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Abstract

While soybeans are among the most consumed crops in the world, the majority of its production lies in hotspot regions in the

US, Brazil and Argentina. The concentration of soybean growing regions in the Americas render the supply chain vulnerable

to regional disruptions. In the year of 2012 anomalous hot and dry conditions occurring simultaneously in these regions led

to low soybean yields, which drove global soybean prices to all-time records. Climate change has already negatively impacted

agricultural systems, and this trend is expected to continue in the future. In this study we explore climate change impacts on

simultaneous extreme crop failures as the one from 2012. We develop a hybrid model, coupling a process-based crop model with

a machine learning model, to improve the simulation of soybean production. We assess the frequency and magnitude of events

with similar or higher impacts than 2012 under different future scenarios, evaluating anomalies both with respect to present

day and future conditions to disentangle the impacts of (changing) climate variability from the long-term mean trends. We find

the long-term trends of mean climate increase the occurrence and magnitude of 2012 analogue crop yield losses. Conversely,

anomalies like the 2012 event due to changes in climate variability show an increase in frequency in each country individually,

but not simultaneously across the Americas. We deduce that adaptation of the crop production practice to the long-term mean

trends of climate change may considerably reduce the future risk of simultaneous soybean losses across the Americas.
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Key Points:10

• A hybrid crop model (i.e. physical crop model combined with machine learning)11

is presented, which outperforms the benchmark models12

• Simultaneous soybean failures in the Americas under climate change are mostly13

driven by changes in mean climate14

• Changes in climate variability increase country-level soybean failures but such change15

is not found for simultaneous failures16
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Abstract17

While soybeans are among the most consumed crops in the world, the majority of its18

production lies in hotspot regions in the US, Brazil and Argentina. The concentration19

of soybean growing regions in the Americas render the supply chain vulnerable to regional20

disruptions. In the year of 2012 anomalous hot and dry conditions occurring simulta-21

neously in these regions led to low soybean yields, which drove global soybean prices to22

all-time records. Climate change has already negatively impacted agricultural systems,23

and this trend is expected to continue in the future. In this study we explore climate change24

impacts on simultaneous extreme crop failures as the one from 2012. We develop a hy-25

brid model, coupling a process-based crop model with a machine learning model, to im-26

prove the simulation of soybean production. We assess the frequency and magnitude of27

events with similar or higher impacts than 2012 under different future scenarios, eval-28

uating anomalies both with respect to present day and future conditions to disentangle29

the impacts of (changing) climate variability from the long-term mean trends. We find30

the long-term trends of mean climate increase the occurrence and magnitude of 2012 ana-31

logue crop yield losses. Conversely, anomalies like the 2012 event due to changes in cli-32

mate variability show an increase in frequency in each country individually, but not si-33

multaneously across the Americas. We deduce that adaptation of the crop production34

practice to the long-term mean trends of climate change may considerably reduce the35

future risk of simultaneous soybean losses across the Americas.36

Plain Language Summary37

Soybeans are the main source of protein for livestock in the world. Most of its pro-38

duction is concentrated in regions in The United States of America, Brazil and Argentina.39

In 2012, simultaneous soybean losses in these three countries due to anomalous weather40

conditions led to shortages in global supplies and to record prices. In this study we in-41

vestigate how climate change can affect future events with similar impacts as the one from42

2012. We develop a numerical model to establish relations between weather conditions43

and soybean yields. We use future scenarios with different levels of global warming, and44

we analyse the soybean losses with respect to present day and future conditions. We find45

that the number of simultaneous soybean losses similar to the 2012 event increase in the46

future due to changes in the mean climate conditions. However, simultaneous soybean47

production losses due to changes in climate variability are not frequent, despite each coun-48

try showing frequent regional losses. We deduce that if successful adaptation measures49

are adopted against the changes in mean climate, the future risk of extreme events such50

as the 2012 may be considerably reduced with respect to a future without any adapta-51

tion.52

1 Introduction53

Globally soybeans form the main source of protein for livestock feed, the second54

most consumed type of vegetable oil, and are commonly consumed by humans (Hartman55

et al., 2011). In spite of its global importance, 80% of the soybean production is con-56

centrated in hotspot regions in the United States of America (US), Brazil and Argentina57

(FAO, 2022). Simultaneous disruptions in these regions have thus considerable impacts58

on the global supply chain of soybeans, as was observed in the year of 2012. In that year,59

low soybean yields in all three countries simultaneously led to soybean shortages and high60

prices on global markets (FAO, 2022; Zhang et al., 2018). Climate change affects the oc-61

currence and characteristics of extreme events in agriculture (IPCC, 2022). Understand-62

ing how climate change affects large scale events such as the 2012 offers relevant insights63

into the risks and challenges that the globalised agricultural system might face in the64

future.65
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Adverse weather conditions are common causes of crop failures. Previous studies66

show crop yield variability is affected by interannual weather variability (Lobell & Field,67

2007; Ray et al., 2015; Frieler et al., 2017). Specifically, climate extremes (Lesk et al.,68

2016; Zampieri et al., 2017; E. Vogel et al., 2019) and multi-variate or temporally com-69

pounding events (Zscheischler et al., 2017; Ben-Ari et al., 2018; J. Vogel et al., 2021; van70

der Wiel et al., 2020; Hamed et al., 2021) have been highlighted as important drivers of71

crop growth failures. These have been exacerbated by climate change in the last decades72

(Asseng et al., 2015; Moore & Lobell, 2015; Ray et al., 2019; Iizumi & Ramankutty, 2016;73

Zhao et al., 2017; Zhu & Troy, 2018; Wolski et al., 2020).74

The agricultural sector is expected to be further affected by continued climate change75

in the future (Lobell & Tebaldi, 2014; Schauberger et al., 2017; Rosenzweig et al., 2018;76

Xie et al., 2018). Climate change affects both long term trends of mean climate and cli-77

mate variability (IPCC, 2022). Long term trends, while relevant for impact estimation,78

can partly be counteracted by adaptation measures (Butler & Huybers, 2013; E. Vogel79

et al., 2019; Stevenson et al., 2022), but extreme weather events, caused by climate vari-80

ability, are not easily anticipated (IPCC, 2022). It is thus relevant to disentangle both81

aspects of climate change when estimating the potential risks of agricultural losses (van der82

Wiel & Bintanja, 2021).83

There are multiple approaches in representing the interactions between weather and84

crop development, roughly separated in process-based models and statistical models (Liu85

et al., 2016). Process-based crop models simulate biological, physical and chemicals pro-86

cesses governing crop growth and are driven by weather, soil, and management informa-87

tion to generate simulated crop outputs. A specific category of such models are Global88

Gridded Crop Models (GGCMs, Rosenzweig et al., 2014). GGCMs cover the entire globe,89

allowing for the analysis of large scale events like the simultaneous soybean failure of 2012.90

The second approach to relate weather to crops is through the use of statistical mod-91

els (Lobell & Burke, 2010). These utilise calibrated mathematical links between weather92

and crop information. Different statistical methods are used, from simple linear regres-93

sions to advanced machine learning methods.94

GGCMs are complex, expensive to build and run, and do not represent the crop95

response to extreme weather conditions well (Schewe et al., 2019; Heinicke et al., 2022).96

Statistical models are generally simple to build and flexible to use, but do not necessar-97

ily follow physics-based processes and their underlying mechanisms can be hard to trace.98

Therefore, recent studies have proposed a novel approach, in which process-based and99

statistical models are coupled in a hybrid model. Hybrid models have been shown to out-100

perform the other approaches, and are especially suited for studies assessing the impacts101

of climate variability and extreme weather conditions (Feng et al., 2019; Shahhosseini102

et al., 2021).103

In this study, we explore how climate change affects extreme simultaneous soybean104

failures in the Americas, such as the 2012 event. Specifically, we develop a hybrid model105

to link weather conditions to crops yields and then adopt the concept of impact analogues106

(van der Wiel et al., 2020; Goulart et al., 2021) to identify events in the future with sim-107

ilar or larger impacts than the 2012 event. We consider different future climatic forcing108

conditions and assess separately the contribution of trends in mean climate and trends109

in climate variability in the occurrence of analogues. we analyse two baseline scenarios:110

one with a static current climate baseline (assuming no adaptation or technological trends111

to changing mean climatic conditions) and one accounting for the trends in mean climate112

and crop yield (tacitly assuming a gradual adaptation of crop production in pace with113

shifting climate conditions). We analyse potential changes in analogue frequency and mag-114

nitude and the driving climatic conditions. Results are shown both for the combined pro-115

duction regions (US, Brazil, Argentina) and separately for each individual country to quan-116

tify both synchronised and localised crop yield decline information. We determine if the117

risk of extreme soybean failures across the Americas is changing due to climate change,118
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and which climate change component dominates the change in risk, changes in mean cli-119

mate or changes in climate variability.120

2 Methods121

2.1 Study area122

This study explored the influence of climate on soybean yields in the major soy-123

bean producing countries: the US, Brazil and Argentina. Together, they are responsi-124

ble for 80% of the global soybean production (FAO, 2022). We considered only rainfed125

areas to better capture the interactions between climate and crops. We used the SPAM2010126

dataset (Yu et al., 2020) to select areas in which at least 90% of the soybean area is rain-127

fed.128

2.2 Climate and crop data129

To build the hybrid model, we used simulated climate data, simulated yields and130

observed yields. The simulated climate data was provided by the Global Gridded Crop131

Model Intercomparison (GGCMI) initiative (Jägermeyr et al., 2021) and the Intersec-132

toral Impact Model Intercomparison Project (Warszawski et al., 2014). They cover both133

the historical period and future projections, with daily values at 0.5° x 0.5° spatial res-134

olution. The historical run (1901-2015) consisted of the GSWP3-W5E5 dataset, a com-135

bination of two global datasets using reanalyses and gridded field observations: GSWP3136

(Global Soil Wetness Project Phase 3, Kim, 2017) and W5E5 (WFDE5 over land merged137

with ERA5 over the ocean, Lange et al., 2021). The projections cover the 2016-2100 pe-138

riod and are based on three global climate models (GCMs): GFDL-ESM4, IPSL-CM6A-139

LR and UKESM1-0-LL, which are bias-corrected based on the historic climate dataset140

as described in (Lange, 2019). Among the 5 GCMs available in ISIMIP, we selected these141

GCMs as they have different climate sensitivities to CO2 concentration increases: low,142

mid and high sensitivities respectively (Supporting Information (SI) Table S1, Meehl et143

al., 2020; Jägermeyr et al., 2021). We used forcings from two Shared Socioeconomic Path-144

ways (SSPs) and Representative Concentration Pathway (RCP) combinations: SSP1-145

2.6 and SSP5-8.5. The combination of GCMs and SSPs allow for the estimation of cli-146

mate risk under 6 different future scenarios (Jägermeyr et al., 2021). More information147

on the GCMs and SSPs can be found in the documentation underlying the Coupled Model148

Inter-comparison Project phase 6 (CMIP6, Eyring et al., 2016).149

Simulated yields were sourced from the process-based GGCM EPIC-IIASA (Balkovič150

et al., 2014) using the same input data described above. The GGCM EPIC-IIASA (Balkovič151

et al., 2014) is a global implementation of the Environmental Policy Integrated Climate152

(EPIC) field-scale crop model (Williams et al., 1995). It covers the entire world at a res-153

olution of 0.5° x 0.5°. All GGCM runs had CO2 fertilisation effect on the crop yields.154

Observed yields from census data were used to train the hybrid model. We obtained155

the observed yields and harvest areas for soybeans at a county level directly from the156

national authorities of each country analysed here. Soybean information for the US was157

retrieved from the US Department of Agriculture (USDA, 2022), for Brazil from the Brazil-158

ian Institute of Geography and Statistics (IBGE, 2022), and for Argentina from the Min-159

istry of Agriculture of Argentina (MAGYP, 2022). Observed crop data in Brazil required160

additional data cleasning (Xu et al., 2021), consisting of removing counties with less than161

1% of the county area used for soybean production. We did not see improvements in do-162

ing the same for the other two countries. The datasets were resampled to a 0.5° x 0.5°163

grid to match GGCM spatial resolution using the first order conservative remapping scheme164

(Jones, 1999). The observed harvest areas were used to calculate production and area165

weighted average yield values for each country and for the aggregated area across the166
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three countries. For the projections we fixed the harvest areas to the values of 2012 to167

have a consistent comparison with the 2012 historical event.168

2.3 Data processing and dynamic calendar169

We obtained from the GCMs daily maximum and minimum temperature, and to-170

tal daily precipitation. We processed them to generate multiple climatic indices for tem-171

perature and precipitation using the Climpact package (Climpact, 2022, list of consid-172

ered variables in SI Table S2). The yield data and the climatic indices were detrended173

to isolate the interannual variability and remove the influence of technology, management,174

and long-term variability. We fitted linear and quadratic polynomials to detrend the time-175

series for both historical data and projections, and selected the method with least squared176

errors.177

Given the seasonal differences between the regions analysed, we developed a dy-178

namic calendar following Folberth et al. (2019). It is based on the reproductive stage of179

soybeans in each grid cell, which is the crop stage most sensitive to weather disruptions180

(Daryanto et al., 2017; Hamed et al., 2021). The dynamic calendar defines for each grid181

cell a three-month season starting one month before the month in which soybeans reach182

the maturity date and ending one month after that month. The soybean maturity date183

was obtained from the GGCMI Phase 3 crop calendar (Jägermeyr et al., 2021). We di-184

vided the climatic indices into two groups: temperature and precipitation (Feng et al.,185

2019; Hamed et al., 2021). In each group, we selected the climatic index with the high-186

est coefficient of determination (R²) during the three-month season simulated by a Ran-187

dom Forest model (Breiman, 2001).188

2.4 Hybrid model development189

The hybrid model consists of coupling the outputs of the process-based crop model190

with the climatic indices obtained in the previous step in a statistical model calibrated191

on observed crop data. We also added for each grid cell the country label to represent192

the influence of non-climatic variables in each country (such as management practices,193

Crane-Droesch, 2018). The statistical model used is a multilayer perceptron (MLP), a194

widely-used type of deep neural network with applications in multiple fields (Abiodun195

et al., 2018; Banadkooki et al., 2020; Panahi et al., 2021). MLPs are a network of smaller196

individual models, called neurons, which are divided in layers. The input layer receives197

the data, the hidden layers process the data, and the output layer provides the final out-198

put. Each neuron has an activation function, which is responsible for processing the data,199

and associated weights. The weights of the neurons define their importance in the net-200

work. We used the Keras package to develop the MLP (Chollet et al., 2015), based on201

the TensorFlow platform (Abadi et al., 2015). The MLP has multiple hyperparameters202

to be configured. We tuned them using a grid-search algorithm, in which multiple runs203

are tested and the best results are stored (the hyperparameters values are shown in SI204

Table S3).205

We compared the output of the hybrid model with the output of the EPIC-IIASA206

model, a statistical model based solely on EPIC-IIASA and country index (Stat-EPIC),207

and a statistical model based solely on the climatic indices and country index (Stat-clim).208

We first measured the scores of each model at the grid cell level on a test set (out of sam-209

ple corresponding to 20% of the total data) using the statistical metrics: coefficient of210

determination (R²), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).211

Then we calculated the sum of errors of each model for the 2012 year to determine which212

model represents extreme conditions best.213
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2.5 Investigating the risk of future failures214

We adopted the concept of impact analogues to assess the future risk of soybean215

failures. Impact analogues have been shown to better represent the risk estimation of216

extreme impact events than weather analogues (van der Wiel et al., 2020; Goulart et al.,217

2021). Impact analogues (hereafter shortened to ”analogues”) refer to events with equal218

or larger impacts than a historical event. The main impact metric (also referred to as219

soybean yield losses) is defined as the difference between the annual soybean production220

aggregated across the three countries (in dry matter weight) and the mean aggregated221

production across the three countries for the climatology. We have taken climatology to222

be the 2000-2015 period, as it is the period in which soybean harvest area in South Amer-223

ica reduced its expansion rate. For each of the future climate experiments, we calculated224

annual soybean yields, and identified years with larger negative anomaly than observed225

in 2012, defining them as the 2012 analogues. We also investigated the associated cli-226

matic conditions, and the spatial distributions of the analogues to determine how each227

country contributed to the total yield loss. In addition, we analysed country scale ana-228

logues to determine the risk of regional extreme failures.229

Projected crop yields reflect a response to changing climatic conditions (both to230

the long-term changes in mean temperature and available water, and impacts of episodes231

with anomalous weather conditions). Exploring trends in weather-induced crop failures232

can be carried out relative to present day growing conditions (assuming no changes in233

cropping practices and other trends), or relative to mean future climate conditions to234

isolate changes in climate variability due to climate change (Butler & Huybers, 2013; Steven-235

son et al., 2022). We explore separately the contribution of trends in mean climate and236

in climate variability in the occurrence of simultaneous soybean failures by applying two237

hypothetical scenarios: 1) future yields are defined relative to a present-day reference,238

which includes the influence of both long-term trends in mean climate and in climate vari-239

ability. This scenario represents a hypothetical situation where no adaptation to mean240

climate is pursued, and we refer to it as ”no adaptation scenario”; 2) future yields are241

expressed according to future baselines, so trends in mean climate are not considered.242

This scenario simulates a hypothetical situation where complete agricultural adaptation243

to changes in mean climate is achieved, and we refer to it as the ”adaptation scenario”.244

The hybrid model was designed to simulate the variability of crop yields, and was ap-245

plied to the ”adaptation scenario”. For the ”no adaptation” scenario, we added mean246

trends from the soybean yield projections simulated by the EPIC-IIASA model to the247

hybrid model outputs. The trends were adjusted so that the initial simulation years mean248

(2016-2020) were aligned to the climatology to ensure continuity.249

3 Results250

3.1 Hybrid model performance and simulation of the 2012 event251

We selected total monthly precipitation (prcptot, mm) and average daily maximum252

temperature (txm, °C) to be used in the hybrid model based on their high scores in our253

tests (SI Table S4) and on results from previous related studies (Goulart et al., 2021; Hamed254

et al., 2021). The hybrid model outperforms the other models for each of the three met-255

rics considered when the three countries are analysed together (Table 1) and individu-256

ally (SI Table S5). When evaluating the performance of extreme events, the hybrid model257

obtains the lowest sum of absolute errors for the 2012 event, with 88% and 22% error258

reduction with respect to the Stat-EPIC and Stat-clim models, respectively (Figures 1a259

and SI S1). The addition of direct climatic information to the process-based model out-260

put, as done in the hybrid model, improves performance especially on the grid cell scale,261

indicating a gain in regionalization (more information on SI section S1, Folberth et al.,262

2012). Therefore, the hybrid model is the most successful model at simulating soybean263

yields at the grid cell scale and at representing extreme weather. For the year 2012, the264

–6–



manuscript submitted to Earth’s Future

hybrid model shows an accumulated loss (negative anomaly) of 21.1Mt with respect to265

the the climatology (2000-2015). This is due to losses of 7.2Mt in the US, 4.9Mt in Brazil266

and 9Mt in Argentina (Figure 1b).267

Table 1. Out of sample performance of the models for three metrics: coefficient of determina-

tion (R2, no unit), mean absolute error (MAE, (ton/ha)2) and root mean squared error (RMSE,

ton/ha).

Model R2 MAE RMSE

EPIC-IIASA -6.4 1.336 1.562
Stat-EPIC 0.25 0.395 0.496
Stat-clim 0.66 0.245 0.334

Hybrid model 0.70 0.228 0.314

Figure 1. a) Crop yield difference between the hybrid model simulation and the observed

data for the 2012 event. b) Simulated yield anomalies by the hybrid model for the year 2012 with

respect to the climatology. Results shown in ton/ha.

3.2 Number of future impact analogue events268

We investigate the total number of analogue events of the 2012 event for both adap-269

tation and no adaptation scenarios. In the no adaptation scenario the occurrence of ana-270

logues is heavily dependent on the future climatic forcing conditions. For SSP5-8.5, a271

high occurrence of 2012 analogues (82 annual yield values at or below the 2012 yield)272

is estimated, with mean climatological values of soybean yields crossing the 2012 thresh-273

old around the year 2060 in two out of three ensemble members (Figure 2a and SI S2a).274

For SSP1-2.6, fewer analogues are observed (43), and only one member shows mean cli-275

matological values crossing the 2012 threshold. The magnitude of the analogues is also276

proportional to the forcing conditions, with mean production losses 17% larger than the277

original event for the SSP5-8.5, and 6% for the SSP1-2.6 (Figure SI S2c). The simula-278
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tions show that the soybean projections vary across the GCM ensemble members, partly279

due to differences in sensitivity to increasing CO2 concentrations: the future scenario280

not crossing the 2012 threshold in SSP5-8.5 is based on the GCM with lowest climate281

sensitivity to CO2 concentration levels, GFDL-esm4 (Equilibrium Climate Sensitivity282

(ECS): 2.6◦C), while the scenario crossing the 2012 threshold in the SSP1-2.6 is based283

on the UKESM1-0-II model, the highest climate sensitivity to CO2 concentration lev-284

els (ECS: 5.3◦C, for more information see SI Table S1 and Meehl et al., 2020; Jägermeyr285

et al., 2021).286

The adaptation scenario shows a low number of 2012 analogues (Figure 2b). 9 ana-287

logues are obtained in the future scenarios tested, 4 for the SSP1-2.6 and 5 for the SSP5-288

8.5 (Figure SI S2b). In addition, the changes in losses are not significant, with the SSP5-289

8.5 and SSP1-2.6 mean losses 2.3% and 2,2% larger than the 2012 event, respectively (Fig-290

ure SI S2d). The frequency and magnitude of the analogues for the adaptation scenario291

are significantly lower than in the no adaptation scenario, indicating that the occurrence292

of future analogues results mostly from trends in mean climate.293

Figure 2. a) Projected soybean yields for the no adaptation scenario. b) Same but for the

adaptation scenario. SSPs are defined by colour (blue SSP1-2.6 and orange SSP5-8.5) and GCMs

by symbols (circle: GFDL-esm4, triangle: IPSL-cm6a, square: UKESM1-0-II). The magnitude of

the 2012 observed event is shown as a black horizontal dashed line. Units are in Megatonnes.

3.3 Impact analogues in adaptation scenario294

We run a spatial analysis of the 9 impact analogues in the adaptation scenario to295

determine the losses in each country. On average, the three countries show production296

losses with respect to the historical climatology during analogue years (Figure 3). When297

compared to the 2012 event, analogues losses in the US, Brazil and Argentina increase298

on average (in brackets the 95% confidence interval) by -1.5Mt (-4.1Mt, 1.0Mt), -0.5Mt299

(-5.9Mt, 4.8Mt), -0.6Mt(-4.0Mt, 2.8Mt), respectively. Thus, the expected damages as-300

sociated with 2012 analogues are shown to increase in the three countries when compared301

to the 2012 event.302

We assess the climatic conditions of the impact analogues for the adaptation sce-303

nario to check for possible changes in the driving climatic anomalies (Figure 4). The av-304

erage climatic conditions of the analogues are drier than the 2012 event during the first305
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Figure 3. Spatial distribution of soybean yield anomalies in the adaptation scenario averaged

across all 2012 analogues compared to the 2012 event. Units are in ton/ha.

and second months of the season, but wetter in the last month of the season. The ana-306

logues are on average warmer than the 2012 event during the second and third months,307

but colder in the first month. With respect to the historical climatology, the 2012 ana-308

logues climatic conditions are on average hotter and drier, except for average temper-309

ature levels and slightly wet conditions in the third month of the season (Figure SI S3).310

While the analogues show on average increased hot and dry conditions, we note a sig-311

nificant variability in the climatic conditions leading to these events. It demonstrates the312

different ways that extreme impacts result from anomalous weather conditions, which313

highlights the usefulness of impact analogues (van der Wiel et al., 2020; Goulart et al.,314

2021).315

3.4 Country-level analogues316

While the simultaneous soybeans failures are the most impactful events for the glob-317

alised markets, we also explore the risks associated with soybean failures in each coun-318

try for the adaptation scenario. We refer to these as ”country-level analogues”, and they319

comprise a different selection of years to the aggregated 2012 analogues. The number320

of country-level analogues of the 2012 event is higher for Argentina (31), Brazil (40) and,321

especially, the US (84) than the aggregated 2012 analogues across the three countries (Fig-322

ure 5a). The average losses associated with country-level analogues increase by -2.7Mt323

(-3.1Mt,-2.2Mt) in the US, -2.5Mt (-3.7Mt, -1.4Mt) in Brazil, and -2.4Mt (-3.2Mt, -1.6Mt)324

in Argentina with respect to the corresponding country-level losses observed in 2012 (Fig-325

ure 5b). Therefore, country-level analogues are more frequent than aggregated analogues326

in the future, and the average losses of country-level analogues increase with respect to327
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Figure 4. Climatic conditions for the 2012 analogues (in orange) compared with the original

2012 event (red dashed lines). The whiskers denote the distance between the upper and lower

quartiles, and the values outside are the outliers (diamonds). Precipitation and average daily

maximum temperature values are represented by ”prcptot x” (mm/month) and ”txm x” (◦C),

respectively, with x representing the relative month of the season.

the historical 2012 event for all three countries individually. In addition, the US shows328

the highest number of country-level analogues, significantly higher than the other two329

countries.330

We compare the occurrence of country-level analogues in one or more countries with331

the occurrence of 2012 analogues (aggregated across all countries) to identify co-occurrences332

of regional and aggregated soybean failures (Figure 6). The original 2012 event was the333

result of the three countries having low yields, and we do not identify 2012 analogues334

coinciding with country-level analogues in all three countries. Instead, 2012 analogues335

occur due to one or two countries presenting country-level analogues in the same year,336

but no single country dominates the frequency of 2012 analogues. Our findings highlight337

the complexity of simultaneous soybean losses across the regions studied, and show that338

all three countries should be taken into consideration when exploring the global risk of339

extreme soybean failures.340
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Figure 5. a) Barplots showing the number of country-level analogues per country. b) Barplots

showing the average conditions of country-level analogues of the 2012 event for each country.

Black vertical lines indicate 95% spread within events.

For each country, we explore the regional climatic conditions linked with the country-341

level analogues and compare them to the 2012 climatic conditions (Figure 7). The country-342

level analogues for the US show on average higher temperature levels during the second343

and third months of the season, but mean wetter conditions during the first and third344

month. For Brazil, mean temperatures are higher during all three months, and precip-345

itation levels are lower during the first and second months, but higher in the last month.346

Argentina shows mean warmer conditions in all three months, while precipitations lev-347

els are drier for the first and second months. Relative to the historical climatology, the348

country-level analogues for all countries are the result of hot and dry climatic conditions349

(Figure SI S4).350

4 Discussion351

The global agricultural sector is already experiencing adverse effects of climate change352

(Lobell & Field, 2007), and further impacts are expected in the future due to continued353

climate change (Jägermeyr et al., 2021). Understanding the possible consequences of cli-354

mate change on extreme crop failures in the main production areas is of great impor-355

tance to global food security and the international markets. Soybeans, while globally con-356

sumed, are predominantly produced in three countries (US, Brazil and Argentina). Ana-357

logues of the simultaneous production failures in these countries as experienced in 2012358

were explored under future climate conditions. We used climate model simulations driven359
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Figure 6. Occurrences of local analogues and simultaneous analogues to the historical event

of 2012. Each panel is a combination of GCMs (GFDL-esm4, IPSL-cm6a-lr, UKESM1-0-ll) and

SSPs (1-2.6, 5-8.5).

by future emission scenarios and applied a hybrid model the simulate the effects of cli-360

mate conditions on yields. The hybrid model approach is particularly suitable at the lo-361

cal scale and during years with extreme weather conditions. We adopted an impact per-362

spective (van der Wiel et al., 2020; Goulart et al., 2021), using extreme crop losses rather363

than climate variables as a starting point of the assessment.364

We show that long term effects of climate change are significant. Particularly for365

high emission levels the occurrence of impacts analogous to the 2012 event increases both366

in terms of frequency and magnitude of yield anomalies. This is in agreement with other367

studies (Deryng et al., 2014; Schauberger et al., 2017; Wing et al., 2021; Jägermeyr et368

al., 2021), which projected lower crop yields in the future as a results of long term mean369

climatic trends. However, when removing the trends in mean climate and considering370

only changes in climate variability, our adaptation scenario, the change in analogue fre-371
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Figure 7. Same as Figure 4, but for country-level analogues (blue) across the three coun-

tries(orange) in the US (a), Brazil (b) and Argentina (c). 2012 event in red dashed line.

quency and damage is substantially lower. Thus, successful adaptation to changes in mean372

climate has the potential to minimise the majority of the climate change-caused impacts373

on simultaneous soybean failures across the Americas. This distinguishment between the374

climate change mechanisms that lead to changes in extreme events is highly relevant, as375

increased risk due to changes in mean climate and increased risk due to changes in cli-376

mate variability asks for different adaptation responses (van der Wiel & Bintanja, 2021).377

For the adaptation scenario, the 2012 analogues are primarily governed by com-378

pounding hot and dry conditions during the soybean reproductive season. Specifically,379

the analogues show on average higher mean temperatures than the original 2012 event380

in the second and third months, and lower precipitation values than the original event381

during the first two months of the season. On average, the analogues are expected to in-382

crease the productions losses in all three countries relative to the historical 2012 event.383

Repeating the adaptation scenario analysis on a country level, we show a higher384

number of soybean failures in each of three countries (especially in the US) than in their385

aggregated form across the three countries. This implies that, despite a high number of386

country-level analogues in the future, the occurrence of joint crop yield failures in the387

three countries is not expected to significantly increase due to changes in climate vari-388

ability alone. We do not investigate relations between simultaneous yield losses and large389

teleconnections, such as the El Niño–Southern Oscillation (ENSO). Previous studies show390

that La Niña phases are negatively correlated with soybean growing conditions in the391
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US and southeast South America, but positively correlated in the central Brazil region,392

potentially offsetting simultaneous soybean failures in the three countries (Anderson et393

al., 2018). This, and also our results show, that the joint analysis of crop yield anoma-394

lies in each of the important growing regions is necessary to robustly assess future risk395

of simultaneous soybean failures.396

This study makes specific assumptions on concepts and boundary conditions. Many397

scenarios can be formulated accounting for the adaptation of crop management practices398

to mean climate trends, as is tacitly assumed in our “adaptation scenario”. Actual adap-399

tation encompass multiple measures, from changing the sowing dates (Fodor et al., 2017)400

and migrating the regions planted (Mourtzinis et al., 2019) to genetic modification of401

soybean cultivars (Snowdon et al., 2021), each having different consequences for soybean402

yields. Furthermore, we selected 3 GCMs with different climate sensitivities and consid-403

ered the two most extreme SSP scenarios to obtain a diverse set of future scenarios. While404

these scenarios show clear signals in mean climate, there is sampling uncertainty in the405

occurrence and magnitude of extreme events. Sampling uncertainty can be addressed406

by using large ensembles, specifically designed to explore extremes in the data (Deser407

et al., 2020; van der Wiel et al., 2020). Finally, model or scenario uncertainty can be fur-408

ther explored by adopting a larger set of GCMs and SSPs.409

We use soybean harvest areas documented for the year 2012 throughout all sim-410

ulations, without regarding expansions of harvesting area. However, the expansion of soy-411

beans is a significant matter, as deforestation in the Amazon has been associated with412

soybean expansion (Amaral et al., 2021; Song et al., 2021), and preserving natural veg-413

etation helps protecting soybeans from weather extremes (Flach et al., 2021). We limit414

our analysis to soybean yields and production, but with the inclusion of socio-economic415

models, it is possible to extend the analysis to land use change (Zilli et al., 2020), poverty416

vulnerability (Byers et al., 2018), and impacts on global hunger through international417

trade (Janssens et al., 2020), among others.418

5 Conclusion419

In conclusion, we find that the increase of risk of simultaneous extreme soybean420

losses, such as the 2012 event, is primarily driven by the long term mean effects of cli-421

mate change. Extreme soybean losses due to changes in climate variability are expected422

to increase regionally in all three countries, but a change in the joint occurrence of ex-423

treme soybean losses in the Americas due to climate variability is not evident from our424

simulations. Therefore, successful adaptation measures to mean climate change can help425

minimise the increase of risk of simultaneous extreme soybean losses in the Americas.426

The difference in impacts to changes in mean climate and changes in climate variabil-427

ity is large, and so are their potential adaptation options. Assessment of these climate428

impacts and adaptation responses requires dedicated analysis techniques. The use of his-429

toric events (such as the 2012 aggregated crop yield failure) provides a useful framework430

for these analyses.431
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