Increase of simultaneous soybean failures due to climate change

Henrique Moreno Dumont Goulart¹, Karin van der Wiel², Christian Folberth³, Esther Boere⁴, and Bart van den Hurk⁵

¹Deltares ²KNMI ³International Institute for Applied System Analysis ⁴Unknown ⁵Vrije Universiteit Amsterdam,Deltares

November 22, 2022

Abstract

While soybeans are among the most consumed crops in the world, the majority of its production lies in hotspot regions in the US, Brazil and Argentina. The concentration of soybean growing regions in the Americas render the supply chain vulnerable to regional disruptions. In the year of 2012 anomalous hot and dry conditions occurring simultaneously in these regions led to low soybean yields, which drove global soybean prices to all-time records. Climate change has already negatively impacted agricultural systems, and this trend is expected to continue in the future. In this study we explore climate change impacts on simultaneous extreme crop failures as the one from 2012. We develop a hybrid model, coupling a process-based crop model with a machine learning model, to improve the simulation of soybean production. We assess the frequency and magnitude of events with similar or higher impacts than 2012 under different future scenarios, evaluating anomalies both with respect to present day and future conditions to disentangle the impacts of (changing) climate variability from the long-term mean trends. We find the long-term trends of mean climate increase the occurrence and magnitude of 2012 analogue crop yield losses. Conversely, anomalies like the 2012 event due to changes in climate variability show an increase in frequency in each country individually, but not simultaneously across the Americas. We deduce that adaptation of the crop production practice to the long-term mean trends of climate change may considerably reduce the future risk of simultaneous soybean losses across the Americas.

Increase of simultaneous soybean failures due to climate change

Henrique M. D. Goulart $^{1,2},$ Karin van der Wiel 3, Christian Folberth 4, Esther Boere 4, Bart van den Hurk 1,2

¹Deltares, Delft, The Netherlands ²Institute for Environmental Studies, VU University Amsterdam, The Netherlands ³Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands ⁴International Institute for Applied Systems Analysis (IIASA), Ecosystem Services and Management Program, Laxenburg, Austria

¹⁰ Key Points:

1

2

3

9

11	•	A hybrid crop model (i.e. physical crop model combined with machine learning)
12		is presented, which outperforms the benchmark models
13	•	Simultaneous soybean failures in the Americas under climate change are mostly
14		driven by changes in mean climate
15	•	Changes in climate variability increase country-level soybean failures but such change
16		is not found for simultaneous failures

Corresponding author: Henrique M. D. Goulart, henrique.goulart@deltares.nl

17 Abstract

While soybeans are among the most consumed crops in the world, the majority of its 18 production lies in hotspot regions in the US, Brazil and Argentina. The concentration 19 of soybean growing regions in the Americas render the supply chain vulnerable to regional 20 disruptions. In the year of 2012 anomalous hot and dry conditions occurring simulta-21 neously in these regions led to low soybean yields, which drove global soybean prices to 22 all-time records. Climate change has already negatively impacted agricultural systems, 23 and this trend is expected to continue in the future. In this study we explore climate change 24 impacts on simultaneous extreme crop failures as the one from 2012. We develop a hy-25 brid model, coupling a process-based crop model with a machine learning model, to im-26 prove the simulation of soybean production. We assess the frequency and magnitude of 27 events with similar or higher impacts than 2012 under different future scenarios, eval-28 uating anomalies both with respect to present day and future conditions to disentangle 29 the impacts of (changing) climate variability from the long-term mean trends. We find 30 the long-term trends of mean climate increase the occurrence and magnitude of 2012 ana-31 logue crop yield losses. Conversely, anomalies like the 2012 event due to changes in cli-32 mate variability show an increase in frequency in each country individually, but not si-33 multaneously across the Americas. We deduce that adaptation of the crop production 34 practice to the long-term mean trends of climate change may considerably reduce the 35 future risk of simultaneous soybean losses across the Americas. 36

³⁷ Plain Language Summary

Soybeans are the main source of protein for livestock in the world. Most of its pro-38 duction is concentrated in regions in The United States of America, Brazil and Argentina. 39 In 2012, simultaneous soybean losses in these three countries due to anomalous weather 40 conditions led to shortages in global supplies and to record prices. In this study we in-41 vestigate how climate change can affect future events with similar impacts as the one from 42 2012. We develop a numerical model to establish relations between weather conditions 43 and soybean yields. We use future scenarios with different levels of global warming, and 44 we analyse the soybean losses with respect to present day and future conditions. We find 45 that the number of simultaneous soybean losses similar to the 2012 event increase in the 46 future due to changes in the mean climate conditions. However, simultaneous soybean 47 production losses due to changes in climate variability are not frequent, despite each coun-48 try showing frequent regional losses. We deduce that if successful adaptation measures 49 are adopted against the changes in mean climate, the future risk of extreme events such 50 as the 2012 may be considerably reduced with respect to a future without any adapta-51 tion. 52

53 1 Introduction

Globally soybeans form the main source of protein for livestock feed, the second 54 most consumed type of vegetable oil, and are commonly consumed by humans (Hartman 55 et al., 2011). In spite of its global importance, 80% of the soybean production is con-56 centrated in hotspot regions in the United States of America (US), Brazil and Argentina 57 (FAO, 2022). Simultaneous disruptions in these regions have thus considerable impacts 58 on the global supply chain of soybeans, as was observed in the year of 2012. In that year, 59 low soybean yields in all three countries simultaneously led to soybean shortages and high 60 prices on global markets (FAO, 2022; Zhang et al., 2018). Climate change affects the oc-61 currence and characteristics of extreme events in agriculture (IPCC, 2022). Understand-62 ing how climate change affects large scale events such as the 2012 offers relevant insights 63 into the risks and challenges that the globalised agricultural system might face in the 64 future. 65

Adverse weather conditions are common causes of crop failures. Previous studies 66 show crop yield variability is affected by interannual weather variability (Lobell & Field, 67 2007; Ray et al., 2015; Frieler et al., 2017). Specifically, climate extremes (Lesk et al., 68 2016; Zampieri et al., 2017; E. Vogel et al., 2019) and multi-variate or temporally compounding events (Zscheischler et al., 2017; Ben-Ari et al., 2018; J. Vogel et al., 2021; van 70 der Wiel et al., 2020; Hamed et al., 2021) have been highlighted as important drivers of 71 crop growth failures. These have been exacerbated by climate change in the last decades 72 (Asseng et al., 2015; Moore & Lobell, 2015; Ray et al., 2019; Iizumi & Ramankutty, 2016; 73 Zhao et al., 2017; Zhu & Troy, 2018; Wolski et al., 2020). 74

The agricultural sector is expected to be further affected by continued climate change 75 in the future (Lobell & Tebaldi, 2014; Schauberger et al., 2017; Rosenzweig et al., 2018; 76 Xie et al., 2018). Climate change affects both long term trends of mean climate and cli-77 mate variability (IPCC, 2022). Long term trends, while relevant for impact estimation, 78 can partly be counteracted by adaptation measures (Butler & Huybers, 2013; E. Vogel 79 et al., 2019; Stevenson et al., 2022), but extreme weather events, caused by climate vari-80 ability, are not easily anticipated (IPCC, 2022). It is thus relevant to disentangle both 81 aspects of climate change when estimating the potential risks of agricultural losses (van der 82 Wiel & Bintanja, 2021). 83

There are multiple approaches in representing the interactions between weather and 84 crop development, roughly separated in process-based models and statistical models (Liu 85 et al., 2016). Process-based crop models simulate biological, physical and chemicals pro-86 cesses governing crop growth and are driven by weather, soil, and management informa-87 tion to generate simulated crop outputs. A specific category of such models are Global 88 Gridded Crop Models (GGCMs, Rosenzweig et al., 2014). GGCMs cover the entire globe, 89 allowing for the analysis of large scale events like the simultaneous soybean failure of 2012. 90 The second approach to relate weather to crops is through the use of statistical mod-91 els (Lobell & Burke, 2010). These utilise calibrated mathematical links between weather 92 and crop information. Different statistical methods are used, from simple linear regres-93 sions to advanced machine learning methods. 94

GGCMs are complex, expensive to build and run, and do not represent the crop 95 response to extreme weather conditions well (Schewe et al., 2019; Heinicke et al., 2022). 96 Statistical models are generally simple to build and flexible to use, but do not necessar-97 ily follow physics-based processes and their underlying mechanisms can be hard to trace. 98 Therefore, recent studies have proposed a novel approach, in which process-based and 99 statistical models are coupled in a hybrid model. Hybrid models have been shown to out-100 perform the other approaches, and are especially suited for studies assessing the impacts 101 of climate variability and extreme weather conditions (Feng et al., 2019; Shahhosseini 102 et al., 2021). 103

In this study, we explore how climate change affects extreme simultaneous soybean 104 failures in the Americas, such as the 2012 event. Specifically, we develop a hybrid model 105 to link weather conditions to crops yields and then adopt the concept of impact analogues 106 (van der Wiel et al., 2020; Goulart et al., 2021) to identify events in the future with sim-107 ilar or larger impacts than the 2012 event. We consider different future climatic forcing 108 conditions and assess separately the contribution of trends in mean climate and trends 109 in climate variability in the occurrence of analogues. we analyse two baseline scenarios: 110 one with a static current climate baseline (assuming no adaptation or technological trends 111 to changing mean climatic conditions) and one accounting for the trends in mean climate 112 and crop yield (tacitly assuming a gradual adaptation of crop production in pace with 113 shifting climate conditions). We analyse potential changes in analogue frequency and mag-114 nitude and the driving climatic conditions. Results are shown both for the combined pro-115 duction regions (US, Brazil, Argentina) and separately for each individual country to quan-116 tify both synchronised and localised crop yield decline information. We determine if the 117 risk of extreme soybean failures across the Americas is changing due to climate change, 118

and which climate change component dominates the change in risk, changes in mean climate or changes in climate variability.

121 2 Methods

2.1 Study area

This study explored the influence of climate on soybean yields in the major soybean producing countries: the US, Brazil and Argentina. Together, they are responsible for 80% of the global soybean production (FAO, 2022). We considered only rainfed areas to better capture the interactions between climate and crops. We used the SPAM2010 dataset (Yu et al., 2020) to select areas in which at least 90% of the soybean area is rainfed.

129

122

2.2 Climate and crop data

To build the hybrid model, we used simulated climate data, simulated yields and 130 observed yields. The simulated climate data was provided by the Global Gridded Crop 131 Model Intercomparison (GGCMI) initiative (Jägermeyr et al., 2021) and the Intersec-132 toral Impact Model Intercomparison Project (Warszawski et al., 2014). They cover both 133 the historical period and future projections, with daily values at $0.5^{\circ} \ge 0.5^{\circ}$ spatial res-134 olution. The historical run (1901-2015) consisted of the GSWP3-W5E5 dataset, a com-135 bination of two global datasets using reanalyses and gridded field observations: GSWP3 136 (Global Soil Wetness Project Phase 3, Kim, 2017) and W5E5 (WFDE5 over land merged 137 with ERA5 over the ocean, Lange et al., 2021). The projections cover the 2016-2100 pe-138 riod and are based on three global climate models (GCMs): GFDL-ESM4, IPSL-CM6A-139 LR and UKESM1-0-LL, which are bias-corrected based on the historic climate dataset 140 as described in (Lange, 2019). Among the 5 GCMs available in ISIMIP, we selected these 141 GCMs as they have different climate sensitivities to CO2 concentration increases: low, 142 mid and high sensitivities respectively (Supporting Information (SI) Table S1, Meehl et 143 al., 2020; Jägermeyr et al., 2021). We used forcings from two Shared Socioeconomic Path-144 ways (SSPs) and Representative Concentration Pathway (RCP) combinations: SSP1-145 2.6 and SSP5-8.5. The combination of GCMs and SSPs allow for the estimation of cli-146 mate risk under 6 different future scenarios (Jägermeyr et al., 2021). More information 147 on the GCMs and SSPs can be found in the documentation underlying the Coupled Model 148 Inter-comparison Project phase 6 (CMIP6, Eyring et al., 2016). 149

Simulated yields were sourced from the process-based GGCM EPIC-IIASA (Balkovič et al., 2014) using the same input data described above. The GGCM EPIC-IIASA (Balkovič et al., 2014) is a global implementation of the Environmental Policy Integrated Climate (EPIC) field-scale crop model (Williams et al., 1995). It covers the entire world at a resolution of 0.5° x 0.5°. All GGCM runs had CO2 fertilisation effect on the crop yields.

Observed yields from census data were used to train the hybrid model. We obtained 155 the observed yields and harvest areas for soybeans at a county level directly from the 156 national authorities of each country analysed here. Soybean information for the US was 157 retrieved from the US Department of Agriculture (USDA, 2022), for Brazil from the Brazil-158 ian Institute of Geography and Statistics (IBGE, 2022), and for Argentina from the Min-159 istry of Agriculture of Argentina (MAGYP, 2022). Observed crop data in Brazil required 160 additional data cleasning (Xu et al., 2021), consisting of removing counties with less than 161 1% of the county area used for soybean production. We did not see improvements in do-162 ing the same for the other two countries. The datasets were resampled to a $0.5^{\circ} \ge 0.5^{\circ}$ 163 grid to match GGCM spatial resolution using the first order conservative remapping scheme 164 (Jones, 1999). The observed harvest areas were used to calculate production and area 165 weighted average yield values for each country and for the aggregated area across the 166

three countries. For the projections we fixed the harvest areas to the values of 2012 to have a consistent comparison with the 2012 historical event.

169

2.3 Data processing and dynamic calendar

We obtained from the GCMs daily maximum and minimum temperature, and to-170 tal daily precipitation. We processed them to generate multiple climatic indices for tem-171 perature and precipitation using the Climpact package (Climpact, 2022, list of consid-172 ered variables in SI Table S2). The yield data and the climatic indices were detrended 173 to isolate the interannual variability and remove the influence of technology, management, 174 and long-term variability. We fitted linear and quadratic polynomials to detrend the time-175 series for both historical data and projections, and selected the method with least squared 176 errors. 177

Given the seasonal differences between the regions analysed, we developed a dy-178 namic calendar following Folberth et al. (2019). It is based on the reproductive stage of 179 soybeans in each grid cell, which is the crop stage most sensitive to weather disruptions 180 (Daryanto et al., 2017; Hamed et al., 2021). The dynamic calendar defines for each grid 181 cell a three-month season starting one month before the month in which soybeans reach 182 the maturity date and ending one month after that month. The soybean maturity date 183 was obtained from the GGCMI Phase 3 crop calendar (Jägermeyr et al., 2021). We di-184 vided the climatic indices into two groups: temperature and precipitation (Feng et al., 185 2019; Hamed et al., 2021). In each group, we selected the climatic index with the high-186 est coefficient of determination (\mathbb{R}^2) during the three-month season simulated by a Ran-187 dom Forest model (Breiman, 2001). 188

189

2.4 Hybrid model development

The hybrid model consists of coupling the outputs of the process-based crop model 190 with the climatic indices obtained in the previous step in a statistical model calibrated 191 on observed crop data. We also added for each grid cell the country label to represent 192 the influence of non-climatic variables in each country (such as management practices, 193 Crane-Droesch, 2018). The statistical model used is a multilayer perceptron (MLP), a 194 widely-used type of deep neural network with applications in multiple fields (Abiodun 195 et al., 2018; Banadkooki et al., 2020; Panahi et al., 2021). MLPs are a network of smaller 196 individual models, called neurons, which are divided in layers. The input layer receives 197 the data, the hidden layers process the data, and the output layer provides the final out-198 put. Each neuron has an activation function, which is responsible for processing the data, 199 and associated weights. The weights of the neurons define their importance in the net-200 work. We used the Keras package to develop the MLP (Chollet et al., 2015), based on the TensorFlow platform (Abadi et al., 2015). The MLP has multiple hyperparameters 202 to be configured. We tuned them using a grid-search algorithm, in which multiple runs 203 are tested and the best results are stored (the hyperparameters values are shown in SI 204 Table S3). 205

We compared the output of the hybrid model with the output of the EPIC-IIASA 206 model, a statistical model based solely on EPIC-IIASA and country index (Stat-EPIC), 207 and a statistical model based solely on the climatic indices and country index (Stat-clim). 208 We first measured the scores of each model at the grid cell level on a test set (out of sam-209 ple corresponding to 20% of the total data) using the statistical metrics: coefficient of 210 determination (\mathbb{R}^2) , Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 211 Then we calculated the sum of errors of each model for the 2012 year to determine which 212 model represents extreme conditions best. 213

2.5 Investigating the risk of future failures

We adopted the concept of impact analogues to assess the future risk of soybean 215 failures. Impact analogues have been shown to better represent the risk estimation of 216 extreme impact events than weather analogues (van der Wiel et al., 2020; Goulart et al., 217 2021). Impact analogues (hereafter shortened to "analogues") refer to events with equal 218 or larger impacts than a historical event. The main impact metric (also referred to as 219 soybean yield losses) is defined as the difference between the annual soybean production 220 aggregated across the three countries (in dry matter weight) and the mean aggregated 221 222 production across the three countries for the climatology. We have taken climatology to be the 2000-2015 period, as it is the period in which soybean harvest area in South Amer-223 ica reduced its expansion rate. For each of the future climate experiments, we calculated 224 annual soybean yields, and identified years with larger negative anomaly than observed 225 in 2012, defining them as the 2012 analogues. We also investigated the associated cli-226 matic conditions, and the spatial distributions of the analogues to determine how each 227 country contributed to the total yield loss. In addition, we analysed country scale ana-228 logues to determine the risk of regional extreme failures. 229

Projected crop yields reflect a response to changing climatic conditions (both to 230 the long-term changes in mean temperature and available water, and impacts of episodes 231 with anomalous weather conditions). Exploring trends in weather-induced crop failures 232 can be carried out relative to present day growing conditions (assuming no changes in 233 cropping practices and other trends), or relative to mean future climate conditions to 234 isolate changes in climate variability due to climate change (Butler & Huybers, 2013; Steven-235 son et al., 2022). We explore separately the contribution of trends in mean climate and 236 in climate variability in the occurrence of simultaneous soybean failures by applying two 237 hypothetical scenarios: 1) future yields are defined relative to a present-day reference, 238 which includes the influence of both long-term trends in mean climate and in climate vari-239 ability. This scenario represents a hypothetical situation where no adaptation to mean 240 climate is pursued, and we refer to it as "no adaptation scenario"; 2) future yields are 241 expressed according to future baselines, so trends in mean climate are not considered. 242 This scenario simulates a hypothetical situation where complete agricultural adaptation 243 to changes in mean climate is achieved, and we refer to it as the "adaptation scenario". 244 The hybrid model was designed to simulate the variability of crop yields, and was ap-245 plied to the "adaptation scenario". For the "no adaptation" scenario, we added mean 246 trends from the soybean yield projections simulated by the EPIC-IIASA model to the 247 hybrid model outputs. The trends were adjusted so that the initial simulation years mean 248 (2016-2020) were aligned to the climatology to ensure continuity. 249

250 3 Results

251

214

3.1 Hybrid model performance and simulation of the 2012 event

We selected total monthly precipitation (prcptot, mm) and average daily maximum 252 temperature (txm, °C) to be used in the hybrid model based on their high scores in our 253 tests (SI Table S4) and on results from previous related studies (Goulart et al., 2021; Hamed 254 et al., 2021). The hybrid model outperforms the other models for each of the three met-255 rics considered when the three countries are analysed together (Table 1) and individu-256 ally (SI Table S5). When evaluating the performance of extreme events, the hybrid model 257 obtains the lowest sum of absolute errors for the 2012 event, with 88% and 22% error 258 reduction with respect to the Stat-EPIC and Stat-clim models, respectively (Figures 1a 259 and SI S1). The addition of direct climatic information to the process-based model out-260 put, as done in the hybrid model, improves performance especially on the grid cell scale, 261 indicating a gain in regionalization (more information on SI section S1, Folberth et al., 262 2012). Therefore, the hybrid model is the most successful model at simulating soybean 263 yields at the grid cell scale and at representing extreme weather. For the year 2012, the 264

the the climatology (2000-2015). This is due to losses of 7.2Mt in the US, 4.9Mt in Brazil and 9Mt in Argentina (Figure 1b).

Table 1. Out of sample performance of the models for three metrics: coefficient of determination (R2, no unit), mean absolute error (MAE, $(ton/ha)^2$) and root mean squared error (RMSE, ton/ha).

Model	R2	MAE	RMSE
EPIC-IIASA	-6.4	1.336	1.562
Stat-EPIC	0.25	0.395	0.496
Stat-clim	0.66	0.245	0.334
Hybrid model	0.70	0.228	0.314

Figure 1. a) Crop yield difference between the hybrid model simulation and the observed data for the 2012 event. b) Simulated yield anomalies by the hybrid model for the year 2012 with respect to the climatology. Results shown in ton/ha.

3.2 Number of future impact analogue events

268

We investigate the total number of analogue events of the 2012 event for both adap-269 tation and no adaptation scenarios. In the no adaptation scenario the occurrence of ana-270 logues is heavily dependent on the future climatic forcing conditions. For SSP5-8.5, a 271 high occurrence of 2012 analogues (82 annual yield values at or below the 2012 yield) 272 is estimated, with mean climatological values of soybean yields crossing the 2012 thresh-273 old around the year 2060 in two out of three ensemble members (Figure 2a and SI S2a). 274 For SSP1-2.6, fewer analogues are observed (43), and only one member shows mean cli-275 matological values crossing the 2012 threshold. The magnitude of the analogues is also 276 proportional to the forcing conditions, with mean production losses 17% larger than the 277 original event for the SSP5-8.5, and 6% for the SSP1-2.6 (Figure SI S2c). The simula-278

tions show that the soybean projections vary across the GCM ensemble members, partly due to differences in sensitivity to increasing CO2 concentrations: the future scenario not crossing the 2012 threshold in SSP5-8.5 is based on the GCM with lowest climate sensitivity to CO2 concentration levels, GFDL-esm4 (Equilibrium Climate Sensitivity (ECS): $2.6^{\circ}C$), while the scenario crossing the 2012 threshold in the SSP1-2.6 is based on the UKESM1-0-II model, the highest climate sensitivity to CO2 concentration levels (ECS: $5.3^{\circ}C$, for more information see SI Table S1 and Meehl et al., 2020; Jägermeyr et al., 2021).

The adaptation scenario shows a low number of 2012 analogues (Figure 2b). 9 analogues are obtained in the future scenarios tested, 4 for the SSP1-2.6 and 5 for the SSP5-8.5 (Figure SI S2b). In addition, the changes in losses are not significant, with the SSP5-8.5 and SSP1-2.6 mean losses 2.3% and 2,2% larger than the 2012 event, respectively (Figure SI S2d). The frequency and magnitude of the analogues for the adaptation scenario are significantly lower than in the no adaptation scenario, indicating that the occurrence of future analogues results mostly from trends in mean climate.

Figure 2. a) Projected soybean yields for the no adaptation scenario. b) Same but for the adaptation scenario. SSPs are defined by colour (blue SSP1-2.6 and orange SSP5-8.5) and GCMs by symbols (circle: GFDL-esm4, triangle: IPSL-cm6a, square: UKESM1-0-II). The magnitude of the 2012 observed event is shown as a black horizontal dashed line. Units are in Megatonnes.

294

3.3 Impact analogues in adaptation scenario

We run a spatial analysis of the 9 impact analogues in the adaptation scenario to determine the losses in each country. On average, the three countries show production losses with respect to the historical climatology during analogue years (Figure 3). When compared to the 2012 event, analogues losses in the US, Brazil and Argentina increase on average (in brackets the 95% confidence interval) by -1.5Mt (-4.1Mt, 1.0Mt), -0.5Mt (-5.9Mt, 4.8Mt), -0.6Mt(-4.0Mt, 2.8Mt), respectively. Thus, the expected damages associated with 2012 analogues are shown to increase in the three countries when compared to the 2012 event.

We assess the climatic conditions of the impact analogues for the adaptation scenario to check for possible changes in the driving climatic anomalies (Figure 4). The average climatic conditions of the analogues are drier than the 2012 event during the first

Figure 3. Spatial distribution of soybean yield anomalies in the adaptation scenario averaged across all 2012 analogues compared to the 2012 event. Units are in ton/ha.

and second months of the season, but wetter in the last month of the season. The ana-306 logues are on average warmer than the 2012 event during the second and third months. 307 but colder in the first month. With respect to the historical climatology, the 2012 ana-308 logues climatic conditions are on average hotter and drier, except for average temper-309 ature levels and slightly wet conditions in the third month of the season (Figure SI S3). 310 While the analogues show on average increased hot and dry conditions, we note a sig-311 nificant variability in the climatic conditions leading to these events. It demonstrates the 312 different ways that extreme impacts result from anomalous weather conditions, which 313 highlights the usefulness of impact analogues (van der Wiel et al., 2020; Goulart et al., 314 2021). 315

3.4 C

316

3.4 Country-level analogues

While the simultaneous soybeans failures are the most impactful events for the glob-317 alised markets, we also explore the risks associated with soybean failures in each coun-318 try for the adaptation scenario. We refer to these as "country-level analogues", and they 319 comprise a different selection of years to the aggregated 2012 analogues. The number 320 of country-level analogues of the 2012 event is higher for Argentina (31), Brazil (40) and, 321 especially, the US (84) than the aggregated 2012 analogues across the three countries (Fig-322 ure 5a). The average losses associated with country-level analogues increase by -2.7Mt 323 (-3.1Mt,-2.2Mt) in the US, -2.5Mt (-3.7Mt, -1.4Mt) in Brazil, and -2.4Mt (-3.2Mt, -1.6Mt) 324 in Argentina with respect to the corresponding country-level losses observed in 2012 (Fig-325 ure 5b). Therefore, country-level analogues are more frequent than aggregated analogues 326 in the future, and the average losses of country-level analogues increase with respect to 327

Figure 4. Climatic conditions for the 2012 analogues (in orange) compared with the original 2012 event (red dashed lines). The whiskers denote the distance between the upper and lower quartiles, and the values outside are the outliers (diamonds). Precipitation and average daily maximum temperature values are represented by "prcptot_x" (mm/month) and "txm_x" ($^{\circ}C$), respectively, with x representing the relative month of the season.

the historical 2012 event for all three countries individually. In addition, the US shows the highest number of country-level analogues, significantly higher than the other two countries.

We compare the occurrence of country-level analogues in one or more countries with 331 the occurrence of 2012 analogues (aggregated across all countries) to identify co-occurrences 332 of regional and aggregated soybean failures (Figure 6). The original 2012 event was the 333 result of the three countries having low yields, and we do not identify 2012 analogues 334 coinciding with country-level analogues in all three countries. Instead, 2012 analogues 335 occur due to one or two countries presenting country-level analogues in the same year, 336 but no single country dominates the frequency of 2012 analogues. Our findings highlight 337 the complexity of simultaneous sources across the regions studied, and show that 338 all three countries should be taken into consideration when exploring the global risk of 330 extreme soybean failures. 340

Figure 5. a) Barplots showing the number of country-level analogues per country. b) Barplots showing the average conditions of country-level analogues of the 2012 event for each country. Black vertical lines indicate 95% spread within events.

For each country, we explore the regional climatic conditions linked with the country-341 level analogues and compare them to the 2012 climatic conditions (Figure 7). The country-342 level analogues for the US show on average higher temperature levels during the second 343 and third months of the season, but mean wetter conditions during the first and third 344 month. For Brazil, mean temperatures are higher during all three months, and precip-345 itation levels are lower during the first and second months, but higher in the last month. 346 Argentina shows mean warmer conditions in all three months, while precipitations lev-347 els are drier for the first and second months. Relative to the historical climatology, the 348 country-level analogues for all countries are the result of hot and dry climatic conditions 349 (Figure SI S4). 350

351 4 Discussion

The global agricultural sector is already experiencing adverse effects of climate change 352 (Lobell & Field, 2007), and further impacts are expected in the future due to continued 353 climate change (Jägermeyr et al., 2021). Understanding the possible consequences of cli-354 mate change on extreme crop failures in the main production areas is of great impor-355 tance to global food security and the international markets. Soybeans, while globally con-356 sumed, are predominantly produced in three countries (US, Brazil and Argentina). Ana-357 logues of the simultaneous production failures in these countries as experienced in 2012 358 were explored under future climate conditions. We used climate model simulations driven 359

Figure 6. Occurrences of local analogues and simultaneous analogues to the historical event of 2012. Each panel is a combination of GCMs (GFDL-esm4, IPSL-cm6a-lr, UKESM1-0-ll) and SSPs (1-2.6, 5-8.5).

by future emission scenarios and applied a hybrid model the simulate the effects of climate conditions on yields. The hybrid model approach is particularly suitable at the local scale and during years with extreme weather conditions. We adopted an impact perspective (van der Wiel et al., 2020; Goulart et al., 2021), using extreme crop losses rather than climate variables as a starting point of the assessment.

We show that long term effects of climate change are significant. Particularly for high emission levels the occurrence of impacts analogous to the 2012 event increases both in terms of frequency and magnitude of yield anomalies. This is in agreement with other studies (Deryng et al., 2014; Schauberger et al., 2017; Wing et al., 2021; Jägermeyr et al., 2021), which projected lower crop yields in the future as a results of long term mean climatic trends. However, when removing the trends in mean climate and considering only changes in climate variability, our adaptation scenario, the change in analogue fre-

Figure 7. Same as Figure 4, but for country-level analogues (blue) across the three countries(orange) in the US (a), Brazil (b) and Argentina (c). 2012 event in red dashed line.

quency and damage is substantially lower. Thus, successful adaptation to changes in mean climate has the potential to minimise the majority of the climate change-caused impacts on simultaneous soybean failures across the Americas. This distinguishment between the climate change mechanisms that lead to changes in extreme events is highly relevant, as increased risk due to changes in mean climate and increased risk due to changes in climate variability asks for different adaptation responses (van der Wiel & Bintanja, 2021).

For the adaptation scenario, the 2012 analogues are primarily governed by compounding hot and dry conditions during the soybean reproductive season. Specifically, the analogues show on average higher mean temperatures than the original 2012 event in the second and third months, and lower precipitation values than the original event during the first two months of the season. On average, the analogues are expected to increase the productions losses in all three countries relative to the historical 2012 event.

Repeating the adaptation scenario analysis on a country level, we show a higher 384 number of soybean failures in each of three countries (especially in the US) than in their 385 aggregated form across the three countries. This implies that, despite a high number of 386 country-level analogues in the future, the occurrence of joint crop yield failures in the 387 three countries is not expected to significantly increase due to changes in climate vari-388 ability alone. We do not investigate relations between simultaneous yield losses and large 389 teleconnections, such as the El Niño–Southern Oscillation (ENSO). Previous studies show 390 that La Niña phases are negatively correlated with soybean growing conditions in the 391

US and southeast South America, but positively correlated in the central Brazil region, potentially offsetting simultaneous soybean failures in the three countries (Anderson et al., 2018). This, and also our results show, that the joint analysis of crop yield anomalies in each of the important growing regions is necessary to robustly assess future risk of simultaneous soybean failures.

This study makes specific assumptions on concepts and boundary conditions. Many 397 scenarios can be formulated accounting for the adaptation of crop management practices 398 to mean climate trends, as is tacitly assumed in our "adaptation scenario". Actual adap-300 tation encompass multiple measures, from changing the sowing dates (Fodor et al., 2017) 400 and migrating the regions planted (Mourtzinis et al., 2019) to genetic modification of 401 soybean cultivars (Snowdon et al., 2021), each having different consequences for soybean 402 yields. Furthermore, we selected 3 GCMs with different climate sensitivities and consid-403 ered the two most extreme SSP scenarios to obtain a diverse set of future scenarios. While 404 these scenarios show clear signals in mean climate, there is sampling uncertainty in the 405 occurrence and magnitude of extreme events. Sampling uncertainty can be addressed 406 by using large ensembles, specifically designed to explore extremes in the data (Deser et al., 2020; van der Wiel et al., 2020). Finally, model or scenario uncertainty can be fur-408 ther explored by adopting a larger set of GCMs and SSPs. 409

We use soybean harvest areas documented for the year 2012 throughout all sim-410 ulations, without regarding expansions of harvesting area. However, the expansion of soy-411 beans is a significant matter, as deforestation in the Amazon has been associated with 412 soybean expansion (Amaral et al., 2021; Song et al., 2021), and preserving natural veg-413 etation helps protecting soybeans from weather extremes (Flach et al., 2021). We limit 414 our analysis to soybean yields and production, but with the inclusion of socio-economic 415 models, it is possible to extend the analysis to land use change (Zilli et al., 2020), poverty 416 vulnerability (Byers et al., 2018), and impacts on global hunger through international 417 trade (Janssens et al., 2020), among others. 418

419 5 Conclusion

In conclusion, we find that the increase of risk of simultaneous extreme soybean 420 losses, such as the 2012 event, is primarily driven by the long term mean effects of cli-421 mate change. Extreme soybean losses due to changes in climate variability are expected 422 to increase regionally in all three countries, but a change in the joint occurrence of ex-423 treme soybean losses in the Americas due to climate variability is not evident from our 424 simulations. Therefore, successful adaptation measures to mean climate change can help minimise the increase of risk of simultaneous extreme soybean losses in the Americas. 426 The difference in impacts to changes in mean climate and changes in climate variabil-427 ity is large, and so are their potential adaptation options. Assessment of these climate 428 impacts and adaptation responses requires dedicated analysis techniques. The use of his-429 toric events (such as the 2012 aggregated crop yield failure) provides a useful framework 430 for these analyses. 431

432 6 Open Research

433 Code Availability Statement: The code for this experiment is available at: https://
 434 github.com/dumontgoulart/soybean_failure_risk_cc_analogues. The code will be
 435 deposited permanently at Zenodo if the article is eventually accepted.

Data Availability Statement: The observed soybean yield and harvested area data
collected, combined and processed for this work and the future projections under different climate change levels are publicly available at https://doi.org/10.7910/DVN/Q8D85C,
DOI:10.7910/DVN/Q8D85C (Goulart, 2022).

ISIMIP2a Simulation Data from Agricultural Sector, GFZ Data Services A. Arneth, 440 J. Balkovic, P. Ciais, A. de Wit, D. Deryng, J. Elliott, C. Folberth, M. Glotter, T. Iizumi, 441 R. C. Izaurralde, A. D. Jones, N. Khabarov, P. Lawrence, W. Liu, H. Mitter, C. Müller, 442 S. Olin, T. A. M. Pugh, A. D. Reddy, G. Sakurai, E. Schmid, X. Wang, X. Wu, H. Yang, 443 and M. Büchner, https://doi.org/10.5880/PIK.2017.006 444

Acknowledgments 445

This research has been supported by the European Union's Horizon 2020 research and 446 innovation programme under grant agreement No 820712 (project RECEIPT, REmote 447 Climate Effects and their Impact on European sustainability, Policy and Trade). The 448 GSWP3-W5E5 climate dataset and growing season data were provided by the Global 449 Gridded Crop Model Intercomparison (GGCMI) initiative and the Intersectoral Impact 450 Model Intercomparison Project (ISIMIP). This work started at the Young Scientist Sum-451 mer Program (YSSP) at the International Institute for Applied Systems Analysis (IIASA). 452 We thank Raed Hamed, Timothy Tiggeloven, Jens de Bruijn, Aaron Alexander, Anaïs 453 Couasnon, Sem Vijverberg and Rafaela Flach for the support throughout the work. 454

References 455

456	Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Zheng, X.
457	(2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
458	Retrieved from https://www.tensorflow.org/ (Software available from
459	tensorflow.org)
460	Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., &
461	Arshad, H. (2018). State-of-the-art in artificial neural network appli-
462	cations: A survey. <i>Heliyon</i> , 4(11), e00938. Retrieved from https://
463	www.sciencedirect.com/science/article/pii/S2405844018332067 doi:
464	https://doi.org/10.1016/j.heliyon.2018.e00938
465	Amaral, D. F., de Souza Ferreira Filho, J. B., Chagas, A. L. S., & Adami, M.
466	(2021). Expansion of soybean farming into deforested areas in the amazon
467	biome: the role and impact of the soy moratorium. Sustainability Science,
468	16(4), 1295-1312.
469	Anderson, W., Seager, R., Baethgen, W., & Cane, M. (2018). Trans-pacific enso
470	teleconnections pose a correlated risk to agriculture. Agricultural and Forest
471	Meteorology, 262, 298-309. Retrieved from https://www.sciencedirect.com/
472	science/article/pii/S0168192318302454 doi: https://doi.org/10.1016/
473	j.agrformet.2018.07.023
474	Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D.,
475	others (2015). Rising temperatures reduce global wheat production. Nature
476	$climate\ change,\ 5(2),\ 143{-}147.$
477	Balkovič, J., van der Velde, M., Skalský, R., Xiong, W., Folberth, C., Khabarov, N.,
478	Obersteiner, M. (2014). Global wheat production potentials and manage-
479	ment flexibility under the representative concentration pathways. Global and
480	Planetary Change, 122, 107–121. doi: 10.1016/j.gloplacha.2014.08.010
481	Banadkooki, F. B., Ehteram, M., Panahi, F., Sh. Sammen, S., Othman, F. B., &
482	EL-Shafie, A. (2020). Estimation of total dissolved solids (tds) using new
483	hybrid machine learning models. Journal of Hydrology, 587, 124989. Re-
484	trieved from https://www.sciencedirect.com/science/article/pii/
485	S0022169420304492 doi: https://doi.org/10.1016/j.jhydrol.2020.124989
486	Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., van der Velde, M., & Makowski, D.
487	(2018). Causes and implications of the unforeseen 2016 extreme yield
488	loss in the breadbasket of France. Nature Communications, $9(1)$. Re-
489	trieved from http://dx.doi.org/10.1038/s41467-018-04087-x doi:
490	10.1038/s41467-018-04087-x

491 492	Breiman, L. (2001). Random Forests., 2001. Retrieved from https://doi.org/10 .1023/A:1010933404324 doi: 10.1023/A:1010933404324
493	Butler, E. E., & Huybers, P. (2013). Adaptation of us maize to temperature varia-
494	tions. Nature Climate Change, $3(1)$, $68-72$.
495	Byers, E., Gidden, M., Leclère, D., Balkovic, J., Burek, P., Ebi, K., others
496	(2018). Global exposure and vulnerability to multi-sector development and
497	climate change hotspots. Environmental Research Letters, 13(5), 055012.
498	Chollet, F., et al. (2015). Keras. https://keras.io.
499	Climpact. (2022). Climpact. Retrieved from https://github.com/ARCCSS
500	-extremes/climpact/blob/master/www/user_guide/Climpact_user_guide
501	.md
502	Crane-Droesch, A. (2018). Machine learning methods for crop yield prediction and
503 504	climate change impact assessment in agriculture. Environmental Research Letters, $13(11)$. doi: $10.1088/1748-9326/aae159$
505	Daryanto, S., Wang, L., & Jacinthe, PA. (2017). Global synthesis of drought
506	effects on cereal, legume, tuber and root crops production: A review.
507	Agricultural Water Management, 179, 18-33. Retrieved from https://
508	www.sciencedirect.com/science/article/pii/S0378377416301470 (Spe-
509	cial Issue on Improving Agricultural Water Productivity to Ensure Food
510	Security under Changing Environments Overseen by: Brent Clothier) doi:
511	https://doi.org/10.1016/j.agwat.2016.04.022
512	Deryng, D., Conway, D., Ramankutty, N., Price, J., & Warren, R. (2014). Global
513	tures Environmental Research Letters $0(3)$ doi: 10.1088/1748.0326/0/3/
514	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
515	Deser C Lehner F Rodgers K B Ault T Delworth T L DiNezio P N
517	others (2020). Insights from earth system model initial-condition large
518	ensembles and future prospects. Nature Climate Change, 10(4), 277–286.
519	Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., &
520	Taylor, K. E. (2016). Overview of the coupled model intercomparison project
521	phase 6 (cmip6) experimental design and organization. Geoscientific Model De-
522	velopment, 9(5), 1937-1958. Retrieved from https://gmd.copernicus.org/
523	articles/9/1937/2016/ doi: $10.5194/gmd-9-1937-2016$
524	FAO. (2022). Food and Agricultural Organization of the United Nations Statistical
525	Database (Tech. Rep.).
526	Feng, P., Wang, B., Liu, D. L., Waters, C., & Yu, Q. (2019). Incorporating ma-
527	chine learning with biophysical model can improve the evaluation of cli-
528	mate extremes impacts on wheat yield in south-eastern Australia. Agri-
529	triound from https://doi.org/10.1016/j.agrformot.2019.05.018 doi:
531	10.1016/j.agrformet.2019.05.018
532	Flach, R., Abrahão, G., Bryant, B., Scarabello, M., Soterroni, A. C., Bamos, F. M.,
533	Cohn, A. S. (2021). Conserving the cerrado and amazon biomes of
534	brazil protects the soy economy from damaging warming. World Develop-
535	ment, 146, 105582. Retrieved from https://www.sciencedirect.com/
536	science/article/pii/S0305750X21001972 doi: https://doi.org/10.1016/
537	j.worlddev.2021.105582
538	Fodor, N., Challinor, A., Droutsas, I., Ramirez-Villegas, J., Zabel, F., Koehler,
539	AK., & Foyer, C. H. (2017, 09). Integrating Plant Science and Crop Mod-
540	eling: Assessment of the Impact of Climate Change on Soybean and Maize
541	Production. Plant and Cell Physiology, 58(11), 1833-1847. Retrieved from
542	nttps://doi.org/10.1093/pcp/pcx141 doi: 10.1093/pcp/pcx141
543	rolde R. C. others (2010) Dependencies induced uncertaintic and
544	impacts of crop management harmonization in a global gridded grop model
545	impacts of crop management narmonization in a global gridded crop model

546	ensemble. $PLoS One, 14(9), e0221862.$
547	Folberth, C., Gaiser, T., Abbaspour, K. C., Schulin, R., & Yang, H. (2012). Re-
548	gionalization of a large-scale crop growth model for sub-saharan africa: Model
549	setup, evaluation, and estimation of maize yields. Agriculture, ecosystems \mathcal{E}
550	environment, 151, 21–33.
551	Frieler, K., Schauberger, B., Arneth, A., Balkovič, J., Chryssanthacopoulos, J.,
552	Deryng, D., Levermann, A. (2017). Understanding the weather sig-
553	nal in national crop-yield variability. $Earth's Future, 5(6), 605-616.$ doi:
554	10.1002/2016 EF000525
555	Goulart, H. M. D. (2022). Replication Data for: "Increase of simultaneous soybean
556	failures due to climate change". Harvard Dataverse. Retrieved from https://
557	doi.org/10.7910/DVN/Q8D85C doi: 10.7910/DVN/Q8D85C
558	Goulart, H. M. D., van der Wiel, K., Folberth, C., Balkovic, J., & van den Hurk,
559	B. (2021). Storylines of weather-induced crop failure events under cli-
560	mate change. Earth System Dynamics, 12(4), 1503–1527. Retrieved
561	from https://esd.copernicus.org/articles/12/1503/2021/ doi:
562	10.5194/esd-12-1503-2021
563	Hamed, R., van Loon, A. F., Aerts, J., & Coumou, D. (2021). Impacts of hot-dry
564	compound extremes on us soybean yields. Earth System Dynamics Discus-
565	sions, 2021, 1-26. Retrieved from https://esd.copernicus.org/preprints/
566	esd-2021-24/ doi: 10.5194/esd-2021-24
567	Hartman, G. L., West, E. D., & Herman, T. K. (2011). Crops that feed the World 2.
568	Soybean-worldwide production, use, and constraints caused by pathogens and
569	pests. Food Security, 3(1), 5–17. doi: 10.1007/s12571-010-0108-x
570	Heinicke, S., Frieler, K., Jägermeyr, J., & Mengel, M. (2022, mar). Global gridded
571	crop models underestimate yield responses to droughts and heatwaves. Envi-
572	ronmental Research Letters, 17(4), 044026. Retrieved from https://doi.org/
573	10.1088/1748-9326/ac592e doi: 10.1088/1748-9326/ac592e
574	IBGE. (2022). Levantamento sistemático da produção agrícola. Brazilian In-
575	stitute of Geography and Statistics Retrieved from https://sidra ibge gov
	stitute of deography and statistics. Retrieved from hetps://stata.ibge.gov
576	.br/tabela/6588
576 577	.br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops
576 577 578	.br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. <i>Environmental Research Letters</i> ,
576 577 578 579	.br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. <i>Environmental Research Letters</i> , 11(3). doi: 10.1088/1748-9326/11/3/034003
576 577 578 579 580	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability.
576 577 578 579 580 581	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the inter-
576 577 578 579 580 581 582	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cam-
576 577 578 579 580 581 582 582 583	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/
576 577 578 579 580 581 582 582 583 584	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/
576 577 578 579 580 581 582 583 583 584 585	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O.,
576 577 578 579 580 581 582 583 584 585 586	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new
576 577 578 579 580 581 582 583 584 585 586 586 587	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885.
576 577 578 579 580 581 582 583 584 585 586 586 587 588	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others
576 577 578 579 580 581 582 583 584 585 586 587 588 589	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international
576 577 578 579 580 581 582 583 584 585 586 586 587 588 589 590	 .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international trade. Nature Climate Change, 10(9), 829-835.
576 577 578 579 580 581 582 583 584 585 586 586 587 588 589 590 591	 br/tabela/6588 lizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international trade. Nature Climate Change, 10(9), 829-835. Jones, P. W. (1999). First-and second-order conservative remapping schemes for
576 577 578 579 580 581 582 583 584 585 586 586 587 588 589 590 591 592	 birdite of Goography and Statistics. Retrieved from Recept. // Birdit. Edge.gov br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group it to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international trade. Nature Climate Change, 10(9), 829-835. Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204-2210.
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593	 birdte of Geography and Statistics. Technolog Hom helps://Fildla.toge.gov br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international trade. Nature Climate Change, 10(9), 829-835. Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204-2210. Jägermeyr, J., Müller, C., Minoli, S., Ray, D., & Siebert, S. (2021). Ggcmi phase 3
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594	 br/tabela/6588 lizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change (HO. Pörtner et al., Eds.). Cambridge University Press. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international trade. Nature Climate Change, 10(9), 829-835. Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204-2210. Jägermeyr, J., Müller, C., Minoli, S., Ray, D., & Siebert, S. (2021). Ggcmi phase 3 crop calendar. Zenodo. Retrieved from https://doi.org/10.5281/zenodo
576 577 578 579 580 581 582 583 584 585 586 586 588 589 590 591 591 592 593 594 595	 br/tabela/6588 lizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group ii to the sixth assessment report of the inter- governmental panel on climate change (HO. Pörtner et al., Eds.). Cam- bridge University Press. Retrieved from https://www.ipcc.ch/report/ sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international trade. Nature Climate Change, 10(9), 829-835. Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204-2210. Jägermeyr, J., Müller, C., Minoli, S., Ray, D., & Siebert, S. (2021). Ggcmi phase 3 crop calendar. Zenodo. Retrieved from https://doi.org/10.5281/zenodo .5062513 doi: 10.5281/zenodo.5062513
576 577 578 579 580 581 582 583 584 585 586 586 587 588 589 590 591 592 593 594 595	 Jansens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2021). Climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international trade. Nature Climate Change, 10(9), 829-835. Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204-2210. Jägermeyr, J., Müller, C., Minoli, S., Ray, D., & Siebert, S. (2021). Ggcmi phase 3 crop calendar. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.5062513 doi: 10.5281/zenodo.5062513
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597	 Jansee of Geography and Statistics. Technolog Holps://Black.tege.gov .br/tabela/6588 Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3). doi: 10.1088/1748-9326/11/3/034003 IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group it to the sixth assessment report of the inter- governmental panel on climate change (HO. Pörtner et al., Eds.). Cam- bridge University Press. Retrieved from https://www.ipcc.ch/report/ sixth-assessment-report-working-group-ii/ Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international trade. Nature Climate Change, 10(9), 829-835. Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204-2210. Jägermeyr, J., Müller, C., Minoli, S., Ray, D., & Siebert, S. (2021). Ggcmi phase 3 crop calendar. Zenodo. Retrieved from https://doi.org/10.5281/zenodo .5062513 doi: 10.5281/zenodo.5062513 Kim, H. (2017). Global soil wetness project phase 3 atmospheric boundary condi- tions (experiment 1). Data Integration and Analysis System (DIAS), Data set,
576 577 578 579 580 581 582 583 584 585 586 587 598 590 591 592 593 594 595 596 597 598	 Jansens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873-885. Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., others (2020). Global hunger and climate change adaptation through international trade. Nature Climate Change, 10(9), 829-835. Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204-2210. Jägermeyr, J., Müller, C., Minoli, S., Ray, D., & Siebert, S. (2021). Ggcmi phase 3 crop calendar. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.5062513 Kim, H. (2017). Global soil wetness project phase 3 atmospheric boundary conditions (experiment 1). Data Integration and Analysis System (DIAS), Data set, https://doi.org/10.20783/DIAS, 501.
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598	 Jarket and Grand and Statistics. Technology in the ps. // bidit it big figure is the statistics. Technology is the statistic of the interpretation of the interpretation of the interpretation. Interpretation of the interpretation interpretation interpretat
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 595 596 597 598 599 600	 Johnson Decempendia Statistics: Technological from https://joindinings.joindining.joindinings.joindining.joindinings.joindining.joindini.joindining.joindining.joindini.joindini

601	trieved from https://gmd.copernicus.org/articles/12/3055/2019/ doi:
602	10.5194/gmd- $12-3055-2019$
603	Lange, S., Menz, C., Gleixner, S., Cucchi, M., Weedon, G. P., Amici, A., others
604	(2021). Wfde5 over land merged with era5 over the ocean (w5e5 v2. 0).
605	Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather dis-
606	asters on global crop production. Nature, $529(7584)$, $84-87$. doi: $10.1038/$
607	nature16467
608	Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B., others
609	(2016). Similar estimates of temperature impacts on global wheat yield by
610	three independent methods. Nature Climate Change, $6(12)$, 1130–1136.
611	Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict
612	crop yield responses to climate change. Agricultural and forest meteorology,
613	150(11), 1443-1452.
614	Lobell, D. B., & Fleid, C. B. (2007). Global scale climate-crop yield relationships
615	and the impacts of recent warming. Environmental Research Letters, $Z(1)$. doi: 10.1088/1748.0326/2/1/014002
616	10.1000/1740-9520/2/1/014002
617	of a global area wield glowdown from glimate trends in the part two decades
618	Environmental Research Letters 9(7) doi: 10.1088/1748-9326/9/7/074003
619	MACVP (2022) Dates agricultura agradería y nesca. The Ministry of Agricul-
620	ture Livestock and Fisheries Retrieved from https://datos.magyn.gob.ar/
622	dataset
623	Meehl, G. A., Senior, C. A., Evring, V., Flato, G., Lamarque, JF., Stouffer, R. J.,
624	Schlund, M. (2020). Context for interpreting equilibrium climate sensitivity
625	and transient climate response from the cmip6 earth system models. Science
626	Advances, 6(26), eaba1981. Retrieved from https://www.science.org/doi/
627	abs/10.1126/sciadv.aba1981 doi: 10.1126/sciadv.aba1981
628	Moore, F. C., & Lobell, D. B. (2015). The fingerprint of climate trends on european
629	crop yields. Proceedings of the National Academy of Sciences of the United
630	States of America, $112(9)$, 2970–2975. doi: $10.1073/pnas.1409606112$
631	Mourtzinis, S., Specht, J. E., & Conley, S. P. (2019). Defining optimal soybean sow-
632	ing dates across the us. Scientific Reports, $9(1)$, 1–7.
633	Panahi, F., Ehteram, M., Ahmed, A. N., Huang, Y. F., Mosavi, A., & El-Shafie, A.
634	(2021). Streamflow prediction with large climate indices using several hybrid
635	multilayer perceptrons and copula bayesian model averaging. Ecological In-
636	dicators, 133, 108285. Retrieved from https://www.sciencedirect.com/
637	science/article/pi1/S14/0160X2100950X doi: https://doi.org/10.1016/
638	J.ecolifid.2021.106265
639	ation explains a third of global area viold variability. Nature Communications
640	6 1–9 doi: 10.1038/ncomms6080
642	Bay D K West P C Clark M Gerber I S Prishchenov A V & Chatteriee
643	S (2019) Climate change has likely already affected global food production
644	PLoS ONE. 14(5), 1–18. doi: 10.1371/journal.pone.0217148
645	Rosenzweig, C., Elliott, J., Dervng, D., Ruane, A. C., Müller, C., Arneth, A.,
646	Jones, J. W. (2014). Assessing agricultural risks of climate change in the
647	21st century in a global gridded crop model intercomparison. Proceedings of
648	the National Academy of Sciences of the United States of America, 111(9),
649	3268–3273. doi: 10.1073/pnas.1222463110
650	Rosenzweig, C., Ruane, A. C., Antle, J., Elliott, J., Ashfaq, M., Chatta, A. A.,
651	others (2018). Coordinating agmip data and models across global and re-
652	gional scales for 1.5 c and 2.0 c assessments. Philosophical Transactions of the
653	Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119),
654	20160455.
655	Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D.,

656	Frieler, K. (2017). Consistent negative response of US crops to high tem-
657	peratures in observations and crop models. Nature Communications, 8. doi:
658	10.1038/ncomms13931
659	Schewe, J., Gosling, S. N., Reyer, C., Zhao, F., Ciais, P., Elliott, J., Warsza-
660	wski, L. (2019). State-of-the-art global models underestimate impacts
661	from climate extremes. Nature Communications, $10(1)$, 1–14. doi:
662	10.1038/s41467-019-08745-6
663	Shahhosseini, M., Hu, G., Huber, I., & Archontoulis, S. V. (2021). Coupling machine
664	learning and crop modeling improves crop yield prediction in the us corn belt.
665	Scientific reports, $11(1)$, 1–15.
666	Snowdon, R. J., Wittkop, B., Chen, TW., & Stahl, A. (2021). Crop adaptation
667	to climate change as a consequence of long-term breeding. Theoretical and Ap-
668	plied Genetics, $134(6)$, $1613-1623$.
669	Song, XP., Hansen, M. C., Potapov, P., Adusei, B., Pickering, J., Adami, M.,
670	others (2021). Massive soybean expansion in south america since 2000 and
671	implications for conservation. Nature sustainability, $4(9)$, 784–792.
672	Stevenson, S., Coats, S., Touma, D., Cole, J., Lehner, F., Fasullo, J., & Otto-
673	Bliesner, B. (2022). Twenty-first century hydroclimate: A continually changing
674	baseline, with more frequent extremes. Proceedings of the National Academy of
675	Sciences, 119(12), e2108124119. Retrieved from https://www.pnas.org/doi/
676	abs/10.1073/pnas.2108124119 doi: 10.1073/pnas.2108124119
677	USDA. (2022). National agricultural statistics service. National Agricultural
678	Statistics Service. Retrieved from https://data.nal.usda.gov/dataset/
679	nass-quick-stats
680	van der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R., & Screen, J. A.
681	(2020). Ensemble climate-impact modelling: extreme impacts from moder-
682	ate meteorological conditions. Environmental Research Letters, $15(3)$. doi:
683	10.1088/1748-9326/ab7668
684	van der Wiel, K., & Bintanja, R. (2021). Contribution of climatic changes in mean
685	and variability to monthly temperature and precipitation extremes. Communi-
686	cations Earth & Environment, $2(1)$, 1–11.
687	Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly,
688	D., Frieler, K. (2019). The effects of climate extremes on global agricul-
689	tural yields. Environmental Research Letters, 14(5). doi: 10.1088/1748-9326/
690	ab154b
691	Vogel, J., Rivoire, P., Deidda, C., Rahimi, L., Sauter, C. A., Tschumi, E.,
692	Zscheischler, J. (2021). Identifying meteorological drivers of extreme impacts:
693	an application to simulated crop yields. Earth System Dynamics, 12(1), 151–
694	172. Retrieved from https://esd.copernicus.org/articles/12/151/2021/
695	doi: 10.5194/esd-12-151-2021
696	Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J.
697	(2014). The inter-sectoral impact model intercomparison project (ISI-MIP):
698	Project framework. Proceedings of the National Academy of Sciences of the
699	United States of America, $111(9)$, $3228-3232$. doi: $10.1073/pnas.1312330110$
700	Williams, J. R., et al. (1995). The epic model. Computer models of watershed hy-
701	arology., 909-1000.
702	wing, I. S., De Cian, E., & Mistry, M. N. (2021). Global vulnerability of crop
703	yields to climate change. Journal of Environmental Economics and Man-
704	<i>agement</i> , 109, 102402. Retrieved from https://www.sciencedirect.com/
705	i joom 2021 102/62
/06	J.JUUIII.2021.102402 Walshi P. Laball D. Stana D. Dinta I. Crosna O. & Jabratan D. (2020)
707	On the role of anthropogenic climate change in the operating feed arisis in
708	southern Africa in the 2019–2020 growing season Clobal Change Riology
709	2020 (February) 1–2 doi: 10.1111/gcb.15047
110	$\mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} $

711	Xie, W., Xiong, W., Pan, J., Ali, T., Cui, Q., Guan, D., Davis, S. J. (2018).
712	Decreases in global beer supply due to extreme drought and heat. Nature
713	<i>Plants</i> , 4(11), 964–973. Retrieved from http://dx.doi.org/10.1038/
714	s41477-018-0263-1 doi: 10.1038/s41477-018-0263-1
715	Xu, J., Gao, J., de Holanda, H. V., Rodríguez, L. F., Caixeta-Filho, J. V., Zhong,
716	$R., \ldots$ others (2021). Double cropping and cropland expansion boost grain
717	production in brazil. Nature Food, $2(4)$, 264–273.
718	Yu, Q., You, L., Wood-Sichra, U., Ru, Y., Joglekar, A. K. B., Fritz, S., Yang, P.
719	(2020). A cultivated planet in 2010 – part 2: The global gridded agricultural-
720	production maps. Earth System Science Data, 12(4), 3545–3572. Retrieved
721	from https://essd.copernicus.org/articles/12/3545/2020/ doi:
722	10.5194/essd-12-3545-2020
723	Zampieri, M., Ceglar, A., Dentener, F., & Toreti, A. (2017, jun). Wheat yield loss
724	attributable to heat waves, drought and water excess at the global, national
725	and subnational scales. Environmental Research Letters, $12(6)$, 064008. Re-
726	trieved from https://iopscience.iop.org/article/10.1088/1748-9326/
727	aa723b doi: 10.1088/1748-9326/aa723b
728	Zhang, D., Zang, G., Li, J., Ma, K., & Liu, H. (2018). Prediction of soybean price
729	in China using QR-RBF neural network model. Computers and Electronics in
730	Agriculture, 154 (June), 10–17. Retrieved from https://doi.org/10.1016/j
731	.compag.2018.08.016 doi: 10.1016/j.compag.2018.08.016
732	Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Asseng, S.
733	(2017, aug). Temperature increase reduces global yields of major crops in
734	four independent estimates. Proceedings of the National Academy of Sciences,
735	114(35), 9326-9331. Retrieved from http://www.pnas.org/lookup/doi/
736	10.1073/pnas.1701762114 doi: 10.1073/pnas.1701762114
737	Zhu, X., & Troy, T. J. (2018). Agriculturally Relevant Climate Extremes and Their
738	Trends in the World's Major Growing Regions. Earth's Future, $6(4)$, 656–672.
739	doi: $10.1002/2017 EF000687$
740	Zilli, M., Scarabello, M., Soterroni, A. C., Valin, H., Mosnier, A., Leclère, D.,
741	Ramos, F. M. (2020). The impact of climate change on brazil's agriculture.
742	Science of The Total Environment, 740, 139384. Retrieved from https://
743	www.sciencedirect.com/science/article/pii/S0048969720329016 doi:
744	https://doi.org/10.1016/j.scitotenv.2020.139384
745	Zscheischler, J., Orth, R., & Seneviratne, S. (2017). Bivariate return periods of
746	temperature and precipitation explain a large fraction of European crop yields.

temperature and precipitation explain a large fraction of European crop y
 Biogeosciences Discussions (February), 1–18. doi: 10.5194/bg-2017-21