian posterior pdf

$$p(\boldsymbol{\psi}|\boldsymbol{y}^{o}) = w_{\text{clr}}^{a} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{\text{clr}}^{a}}, \boldsymbol{P}_{\text{clr}}^{a}\right) + w_{\text{cld}}^{a} \mathcal{G}\left(\boldsymbol{\psi}; \quad \overline{\boldsymbol{\psi}_{\text{cld}}^{a}}, \boldsymbol{P}_{\text{cld}}^{a}\right)$$
(17)

where

$$w_{\rm clr}^a = \frac{w_{\rm clr}^f \,\alpha_{\rm clr}}{w_{\rm clr}^f \,\alpha_{\rm clr} + w_{\rm cld}^f \,\alpha_{\rm cld}}, \quad \text{and}, \quad w_{\rm cld}^a = \frac{w_{\rm cld}^f \,\alpha_{\rm cld}}{w_{\rm clr}^f \,\alpha_{\rm clr} + w_{\rm cld}^f \,\alpha_{\rm cld}}.$$
(18)

Like the EnKF, the BGEnKF will update the forecast ensemble to become consistent with the posterior bi-Gaussian pdf [Eq. (17)].

4. Text S4: Detailed description of the three-stage BGEnKF algorithm

The BGEnKF's updates to the ensemble is done through a three-stage update process (illustrated in the main text's Figure 1). In order of execution, these stages are: 1) the double EnKF stage, 2) the shrinking cluster member deletion stage, and 3) the expanding cluster member resampling stage. An outline of this three-stage BGEnKF update procedure can be found at the end of this section.

The double EnKF stage

The first stage [Figure 1(a)] is to represent the KF updates to the clusters' mean states and covariance matrices. We can thus use the ensemble square root filter of Whitaker and Hamill (2002) (EnSRF) to update each cluster's members. The EnSRF update equation (Whitaker & Hamill, 2002) for members in cluster g is

$$\boldsymbol{\psi}_{\boldsymbol{n}_{\boldsymbol{g}}}^{\boldsymbol{a}} = \boldsymbol{\psi}_{\boldsymbol{n}_{\boldsymbol{g}}}^{\boldsymbol{f}} + \boldsymbol{K}_{\boldsymbol{g}} \left(\boldsymbol{y}^{o} - \boldsymbol{H} \overline{\boldsymbol{\psi}_{\boldsymbol{g}}} \right) - \phi_{g} \boldsymbol{K}_{\boldsymbol{g}} \left(\boldsymbol{H} \boldsymbol{\psi}_{\boldsymbol{n}_{\boldsymbol{g}}}^{\boldsymbol{f}} - \boldsymbol{H} \overline{\boldsymbol{\psi}_{\boldsymbol{g}}}^{\boldsymbol{f}} \right) \quad \forall \quad \boldsymbol{n}_{g} \in S_{g}.$$
(19)

The Kalman gain matrix of cluster $g(\mathbf{K}_g)$ can be computed via Eq. (13). ϕ_g is the EnSRF's square-root modification factor (Whitaker & Hamill, 2002), which can be computed via

$$\phi_g \equiv \left\{ 1 + \sqrt{\frac{\sigma^{o2}}{\sigma^{o2} + \operatorname{Var}\left(\boldsymbol{H}\boldsymbol{\psi}_{\boldsymbol{g}}^{\boldsymbol{f}}\right)}} \right\}^{-1}.$$
(20)

Note that the EnSRF-based cluster update equations can be replaced with those from the twostep ensemble adjustment Kalman filter (EAKF) of Anderson (2003). This is because the two filters have mathematically identical ensemble member update procedures.

The member deletion stage

In the second and third stages of the BGEnKF (Figure 1(b & c)), the number of ensemble members in each cluster (*i.e.*, cluster sizes) is updated to be consistent with the cluster's posterior weight [Eq. (18)]. The post-BGEnKF size of cluster $g(N_q^a)$ can be determined by

$$N_g^a \equiv \text{round} \left(N_E * W_g \right) \tag{21}$$

where round (\cdot) indicates rounding \cdot to the nearest integer.

If the size of a cluster is reduced by the assimilation of y^o , we will delete members from said cluster (Figure 1(b)). The number of members to be deleted N_{del} is defined as

$$N_{\rm del} \equiv \begin{cases} N_{\rm clr}^f - N_{\rm clr}^a & \text{if } N_{\rm clr}^a < N_{\rm clr}^f, \\ \\ N_{\rm cld}^f - N_{\rm cld}^a & \text{if } N_{\rm cld}^a < N_{\rm cld}^f. \end{cases}$$
(22)

For simplicity, we will delete the members with the smallest N_{del} forecast-simulated observation perturbations. Since the deletion will cause the cluster's mean state to deviate from the theoretical mean state [Eq. (12)], we will recenter the remaining members around the theoretical value. Note that no heuristic adjustments were made to mitigate the changes in the cluster's sample covariance matrix due to the deletion process. This is because it is impossible to prevent such changes in practical situations [for $N_E < N_{\psi}$, the rank of the pre-deletion sample covariance matrix is guaranteed to be higher than the rank of the post-deletion sample covariance matrix; Chan, Anderson, and Chen (2020)].

The resampling stage

If the size of one cluster is reduced by the assimilation of y^o , the other cluster's size will increase to compensate for the reduction. This ensures that the total number of ensemble members is unchanged. To do so, the expanding cluster's ensemble members are resampled. The expanding cluster's sample mean state and sample covariance matrix should not be altered by resampling.

The computationally efficient resampling strategy proposed in Chan, Anderson, and Chen (2020) is to resample within the extended state subspace spanned by the expanding cluster's ensemble members (henceforth referred to as the subspace resampling strategy). This is the easiest to formulate in terms of the perturbations of the expanding cluster's members. Supposing that the subscript "pre" denotes expanding cluster quantities before resampling, we can compute the pre-resampling perturbations $\left\{ \psi_n^{a'} | n \in S_{\text{pre}} \right\}$ via

$$\boldsymbol{\psi_n^a}' \equiv \boldsymbol{\psi_n^a} - \overline{\boldsymbol{\psi_{\text{pre}}^a}} \quad \forall \quad n \in S_{\text{pre}}$$
(23)

where $\overline{\psi_{\text{pre}}^a}$ is the expanding cluster's mean state and S_{pre} is the set of member indices in the expanding cluster before resampling.

The central idea of the subspace resampling strategy is to construct a new set of perturbations via linear combinations of the pre-resampling perturbations. We will denote all post-resampling expanding cluster quantities with the subscript "post". Let S_{post} denote the set of member indices in the post-resampling expanding cluster. S_{post} thus includes the member indices in S_{pre} and the indices of the members deleted in the deletion stage. If we represent the set of post-resampling perturbation vectors as $\{\psi_{n^*}^{a^*} | n^* \in S_{\text{post}}\}$, the strategy's central idea can then be mathematically expressed as

$$\boldsymbol{\psi}_{\boldsymbol{n}^*}^{\boldsymbol{a}^*} \equiv \sum_{n \in S_{\text{pre}}} \boldsymbol{\psi}_{\boldsymbol{n}}^{\boldsymbol{a}'} T_{n,n^*} \quad \forall \quad n^* \in S_{\text{post}}$$

where T_{n,n^*} is a to-be-determined scalar factor controlling how the *n*-th pre-resampling perturbation contributes to the n^* -th post-resampling perturbation. This linear combination idea can be more succinctly expressed as

$$\Psi_{\text{post}} \equiv \Psi_{\text{pre}} T. \tag{24}$$

Here, Ψ_{pre} is a matrix where each column contains a pre-resampling perturbation, and Ψ_{post} is a matrix where each column contains a post-resampling perturbation. Supposing the pre-resampling cluster size is denoted by N_{pre} and the post-resampling cluster size is denoted by N_{post} , then Ψ_{pre} is an $N_{\psi} \times N_{pre}$ matrix and Ψ_{post} is an $N_{\psi} \times N_{post}$ matrix. If we denote the ℓ -th member index in S_{pre} as $n_{pre,\ell}$, and likewise for the ℓ -th member index in S_{post} , we can explicitly write out Ψ_{pre} and Ψ_{post} :

$$\Psi_{\rm pre} \equiv \begin{bmatrix} \psi_{n_{\rm pre,1}}^{a'} & \psi_{n_{\rm pre,2}}^{a'} & \cdots & \psi_{n_{\rm pre,N_{\rm pre}}}^{a'} \end{bmatrix},$$

$$\Psi_{\rm post} \equiv \begin{bmatrix} \psi_{n_{\rm post,1}}^{a^*} & \psi_{n_{\rm post,2}}^{a^*} & \cdots & \psi_{n_{\rm post,N_{\rm post}}}^{a^*} \end{bmatrix}.$$
(25)

Finally, \mathbf{T} is an $N_{\text{pre}} \times N_{\text{post}}$ matrix containing all of the T_{n,n^*} values [*i.e.*, element (n, n^*) of \mathbf{T} is equal to T_{n,n^*}].

T should be constructed such that the post-resampling perturbations have a mean of zero and have a covariance matrix equal to that of pre-resampling perturbations. As discussed in Chan, Anderson, and Chen (2020), there are an infinite number of possible T's that satisfy these two conditions. Following the discussions and heuristic arguments in Chan, Anderson, and Chen (2020), we chose to use

$$T \equiv \begin{bmatrix} k I_{N_{\text{pre}}-N_{\text{new}}^*} & \mathbf{0}_{(N_{\text{pre}}-N_{\text{new}}^*)\times N_{\text{new}}^*} & \mathbf{0}_{(N_{\text{pre}}-N_{\text{new}}^*)\times N_{\text{new}}} \\ \mathbf{0}_{N_{\text{new}}^*\times (N_{\text{pre}}-N_{\text{new}}^*)} & I_{N_{\text{new}}^*} & E \end{bmatrix}$$
(26)

where

$$N_{\text{new}} \equiv N_{\text{post}} - N_{\text{pre}}, \quad \text{and}, \quad N_{\text{new}}^* \equiv \begin{cases} N_{\text{new}} - 1 \ \forall \ N_{\text{new}} \le N_{\text{pre}} \\ N_{\text{pre}} & \text{otherwise} \end{cases}$$
(27)

Furthermore, for arbitrary integers η and μ , I_{η} is an $\eta \times \eta$ identity matrix, $\mathbf{0}_{\eta \times \mu}$ is an $\eta \times \mu$ matrix of zeros. k is the following scalar inflation factor

$$k \equiv \sqrt{\frac{N_{\text{new}} + N_{\text{pre}} - 1}{N_{\text{pre}} - 1}} \quad \text{(note that } k \ge 1\text{)}.$$
(28)

The matrix \boldsymbol{E} in Eq. (26) is an $N_{\text{new}}^* \times N_{\text{new}}$ matrix that will be defined shortly. Since $N_{\text{new}}^* < N_{\text{new}}$ [see Eq. (27)], \boldsymbol{E} is a rectangular matrix with more columns than rows. Note that whenever $N_{\text{new}} > N_{\text{pre}}$, the $k \boldsymbol{I}_{N_{\text{pre}}-N_{\text{new}}^*}$ component vanishes from \boldsymbol{T} . Furthermore, whenever $N_{\text{new}} = 1$, the $\boldsymbol{I}_{N_{\text{new}}^*}$ and \boldsymbol{E} components vanish from \boldsymbol{T} .

Our choice of E is nearly identical to that of Chan, Anderson, and Chen (2020):

$$\boldsymbol{E} \equiv \frac{k-1}{N_{\text{new}}} \boldsymbol{1}_{\boldsymbol{N}_{\text{new}}^* \times \boldsymbol{N}_{\text{new}}} + \boldsymbol{L}_{\boldsymbol{E}} (\boldsymbol{L}_{\boldsymbol{W}})^{-1} \boldsymbol{W}.$$
(29)

Here, $\mathbf{1}_{N_{\text{new}}^* \times N_{\text{new}}}$ denotes an $N_{\text{new}}^* \times N_{\text{new}}$ matrix whose elements are all set to unity. Furthermore, \boldsymbol{W} is an $N_{\text{new}}^* \times N_{\text{new}}$ matrix of the form

$$\boldsymbol{W} \equiv \begin{bmatrix} \boldsymbol{I}_{N_{\text{new}}^{*}} & \boldsymbol{0}_{N_{\text{new}}^{*} \times (N_{\text{new}} - N_{\text{new}}^{*})} \end{bmatrix} - \frac{1}{N_{\text{new}}} \boldsymbol{1}_{N_{\text{new}}^{*} \times N_{\text{new}}}.$$
(30)

Supposing that $\operatorname{Chol}(S)$ denotes the Cholesky decomposition of an arbitrary symmetric matrix S, following appendix B of Chan, Anderson, and Chen (2020), we define

$$\boldsymbol{L}_{\boldsymbol{W}} \equiv \operatorname{Chol}\left(\boldsymbol{W}\boldsymbol{W}^{\top}\right),\tag{31}$$

and

$$\boldsymbol{L}_{\boldsymbol{E}} \equiv \operatorname{Chol}\left(\frac{N_{\operatorname{new}}}{N_{\operatorname{pre}} - 1} \boldsymbol{I}_{\boldsymbol{N}_{\operatorname{new}}^{*}} - \frac{\left(k - 1\right)^{2}}{N_{\operatorname{new}}} \boldsymbol{1}_{\boldsymbol{N}_{\operatorname{new}}^{*} \times \boldsymbol{N}_{\operatorname{new}}^{*}}\right).$$
(32)

The only difference between the current formulation of \boldsymbol{E} and that of Chan, Anderson, and Chen (2020) lies in the \boldsymbol{W} matrix. In Chan, Anderson, and Chen (2020), \boldsymbol{W} is created from vectors of random white noise. For the ease of parallelization and to ensure replicability (*i.e.*, reruns of

the BGEnKF should give the same result), we replaced that stochastic W generation procedure with a deterministic one [*i.e.*, Eq. (30)].

As discussed in Chan, Anderson, and Chen (2020), the resampled perturbations generated by the T defined in Eq. (26) has the property of preserving the pre-resampling perturbations (up to an inflation factor). More specifically, the first $N_{\rm pre} - N_{\rm new}^*$ resampled perturbations are inflated versions of the first $N_{\rm pre} - N_{\rm new}^*$ pre-resampling perturbations. The next $N_{\rm new}^*$ resampled perturbations are copies of $N_{\rm new}^*$ of the pre-resampling perturbations. Finally, the remaining $N_{\rm new}$ resampled perturbations are linear combinations of the copied perturbations.

Outline of three-stage BGEnKF update procedure to assimilate an observation

The outline of the three-stage BGEnKF procedure is as follows. Note that this outline assumes that the members have already been sorted into the clear and cloudy clusters (see the last paragraph of Text S2 for how members are sorted into the two clusters).

Stage 1: Double EnKF [illustrated in Figure 1(a)]

1. Do g = clr, cld

- (i) For cluster g, compute the Kalman gain $[K_g; \text{Eq. (13)}]$ and square-root modification factor $[\phi_q; \text{Eq. (20)}]$.
- (ii) Evaluate Eq. (19) for every ensemble member in cluster g.

Stage 2: Shrinking cluster member deletion [illustrated in Figure 1(b)]

- 1. Evaluate Eq. (21) to determine the targeted cluster sizes after assimilating the observation
- 2. If $N_{\rm clr}^a < N_{\rm clr}^f$, the clear cluster will be considered as the shrinking cluster.
- 3. If $N_{\rm cld}^a < N_{\rm cld}^f$, the cloudy cluster will be considered as the shrinking cluster.
- 4. If no shrinking cluster has been identified, terminate the current stage.
- 5. Compute N_{del} using Eq. (22).
- 6. Compute the current mean state of the shrinking cluster.
- 7. Delete the members with the smallest N_{del} forecast-simulated observation perturbations within the shrinking cluster.
- 8. Compute the mean state of the remaining members in the shrinking cluster.
- 9. Subtract the mean computed in step 8 from the mean computed in step 6.
- 10. Add the difference computed in step 9 to each of the remaining members in the shrinking cluster to recenter said members on the pre-deletion shrinking cluster mean state.

Stage 3: Resample expanding cluster members [illustrated in Figure 1(c)]

- 1. Evaluate Eq. (21) to determine the targeted cluster sizes after assimilating the observation
- 2. If $N_{\rm clr}^a > N_{\rm clr}^f$, the clear cluster will be considered as the expanding cluster.
- 3. If $N_{\rm cld}^a > N_{\rm cld}^f$, the cloudy cluster will be considered as the expanding cluster.
- 4. If no expanding cluster has been identified, terminate the current stage.
- 5. Compute N_{new} and N_{new}^* using Eq. (27).
- 6. Compute the expanding cluster's mean state vector.
- 7. Construct the expanding cluster's perturbation vectors via Eq. (23).
- 8. Construct matrix \boldsymbol{W} by evaluating Eq. (30).
- 9. Construct L_W and L_E by evaluating Eqs. (31) and (32).
- 10. Construct \boldsymbol{E} by evaluating Eq. (29).
- 11. Construct T by evaluating Eq. (26).
- 12. Evaluate Eq. (24) to resample the expanding cluster perturbations.
- 13. Add the expanding cluster's mean state (computed in step 6) to the resampled perturbations to construct the resampled expanding cluster ensemble members.

5. Text S5: Outline of the BGEnKF algorithm serial filtering workflow

We will now outline the workflow of the serially assimilating BGEnKF algorithm (illustrated in Figure S2). The serially assimilating BGEnKF algorithm executes the following list of steps.

- 1. Construct an ensemble of forecast ψ vectors from the prior ensemble using Eq. (4).
- 2. Select the first observation by setting m = 1.
- 3. Employ the adaptive observation error inflation (AOEI) of Minamide and Zhang (2017) to mitigate representation errors.
- 4. Extract an ensemble of ξ values from the ensemble of ψ vectors that corresponds to the *m*-th observation site. Members whose extracted ξ values are smaller than 1 g/m² are considered as clear members. The remaining members are considered as cloudy members.
- 5. Run through the heuristic checks in the main text's sections 2.5.2 and 2.5.3 to determine whether the BGEnKF or its single-kernel form (essentially an EnKF) should be used.
- 6. If any of the heuristic checks in step 5 fail, put all ensemble members into the clear cluster.
- 7. Apply the three-stage algorithm described in Text S4 to update the ensemble of ψ vectors.
- 8. Localize the ψ vector updates using the main text's Eq. (7).
- 9. Increment m (*i.e.*, $m \leftarrow m + 1$).
- 10. If there are unassimilated observations remaining, go back to step 3.
- 11. Extract the model states contained in the ensemble of ψ vectors, output said model states, and terminate the algorithm.

To implement this algorithm with parallelization on the PSU-EnKF system, we employed the low-latency computing cluster strategy proposed by Anderson and Collins (2007). Specifically, every process will receive a sub-domain's worth of model state variables, an entire domain of observation and simulated observation values, and an entire domain of ξ values. To assimilate an observation, each process will then update its sub-domain of model state variables, all of its simulated observations, and all of its ξ values. As such, no inter-process communications are needed within the serial assimilation loop.

6. Text S6: On generalizing the BGEnKF algorithm to handle more clusters

The BGEnKF algorithm can be generalized to handle an arbitrary number of ensemble clusters (e.g., a three-cluster GMM-EnKF). We did not use more than two clusters in this study because this study is a first approach to testing a cluster GMM-EnKF with a realistic weather model. Furthermore, using more clusters means that each cluster will contain fewer members. With smaller cluster sizes, the deleterious impacts of sampling errors on each cluster's sample statistics are likely stronger. Considering the small ensemble size that will be used in this first-approach study (50 members), we opted to use two clusters for now.

To generalize the BGEnKF to handle N_c clusters, only a few modifications are needed: 1) the ensemble clustering method needs to be adjusted to sort the ensemble into the N_c clusters, and 2) a slightly different method would be needed to infer the posterior cluster sizes [Eq. (22)]. The latter modification is necessary because using Eq. (22) with more than 2 clusters can cause the total number of ensemble members to change. This change arises from the use of the rounding function. For instance, suppose we have 3 clusters with equal posterior weights (0.333333 each) and the ensemble size is 10. Using Eq. (22) will result in 3 members in each cluster, or 9 members in total. A different approach to convert the non-integer weights into integer cluster sizes is thus necessary for $N_c > 2$.

References

- Anderson, J. L. (2001, 12). An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12), 2884-2903. Retrieved from http://journals.ametsoc.org/doi/10.1175/ 1520-0493(2001)129%3C2884:AEAKFF%3E2.0.CO;2 doi: 10.1175/1520-0493(2001)129/2884:AEAKFF>2.0 .CO;2
- Anderson, J. L. (2003, 4). A Local Least Squares Framework for Ensemble Filtering. Monthly Weather Review, 131(4), 634-642. Retrieved from http://journals.ametsoc.org/doi/10.1175/1520-0493(2003) 131<0634:ALLSFF>2.0.CO;2 doi: 10.1175/1520-0493(2003)131(0634:ALLSFF)2.0.CO;2
- Anderson, J. L., & Anderson, S. L. (1999). A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. *Monthly Weather Review*. doi: 10.1175/1520-0493(1999) 127(2741:AMCIOT)2.0.CO;2
- Anderson, J. L., & Collins, N. (2007, 8). Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation. Journal of Atmospheric and Oceanic Technology, 24(8), 1452-1463. Retrieved from https:// journals.ametsoc.org/view/journals/atot/24/8/jtech2049_1.xml doi: 10.1175/JTECH2049.1
- Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Avellano, A. (2009, 9). The data assimilation research testbed a community facility. *Bulletin of the American Meteorological Soci*ety, 90(9), 1283-1296. Retrieved from https://journals.ametsoc.org/doi/10.1175/2009BAMS2618.1 doi: 10.1175/2009BAMS2618.1

- Bishop, C. H., Etherton, B. J., & Majumdar, S. J. (2001, 3). Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Monthly Weather Review, 129(3), 420– 436. Retrieved from http://journals.ametsoc.org/doi/10.1175/1520-0493(2001)129%3C0420: ASWTET%3E2.0.CO;2https://journals.ametsoc.org/view/journals/mwre/129/3/1520-0493_2001_129 _0420_aswtet_2.0.co_2.xml doi: 10.1175/1520-0493(2001)129%0420:ASWTET>2.0.CO;2
- Burgers, G., Jan van Leeuwen, P., Evensen, G., Van Leeuwen, P. J., & Evensen, G. (1998, 6). Analysis scheme in the ensemble Kalman filter. *Monthly Weather Review*, 126(6), 1719–1724. Retrieved from http:// journals.ametsoc.org/doi/10.1175/1520-0493(1998)126%3C1719:ASITEK%3E2.0.CO;2 doi: 10.1175/ 1520-0493(1998)126(1719:ASITEK>2.0.CO;2
- Chan, M.-Y., Anderson, J. L., & Chen, X. (2020). An efficient bi-Gaussian ensemble Kalman filter for satellite infrared radiance data assimilation. *Monthly Weather Review*. doi: 10.1175/mwr-d-20-0142.1
- Chan, M.-Y., & Chen, X. (2021). Improving Analyses and Forecasts of a Tropical Squall Line using Upper Tropospheric Infrared Satellite Observations. Advances in Atmospheric Sciences, Accepted Manuscript. Retrieved from http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-021-0449-8http:// www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-021-0449-8?viewType=HTML doi: 10.1007/S00376-021-0449-8
- Chan, M.-Y., Zhang, F., Chen, X., & Leung, L. R. (2020). Potential Impacts of Assimilating All-sky Satellite Infrared Radiances on Convection-Permitting Analysis and Prediction of Tropical Convection. *Monthly Weather Review*. doi: 10.1175/mwr-d-19-0343.1
- Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. *Journal of Geophysical Research*, 99(C5), 10143-10162. Retrieved from https://doi.org/10.1029/94JC00572http://doi.wiley.com/10.1029/94JC00572 doi: 10.1029/ 94JC00572
- Geer, A. J., & Bauer, P. (2011, 10). Observation errors in all-sky data assimilation. Quarterly Journal of the Royal Meteorological Society, 137(661), 2024–2037. Retrieved from http://doi.wiley.com/10.1002/qj.830 doi: 10.1002/qj.830
- Geer, A. J., Migliorini, S., & Matricardi, M. (2019). All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud. Atmospheric Measurement Techniques Discussions. doi: 10.5194/amt-2019-9
- Harnisch, F., Weissmann, M., & Periáñez. (2016). Error model for the assimilation of cloud-affected infrared satellite observations in an ensemble data assimilation system. Quarterly Journal of the Royal Meteorological Society. doi: 10.1002/qj.2776
- Hartman, C. M., Chen, X., Clothiaux, E. E., & Chan, M.-Y. (2021, 7). Improving the Analysis and Forecast of Hurricane Dorian (2019) with Simultaneous Assimilation of GOES-16 All-Sky Infrared Brightness Temperatures and Tail Doppler Radar Radial Velocities. *Monthly Weather Review*, 149(7), 2193-2212. Retrieved from https://journals.ametsoc.org/view/journals/mwre/149/7/MWR-D-20-0338.1.xml doi: 10.1175/MWR-D-20-0338.1
- Honda, T., Miyoshi, T., Lien, G. Y., Nishizawa, S., Yoshida, R., Adachi, S. A., ... Bessho, K. (2018, 1). Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Monthly Weather Review, 146(1), 213–229. doi: 10.1175/MWR-D-16-0357.1
- Houtekamer, P. L., & Mitchell, H. L. (2001). A sequential ensemble Kalman filter for atmospheric data assimilation. *Monthly Weather Review*, 129(1), 123–137. doi: 10.1175/1520-0493(2001)129(0123:ASEKFF)2.0.CO; 2
- Houtekamer, P. L., & Zhang, F. (2016). Review of the ensemble Kalman filter for atmospheric data assimilation. Monthly Weather Review, 144(12), 4489–4532. doi: 10.1175/MWR-D-15-0440.1
- Hunt, B. R., Kostelich, E. J., & Szunyogh, I. (2007, 6). Efficient data assimilation for spatiotemporal chaos: A

local ensemble transform Kalman filter. *Physica D: Nonlinear Phenomena*, 230(1-2), 112-126. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0167278906004647 doi: 10.1016/j.physd.2006 .11.008

- Ide, K., Courtier, P., Ghil, M., & Lorenc, A. C. (1997). Unified notation for data assimilation: Operational, sequential and variational. *Journal of the Meteorological Society of Japan*. doi: 10.2151/jmsj1965.75.1B{_}}181
- Jones, T. A., Skinner, P., Yussouf, N., Knopfmeier, K., Reinhart, A., Wang, X., ... Palikonda, R. (2020, 5). Assimilation of GOES-16 Radiances and Retrievals into the Warn-on-Forecast System. Monthly Weather Review, 148(5), 1829-1859. Retrieved from https://journals.ametsoc.org/view/journals/mwre/148/ 5/mwr-d-19-0379.1.xml doi: 10.1175/MWR-D-19-0379.1
- Lorenc, A. (1986). Analysis methods for numerical weather prediction. Quart J. R. Mrt. Soc., 112, 1177–1194. doi: 10.1256/smsqj.47413
- Meng, Z., & Zhang, F. (2007). Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. *Monthly Weather Review*, 135(4), 1403–1423. doi: 10.1175/MWR3352.1
- Minamide, M., & Zhang, F. (2017). Adaptive observation error inflation for assimilating all-Sky satellite radiance. Monthly Weather Review, 145(3), 1063–1081. doi: 10.1175/MWR-D-16-0257.1
- Minamide, M., & Zhang, F. (2018). Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. *Monthly Weather Review*, 146(10), 3241–3258. doi: 10.1175/MWR-D-17-0367.1
- Otkin, J. A. (2012). Assessing the impact of the covariance localization radius when assimilating infrared brightness temperature observations using an ensemble kalman filter. *Monthly Weather Review*. doi: 10 .1175/MWR-D-11-00084.1
- Otkin, J. A., & Potthast, R. (2019). Assimilation of All-Sky seviri infrared brightness temperatures in a regionalscale ensemble data assimilation system. *Monthly Weather Review*. doi: 10.1175/MWR-D-19-0133.1
- Otkin, J. A., Potthast, R., & Lawless, A. S. (2018). Nonlinear bias correction for satellite data assimilation using taylor series polynomials. *Monthly Weather Review*. doi: 10.1175/MWR-D-17-0171.1
- Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., & Whitaker, J. S. (2003, 7). Ensemble Square Root Filters. *Monthly Weather Review*, 131(7), 1485–1490. Retrieved from http://journals.ametsoc.org/ doi/10.1175/1520-0493(2003)131%3C1485:ESRF%3E2.0.CO;2 doi: 10.1175/1520-0493(2003)131(1485: ESRF)2.0.CO;2
- Whitaker, J. S., & Hamill, T. M. (2002, 7). Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130(7), 1913-1924. Retrieved from http://journals.ametsoc.org/doi/10.1175/1520 -0493(2002)130%3C1913:EDAWPO%3E2.0.CO;2 doi: 10.1175/1520-0493(2002)130(1913:EDAWPO)2.0.CO; 2
- Whitaker, J. S., Hamill, T. M., Wei, X., Song, Y., & Toth, Z. (2008). Ensemble data assimilation with the NCEP global forecast system. *Monthly Weather Review*, 136(2). doi: 10.1175/2007MWR2018.1
- Zhang, F., Minamide, M., & Clothiaux, E. E. (2016). Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convection-permitting analysis and prediction of tropical cyclones. *Geophysical Research Letters*, 43(6), 2954–2963. doi: 10.1002/2016GL068468
- Zhang, F., Minamide, M., Nystrom, R. G., Chen, X., Lin, S.-J., & Harris, L. M. (2019, 7). Improving Harvey Forecasts with Next-Generation Weather Satellites: Advanced Hurricane Analysis and Prediction with Assimilation of GOES-R All-Sky Radiances. Bulletin of the American Meteorological Society, 100(7), 1217– 1222. Retrieved from https://journals.ametsoc.org/view/journals/bams/100/7/bams-d-18-0149.1 .xml doi: 10.1175/BAMS-D-18-0149.1
- Zhang, Y., Sieron, S. B., Lu, Y., Chen, X., Nystrom, R. G., Minamide, M., ... Zhang, F. (2021, 12). Ensemble-

X - 16 CHAN ET AL.: HANDLING OF CLEAR AND CLOUDY MIXED ENSEMBLES WITH BGENKF

Based Assimilation of Satellite All-Sky Microwave Radiances Improves Intensity and Rainfall Predictions for Hurricane Harvey (2017) (Vol. 48) (No. 24). John Wiley and Sons Inc. doi: 10.1029/2021GL096410

Zhang, Y., Zhang, F., & Stensrud, D. J. (2018). Assimilating all-sky infrared radiances from GOES-16 ABI using an ensemble Kalman filter for convection-allowing severe thunderstorms prediction. *Monthly Weather Review*. doi: 10.1175/MWR-D-18-0062.1

Figure S1: Latitude-longitude plots of various ensemble statistics at 1200 UTC on 15 October 2011 to illustrate the differences between clear and cloudy sky members at every model column. These quantities are generated using the 50-member ensemble described in the main text. The y-axes indicate latitude (degrees North), and the x-axes indicate longitude (degrees East). The plotted quantities are: the prior ensemble mean Window-BT (a), the fraction of cloudy member columns in the prior ensemble at every grid column (b), the mean Window-BTs of clear member columns (c), the mean Window-BT of cloudy member columns (d), the mean pseudo precipitable water (PPW) for clear member columns (e), the mean PPW for cloudy member columns (f), the linear regression coefficient between Window-BT and PPW (β) for clear member columns (g), and the β values for cloudy member columns (h). The gray shadings in panels c, e & g indicate locations where there are either less than 5 clear member columns, the clear member columns' Window-BT sample variance is zero, or the clear member columns' PPW sample variance is zero. The gray shadings in panels d, f & h indicate locations where there are either less than 5 cloudy member columns, the cloudy member columns' Window-BT sample variance is zero, or the cloudy member columns' PPW sample variance is zero. The white shadings in panels g indicate areas where the clear member columns' sample correlation between PPW and Window-BT is statistically insignificant, and likewise for the white shadings in panel h.

Figure S2: Workflow of the BGEnKF module implemented in the PSU DA system. "Obs" stands for "observations" and $N_{\rm obs}$ stands for the total number of observations. See the text for the definitions of the extended state vector $\boldsymbol{\psi}$ [Eq. (3)], the list of heuristic checks used to select between the EnKF and BGEnKF (main text section 2.5), and for a description of the BGEnKF update procedure (Text S4). The three-stage BGEnKF update procedure is illustrated in Figure 1 of the main text.