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Abstract

Understanding mechanical processes occurring on faults requires detailed information on the microseismicity that can be en-

hanced today by advanced techniques for earthquake detection. This problem is challenging when the seismicity rate is low and

most of the earthquakes occur at depth. In this study, we compare three detection techniques, the autocorrelation FAST, the

machine learning EQTransformer, and the template matching EQCorrScan, to assess their ability to improve catalogs associ-

ated with seismic sequences in the normal fault system of Southern Apennines (Italy) using data from the Irpinia Near Fault

Observatory (INFO). We found that the integration of the machine learning and template matching detectors, the former pro-

viding templates for the cross-correlation, largely outperforms techniques based on autocorrelation and machine learning alone,

featuring an enrichment of the automatic and manual catalogs of factors 21 and 7 respectively. Since output catalogs can be

polluted by many false positives, we applied refined event selection based on the cumulative distribution of their similarity level.

We can thus clean up the detection lists and analyze final subsets dominated by real events. The magnitude of completeness

decreases by more than one unit compared to the reference value for the network. We report b-values associated with sequences

smaller than the average, likely corresponding to larger differential stresses than for the background seismicity of the area. For

all the analyzed sequences, we found that main events are anticipated by foreshocks, indicating a possible preparation process

for mainshocks at sub-kilometric scales.
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Summary 

Understanding mechanical processes occurring on faults requires detailed information on the 

microseismicity that can be enhanced today by advanced techniques for earthquake detection. This 

problem is challenging when the seismicity rate is low and most of the earthquakes occur at depth. 

In this study, we compare three detection techniques, the autocorrelation FAST, the machine 

learning EQTransformer, and the template matching EQCorrScan, to assess their ability to 

improve catalogs associated with seismic sequences in the normal fault system of Southern 

Apennines (Italy) using data from the Irpinia Near Fault Observatory (INFO). We found that the 

integration of the machine learning and template matching detectors, the former providing 

templates for the cross-correlation, largely outperforms techniques based on autocorrelation and 

machine learning alone, featuring an enrichment of the automatic and manual catalogs of factors 

21 and 7 respectively. Since output catalogs can be polluted by many false positives, we applied 

refined event selection based on the cumulative distribution of their similarity level. We can thus 

clean up the detection lists and analyze final subsets dominated by real events.  

The magnitude of completeness decreases by more than one unit compared to the reference value 

for the network. We report b-values associated with sequences smaller than the average, likely 

corresponding to larger differential stresses than for the background seismicity of the area. For all 

the analyzed sequences, we found that main events are anticipated by foreshocks, indicating a 

possible preparation process for mainshocks at sub-kilometric scales.  

Keywords: Machine learning, Time series analysis, Statistical seismology, Earthquake detection, 

Seismic sequences. 

 

 



 

 

1 Introduction 

Earthquake detection is a fundamental task in seismology since it represents the first step in the 

analysis and interpretation of Earth’s crustal deformation processes. Detection consists of 

analyzing continuous records to identify discrete seismic events, but it becomes challenging as the 

size of the events decreases and the signal amplitude for earthquakes approaches the noise level. 

Furthermore, detection becomes even more challenging during seismic sequences, due to the 

occurrence of many events close in time. With the recent increase in the number and quality of 

seismic data, and the demand for fast, automatic processing of large data volumes, detection 

techniques need to be scalable and flexible, exploiting the multiscale coherency of earthquake 

signals. 

Several detection techniques have been established through the years. They can be grouped into 

two main classes: energy-based and similarity-based detectors. The energy-based STA/LTA 

method (Allen, 1978) is one of the reference approaches in seismology and compares the 

waveform energy over a short time window (STA) with that of a long time window (LTA). This 

approach is highly flexible in detecting impulsive arrivals but may fail for events with amplitude 

near the noise level and closely spaced in time such that their arrivals overlap. Characteristic 

functions based on higher-order statistics of the waveforms, such as skewness and kurtosis, have 

been shown to improve on STA/LTA for low signal-to-noise ratio and intense seismic activity 

(Baillard et al. 2014; Poiata et al. 2016; Grigoli et al. 2018). 

When focusing on seismic sources that repeat in time at nearby locations and with a similar 

mechanism, techniques based on waveform similarity measured by cross-correlation are very 

efficient for the detection of low amplitude events (Gibbons & Ringdal 2006; Shelly et al. 2007; 

Schaff 2008; Dodge & Walter 2015). These are usually referred to as template matching methods, 



 

 

since a set of selected and known earthquake records are used as templates to scan the continuous 

data stream. Template matching techniques have been efficiently applied to dense networks 

surrounding tectonic (e.g., Nomura et al. 2014), volcanic (Lengliné et al. 2016) and induced 

seismicity (Huang & Beroza 2015) areas. Template matching requires an a priori set of reference 

earthquakes, and the final catalog is limited to events with waveforms similar to them. For this 

reason, template matching might be biased by the number and quality of the reference signals. 

Autocorrelation techniques mitigate the latter issue using each portion of continuous data as a 

potential template (Brown et al. 2008), under the assumption that the main similarities occur 

between seismic signals instead of noise. Despite their good performance, the computational 

demand of such detectors increases quadratically with the time extent of the dataset, such that it 

becomes infeasible for long-term monitoring. The introduction of an efficient set-based similarity, 

built on compact fingerprints (Yoon et al. 2015) allows a significant reduction of the runtime. 

Similarity search methods are suitable both for induced seismicity monitoring (Yoon et al. 2017; 

Scala et al. 2022) and for seismic sequences in tectonic areas (Yoon et al. 2019; Festa et al. 2021).  

More recently, seismologists successfully adopted artificial intelligence (AI) and deep-learning 

(DL) models for event detection and phase picking (Zhu & Beroza 2018; Wang et al. 2019; Dokht 

et al. 2019; Mousavi et al. 2020; Mousavi & Beroza 2022). These techniques work by learning 

general earthquake waveform features from their high-level representations and aim to increase 

the dimension of manually generated catalogs with models easily exportable across different 

application areas (Mousavi et al. 2020; Münchmeyer et al. 2022). However, it is worth considering 

that the performance of machine learning detectors is always conditioned by magnitude and 

distance ranges of the events included in the training dataset (Mousavi et al. 2020). 

Understanding which detection technique is more efficient in enhancing catalogs is a challenging 



 

 

task, which requires comparison across methods and in-depth analysis of the differences between 

the resulting catalogs. In this study, we performed this comparison for seismic sequences occurring 

at the Southern Italy Irpinia fault system. Italy is one of the most seismically hazardous countries 

in the Mediterranean region, and although the worst historical earthquakes were all characterized 

by magnitude between 6 and 7, more than 120,000 people were killed by earthquakes during the 

last century (Valensise & Pantosti 2001). The area of this study was struck by the 1980, M 6.9 

Irpinia earthquake occurred along NW-SE striking faults and characterized by three main episodes 

within a few tens of seconds, causing about 3000 fatalities and severe damage (Bernard & Zollo 

1989). 

To better characterize the seismic hazard of the Irpinia area, the Irpinia Near Fault Observatory 

(INFO) was established in 2007. The key idea of Near Fault Observatories in Europe is to install 

dense networks of multi-parametric sensors close to faults aiming at understanding the underlying 

Earth instability processes over broad time intervals (Chiaraluce et al. 2022). INFO includes the 

Irpinia Seismic Network (ISNet, http://isnet.unina.it) made up of 31 seismic stations, equipped 

with strong-motion accelerometers and weak-motion sensors to be sensitive to microseismic 

events. ISNET covers an area of 100×70 km2, including the epicenter of the 1980 Irpinia 

earthquake (Iannaccone et al. 2010), with an interstation distance of 10-20 km. The manually 

revised catalog of seismic events for the past 15 years includes ∼3000 earthquakes mainly 

occurring at depths between 8 and 15 km. The events cover a local magnitude range between Ml 

-0.4 and Ml 3.7, with a completeness magnitude of Ml 1.1 (Vassallo et al. 2012). In Figure 1, we 

represent the location of stations of ISNet (yellow triangles), the distribution of the background 

seismicity (grey dots) and that of seismic sequences (red dots), as reported in the INFO catalog, 

and the epicenter of the Ms 6.9, 1980 Irpinia earthquake (green star). 

http://isnet.unina.it/


 

 

In recent years, several studies concerning both source parameters (i.e., Zollo et al. 2014; Picozzi 

et al. 2019, 2022a) and medium properties (Vassallo et al. 2016) allowed significant improvement 

in the understanding of the Irpinia fault system, highlighting a relation between hydrological 

changes in the shallow karst system and microseismicity generation, with the former likely acting 

as an external forcing mechanism (D’Agostino et al. 2018; Picozzi et al. 2022b; De Landro et al. 

2022). The background seismicity that occurred during recent years appears to be distributed 

within a volume bounded by the main faults of the 1980 event and sometimes clustered in 

sequences with events of maximum magnitude Ml ∼3.0 (Stabile et al. 2012). The monitoring 

strategies currently adopted at INFO led to manually revised catalogs containing between 8 and 

74 events for the seismic sequences. Nevertheless, Festa et al. (2021) showed that these seismic 

sequences might include hundreds of detectable events when analyzed with advanced tools. 

 

Figure (1). The location of the ISNet seismic stations (yellow triangles), the background seismicity (grey 

dots) and the events in the analyzed sequences (red dots), as detected by INFO from 2007. The green star 

marks the epicenter of the 1980, M 6.9 earthquake. 



 

 

For this reason, we considered the continuous waveforms at ISNet stations for a set of ten seismic 

sequences (Figure 1) to test and compare the performance of three well-established automatic 

detection approaches: the autocorrelation method FAST (Yoon et al. 2015; Bergen & Beroza 

2018), the machine learning technique EQTransformer (Mousavi et al. 2020) and the template 

matching technique EQCorrscan (Chamberlain et al. 2018). We assessed their performance in a 

particular context (i.e., a relatively small scale, dense network monitoring normal faults) and for a 

specific task (to provide augmented catalogs for seismic sequences). 

The paper is organized as follows. In section 2 we present the selected seismic sequences. Then, 

we discuss the different techniques and the associated processing used to generate the enhanced 

catalogs (Section 3). In section 4, the results are reported in terms of both performance of the 

techniques and differences in the catalog content across the three methods. In section 5, we discuss 

the time-magnitude features of the sequences (magnitude of completeness, b-value of the 

Gutenberg-Richter law and time evolution of the seismicity). Finally, we present in the Discussion 

how the results affect the strategies for catalog generation and for a statistical description of the 

seismicity. 

 

2 Data  

We analyzed 10 seismic sequences that occurred in the Irpinia region between 2011 and 2021 near 

the three fault segments of the 1980 Irpinia earthquake. For each sequence, we selected the 

continuous velocity records at the 5 to 7 closest stations to the sequence centroid, spanning a 

hypocentral distance range between 10 km and 30 km. Our choice was guided by the need to have 



 

 

a good azimuthal coverage with respect to the sequence. At one station (VDS3), we selected a ± 

0.25 g full scale accelerometer because no high-gain seismometer was available. 

The seismic sequences were selected using the information in the INFO catalog, which is available 

at the webpage http://isnet.unina.it/. The catalog has two layers: the first one consists of a catalog 

automatically generated by the Earthworm software (Johnson et al. 1995), which runs on 

continuous data-streams. A second revised catalog is released after waveform inspection by 

network operators with the twofold aim of improving the phase picking and including detections 

missed by the automatic procedure. At this stage, an event is included in the manual catalog if at 

least 4 phases have been picked on the records, including one S phase, and the P and S pick 

residuals are smaller than 0.5 s and 1.0 s, respectively. The final catalog consists of located events 

(uncertainties in absolute locations are on average between 1 and 2 km) with a local magnitude 

estimated using a scaling law calibrated for the area (Bobbio et al. 2009) and a moment magnitude 

inferred by spectral fitting (Zollo et al. 2014). According to the INFO catalog, the selected seismic 

sequences last between 3 and 6 days. Each sequence consists of a number of earthquakes between 

8 and 74 (Table 1). Since our aim is to compare the performance of different detection strategies 

under close to homogeneous conditions, we processed each sequence considering the continuous 

data stream from one day before to one day after the duration indicated in the catalog.  

 

 

 

 

http://isnet.unina.it/


 

 

Table (1) List of analyzed sequences. The table contains the ID number of the sequence, the name, the date, 

the geographical information (latitude, longitude and depth) of the main event, its local magnitude and the 

number of events included in the INFO manual catalog. 

ID PLACE DATE LAT 

(deg) 

LON 

(deg) 

DEPTH 

(km) 

Ml # INFO 

EVENTS 

1 Rocca San Felice (AV) 2020-07-03 40,938 15,150 9,6 3,0 74 

2 Lioni (AV) 2011-08-02 40,850 15,181 11,4 2,7 48 

3 San Gregorio Magno (SA) 2012-02-17 40,709 15,367 5,6 2,8 9 

4 Lioni (AV) 2012-03-03 40,832 15,164 11,3 3,7 25 

5 Laceno (AV) 2013-07-22 40,772 15,130 13,3 1,8 30 

6 Ricigliano (SA) 2015-12-12 40,679 15,484 19,5 3,0 12 

7 Sant’Angelo le Fratte (PZ) 2016-05-15 40,535 15,171 16,0 2,7 19 

8 Lioni (AV) 2017-07-16 40,843 15,175 11,2 2,8 17 

9 Capo di Giano (PZ) 2019-04-16 40,756 15,491 7,2 2,9 8 

10 Bella (PZ) 2019-09-08 40,775 15,499 6,3 3,1 23 

 

 

3 Methods 

We applied three different detection techniques to the selected continuous data: the deep-learning 

based detector EQTransformer (Mousavi et al. 2020), the template matching technique 

EQCorrscan (Chamberlain et al. 2018) and the autocorrelation technique FAST (Yoon et al. 2015). 

We then compared the detections provided by each method against the automatic and manually 

revised INFO catalogs to evaluate their performance. Although all these techniques showed 

improved performance in comparison with standard detection approaches, it is well known that, 

depending on the tuning of working parameters, they can suffer from false detections, whose 

number becomes larger and larger as the acceptance threshold for event declaration is lowered. 



 

 

Therefore, after applying the techniques, further analyses and detailed inspection are usually 

required to isolate real events. In this study, we explore the possibility of using adaptive thresholds, 

which refine the initial selections and automatically extract a final catalog, significantly reducing 

the rate of false positives.  

 

3.1. EQTransformer  

EQTransformer is an AI-based earthquake signal detector and phase (P and S) picker built on a 

deep neural network with an attention mechanism. It has a hierarchical architecture in which 

detection is performed on continuous time series and seismic phases identified along with the 

extracted declarations. 

The detector is trained on the Stanford EArthquake Dataset (STEAD) (Mousavi et al. 2019), 

composed of worldwide labeled earthquakes and noise signals. During the training phase ∼ 1 M 

earthquake and ∼ 300 k noise waveforms recorded at stations within epicentral distance up to 300 

km were used, representing ∼ 450 k events. The majority of events within STEAD have magnitude 

lower than 2.5 and are recorded at epicentral distances within 100 km. The traces used in the 

training extended for 1 minute with a sampling rate of 100 Hz and were band-pass filtered in the 

range 1-45 Hz. In our work, we follow a data preprocessing similar to the one of STEAD.  During 

the training phase, the data was augmented by adding secondary earthquake signals and a random 

level of Gaussian noise into the earthquake waveforms and shifting the event within the trace to 

vary its position. The first operation allowed the model to be sensitive, at station level, to multiple 

events occurring very close in time, as happens during a seismic sequence. We selected the trained 

model EqT_model_h5, optimized to minimize false positives.  



 

 

EQTransformer output depends on five input parameters: the probability thresholds for detection 

(det_thresh), P (P_thresh) and S (S_thresh) picks, the overlap between consecutive time windows 

and the batch size. After a parametric study, we set the input values to det_thresh=0.3, 

P_thresh=S_thresh=0.1, overlap=30%, batch size=100 (see Supplementary material). For the 

association, we declared an event if it is detected at least at 2 stations within a time window of 10 

s. 

Since the association phase performs a simple count of detections declared inside a moving time 

window without checking any time and spatial coherence among the stations, EQTransformer may 

declare false positives if there are multiple triggers from the same station inside the considered 

time window. The choice of the trained model mitigates this issue; the declaration of non-seismic 

signals is further reduced by excluding from the association detections with an estimated duration 

below 1 s.  

Because the EQTransformer detections will be used as templates for the analysis with EQCorrscan, 

we evaluated the quality of the EQTransformer picks for a set of events by comparing the picks to 

the manual ones. For this purpose, we selected 1097 phases (672 P and 425 S picks) from about 

200 events in the local magnitude range -0.1 – 3.7, that were also included in the INFO catalog. 

We found that EQTransformer automatic picks are consistent with manual picks. The distributions 

of differences between picks are in fact centered at zero and feature a standard deviation of 0.08 s 

for P waves (Figure S1, central panel), and of 0.2 s for S waves (Figure S1, right panel), 

respectively. Integrated results including both P and S picks are shown in Figure S1, left panel.  

 

3.2. EQCorrscan  



 

 

We used EQCorrscan software (Chamberlain et al. 2018) for template matching analysis. We 

generated two different catalogs: the first one was built considering as templates the events 

declared by EQTransformer; the second one considering the events contained in the INFO manual 

catalog. For both cases, we extracted templates at stations with at least one pick (P or S). The 

threshold for event declaration is computed by considering for each master event the MAD of 

cross-correlation coefficients between the single-station template and one hour window of 

continuous data. The threshold is then defined as the sum of the MAD over all the picked stations 

for the master events. We selected portions of templates lasting 1.5 s and starting 0.15 s before the 

picks; traces were band-pass filtered in the range 2-9 Hz and decimated to 25 Hz.  

For template matching, the number of detections critically depends on the selected threshold. For 

a lower threshold, we can retrieve more earthquakes, but with the risk of a dramatic increase in the 

number of false detections. On the other hand, higher thresholds would reduce the number of false 

positives, but at the expense of increasing missed real events. Thus, the threshold should be set to 

balance the number of false and real detections. We initially set the detection threshold to 8 times 

the sum of template cross-correlation MAD and investigated the resulting catalogs for some 

sequences. In Figure 2, we report, as an example, the results for the Laceno sequence (ID 5), which 

was characterized by a main event of magnitude Ml 1.8. In this case, the template matching 

analysis provides 233 detections. We inspected all the detections to isolate real events from false 

positives, checking the shape, the frequency content and the duration of the signals in different 

frequency bands, with a maximum explored range of 2-20 Hz In the left panel of Figure 2, we 

report the distribution of the ratio between the sum of the cross-correlation associated with the 

single declaration and the detection threshold (CCsum/thresh), distinguishing false events (red 

points) and real earthquakes (green points). The distributions of real and false detections appear 



 

 

separated with an overlap in the range (1.1-1.4).  

To investigate the distribution of the previous parameter further, in the right panel of Figure 2, we 

represent the cumulative number of real and false events (green and red curves, respectively) and 

the cumulative number of all detections in the catalog (blue curve) as a function of the 

CCsum/thresh parameter. For low values of this parameter, the cumulative number of detections 

is dominated by false events. 

   

 

Figure (2) Left panel: Distribution of the ratio CCsum/threshold for the events in the initial catalog 

provided by EQCorrscan (green points correspond to real events, red points to false positives) for the ID 

5 sequence. Right panel: Cumulative number of events as a function of the ratio CCsum/threshold for the 

subset of the real events (green line), false positives (red line) and for the whole initial catalog (blue line)  

 

As the parameter increases, we retrieve fewer and fewer false events having such a high score, 

resulting in a flattening of the red curve. Thus, for large values of CCsum/thresh the increase of 

the blue curve is driven by the distribution of the real events. Since the real and false event 

distributions feature different behaviors, the cumulative distribution of all the detections exhibits 



 

 

a change in the slope, which can be identified by fitting its initial and final trends and used as a 

refined criterion that allows us to significantly reduce the number of false detections in the catalog. 

In the right panel of Figure 2, the slope break corresponds to the value CCsum/thresh = 1.15, which 

results in a new threshold equal to 9.2 MAD, higher than the initial value.  

We stress that this criterion is directly applied to the cumulative number of detections in the catalog 

output by the template matching technique and can be automated, without preliminarily identifying 

the two families. We observed the same behavior for all the sequences and thus we applied the 

same strategy to refine the threshold in all cases.  

We remark that separating the two distributions is effective when false and real events are 

comparable in number. On the contrary, if the population of one distribution is significantly larger 

than the other, the global cumulative distribution almost reproduces the shape of the larger size 

distribution, and the criterion cannot be applied. Thus, the selection of the initial detection 

threshold is also important for the refinement. In Figure S2, we superimpose the cumulative 

distributions computed for thresholds of 6 and 8 MAD. When lowering the threshold value to 6 

MAD, the detection list is composed of ∼ 13k declarations and the shape of the cumulative 

distribution only represents the behavior of false events (red curve in Figure S2). 

 

3.3. FAST 

The FAST technique (i.e., Fingerprint And Similarity Thresholding, Yoon et al. 2015) is an 

uninformed similarity search technique that converts time-domain waveforms into binary 

fingerprints containing discriminative features of earthquakes. It performs an optimized search to 

identify couples of similar fingerprints associated with seismic events. FAST compresses the 



 

 

single-component time-frequency spectrogram into fingerprints using the Haar wavelet transform, 

maintaining only the fraction of the Haar coefficients that most differ from the average noise-

descriptive behavior.  

The similarity among fingerprints is evaluated using a Min-Hash algorithm (Broder et al. 2000) 

and the Jaccard theorem (Leskovec et al. 2014). This latter ensures that the probability of having 

the same outcome from a Min-Hash function applied to two different fingerprints is equal to the 

Jaccard similarity, which provides a set-based estimate of the similarity between binary objects. 

Therefore, the use of a set of Min-Hash functions allows for an a priori selection of similar 

fingerprints without comparing all the couples, significantly reducing the computational time.  

Information about similarity is integrated across components for fingerprints within the same time 

window; the station declaration list is thus built considering fingerprints overcoming a fixed station 

similarity threshold. After identification of couples of fingerprints at station level, a network 

association criterion requires time delays compatible with travel times at a minimum number of 

stations to provide the final list of detections. Following Bergen and Beroza (2018), the detections 

are ranked depending on the number of stations declaring the event and their similarity score, 

referred to as the peaksum, which measures the maximum similarity between a single detection 

and all the others. 

We bandpass filtered traces in the range 1-10 Hz and downsampled to 25 Hz. A similar frequency 

band was considered in other applications (4-10 Hz, Yoon et al. 2015; 1-6 Hz, Yoon et al. 2019). 

For fingerprint generation, we selected 6.0 s long time windows with a lag of 0.2 s between 

consecutive windows. We kept 200 out of the 1024 coefficients of the Haar transform based on 

the daily MAD of the coefficients. The Min-Hash algorithm application is grounded on two 

independent parameters: the number of tables b and the number of hash functions per table r (Yoon 



 

 

et al. 2015). We set b=100 and r=4 (Festa et al. 2021; Scala et al. 2022). In the association phase, 

we required similarity occurring at least at 2 stations with a maximum lag between detection times 

of 3 s, the latter selected considering the available inter-station distances. 

As with all the autocorrelation techniques, FAST suffers from a large number of false detections 

(Yoon et al. 2017). A class of false positives is represented by coherent noise occurring over time 

due to local ambient sources. To mitigate this effect, we discarded those fingerprints that are 

similar for more than 3% of the day length (∼ 15 minutes). Starting from the threshold refinement 

established for the template matching technique, we investigated the possibility to set up a similar 

criterion, based on the cumulative distribution of the peaksum parameter for all the detections, at 

a fixed number of stations. In Figure S3, we present the cumulative distribution of the peaksum 

for events declared at 2 stations, where a change in slope occurs around the 90th percentile. Below 

this corner, the reported peaksum values are very close to each other and, when inspecting the 

waveforms, the vast majority corresponds to false positives. On the other hand, above this corner, 

the values follow a different distribution, and they appear to be indicative of real events. We found 

a similar behavior for other sequences and when changing the number of stations. Thus, the slope 

break criterion is adaptively applied for each sequence to refine the threshold for event selection. 

We applied this strategy only when the number of detections is large enough to allow a statistical 

analysis in terms of peaksum distribution. To validate this criterion, we also performed a visual 

inspection of the declarations discriminating real and false events according to the shape, the 

frequency content of the signal and the propagation throughout the considered stations.  

Finally, events below the threshold were considered in a later stage if their fingerprints are found 

similar to those of events above the threshold. When building the final detection lists, we removed 

regional and teleseismic events.  



 

 

 

3.4. Catalog merging, magnitude and b-value estimation 

After performing the detection analysis of the seismic sequences and removing false positives, we 

estimated the local magnitude Ml of seismic events. We first selected one event in each sequence: 

the event is required to be located in the INFO catalog, with waveforms clearly emerging from the 

noise at all the stations and local magnitude between 1.0 and 2.0. For this event we computed the 

local magnitude from half of the maximum peak-to-peak Wood-Anderson displacement averaged 

on the horizontal components and on the stations, using the local relationship of Bobbio et al. 

(2009) and the INFO catalog location. For all other events (considered as ‘offsprings’), we 

provided a magnitude estimation through the displacement amplitude ratio, assuming colocation: 

𝑀𝑙 = 𝑀𝑙𝑟𝑒𝑓 + log10
𝐴

𝐴𝑟𝑒𝑓
. 𝑀𝑙𝑟𝑒𝑓 is the magnitude of the reference event; 𝐴 and 𝐴𝑟𝑒𝑓 are half of 

the maximum of peak-to-peak amplitudes for the considered and the reference events, respectively. 

The error in the magnitude estimation due to colocation is estimated to be 0.1 units of magnitude 

(Festa et al. 2021). 

Catalogs are compared according to the detection times related to single events and are combined 

to obtain the merged catalog containing all the independent detections relevant to the catalogs 

derived by the different techniques. 

To investigate the frequency–magnitude distribution from the resulting catalogs, we evaluated the 

parameters of the Gutenberg-Richter relation (log10𝑁 = 𝑎 − 𝑏𝑀, where N is the number of events 

with local magnitude > M), the magnitude of completeness for each sequence by using the software 

ZMAP (Wiemer, 2001) and considering the local magnitude to characterize the event size.  

For the Rocca San Felice seismic sequence (ID 1), which is characterized by the highest number 



 

 

of detections, we also investigated the temporal evolution of the b-value. For this purpose, we 

considered a sliding window of 80 events with 50% of overlap. We estimated the average b-value 

and the uncertainty by means of a bootstrap approach (Efron, 1979), using for each dataset, 200 

realizations of random samples with replacement. 

 

4 Results 

To assess the overall performance of the adopted detection techniques, we analyzed the results 

obtained from applying four detectors to data from ten seismic sequences in the Irpinia region: i) 

the autocorrelation FAST, ii) the machine learning EQTransformer (hereinafter, EQT), iii) the 

EQCorrscan using EQT’s templates (hereinafter, EQT+TM), iv) EQCorrscan using as templates 

the manual detections from INFO (hereinafter, INFO+TM). In Figure 3, we show the detection 

catalogs for the four techniques, integrated over the ten sequences and organized in a Venn 

diagram. When analyzing the performance of the different approaches, it is worth highlighting that 

for the considered sequences, the manually revised INFO catalog contains only 265 events, 82 of 

which were automatically declared by the STA/LTA-based detector operating on the network. 

The merged catalog contains 1792 events, increasing by a factor 6.7 the revised catalog and by a 

factor 21 the automatic one. These results clearly highlight the superior performance of the 

advanced techniques in discovering smaller magnitude events relative to standard approaches. The 

contribution of the different techniques to the merged catalog in terms of number of detections 

changes among sequences. We observe that sequence ID 1 has a high seismicity rate (∼500 events 

in 1 day), while for the other sequences the rate is lower, presenting between 50 and 200 events in 

4 days. 



 

 

Looking at the overall performance of the single techniques, we report that FAST declares 942 

events (∼ 3.5x the manual catalog, ∼ 11x the automatic catalog), EQT detects 450 events, 

increasing by factors 1.5 and 5.0 the revised and automatic catalogs. EQT+TM declares 1715 

events, with a catalog content similar to the merged one, while INFO+TM detects 1165 events (∼

68 % of the EQT+TM catalog).  

As can be seen from Figure 3, most of the events (95%) declared by FAST are also retrieved by 

EQT+TM. The detections common to FAST and INFO+TM decrease to 734, representing 78% of 

the FAST catalog. 

FAST is able to declare 73 events that are missed by the other techniques, which represents 5% of 

the merged catalog. After checking these events, we observe that they can be grouped in two 

classes: either they feature a low, close to one, signal-to-noise ratio, or their waveforms are 

different from those of the events occurring near the sequence centroid. For the former class of 

events, we find that they exhibit a smaller cross-correlation value with the used templates, and they 

can still be retrieved by the EQT+TM technique by lowering the acceptance threshold, but at the 

cost of a significant increase of the number of false events. As an example, for the San Gregorio 

Magno sequence (ID 3), the EQT+TM technique is able to catch all the events in this class when 

decreasing the declaration threshold to 6 MAD. These events appear within a set of more than 3.5k 

detections (8 MAD catalog is composed of 82 declarations), mostly corresponding to false 

positives.  

The second class of events corresponds to events with observed S-P travel-times compatible with 

shallower epicenters, as compared to the other events in the sequence. These events often occur as 

isolated couples for which their mutual cross-correlation is very high, while they feature a much 

smaller cross-correlation value with the templates.  



 

 

 

Figure (3) Venn diagram showing the performance of the different detectors: the autocorrelation (FAST, 

red), machine learning (EQT, yellow), template matching (EQT+TM, green; INFO+TM, cyan) techniques. 

The EQT detections are included in the EQT+TM ones because the EQT output is used to form templates.  

 

EQT+TM contains almost all events retrieved by FAST and doubles the size of the FAST catalog. 

The significant outperformance of template matching is mainly driven by sequences where the 

seismicity rate is high and when the events are clustered in time, especially when the earthquakes 

occur in the coda of previous events. For the other sequences, the performance of EQT+TM and 

FAST are similar. However, we also observe that when we analyze the catalog for a single 

sequence, EQT+TM can always catch more than 85% of the merged catalog.  

We performed some tests by changing the parametrization of FAST, either shortening the time 

window for fingerprint generation or decreasing the number of hash functions to be more 

permissive in the similarity search. The former action helps in retrieving consecutive events, the 

latter in reducing the similarity threshold for declaration (Yoon et al. 2015). In these cases, we 

retrieve the vast majority of events missed by the previous parametrization. However, if we take 

the San Gregorio Magno sequence (ID 3) as an example, decreasing the number of hash functions 



 

 

from 4 to 3 results in a catalog of 3.5k detections, with a huge increase in the run time (from ∼0.5 

hours to almost 1 day of analysis) and in the memory requirements for the storage of similar 

fingerprint information (from ∼ 100MB to 5 GB).  

The better performance of EQT+TM is also related to the large set of available templates that are 

provided by EQT (i.e., for some sequences the number of templates is doubled with respect to the 

revised INFO catalog). Indeed, when we limit the set of templates to those provided by the revised 

manual INFO catalog (INFO+TM), the number of the detections significantly decreases, becoming 

intermediate between FAST and EQT+TM for half of the sequences and comparable to or smaller 

than the FAST catalog for the other half.  

Finally, the number of EQT detections is much smaller than the other catalogs (it represents about 

25% of the merged catalog). However, there is a fraction of events detected by EQT that are not 

seen by FAST, still related to consecutive seismic events. Indeed, the main advantage in using 

EQT in this framework is to provide a richer set of templates to template matching improving its 

performance. 

In Figure 4, we report the detection performance for each technique and for the 10 analyzed seismic 

sequences, also comparing them with the INFO manual catalogs. The Rocca San Felice sequence 

(ID 1, left panel of Figure 4) is separated from the others to improve the visualization of the results 

for the other sequences (ID 2-10, right panel of Figure 4). We note that the cases in which 

EQT+TM outperforms FAST correspond to situations where EQT provides a wider set of 

templates (orange bars) with respect to the dimension of the INFO catalog (violet bars). The 

performance of INFO+TM is always lower than EQT+TM and becomes either comparable to or 

smaller than FAST for half of the sequences. 



 

 

 

Figure (4) Detection performance of each technique for the analyzed sequences. The Rocca San Felice 

sequence (ID 1) is shown in the left panel, all the other sequences in the right panel. The histograms report 

the detections of FAST (blue), EQT (orange), EQT+TM (yellow), INFO (violet) and INFO+TM (green). 

 

Note that the analysis was carried out on velocity records, with the exception of the station VDS3, 

which is equipped with a lower full-scale accelerometer. We found that about 30% of events in 

the merged catalog have been declared at this station, pointing out that the use of accelerometers 

with lower gain can contribute to microseismicity detection and characterization.  

 

4.1. Rocca San Felice sequence 

To analyze the differences in the performance of the techniques in detail, we inspected the 

detections of the largest sequence, the Rocca San Felice sequence (ID 1), which occurred from 

July 3 to 7, 2020. The Rocca San Felice area is a natural laboratory for studying the interaction 

between fluids and seismicity, since it hosts one of the largest sources of natural non-volcanic CO2 



 

 

gas emissions ever measured (Mefite d’Ansanto, Chiodini et al. 2010). The CO2 degassing in 

central and southern Italy is well documented (Chiodini et al. 2004), and its accumulation within 

the Apennines’ crust is considered a possible triggering mechanism for large earthquakes in Italy 

(Savage 2010). This sequence was previously studied by Festa et al. (2021), in terms of event 

detection, location and source parameters. Here, we reanalyzed the same waveform dataset to test 

and compare the detectors. 

When looking at the outcomes of the detection techniques, FAST output consists of 1406 

detections, which is reduced to 500 after the application of the automatic selection criterion. These 

events were visually inspected, limiting the final catalog to 383 earthquakes, similar to the results 

of Festa et al. (2021). EQT declares 155 detections, 139 of which are local earthquakes. Using 

these as templates for EQT+TM, we obtain a list of 1394 detections, reduced to 969 after threshold 

refinement, and finally to 796 events after visual inspection. Thus, the application of the adaptive 

thresholds for catalog refinement, allows significant reduction in the number of false events (from 

73% to 25% for FAST and from 55% to 18% for EQT+TM). Finally, the INFO+TM catalog is 

built on 74 manually detected templates, resulting in 555 detections, all in common with the 

EQT+TM catalog. 

The size of the final detection catalogs from the techniques are presented in Figure 4.  

As previously observed, most of the detections retrieved by EQT+TM and missed by FAST 

correspond to earthquakes occurring in the coda of the previous events. An example of this 

situation is shown in Figure S4, where 4 different events, correctly and separately detected by 

EQT+TM appear as a single, longer detection in FAST. When shortening the time window for 

fingerprint generation from 6 s to 3 s, FAST is able to separate most of grouped detections, at the 

cost of increasing the computational time and the number of false declarations. When applied to 



 

 

longer data-streams, this parametrization seems to quickly bring to prohibitive computational time 

that can hardly be imagined to be adopted in standard processing. 

The few cases (i.e., only 7 events) where EQT+TM cannot detect events seen by FAST correspond 

to signals buried in the noise. In Figure S5, we show a set of 3 events declared by EQT+TM (Ml 

0.08, 0.15, 0.18, red box) and the last event (blue box), featuring Ml -0.24, detected FAST but 

missed by EQT+TM. 

The final combined catalog (i.e., considering the independent detections of FAST and EQT+TM) 

is composed of 803 events, enhancing the manual and automatic INFO catalogs of factors 11 and 

20, respectively. It is worth stressing that also for this sequence, EQT+TM outperforms FAST due 

to the wide magnitude range and the large number of the templates provided by EQT. When we 

limit the set of templates to the 74 manually detected events in INFO, we observe that INFO+TM 

yields a catalog of about 555 events (∼ 70 % of the previous TM catalog). 

 

5. Statistical analysis of the catalogs 

In this section, we highlight the importance of the enhanced catalogs to improve the 

characterization of the seismic sequences in terms of well-established statistical parameters. We 

used the seismic catalogs for estimating the magnitude of completeness, Mc, and the b-value of 

the Gutenberg-Richter frequency magnitude distribution. The estimation of the statistical 

parameters using the INFO catalog is not possible for some of the considered sequences due to the 

small number of detected events (i.e., in some cases consisting of 10 earthquakes only). 

If we consider the combined catalog for each sequence (obtained combining EQT+TM and FAST 

detections), we obtain a magnitude of completeness ranging between Mc -0.3 and Mc 0.4 (in local 



 

 

magnitude units), with an average improvement with respect to the INFO manual catalog of 1.1 

units.  

Considering the overall performance of the single techniques, we find that Mc for EQT+TM 

coincides with those obtained for the combined catalogs. Also FAST and INFO+TM provide Mc 

estimates similar to those of the combined catalogs, with the exception of sequences ID 1 and ID 

5, where it is larger. On the contrary, EQT features a Mc larger by 0.3 units on average, with a 

large variability (from 0.1 to 0.7), but still smaller than the one from INFO.  

Focusing on the b-value, we find that EQT+TM, INFO+TM and FAST provide compatible values 

within uncertainties. Interestingly, we observe that in general EQT provides b-values 

systematically lower than the other two techniques. We return to this issue in the Discussion.  

In Table S1, we report the estimated values of the magnitude of completeness Mc and the b-values 

in local magnitude (here referred to as 𝑏𝑀𝑙
) for the 10 analyzed sequences and the different 

techniques. 

As an example, we show the frequency-magnitude distributions for the different detection 

techniques for the Rocca San Felice sequence (ID 1) in Figure 5. 

We find that the slope and the magnitude of completeness are Mc 1.2 and 𝑏𝑀𝑙
 = 0.83±0.12 for 

manual INFO catalog (not shown in Figure), Mc 0.0 and 𝑏𝑀𝑙
 = 0.71±0.05 for FAST, Mc 0.2 and 

𝑏𝑀𝑙
 = 0.54±0.04 for EQT, Mc -0.3 and 𝑏𝑀𝑙

 = 0.71±0.03 for EQT+TM, Mc -0.1 and 𝑏𝑀𝑙
 = 0.72±0.04 

for INFO+TM . 

The considered seismic sequences occurred in different sectors of the Irpinia area. Picozzi et al. 

(2022b) showed that the b-value distribution in this area is not uniform and hypothesized that b-

values differences are related to different stress levels (i.e., the lower the b-value, the higher the 



 

 

stress, Scholz 2015) associated with the different seismogenic zones in this region.  

 

 

Figure (5) Gutenberg-Richter distribution for FAST (Mc 0.0 and b=0.71 ± 0.05; upper-left panel), EQT 

(Mc 0.2 and 𝑏 = 0.54 ± 0.04; upper-right panel), EQT+TM (Mc -0.3 and 𝑏 = 0.71 ± 0.03; lower-left panel) 

and INFO+TM (Mc -0.1 and 𝑏 = 0.72 ± 0.04; lower-right panel) catalogs. 

 

We therefore compare the b-values obtained for the seismic sequences with those obtained by 

Picozzi et al. (2022b). To this aim, we need to consider the moment magnitude of the detected 

events. We converted the local magnitude estimates into seismic moment ones using the empirical 

relationship log10𝑀0 = 1.31𝑀𝑙 + 10.55 (standard deviation 0.12, Figure S6) which has been 

derived considering the INFO catalog earthquakes (i.e., Ml and Mw values from Picozzi et al. 

2022a). The 𝑀0 can in turn be used to retrieve the moment magnitude Mw (Hanks & Kanamori 

1979). This magnitude scaling relation allows b-value estimates in terms of moment magnitude 



 

 

(𝑏𝑀𝑤
) from the b-value based on the local magnitude (𝑏𝑀𝑙

), yielding 𝑏𝑀𝑤
= 1.5𝑏𝑀𝑙

/1.31. 

Figure 6 shows that the b-values for the whole area are on average rather small (i.e., mostly below 

1). The smallest b-values from Picozzi et al. (2022b) are observed for the Southern sector of the 

Irpinia region (∼0.7). The central and northern sectors are associated with slightly larger b-values 

(i.e., between 0.8 and 0.9). 

We computed the difference between the b-values from Picozzi et al. (2022b) and those obtained 

for the sequences using the combined catalog (Δb-value). It is worth clarifying that the former 

values are obtained by considering a 3D grid of the area and associating to each node the closest 

events that occurred between 2007 and 2020. Therefore, the b-values from Picozzi et al. (2022b) 

provide a spatial average of the stress level in a rather large crustal volume and over a long time 

period with respect to the b-values obtained for the sequences, which have limited spatial and 

temporal extent. Despite this methodological issue, we observe that the Δb-values are small, within 

a ± 0.25 range, and larger than zero for most cases, indicating an overall decrease of the b-value 

during the sequences. We do not believe that b-value estimates for the sequences are biased by the 

duration of the selected time windows (< 1 week) or by the presence of events in the catalog not 

belonging to the sequences. Indeed, when inspecting the merged catalog, we note that the seismic 

activity strongly decreases near the end of the selected time window, with a negligible percentage 

of events in the last hours of analysis. For example, we report in Figure S7 the number of detected 

events as a function of time, showing that, for the merged and INFO catalogs and in the case of 

two sequences (ID 1 and ID 9), the number of events in the last six hours is smaller than 3% of the 

whole catalog. Moreover, when analyzing the distribution of the differences between the S and P 

arrival times at the stations with the largest number of detections, we found that the events are 

contained in a volume with characteristic size in the range 2-8 km.  



 

 

 

Figure (6) Map showing the spatial distribution of average b-values from bootstrap analysis (redrawn from 

Picozzi et al. 2022b). In the figure we show the nucleation point for the 1980 Irpinia earthquake (white 

star) and Δb-value (see text for the definition, colored circles) for the sequences analyzed here.  

 

Finally, we analyzed the time evolution for the event occurrence and the seismic moment during 

the sequences. Considering the occurrence time of the main event in each sequence as a time 

reference, we observe that the enhanced catalogs allow discovery of foreshocks. In Figure 7, we 

report the cumulative number of events and the cumulative released seismic moment, as a function 

of occurrence time from the mainshock. 

The foreshocks represent a fraction of the single-sequence catalog ranging between the 5% and 

20% of the detected events, with a cumulative seismic moment between 2 ∙ 1011and 6 ∙ 1013 Nm, 

representing up to 10% of the seismic moment of the main event, except for two sequences where 

this value increases to 60% (ID 5) and 90% (ID 2).  

In particular, the larger value in seismic moment is associated with a main event of Ml 2.7 (ID 2), 

anticipated by two earthquakes of Ml 2.0 and a Ml 2.4 within 10 minutes before the mainshock.  



 

 

The green curve of Figure 7 represents a particular sequence (ID 5), with a main event of 

magnitude Ml 1.8 that was anticipated by several foreshocks of maximum magnitude Ml 1.2. For 

this sequence, we find that the catalog is composed of more than its 80% by foreshocks. A similar 

percentage is observed for a Ml 2.8 main event sequence anticipated by several Ml >1.5 events 

that features around 50 % of the events being foreshocks.  

Looking at the time evolution of sequences, we can identify two main behaviors. Most of the 

sequences generate the majority of earthquakes (around 70 % of the catalog) within 6 hours after 

the mainshock and result being characterized by a similar time evolution of the aftershocks (Figure 

7, left panel). Three sequences feature a swarm-like behavior with magnitudes of the aftershocks 

approaching the size of the largest event. 

 

Figure (7) Foreshock/aftershock analysis: left panel shows the cumulative percentage of the events in the 

catalog as a function of the time from the main event. The right panel contains the cumulative seismic 

moment in a shorter time window before the main event. 

 

Figure 8 shows the b-value temporal evolution for the Rocca San Felice sequence. We see that the 

𝑏𝑀𝑤
 has an average value close to 1. However, during the sequence evolution, the b-value shows 



 

 

significant changes, with variations larger than the associated uncertainties. The interpretation of 

these changes is beyond the scope of this work. We report these results to highlight the importance 

of having enhanced catalogs for monitoring the evolution of seismic sequences. Future studies will 

investigate the possible mechanism related to the b-value evolution during seismic sequences in 

Irpinia. 

 

Figure (8): Temporal evolution of b-value (red circles) computed for the Rocca San Felice sequence (ID 

1) with 95% probability uncertainty (red band) and event distribution as a function of time and moment 

magnitude (black stars). 

 

6. Discussion 

The use of new, advanced techniques for enhancing seismic catalogs is crucial both for monitoring 

how seismicity evolves with time within a complex geological system, and for understanding how 

faults slip to generate moderate to large earthquakes, possibly anticipated by the occurrence of 

small seismic events. This latter scientific issue becomes challenging in areas where seismicity 

occurs deep in the crust, as happens for seismic events in Southern Apennines, with earthquakes 

located at depths between 8 and 15 km. Moreover, in this area, the background seismic rate is 



 

 

pretty low (the INFO revised catalog contains about 3000 events in 14 years), despite the high 

seismic hazard of the region (Meletti et al. 2021). When applying automatic detection techniques 

during seismic sequences, we report that the combination of the machine learning detector 

EQTrasformer (EQT) and the template matching EQCorrscan (EQT+TM) outperforms the 

autocorrelation technique FAST.  

Integrating the two techniques (EQT+TM) is in our opinion beneficial because EQT allows us to 

build a richer, automated catalog of templates for template matching. Using as templates only the 

events manually detected by the INFO system by network operators, the final catalog INFO+TM 

significantly decreases (70% of EQT+TM; for half of the sequences at the same level or below the 

performances of FAST). FAST shows similar performance with respect to the combination of the 

other two methods when the seismicity rate in the sequence is low and events are well separated 

in time. However, the computational cost and the memory requirements of FAST make this 

detector challenging to apply to seismic sequences. Furthermore, the computational resources 

significantly increase as we extend the time window of the analysis beyond the few days analyzed 

here.  

Both template matching and FAST detectors suffer from a high rate of false events with standard 

thresholds. We suggest the use of a refinement procedure based on the cumulative distribution of 

parameters that measure the waveform similarity (the sum of cross-correlation for template 

matching and the peaksum for FAST). Several additional strategies have been proposed to rule out 

false positives from the detection lists (e.g., Yoon et al. 2017; Scala et al. 2022). However, these 

are based on specific features of false events (frequency content, energy distribution in time and/or 

frequency) and require further, often visual, inspection of the events. The strategy proposed here, 

instead, can be automatically applied on the shape of the cumulative distribution, without knowing 



 

 

specific characteristics related to false positives.  

The performance of EQT alone has been shown to be lower than the other two techniques. This 

can be ascribed to the selected trained model which minimizes false events. Consequently, most 

of the EQT declarations are real events within the sequences and the majority of the discarded 

detections still correspond to local or regional earthquakes occurring at different locations. When 

adopting the trained model EqT_model2.h5, which minimizes the rate of false negatives, in the 

case of the Rocca San Felice sequence (ID 1) we retrieved a list of ∼3k detections, ∼550 of which 

are effective events, almost all contained in the previous EQT+TM catalog. Since the binding 

criterion of EQT is weak in the selection of events, we prefer to maintain a more conservative 

approach for EQT and to enhance the catalog integrating it with the template matching technique. 

The use of a more robust associator (Ross et al. 2019; Zhang et al. 2019), and/or a model trained 

on local data (e.g., INSTANCE, Michelini et al. 2021) could improve the detection performance 

of EQT, at least to the level of FAST. 

While standard or even revised catalogs are in general too sparse to provide reliable statistics for 

seismic sequences in the Southern Apennines, the rapid, automatic generation of enhanced 

catalogs allows monitoring of seismicity evolution in near real time, in terms of frequency-

magnitude event occurrence (Gutenberg-Richter law) and event occurrence with time. For several 

sequences, no reliable estimate of the b-value can be provided using only events included in the 

INFO catalog. Here, we report that all the detectors but EQT only for a few cases provided 

enhanced catalogs over which it is possible to estimate the parameters of the Gutenberg-Richter 

law. Analyzing the b-values for the sequences, we report that EQT+TM, INFO+TM and FAST 

provide consistent estimates, while the b-value from EQT is systematically lower. This is 

ascribable to the larger magnitude of completeness of this technique and to the lack of some events 



 

 

(~10%) above its completeness level. In other words, it seems that EQT progressively loses 

detections approaching Mc, which leads to a biased population of magnitude bins and lower b-

value estimates. This suggests the need to cover almost two-three units in magnitude to estimate 

the relative rate of occurrence reliably for seismic events in sequences for the area. 

We found that for most of the sequences the b-value is smaller (within a range of 0.25 units) than 

the average value computed from background seismicity. This systematically happens both in the 

northern and central sectors of the fault systems. Differences in b-value between these two Irpinia 

sectors have been ascribed to the presence of fluid saturated volumes, eventually filled with 

different fluid content, CO2 and water respectively (Picozzi et al. 2022a).  

Worldwide observations indicate that the b-value is directly connected to differential stress 

(Schorlemmer et al. 2005; Scholz 2015) and it increases as the differential stress decreases. The 

systematic lower b-values for the sequences might indicate that they occurred in regions where the 

stress is higher than in the surrounding areas, and they likely rupture compact, sub-kilometric size 

asperities (Festa et al. 2021). When analyzing in detail two sequences in the area, Stabile et al. 

(2012) and Festa et al. (2021) retrieved large stress drops and focal mechanisms compatible with 

main orientation of the large faults that generated the 1980 Irpinia earthquake. These sequences 

either occurred on subparallel, smaller scale faults, or they ruptured some patches on the main 

faults that were unruptured during previous events, or they map small scale, geometrical 

discontinuities, which impede rupture growth into a large earthquake. In all cases, the sequences 

did not evolve into a large event, indicating that both static and dynamic stresses were not able to 

sustain a rupture over larger spatial scales.  

We only report one sequence featuring a b-value larger than the average. This sequence (ID 8) 

occurred in the northern sector and is characterized by a main event of Ml 2.8 and the second 



 

 

largest one in magnitude of Ml 1.4. We retrieved more than 80 foreshocks (~50% of the catalog) 

within 1 hour before the main event and an acceleration of the seismicity preceding the mainshock. 

This specific behavior could be ascribed to different stress mechanisms generating and controlling 

the sequence, as compared to the nearby ones.  

In most cases, the retrieved b-value is representative of the behavior of the seismicity after the 

main event in the sequence. However, when the rate of the seismicity is high, we can also monitor 

the evolution of the b-value as a function of time, as in the case of the Rocca San Felice sequence 

(Figure 8). Here we found a rapid increase of the b-value around the main event of the sequence, 

followed by an almost constant level. b-value monitoring with time as a discriminator of foreshock 

and aftershock activity is a debated topic in literature (Gulia & Wiemer 2019; Marzocchi et al. 

2020; Lombardi 2022). b-value has been claimed to increase for aftershocks and decrease for 

foreshocks, both for real earthquakes (Gulia et al. 2016; Gulia & Wiemer 2019) and laboratory 

experiments (Amitrano 2003). Hence, these enhanced catalogs allow us to study the variation of 

b-value in time and to investigate the possibility of using it as a forecasting tool as suggested by 

Gulia and Wiemer (2019).  

For each of the analyzed sequences, we found small magnitude earthquakes anticipating the main 

event. For two cases, we just report very few foreshocks; in other cases, their number (>10) is an 

indication of a preparation process of the main event in the area. Most of the foreshocks that appear 

in these catalogs have a local magnitude M ~ 0 and below. If we extend the stress drop self-

similarity to such events, they ruptured a decametric area, enlightening a new space scale for 

seismic ruptures, never investigated before in this area. The extension and validity of statistical 

analysis and parameters at these scales might provide additional clues on earthquake self-similarity 

and upscaling at larger size events, also for monitoring purposes. Nevertheless, deeper analysis of 



 

 

the sources of such events is limited by current instrumental deployment, sampling at 125 Hz, and 

by the low signal to noise ratio at high frequency, preventing a robust determination of the event 

size. Installation of instruments at depth or organized in arrays may help in improving our 

understanding of such small-scale ruptures and in filling the gap between laboratory-controlled 

experiments and moderate-to-large size events.  

Further insight on the sequence generation and evolution can come from accurate location of 

events, to discern structures and faults, and to discriminate whether the sequence is driven by fluid 

diffusion or associated with sequential stress release. Automatic picks provided by EQT exhibit 

large uncertainties, especially for S phases (Figure S1), to be usable for locations with decametric 

precision. Large uncertainties arise from the complexity of the structure across which waves 

propagate, often showing converted phases preceding the S-wave or emergent P signals (De 

Landro et al. 2015). Future direction for picking improvement could be grounded on transfer 

learning to refine picking criteria based on local data and analyst measurements (e.g., Chai et al. 

2020), on arrival time consistency across multiple stations or including more observables, such as 

wave polarization (Zollo et al. 2021). Template matching provides accurate relative arrival times 

that can be further improved by narrowing the time window around the main phases (Schaff & 

Waldhauser 2005). FAST, instead, does not provide any arrival time information, since the time 

windows for similarity search are too large for accurate waveform alignment. Automatic arrival 

time individuation with FAST would require the integration of external advanced picking tools, 

such as kurtosis or machine learning techniques. 

 

7 Conclusions  

In this study, we compared the performance of the autocorrelation method FAST, the machine 



 

 

learning technique EQTransformer (EQT) and the template matching technique EQCorrscan using 

EQT (EQT+TM) and INFO (INFO+TM) catalogs as template sets. As a case study, we selected 

seismic sequences occurring in the Irpinia region, Southern Italy. In this region, the seismicity 

occurs at depths between 8 and 15 km, and the complexity in the geological structure results in 

waveforms enriched by several secondary phases, often featuring low SNR values and emergent 

P and S arrivals. 

We report that all the techniques provide enhanced catalogs for the area if compared to the 

reference INFO catalog. We found that the integration of EQT and TM (EQT+TM), that is the use 

of template matching from a set of templates provided by EQT, significantly outperforms FAST, 

almost doubling the number of detections. The better performance is mainly driven by the 

sequences where the seismicity rate is high and when the events occur clustered in time, often in 

the coda of previous earthquakes. The few events (5% of the merged catalog, i.e., the catalog 

obtained combining all the FAST and EQT+TM detections) detected by FAST and missed by 

EQT+TM occur at low signal-to-noise ratio or they appear as isolated pairs exhibiting shallower 

location. EQT+TM also outperforms INFO+TM, which is grounded on a manual catalog, by a 

factor 1.5 due to the large set of available templates provided by EQT. As expected, the 

performance of EQT alone, with the adopted trained model, is lower than the other two techniques. 

However, it contains 85% of detections in the INFO manual catalog and improves it by a factor 

1.5. Finally, the merged catalog improves the INFO catalogs by factors ~7 (manual catalog) and 

~21 (automatic catalog).  

Both FAST and template matching techniques feature a large number of false events. Automatic 

criteria, based on the cumulative distribution of the score of the similarity (the peaksum value for 

FAST and the sum of cross-correlation for template matching), significantly reduce the number of 



 

 

false events and can be systematically applied without identifying specific discriminative 

characteristics of false positives as compared to real events.   

When inspecting the catalogs for evaluating the statistical parameters, we report that for the single-

sequence catalog obtained by EQT+TM, the magnitude of completeness ranges between Ml -0.3 

to 0.4, with an average improvement of 1.1 units in magnitude with respect to the INFO manual 

catalog. The magnitude of completeness for FAST and INFO+TM is compatible with that of 

EQT+TM in most cases, while EQT provides larger Mc estimates. The b-values from EQT+TM, 

INFO+TM and FAST are compatible with each other within uncertainties while the b-values 

obtained with EQT catalogs are systematically smaller, both due to the larger magnitude of 

completeness and the lack of events (~10%) above the completeness. This result cautions about 

the possibility of introducing some bias in the Gutenberg-Richter determination, when covering a 

small range in magnitude above the completeness threshold.  

We also find that for all the seismic sequences, main events are anticipated by foreshocks (in most 

cases more than 10 events), indicating a possible preparation process for mainshocks at sub-

kilometric scales. The presence of foreshocks, illuminated by advanced catalogs is crucial for a 

better understanding of crustal processes, as shown in recent studies of large Apennine 

earthquakes, where it helped in interpreting and understanding the nucleation processes leading to 

large magnitude events (Chiarabba et al. 2020; Sugan et al. 2022; Picozzi et al.  2022c). 

 

Data availability statement 

Data and products related to the Irpinia Near-Fault Observatory (INFO) are available at the Irpinia 

seismic network infrastructure portal (ISNet: http://isnet.unina.it); continuous waveforms are 

available at the EIDA platform (http://www.orfeus-eu.org/data/eida/, virtual network 

http://isnet.unina.it/
http://www.orfeus-eu.org/data/eida/


 

 

_NFOIRPINA, network code IX) and at the EPOS portal (https://www.epos-eu.org/dataportal). 

Software FAST is published on GitHub https://github.com/stanford-futuredata/FAST (Yoon et al. 

2015). Software EQCorrScan is available at https://eqcorrscan.readthedocs.io/en/latest/ 

(Chamberlain et al. 2018). Software EQTransformer is published on GitHub 

https://github.com/smousavi05/EQTransformer (Mousavi et al. 2020). 
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Parametric test for EQTransformer 

To better understand how the input parameters influence the detection performance of 

EQTransformer, we performed a parametric study on a specific sequence (Rocca San Felice 

sequence, ID 1) starting from the following values: det_thresh=0.3, P_thresh=S_thresh=0.1, 

overlap=30%, batch size =500.  

We systematically explored the batch size value, fixing the threshold parameters to the default 

values and reported an almost constant number of detections within the range 100-600. Reducing 

the detection threshold parameter from 0.3 to 0.15, to be more permissive in the selection of 

transients, we did not find significant changes in the number of events. When we lower the 

threshold for all the parameters (det_thresh=0.1, P_thresh=S_thresh=0.08), the final catalog 

increases by only about 10%. This latter increase, however, is not considered significant with 

respect to the catalog obtained with the initial parameterization, while it increases the risk of false 

detections. Therefore, we decided to keep the initial values of the parameters as reference for this 

study. We only changed the batch size to 100, to reduce memory demand. 



 

 

Figure S1. Comparison between the manual and EQTransformer automatic picks for ∼ 200 events 

(left panel: P and S picks; central panel: P picks; right panel: S picks). Automatic phase arrival 

times are consistent with manual picks; the distributions of P and S shifts are centered in zero and 

have width of 0.08 s and 0.2s, respectively. 

 

 

 

 

 

 

 

 

 



 

 

Figure S2. Cumulative distribution of the ratio CCsum/MAD for the catalog obtained with 6 MAD 

(red curve) and 8 MAD (blue curve) as thresholds.  

  



 

Figure S3. An example of the cumulative distribution of the peaksum parameter, for events declared 

at 2 stations with FAST. We clearly identify a change in the slope of the distribution, around the 90% 

percentile, which is considered as the threshold to discriminate real events from false positives. 

  



 

Figure S4. Events detected from TM (red boxes) and FAST (blue box): FAST is not able to 

discriminate events occurring closely in time. 

  



 

Figure S5. An example of a low SNR event declared by FAST and missed by TM (blue box). The 

three events close in time in the red box are correctly separately detected by TM.   

  



 

Figure S6. Linear regression between log10 𝑀0  and 𝑀𝑙 using the historical earthquakes recorded in 

the Irpinia region. We obtain log10 𝑀0 =  1.31 𝑀𝑙 +  10.55, with 𝜎 = 0.12. 

  



 

 

Figure S7. Distribution of the number of detections as a function of time for two sequences (ID 1, 

(upper panel and ID 9, lower panel). In the plots we superimpose the merged (blue stems) and INFO 

(green stems) catalogs. The two sequences are characterized by a main event of similar magnitude. 

In both cases, seismicity decreased approaching the end of the selected time window. 

  



 

ID Ml main  FAST EQT EQT+TM INFO+TM 

1 3.0 Mc 0.0 

𝑏 = 0.71 ± 0.05 

Mc 0.2 

𝑏 = 0.54 ± 0.04 

Mc -0.3 

𝑏 = 0.71 ± 0.03 

Mc -0.1 

𝑏 = 0.72 ± 0.04 

2 2.7 Mc -0.3 

𝑏 = 0.60 ± 0.05 

Mc -0.2 

𝑏 = 0.51 ± 0.07 

Mc -0.3 

𝑏 = 0.68 ± 0.06 

Mc -0.3 

𝑏 = 0.62 ± 0.06 

3 2.8 Mc 0.3 

𝑏 = 0.62 ± 0.11 

N.A Mc 0.4 

𝑏 = 0.76 ± 0.13 

Mc 0.6 

𝑏 = 0.65 ± 0.16 

4 3.7 Mc -0.1 

𝑏 = 0.76 ± 0.08 

Mc 0.1 

𝑏 = 0.54 ± 0.08 

Mc -0.2 

𝑏 = 0.65 ± 0.07 

Mc -0.1 

𝑏 = 0.70 ± 0.09 

5 1.8 Mc 0.3 

𝑏 = 0.83 ± 0.10 

Mc 0.3 

𝑏 = 0.75 ± 0.10 

Mc -0.3 

𝑏 = 0.73 ± 0.05 

Mc 0.1 

𝑏 = 0.83 ± 0.08 

6 3.0 Mc 0.3 

𝑏 = 0.75 ± 0.18 

Mc 0.4 

𝑏 = 0.53 ± 0.13 

Mc 0.2 

𝑏 = 0.69 ± 0.11 

Mc 0.3 

𝑏 = 0.8 ± 0.2 

7 2.7 Mc 0.4 

𝑏 = 0.66 ± 0.13 

N.A Mc 0.3 

𝑏 = 0.78 ± 0.14 

Mc 0.5 

𝑏 = 0.67 ± 0.15 

8 2.8 Mc 0.1 

𝑏 = 1.16 ± 0.11 

Mc 0.9 

𝑏 = 1.00 ± 0.14 

Mc 0.2 

𝑏 = 1.26 ± 0.13 

Mc 0.2 

𝑏 = 1.08 ± 0.09 

9 2.9 N.A N.A Mc -0.3 

𝑏 = 0.60 ± 0.09 

N.A 

10 3.1 Mc 0.2 

𝑏 = 0.73 ± 0.16 

Mc 0.2 

𝑏 = 0.53 ± 0.09 

Mc 0.1 

𝑏 = 0.76 ± 0.13 

Mc 0.2 

𝑏 = 0.71 ± 0.16 

 

Table S1. Magnitude of completeness, b-values and magnitude of the main event in the sequence, 

using the different detection techniques for the 10 analyzed sequences 

 


