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Abstract

Ambient nitrogen dioxide (NO2) and fine particulate matter (PM2.5) pollution threaten public health in the United States

(U.S.), and systemic racism has led to modern-day disparities in the distribution and associated health impacts of these

pollutants. Many studies on environmental injustices related to ambient air pollution focus only on disparities in pollutant

concentrations or provide only an assessment of pollution or health disparities at a snapshot in time. In this study we aim to

document changing disparities in pollution-attributable health burdens over time and, for the first time, disparities in NO2-

attributable health impacts across the entire U.S. We show that, despite overall decreases in the public health damages associated

with NO2 and PM2.5, ethnoracial relative disparities in NO2-attributable pediatric asthma and PM2.5-attributable premature

mortality in the U.S. have widened during the last decade. Racial disparities in PM2.5 attributable premature mortality and

NO2-attributable pediatric asthma have increased by 19% and 16%, respectively, between 2010 and 2019. Similarly, ethnic

disparities in PM2.5-attributable premature mortality have increased by 40% and NO2-attributable pediatric asthma by 10%.

These widening trends in air pollution disparities are reversed when more stringent air quality standard levels are met for both

pollutants. Our methods provide a semi-observational approach to tracking changes in disparities in air pollution and associated

health burdens across the U.S.
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Abstract 47 
 48 

Ambient nitrogen dioxide (NO2) and fine particulate matter (PM2.5) pollution 49 
threaten public health in the United States (U.S.), and systemic racism has led to 50 
modern-day disparities in the distribution and associated health impacts of these 51 
pollutants. Many studies on environmental injustices related to ambient air 52 
pollution focus only on disparities in pollutant concentrations or provide only an 53 
assessment of pollution or health disparities at a snapshot in time. In this study 54 
we aim to document changing disparities in pollution-attributable health burdens 55 
over time and, for the first time, disparities in NO2-attributable health impacts 56 
across the entire U.S. We show that, despite overall decreases in the public 57 
health damages associated with NO2 and PM2.5, ethnoracial relative disparities in 58 
NO2-attributable pediatric asthma and PM2.5-attributable premature mortality in 59 
the U.S. have widened during the last decade. Racial disparities in PM2.5-60 
attributable premature mortality and NO2-attributable pediatric asthma have 61 
increased by 19% and 16%, respectively, between 2010 and 2019. Similarly, 62 
ethnic disparities in PM2.5-attributable premature mortality have increased by 63 
40% and NO2-attributable pediatric asthma by 10%. These widening trends in air 64 
pollution disparities are reversed when more stringent air quality standard levels 65 
are met for both pollutants. Our methods provide a semi-observational approach 66 
to tracking changes in disparities in air pollution and associated health burdens 67 
across the U.S. 68 

 69 
1.  Introduction 70 
 71 
Ambient nitrogen dioxide (NO2), a marker for the complex mixture of traffic-related pollution, 72 
and fine particulate matter (PM2.5) pose pernicious threats to public health1. Exposure to PM2.5 73 
has a well-established association with premature death due to several specific causes2–4, and 74 
recent studies have found moderate to high confidence linking NO2 with new-onset pediatric 75 
asthma 5–9. While levels of these pollutants have decreased in the United States (U.S.) following 76 
the passage of the Clean Air Act, its 1990 Amendments, and other regional measures10, PM2.5 77 
and NO2 continue to impact public health and lead to loss of human life. The economic value of 78 
these health effects is very high, with the value of statistical life estimated at nearly $10 million 79 
per statistical death in 2019 USD11–13. Systemic racism embedded within the fabric of urban 80 
planning and land use in the U.S. has led to modern-day disparities in exposure to these 81 
pollutants and their associated health impacts.  82 
 83 
While studies consistently show that racialized and minoritized communities face higher levels 84 
of NO2 and PM2.5, recent work has led to different conclusions regarding whether relative PM2.5 85 
exposure disparities are narrowing, remaining constant, or widening14–16. Many previous studies 86 
have only focused on disparities in pollutant exposure, leaving a gap in understanding disparities 87 
in pollution-attributable health impacts. Despite the association of NO2 with one of the most 88 
inequitably distributed diseases, pediatric asthma, no study has examined disparities in NO2-89 
attributable pediatric asthma across the entire U.S. and their changes over time. Thus, there is a 90 
need to understand the public health burdens associated with ambient PM2.5 and NO2 across the 91 
U.S. and track associated disparities with time, especially as commitments to address 92 
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environmental justice require concerted efforts to identify and map areas burdened by injustices 93 
and inequities17.  94 
 95 
Here we conduct a comprehensive assessment of disparities in public health burdens due to NO2 96 
and PM2.5 across the fifty U.S. states, Washington, D.C., and Puerto Rico. Recently developed 97 
datasets, which fuse satellite data with physical models, enable us to resolve neighborhood-level 98 
differences in NO2 and PM2.5 and thereafter assess inequities in the health burdens from these 99 
pollutants using up-to-date demographic data and the latest epidemiological evidence linking 100 
exposure with health outcomes. The main contributions of our work are threefold. First, we 101 
compare and contrast injustices in NO2- and PM2.5-related health burdens. Second, we track how 102 
ethnoracial disparities in the health impacts attributable to these pollutants have changed over the 103 
last decade, a period of declining emissions from multiple polluting source sectors. Finally, we 104 
explore the degree to which more stringent NO2 and PM2.5 ambient air quality standards could 105 
reduce inequitable pollution-related health burdens for the most racialized and minoritized 106 
communities in the U.S.  107 
 108 
2.  Methods 109 
 110 
Population and demographic data 111 
 112 
The U.S. Census Bureau’s American Community Survey (ACS) provides estimates of the 113 
population, age structure, and demographics within census tracts in the U.S.18. We used ACS 5-114 
year estimates for the ~74000 census tracts in the fifty U.S. states, the District of Columbia, and 115 
Puerto Rico. Five-year estimates have a larger sample size and smaller margin of error than other 116 
ACS estimates with shorter timeframes. ACS’ first 5-year estimates, based on data collected 117 
from 2005 to 2009, were released in 2010. Our analysis thus spans 2010 through 2019, and we 118 
updated the demographic data annually in our study. Tract-level ACS estimates from 2010-2019 119 
correspond to tract boundaries from the 2010 decadal census, obtained from the U.S. Census 120 
Bureau’s TIGER/Line geodatabase19.  121 
 122 
Pollutant concentrations 123 
 124 
Surface-level NO2 and PM2.5 concentrations were derived from two existing global datasets that 125 
combine physical models with satellite retrievals to produce high-fidelity 0.01˚ x 0.01˚ (~1 km x 126 
1 km) estimates of these deleterious pollutants20,21. We used annual average concentrations from 127 
2010-2019, consistent with the years for which demographic data are available.  128 
 129 
The 0.01˚ x 0.01˚ NO2 dataset uses a land-use regression model from Larkin et al.22 representing 130 
2010-2012 concentrations and scales these concentrations to prior and subsequent years using 131 
NO2 column densities from NASA’s Ozone Monitoring Instrument satellite21. The 0.01˚ x 0.01˚ 132 
PM2.5 dataset (V5.GL.02) fuses aerosol optical depth retrievals from several satellites with 133 
GEOS-Chem chemical transport model output23 and thereafter calibrates estimates to ground-134 
based PM2.5 observations using Geographically Weighted Regression24. Text S1 further 135 
describes advantages to using these spatially complete datasets and details their performance 136 
compared with in-situ monitors.  137 
 138 
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 139 
Figure 1. Location of in-situ (A) NO2 and (B) PM2.5 monitors. Monitor locations represent the 140 
AQS network during 2019. Scatterplots are colored by density and show a comparison of (C)-(E) 141 
NO2 and (F)-(H) PM2.5 datasets against observations for 2010, 2015, and 2019. Dataset values 142 
represent census tract averages in the tract coincident with the AQS monitor. The reduced major 143 
axis linear regression is denoted by the blue lines in (C)-(E). Inset text in the scatterplots 144 
indicates the slope (m) and intercept (b) of the regression, the number of in-situ monitors (N), the 145 
normalized mean bias (NMB), and correlation coefficient (r). Monitors in (A)-(B) are colored by 146 
the difference between the observed and dataset values (< 0 corresponds to an overestimate by 147 
the datasets). 148 
 149 
Risk and rates 150 
 151 
In this study we used cause-specific RR curves from the Global Burden of Disease (GBD) 2020 152 
and mortality and incidence rates from GBD 2019. The GBD is an ongoing multinational 153 
research collaboration that assesses morbidity and premature mortality from a number of risk 154 
factors, including ambient air pollution. GBD estimates are updated annually, and recent GBD 155 
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releases have included several methodological updates that improved upon earlier estimates25. 156 
Rates from GBD 2020 were not yet available at the completion of this study.  157 
 158 
RR curves measuring the association of long-term PM2.5 exposure with premature death and NO2 159 
exposure with new cases of pediatric asthma were estimated from systematic reviews and meta-160 
regression based on a Bayesian, Regularized, Trimmed approach (Figure S1)25. RR curves for 161 
NO2-attributable pediatric asthma are applied to the population aged 0 to 18. We included PM2.5-162 
attributable premature mortality for six different endpoints in our study: chronic obstructive 163 
pulmonary disease (hereafter “COPD”), ischemic heart disease; ischemic and intracerebral 164 
hemorrhagic stroke (“stroke”); lung, tracheal, and bronchial cancer (“lung cancer”); lower 165 
respiratory infection; and type 2 diabetes. RR curves for lower respiratory infection were applied 166 
to the entire population, while the other premature mortality endpoints were applied to the 167 
population aged 25 years and older.  168 
 169 
The uncertainty interval for the RR estimates of pediatric asthma conferred by NO2 exposure 170 
spans 1 due to between-study heterogeneity unexplained by study design (Figure S1G). Despite 171 
the uncertainty interval spanning 1, the association was deemed strong enough for inclusion in 172 
the GBD, and the mean relationship indicates increasing risk of new-onset pediatric asthma with 173 
NO226. Additionally, a recent report from the Health Effects Institute (HEI) classified the 174 
association of new-onset pediatric asthma with traffic-related air pollution as having medium to 175 
high confidence, and the Health Effects Institute’s NO2-pediatric asthma RR estimate had an 176 
uncertainty interval that only marginally spanned 19. We chose not to use statistical significance 177 
as the sole determining factor for inclusion in our study because this reliance for the convenience 178 
of statistical properties may neglect historically-excluded groups9. By using only the health 179 
endpoints included in the GBD 2020 Study, we are being conservative; the HEI traffic-related air 180 
pollution also found that children’s acute lower respiratory infection, adult-onset asthma, and 181 
mortality (all cause, circulatory, and ischemic heart disease) all had significant associations with 182 
NO2 with overall high confidence. 183 
 184 
The theoretical minimum risk exposure levels (TMREL) for PM2.5 and NO2, the level below 185 
which we assume no increased risk of PM2.5-attributable premature mortality or NO2-attributable 186 
pediatric asthma, is modeled by the GBD as uniform distributions bounded by the minimum and 187 
fifth percentiles of exposure distributions from ambient air pollution cohort studies with the 188 
lowest study-specific exposure distributions25. We treated the midpoints of these distributions 189 
(i.e., 4.15 µg m-3 for PM2.5, 5.37 ppbv for NO2) as our TMRELs.  190 
 191 
We obtained death rates per 100,000 population for COPD, ischemic heart disease, stroke, lung 192 
cancer, lower respiratory infection, and type 2 diabetes and incidence rates per 100,000 pediatric 193 
population for asthma from the GBD 2019 study for each year and state in our analysis (Figure 194 
S2). For each endpoint, the rates vary by 5-year age groups (e.g., <5, 5-9, 10-14, etc.). Death and 195 
incidence rates are generally higher in the Southeastern and Eastern U.S. for most endpoints, 196 
while some endpoints such as COPD have less consistent spatial heterogeneity and substantially 197 
vary, even among bordering states (Figure S2).  198 
 199 
Methods 200 
 201 
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To facilitate comparison of pollutant concentrations with the populations they impact, we 202 
averaged the NO2 and PM2.5 datasets to underlying census tracts in the U.S. (Figure S3). The 203 
median area of all (urban) census tracts is 5.2 km2 (3.7 km2) and supports this averaging 204 
approach. There are, however, 5.2% of tracts too small in area to contain coincident grid cells. 205 
Following Kerr et al.27 we used inverse distance weighting to interpolate pollutant concentrations 206 
to the centroid of these small tracts. We found good agreement between tract-averaged NO2 or 207 
PM2.5 and in-situ observations from the Environmental Protection Agency’s (EPA) Air Quality 208 
System (AQS) network of administrative and regulatory (not low-cost) monitors, supporting 209 
their ability to capture spatiotemporal pollution variability across the U.S. (Text S1, Figure 1). 210 
 211 
We conducted several scenarios where NO2 and PM2.5 reach target concentrations to assess how 212 
meeting these targets will reduce the associated health burdens and potentially advance 213 
environmental justice. Targets represent the National Ambient Air Quality Standards (NAAQS) 214 
established by the EPA and the World Health Organization (WHO) interim targets (ITs) and air 215 
quality guidelines (AQGs), updated in 202128. If NO2 or PM2.5 concentrations in a particular tract 216 
were larger than a target level, we assigned the concentration to the target value.  217 
 218 
We calculated the population attributable fraction (PAF), that is, the fraction of the burden of 219 
disease that might be attributable to PM2.5 or NO2 exposure, for our endpoints of interest. For a 220 
given pollutant concentration X in tract t, the PAF was calculated as  221 

!"#(%&) = )

**(+,)-.

**(+,)
−

**(01*23)-.

**(01*23)
, for	%& 	≥ :;<=>		

0, for	%& < :;<=>.
   [1] 222 

The PAF was then used to calculate the total NO2-attributable pediatric asthma burden or PM2.5-223 
attributable premature mortality burden in each tract as  224 

BCDEFG& 	= 	HIH& 	× !"#& 	×	KL.          [2] 225 
Here, pop corresponds to the susceptible population in each tract t; k to baseline incidence and 226 
deaths rates from the GBD; and s to state, the highest level of availability granularity from the 227 
GBD. We present both cause-specific PM2.5-attributable premature deaths from these six 228 
endpoints and their sum in our analysis.  229 
 230 
Uncertainty in pollution-attributable health burdens was primarily characterized using the 95% 231 
uncertainty interval of RR estimates. Other terms in the health impact function (Equation 2) also 232 
have associated uncertainty. Achakulwisut et al.13 investigated the uncertainty in underlying 233 
disease incidence rates, finding this source of uncertainty to be the least influential in estimating 234 
health burdens. Given the form of Equation 2, we expect any uncertainties in death and incidence 235 
rates would linearly scale our results and likely not substantially affect relative differences across 236 
demographic groups or overall trends. Although the satellite data and physical models used to 237 
estimate NO2 and PM2.5 contain appreciable uncertainties, our comparison of these datasets 238 
against in-situ observations highlights their fidelity (Text S1, Figure 1).  239 
 240 
We assessed PM2.5, NO2, and the associated health burdens in individual census tracts but 241 
aggregate our results to a national level and individual metropolitan statistical areas (MSAs). 242 
MSAs have at least one urbanized area of 50,000 or more residents29. A majority of the U.S. 243 
population (89%) lived in one of the 389 MSAs in 2019. We refer to MSAs by their colloquial 244 
names (e.g., Los Angeles-Long Beach-Anaheim, CA MSA = Los Angeles).  245 
 246 
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The U.S. Census Bureau treats race and ethnicity as separate, distinct identities. In addition to 247 
respondents’ race(s), respondents self-identify as “Hispanic or Latino” or “Not Hispanic or 248 
Latino.” Following this distinction, we characterized environmental injustices stemming from 249 
PM2.5, NO2, and the associated health burdens for both racial and ethnic groups using two 250 
complementary methods:  251 
 252 

(1) Top and bottom deciles of population subgroups. Census tracts were designated as 253 
the “most white” and “least white'' or “most Hispanic” and “least Hispanic” using the top 254 
and bottom 10 percentile (decile) of the white or Hispanic population distribution. This 255 
approach allows us to understand pollution-attributable health burdens in the most 256 
minoritized communities of the U.S.  and contrast with the burdens experienced by 257 
majority communities and has been previously used in the literature16,27,30. Population 258 
subgroups do not include only tracts in certain states or geographic regions but, when 259 
defined across the entire U.S., do reflect urban-rural population differences to a certain 260 
degree. For example, the 7330 census tracts that comprise the most white and least white 261 
classifications in the U.S. include tracts from 52 and 49 states, territories, or districts and 262 
are 60% and 90% urban, respectively.  263 
 264 
(2) Population-weighted. Population-weighted metrics were calculated with the 265 
following:  266 

%M = 
∑ OPO,,Q×+,
R
,ST

∑ OPO,,Q
R
,ST

,      [3] 267 

where X represents a pollutant or disease rate, pop represents the population, g represents 268 
a population subgroup, and t represents a census tract.  269 

 270 
The population age structure varies between top and bottom decile subgroups (Figure S4). 271 
Presenting NO2-attributable pediatric asthma crude rates or PM2.5-attributable premature 272 
mortality crude rates does not account for these different age distributions (Text S2). Whenever 273 
rates are presented for the top and bottom deciles of population subgroups, they represent age-274 
standardized rates directly adjusted to data from the entire U.S. population corresponding to the 275 
same year. Age standardization was conducted by multiplying each five-year age-specific rate by 276 
the fraction of five-year age group population to the entire U.S. population. We also explored the 277 
impact that omitting age-standardization has on our results (Text S2, Figure S5).  278 
 279 
We tested whether differences in distributions of pollutants and associated disease burdens 280 
significantly vary across different ethnic and racial groups with the non-parametric 281 
Kolomogorov-Smirnov (K-S) test. The significance of trends in pollutants, burdens, and 282 
disparities was assessed with least-squares regression. If the p-values associated with the K-S test 283 
statistic or regression fell below 0.05, we classified the difference between distributions or trends 284 
as statistically significant.  285 
 286 
Costs associated with PM2.5-attributable premature deaths were estimated with the EPA’s value 287 
of statistical life used for valuing mortality risk changes ($7.4 million in 2006 USD or $9.4 288 
million in 2019 USD)31. This value represents the marginal rate of substitution between money 289 
and small changes in the risk of death. The body of literature on the economic burden of 290 
pediatric asthma is limited, but a 2018 study synthesized publications reporting on healthcare 291 
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costs and healthcare utilization for pediatric asthma and found average annual costs per child 292 
ranged from $3076 to $13612 in 2015 USD32. We used the midpoint of these values, adjusted for 293 
inflation to 2019 USD, as our estimate ($8,473).  294 
 295 
We provide supplementary data files with information on tract-level NO2 and PM2.5 296 
concentrations and attributable health burdens and rates for 2019 to make data used in this study 297 
accessible for stakeholders and enable scientific transparency and reproducibility. These files and 298 
their contents are described in Text S3.  299 
 300 
3.  Results  301 

As cause-specific premature mortality rates and PM2.5 have declined (Text S1, Figures 2A-B, 302 
S2), total PM2.5-attributable deaths across the fifty U.S. states, Washington, D.C., and Puerto 303 
Rico have decreased by 28.5% from 69000 (48500—87000) in 2010 to 49400 (34500—62600) 304 
in 2019 (Figure 2A). New cases of NO2-attributable pediatric asthma have declined by an even 305 
larger percentage, 39.8%, from 191000 (-282900—407900) in 2010 to 114900 (-158600—306 
259400) in 2019 (Figure 2B) even with positive trends in pediatric asthma incidence in all states 307 
besides Puerto Rico. This wide uncertainty interval in estimated NO2-attributable pediatric 308 
asthma cases stems from between-study heterogeneity (Section 2). The monetary value attributed 309 
to mortality risk (value of a statistical life) for premature deaths due to PM2.5 and the estimated 310 
direct costs of NO2-attributable pediatric asthma during 2019 translate to $466 billion in 2019 311 
USD, roughly 2.2% of the 2019 U.S. gross domestic product. These total costs were dominated 312 
by PM2.5-attributable mortality, which accounted for $464 billion, or 99.7%, of the estimated 313 
costs.  314 

PM2.5-attributable mortality rates were generally highest in metropolitan statistical areas (MSAs) 315 
in the Ohio River Valley and Gulf Coast (Figure 2C). MSAs with the ten highest rates 316 
(Birmingham, AL; Mobile, AL; Gulfport, MS; Evansville, IN; Daphne, AL; Punta Gorda, FL; 317 
Mansfield, OH; Weirton, WV; Hot Springs, AR; and Kokomo, IN) are generally located in these 318 
two regions, which contain heavy manufacturing and petrochemical industries. The PM2.5-319 
attributable premature mortality rate averaged over these ten metropolitan areas was 42.1 deaths 320 
per 100,000, nearly double the rate averaged over all MSAs (22.4 deaths per 100,000). These 321 
increased rates stem from the high population-weighted PM2.5 concentrations in these MSAs 322 
(8.25 µg m-3 versus the MSA average of 6.96 µg m-3) and elevated underlying mortality in states 323 
containing these MSAs (Figure S2).  324 

NO2-attributable pediatric asthma rates in MSAs have more spatial heterogeneity than PM2.5-325 
attributable rates, and even relatively isolated MSAs can experience higher-than-average rates 326 
(Figure 2D). Among the most salient features in Figure 2D are the large NO2-attributable asthma 327 
rates in the Permian Basin. The NO2-attributable asthma rate averaged over the five largest 328 
MSAs in the Permian Basin (El Paso, TX; Lubbock, TX; Amarillo, TX; Midland, TX; and 329 
Odessa, TX) was 252.8 new cases of asthma per 100,000 children. This rate is nearly four times 330 
higher than the rate averaged over all MSAs (93.4 cases per 100,000 children) and even slightly 331 
greater than the rate in nearby Dallas-Fort Worth, TX (248.2 cases per 100,000 children). Oil and 332 
gas production in the Permian Basin has been linked to elevated levels of NO2, methane, and 333 
volatile organic compounds33,34 and increased pediatric asthma hospitalizations35.  334 
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Despite long-term decreases of PM2.5 and NO2, the least white and most Hispanic communities 335 
still faced significantly higher concentrations of PM2.5 and NO2 than the most white and least 336 
Hispanic communities in 2019 (Figure 3). These disparities, which are characterized using the 337 
top and bottom deciles of population subgroups, were substantially larger for NO2 than PM2.5 338 
and for different racial subgroups than ethnic subgroups. 339 

 340 
Figure 2. Annual (A) PM2.5 and PM2.5-attributable mortality and (B) NO2 and NO2-attributable 341 
pediatric asthma in all fifty U.S. states, Washington D.C., and Puerto Rico. Quantities in (A) and 342 
(B) represent population-weighted pollutant concentrations for pollutants and sums for health 343 
burdens. Scatter points in (C)-(D) represent MSAs, and their size is proportional to the (C) 344 
PM2.5-attributable deaths in 2019 per 100,000 population and (D) new cases of NO2-attributable 345 
pediatric asthma in 2019 per 100,000 pediatric population. Rates in (C)-(D) and are discretized 346 
into five categories: <30th, 30-60th, 60-90th, 90-95th, and >95th percentiles of MSA rates. 347 
Alaska, Hawaii, and Puerto are not to scale.  348 

The least white communities in the U.S. experienced higher rates of cause-specific premature 349 
mortality attributable to PM2.5 from all endpoints compared to the most white communities in 350 
2019, and relative disparities have a range of 1.25—1.41, depending on the specific endpoint 351 
considered (Figures 3A). Ethnic relative disparities exhibit a wider range (0.89—1.29; Figure 352 
3B). Opposite to expectations, we found that the least Hispanic communities in the U.S. 353 
experienced slightly higher PM2.5-attributable premature mortality rates from COPD and lung 354 
cancer than the most Hispanic communities (Figure 3B).  355 
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Ethnoracial disparities in NO2-attributable pediatric asthma are striking (Figure 3). NO2-356 
attributable asthma rates in the least white and most Hispanic communities of the U.S. were 357 
higher than rates in the most white and least Hispanic communities by a factor of 7.5 and 3.2 in 358 
2019, respectively. In 28.8% of MSAs, all census tracts designated as most white had zero cases 359 
of NO2-attributable pediatric asthma (i.e., NO2 concentrations fell below the TMREL). This lack 360 
of NO2-attributable asthma cases in the least white tracts only occurred in 2.3% of MSAs. 361 
 362 

 363 
Figure 3. Ethnoracial disparities in pollutant concentrations and associated pollution-364 
attributable health burdens calculated for 2019 using the top and bottom deciles of population 365 
subgroups. Large scatter points correspond to concentrations or burdens for population 366 
subgroups calculated with all census tracts, while smaller jittered points correspond to these 367 
quantities in individual metropolitan statistical areas (MSAs) of the U.S. Rows shaded in gray 368 
indicate that the difference between the MSA distributions is not significant (p > 0.05). 369 
 370 
While NO2-attributable pediatric asthma and PM2.5-attributable premature mortality rates have 371 
decreased across the U.S. over the last decade, the magnitude of these decreases has not been 372 
uniform (Figure 4). Decreases in majority white and non-Hispanic communities outpaced 373 
decreases in majority non-white and Hispanic communities. As a result, relative racial disparities 374 
in NO2-attributable pediatric asthma have increased from a factor of 6.3 difference between most 375 
and least white communities in 2010 to a factor of 7.5 difference in 2019 (19% increase; Figure 376 
4A). Similarly, relative racial disparities in PM2.5-attributable premature mortality grew by 16%, 377 
ethnic disparities in PM2.5-attributable premature mortality by 40%, and ethnic disparities in 378 
NO2-attributable pediatric asthma by 10%.  379 
 380 
At the beginning of the decade, the most Hispanic communities in the U.S. faced lower PM2.5-381 
attributable death rates (Figure 4D), similar to our findings for some cause-specific endpoints in 382 
Figure 3B. However, ethnic subgroup most burdened with respect to PM2.5-attributable 383 
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premature mortality reversed around 2015 (Figure 4D). By 2019, the most Hispanic communities 384 
had 8% higher PM2.5-attributable premature mortality rates than the least Hispanic communities. 385 
While ethnoracial relative disparities in PM2.5-attributable mortality are generally around 1 386 
(equality between subgroups) and therefore small compared to disparities in NO2-attributable 387 
pediatric asthma rates, their increasingly inequitable distribution is noteworthy. If trends during 388 
the 2010s are an indication of the future, we expect that these disparities will continue to grow.  389 
 390 
Examining trends and disparities in PM2.5 and NO2 concentrations can shed light on the drivers 391 
of the widening disparities. We found that disparities in PM2.5 concentrations are widening 392 
(Figure S6A-B), supported also by recent work from Jbaily et al.16. Relative disparities in NO2 393 
concentrations have narrowed (Figure S6C-D), indicating that the increase in NO2-attributable 394 
pediatric asthma disparities is driven by changing underlying incidence rates across subgroups. 395 
Although these rates only vary by state (Figure S2S-U), a larger number of tracts belonging to a 396 
particular decile population subgroup located in a state in which pediatric asthma incidence has 397 
exhibited a greater increase relative to other states would lead to this finding.  398 
 399 
Our use of state-level cause-specific mortality rates and pediatric asthma incidence rates could 400 
impact results since these rates have been shown to vary on neighborhood scales and are often 401 
higher in minoritized and marginalized communities36,37. We hypothesize that incorporating rates 402 
at a higher spatial resolution would likely accentuate the disparities uncovered in this study. To 403 
test this hypothesis, we considered a recently developed dataset estimating tract-level all-cause 404 
mortality rates in 2015 (Text S2). Since these rates represent all-cause mortality rather than the 405 
six specific causes we examined in this study, we combined these tract-level rates with all-cause 406 
mortality RR estimates from Turner et al.38, which were also recently used in an EPA review of 407 
the NAAQS for PM2.5. Consistent with our hypothesis, we find that using tract-level mortality 408 
rates leads to even higher burdens placed on the least white and most Hispanic communities of 409 
the U.S. (Text S2, Figure S5). The analysis in Figure S5 also suggests that similar conclusions 410 
regarding disparities and the most exposed population subgroup are found using cause-specific 411 
RR estimates from the GBD or the all-cause RR estimates from Turner et al.38. While we do not 412 
have pediatric asthma incidence rates in census tract to conduct a similar sensitivity analysis for 413 
NO2-attribuable pediatric asthma, we believe that such data would also lead to even greater 414 
disparities.  415 
 416 
We have also considered relative disparities calculated with population-weighted concentrations 417 
and disease rates to complement disparities calculated with the top and bottom deciles of 418 
population subgroups. The sign of disparities in population-weighted pollution concentrations, 419 
pediatric asthma, and premature death rates due to pollution in 2019 (Figure S7) is consistent 420 
with results from Figure 3, although the magnitude of these population-weighted disparities was 421 
slightly smaller than disparities estimated using the top and bottom deciles approach. Trends in 422 
population-weighted relative disparities are more mixed than the trends calculated with top and 423 
bottom deciles (Figure S8). We find that racial relative disparities in population-weighted 424 
pollution-attributable asthma and premature mortality have non-significant positive trends, ethnic 425 
premature mortality disparities a significant positive trend, and ethnic asthma disparities a 426 
significant negative trend (Figure S8). While we rely on contemporary statistical methods to 427 
quantify whether results are “significant,” reliance on these methods can be problematic and may 428 
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neglect historically excluded groups39. We believe that any disproportionate impacts related to 429 
pollution, regardless of significance, warrants further research and commensurate action.  430 
 431 

 432 
Figure 4. Trends in (A-B) NO2-attributable pediatric asthma and (C-D) PM2.5-attributable 433 
premature mortality rates for the most and least white and Hispanic tracts in the U.S. Black time 434 
series and corresponding text beneath each panel indicate the relative disparities, defined as the 435 
ratio of the rate for the bottom decile population subgroup (least white, most Hispanic) to the 436 
rate for top decile (most white, least Hispanic). A value of 1 for relative disparities implies that 437 
pollution-attributable burdens are equally shared across subgroups. For reference, rates for the 438 
first and last years of the analysis are indicated alongside the scatter points.  439 
 440 
The NAAQS do not adequately protect the public from the adverse effects of PM2.5 and NO2 441 
based on our own assessment of the health burdens that occur when the NAAQS were attained in 442 
the vast majority of tracts (Figure 5) as well as numerous toxicological and clinical studies that 443 
highlight health effects of these pollutants at levels below the current NAAQS40,41. The current 444 
annual PM2.5 NAAQS of 12 µg m-3, last revised in 2012, was met in all but 486 (0.7%) of census 445 
tracts in 2019, and the highest 2019 NO2 concentration in all census tracts of the U.S. (28.3 446 
ppbv) was about half the annual NO2 NAAQS of 53 ppbv, which has not been revised since 447 
1971. Yet, Figure 2A-B highlights the major public health damages associated with these 448 
pollutants.  449 
 450 
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Enacting and attaining more stringent PM2.5 and NO2 standards could reduce pollution-451 
attributable health burdens, with potentially outsized benefits for communities of color (Figure 452 
5). As an example, we consider how a PM2.5 standard of 8 µg m-3 could advance environmental 453 
justice. This level is the lower end of the range recommended by EPA’s Clean Air Scientific 454 
Advisory Committee in March 2022. If a new PM2.5 standard of 8 µg m-3 was adopted and met in 455 
all tracts where this level is not currently met, the decrease in PM2.5-attribuable premature 456 
mortality rates in the least white communities of the U.S. would be roughly four times larger 457 
than the decrease in the most white communities (Figure 5). Similarly, if the WHO interim 458 
target-3 (IT-3) was met, total pediatric NO2-attributable asthma burdens would drop by 20%, but 459 
the least white communities in the U.S. would experience a fivefold greater reduction in pediatric 460 
asthma rates than in the most white communities (-32.6% versus -6.3%).  461 
 462 
Reducing 2019 NO2 and PM2.5 to the stringent WHO AQGs in all tracts where these guidelines 463 
are not met would lead to a 73.2% reduction in PM2.5-attributable mortality and eliminate NO2-464 
attributable pediatric asthma (all concentrations would be below our assumed TMREL). 465 
Attaining the AQGs also eliminates the current patterns of injustice by which communities of 466 
color experience greater pollution-attributable health burdens.  467 
 468 
4.  Discussion  469 
 470 
Our study documents the substantial impact of air pollution on human health from 2010 through 471 
2019, exploring how communities of color shoulder a disproportionate share of this burden. 472 
Results paint a mixed picture of progress: despite overall decreases in NO2 and PM2.5 and 473 
associated health impacts during the 2010s, significant ethnoracial disparities in the health 474 
impacts attributable to these pollutants remain. We found that relative disparities in NO2-475 
attributable pediatric asthma are several times larger than relative disparities in PM2.5-attributable 476 
premature mortality, and relative disparities in PM2.5 concentrations and pollution-attributable 477 
health impacts from PM2.5 and NO2 are widening.  478 
 479 
Our finding that disparities in PM2.5 and associated health burdens are growing is an important 480 
and alarming conclusion of this study and complements recent work by Jbaily et al.16, who 481 
highlighted increasing PM2.5 disparities among racial and ethnic groups but did not examine 482 
associated health impacts. One potential explanation for the widening PM2.5 disparities could be 483 
the declining importance of the power generation sector42. The largest benefits of power plant 484 
closures have accrued to the white population30. As the role of the power generation sector on 485 
PM2.5 decreased, light-duty and heavy-duty vehicles have become an increasingly important 486 
source of primary PM2.5. Our previous work has shown the collocation of marginalized and 487 
minoritized neighborhoods with the roadways used by these vehicles27.  488 
 489 
Our assessment of the economic costs caused by PM2.5 and NO2 agrees well with a global 490 
economic assessment conducted by Yin et al.43, who found that PM2.5-attributable economic 491 
costs amount to 2.7% GDP in the U.S. Furthermore, premature mortality and pediatric asthma 492 
burdens documented in this study generally align with other recent studies12,21,42,44,45. We note, 493 
however, that our estimates are lower. One key reason for this discrepancy is that our TMRELs 494 
are higher (i.e., more conservative) than those in other studies, which assume, for example, there 495 
is no level below which PM2.5 would not increase the risk of death12,37. Our TMRELs, derived 496 
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from the latest GBD, represent uncertainty about the lowest level of exposure associated with 497 
increased mortality or morbidity given the exposure distribution46. A growing number of studies 498 
specifically analyzing health effects of pollutants at low concentrations47 will continue to 499 
increase the community’s understanding of low-level health effects.  500 

 501 
Figure 5. Air quality, health, and environmental justice benefits achieved by attaining (A) PM2.5 502 
and (B) NO2 standards in tracts where pollutant concentrations exceeded these standards in 503 
2019. PM2.5 standards include the Environmental Protection Agency (EPA) National Ambient 504 
Air Quality Standard (NAAQS) of 12 µg m-3; the World Health Organization (WHO) Interim 505 
Target 4 (IT-4) of 10 µg m-3; the lower bound of the recommended range (8-10 µg m-3) 506 
recommended by the Clean Air Scientific Advisory Committee (CASAC) in their March 2022 507 
letter to the EPA Administrator; and the WHO Air Quality Guidelines (AQG) of 5 µg m-3. NO2 508 
standards include the WHO IT-1 of ~21.3 ppb (assuming an ambient pressure of 1013.25 hPa 509 
and temperature of 298.15 K); the WHO IT-2 of ~16 ppb; the WHO IT-3 of ~10.6 ppb; and the 510 
WHO AQG of ~5.3 ppb. Interpretation of the top panels, which show (A) total PM2.5-attributable 511 
premature deaths and population-weighted PM2.5 concentrations and (B) total NO2-attributable 512 
pediatric asthma cases, follows Figure 2A-B. Interpretation of the bottom panels, showing 513 
disparities in pollution-attributable health burdens under the various standards for the most and 514 
least white racial population subgroups, follows Figure 4A and C.  515 
 516 
Examining the impacts of higher resolution death rates suggests that our use of state-level rates 517 
may underestimate ethnoracial relative disparities (Text S2; Figure S5). Our choice of RR 518 
estimates could also impact the magnitude of disparities. We relied on uniform RR estimates 519 
applied to the entire population in this study, but risk may differ among different demographic 520 
groups due to social determinants of health or biological differences. Akinbami et al.48 found that 521 
children belonging to ethnoracial minority groups had as high or higher relative risk for asthma 522 
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diagnoses than non-Hispanic white children, and Spiller et al.49 showed uniform RR estimates, 523 
rather than race-ethnicity specific estimates, underestimated pollution-related health impacts for 524 
minority communities. However, the literature on this topic is not consistent: Alexeeff et al.50 did 525 
not find a difference in the association between exposure to PM2.5 and COPD by race or 526 
ethnicity, and Parker et al.51 similarly found that the association between PM2.5 and heart disease 527 
mortality was not statistically different for non-Hispanic white adults versus Black or Hispanic 528 
adults. Since the literature remains inconsistent on this topic, it is unknown how race- and 529 
ethnicity-specific RR estimates would impact the findings uncovered herein. Future work might 530 
leverage race- and ethnicity-specific RR estimates, such as those developed by Di et al.52 from 531 
Medicaid-eligible persons in the U.S.  532 
 533 
Measures of socioeconomic status such as educational attainment and income have often been 534 
used in environmental justice studies. Here, we have chosen to focus on race and ethnicity. 535 
Tessum et al.53 demonstrated that people of color at every income level face disproportionate 536 
PM2.5 exposure, and ethnoracial disparities are not a proxy for socioeconomic disparities. 537 
Policies to reduce pollution burdens based strictly on socioeconomic status may not do so 538 
equitably54, thus buttressing our focus on ethnoracial patterns of injustice. 539 
 540 
Systems and practices that introduce and perpetuate systemic racism and discrimination are 541 
responsible for these disparities55. Marginalized and minoritized communities are 542 
disproportionately exposed to virtually all major emissions sectors; traffic (particularly heavy-543 
duty diesel traffic), industry, and construction have been pointed out as the most important in 544 
explaining PM2.5 and NO2 disparities 28,53,56. Disparities in pollution and associated health 545 
impacts have been linked to “redlining,” a practice beginning in the 1930s by which financial 546 
services were denied to residents in certain urban areas based on their race or ethnicity57–59. 547 
While this discriminatory practice officially ended in 1968, its numerous effects on present-day 548 
zoning practices and the placement of highways and industries in racialized and minoritized 549 
neighborhoods have been documented58,60,61. 550 
 551 
Minoritized, racialized, and marginalized communities in the U.S. persistently experience 552 
disproportionate air pollution-attributable disease burdens. Ethnoracial health disparities due to 553 
NO2-attributable pediatric asthma are substantially larger than those from PM2.5-attributable 554 
premature mortality, but relative disparities for both these health outcomes in the most versus 555 
least minoritized communities of the U.S. have widened in the past decade. Alternative ways of 556 
defining disparities (e.g., population-weighted, most versus least burdened) indicate that the 557 
exact sign and significance of trends can be somewhat metric-specific. Regardless of which 558 
metric is used, though, recent trends in relative disparities in the U.S. have clearly not matched 559 
the obvious macro-level reductions in ambient NO2 and PM2.5 pollution due to the Clean Air Act 560 
and related measures.  561 
 562 
Increasing the stringency of the NAAQS for PM2.5 and NO2 to be in alignment with the 2021 563 
WHO AQGs could have outsized benefits for marginalized and minoritized communities. 564 
Codification and attainment of these AQGs would effectively eliminate current patterns of 565 
injustice and broadly reduce pollution-attributable health burdens across the nation. 566 
Accomplishing sufficient pollution remediation will require reductions from almost every 567 
emission sector given their disproportionate impacts on marginalized and minoritized 568 
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communities. Recent efforts to reduce emissions from transportation (e.g., plug-in electric 569 
vehicle tax credits, EPA’s proposed heavy-duty engine and vehicle standards) and rethink land 570 
use (e.g., Department of Transportation’s Reconnecting Communities Pilot Program) are steps in 571 
the right direction and urgently needed. While the investments needed to develop new control 572 
technologies and implement other mitigation measures are not trivial, the potential economic 573 
benefits of such investments due to improved public health would outweigh them. 574 
 575 
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Text S1: Surface-level pollution datasets and their trends 16 
 17 
Conducting our analysis with recently developed 0.01˚ x 0.01º (~1 km x 1 km) pollutant datasets 18 
transformed to census tract averages is a major strength of our study and allows us to capture the 19 
heterogeneities and microenvironments that characterize air quality exposure, especially in urban areas. 20 
Paolella et al.1 showed that the spatial resolution of PM2.5 data impacts concentration disparities, and 21 
Mohegh et al.2 investigated how the spatial resolution of NO2 data affects pediatric asthma burdens. When 22 
taken together, these studies suggest that using pollution datasets with a spatial resolution coarser than ~1 23 
km2 leads to smaller estimated health impacts or disparities. Thus, our use of ~1 km2 pollutant datasets 24 
likely provides a more accurate characterization of disparities and associated health burdens than coarser 25 
datasets could afford. PM2.5 and NO2 data at a finer resolution than 1 km2 have been shown to lead to 26 
greater health burdens3, but we are not aware of a nationwide dataset that would provide sub-km2 data for 27 
both these pollutants.  28 
 29 
These datasets provide complete spatial coverage of NO2 and PM2.5, unlike the sparse coverage available 30 
from in-situ monitors (Figure 1A-B), enabling us to characterize the health effects associated with these 31 
pollutants on environmental justice-relevant scales. Although the performance of these two datasets 32 
against observations has been documented in the literature4,5, we provide such an analysis tailored to our 33 
time period and domain in Figure 1. The comparison of observed NO2 and PM2.5 concentrations derived 34 
from these datasets yields a high degree of confidence in their ability to capture spatiotemporal variability 35 
in surface-level NO2 and PM2.5 (Figure 1). We note a high dataset bias for NO2 relative to observations, a 36 
low dataset bias for PM2.5, and that the correlation of the datasets with observations slightly decreases 37 
over our measuring period. The decreasing correlation could reflect a growing number of monitors sited 38 
adjacent to roadways as part of the EPA near-road monitoring network initiated in 2010. We do not 39 
expect that the PM2.5 and NO2 datasets would resolve the incremental NO2 or primary PM2.5 impacts from 40 
traffic6.  41 

Between 2010 and 2019, nationwide-averaged population-weighted PM2.5 decreased by 21.5% at a rate of 42 
-0.2 µg m-3 yr-1 (p<0.01), and population-weighted NO2 decreased by 24.6% at a rate of -0.3 ppbv yr-1 43 
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(p<0.01) (Figure 2A-B). The nationwide-averaged trends shown in Figure 2A-B mask some regional 44 
heterogeneities. We observed positive PM2.5 trends in Montana, Nevada, Oregon, Puerto Rico, and 45 
Washington using state-averaged population-weighted concentrations; all positive PM2.5 trends were not 46 
significant except for Puerto Rico. State-averaged population-weighted NO2 in Maine, Montana, New 47 
Hampshire, North Dakota, South Dakota, and Vermont also exhibited positive trends, with significant 48 
trends in Maine, North Dakota, and South Dakota. Many states with positive trends are located in the 49 
Western U.S., which has been challenged by air quality impacts related to increasing wildfire activity in 50 
recent years7,8. The growing impact of wildfires on air quality could also explain the non-monotonic 51 
decrease of nationwide-averaged PM2.5 during the measuring period and the slight increase from 2016-52 
2018 (Figure 2A).  53 

Another notable feature in Figure 2D is the large NO2-attributable pediatric asthma rates in Fargo, ND 54 
and Grand Forks, ND-MN. Several studies have documented the impact of agriculture on NOx emissions 55 
in the Great Plains and Upper Midwest, particularly during the summer months9,10. Our NO2 estimates 56 
derive from a land use regression model representative of 2010-2012 concentrations scaled to more recent 57 
years by satellite retrievals5. Persistent snow and cloud cover in the Great Plains and Upper Midwest 58 
during the winter months lead to fewer retrievals during this season, and thus NO2 estimates may be more 59 
representative of summer NO2 levels. The dearth of in-situ monitors in this region preclude us from 60 
commenting on the performance of the NO2 dataset (Figure 1A). 61 

Text S2: Sensitivity of results to higher-resolution incidence rates and age standardization  62 

Our analysis does not consider sub-state or racial variations in underlying incidence and mortality rates. 63 
State-level rates represent the highest level of granularity currently available from the GBD, and annual 64 
incidence rates at finer resolutions such as in counties or census tracts may contain missing data to protect 65 
confidentiality and privacy.  66 

Underlying incidence and mortality rates have been shown to vary on neighborhood scales with higher 67 
values in areas with lower socioeconomic status and a higher percentage of minorities11,12. Spiller et al.13 68 
showed that considering race- and ethnicity-specific rates does not significantly affect the total number of 69 
deaths but distributed the deaths differently among demographic groups in a national-scale analysis of 70 
PM2.5-attributable mortality in the U.S. Recently, the EPA’s BenMAP-CE software used to estimate air 71 
pollution-related health impacts has included estimates of census tract all-cause mortality rates using life 72 
tables from the U.S. Small-Area Life Expectancy Estimates Project (USALEEP)14. These rates are based 73 
on death records over the period 2010-2015.  74 

We use these tract-level incidence rates and investigate how they affect ethnoracial disparities. Since 75 
these rates represent all-cause mortality (rather than cause-specific mortality investigated in the main 76 
text), we combine these higher resolution incidence rates with all-cause RR estimates from Turner et al.15 77 
of 1.06 per 10 µg m-3 annual average PM2.5, which was used in the most recent PM2.5 Regulatory Impact 78 
Analysis from the EPA 16. We did not apply a TMREL when calculating all-cause premature mortality 79 
with the Turner et al.15 RR estimates. Therefore, do not expect the total number of PM2.5-attributable 80 
premature deaths and ethnoracial absolute disparities to match the results in the main text; however, we 81 
hypothesize that examining the relative disparities using these different methods will allow us to test 82 
whether our results are robust to different incidence rates and RR estimates. 83 
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In this sensitivity analysis we calculate national-level ethnoracial relative disparities for the following 84 
cases: 85 

1) Turner et al.15 RR estimates with state-level all-cause mortality rates. Burdens and rates are 86 
calculated for the population aged 30 and older for each five-year age group (30-34, 35-39, etc.) 87 
and thereafter standardized to account for differences in the age structure across population 88 
subgroups.  89 
2) Same as 2 but no age standardization is applied.  90 
3) Turner et al.15 RR estimates with tract-level all-cause mortality rates. Tract-level rates from 91 
Raich et al.14 are available for ten-year age groups (25-34, 35-44, etc.) so we apply the RR 92 
estimates to the population aged 25 and older in ten-year age groups and standardize for different 93 
age structures. We acknowledge that disparities calculated with these methods (for population 94 
aged 25 and older) are not directly comparable with the disparities from 1-2 (for population aged 95 
30 and older); however, we expect differences to be minimal.  96 
4) Same as 3 but no age standardization is applied.  97 

Based on the period represented by USALEEP tract-level rates, all results for this sensitivity test represent 98 
2015 values, and the age structure is standardized to the full U.S. population for that year.  99 
 100 
Age-standardized disparities calculated as the sum of cause-specific mortality rates (from the main text) 101 
and all-cause mortality rates calculated with Turner et al.15 RR estimates and state-level underlying rates 102 
from the GBD are similar in magnitude (Figure S5). This result suggests our key conclusions are robust to 103 
different methods for calculating PM2.5-attributable premature mortality.  104 
 105 
As expected, when state-level rates are replaced by tract-level rates, the magnitude of disparities grows 106 
(Figure S5). The racial relative disparities calculated with Turner et al.15 RR estimates and state-level 107 
rates is 1.12, which increases to 1.46 when calculated using tract-level rates (Figure S5A). The year in 108 
which we conduct this sensitivity test, 2015, is the year in which PM2.5-attributable mortality rates were 109 
nearly at parity for the most and least Hispanic subgroups using the methods described in the main text 110 
(Figure 4). When ethnic disparities are determined with different RR estimates and underlying incidence 111 
rates, we reach slightly different conclusions regarding the most exposed population subgroup. Still, 112 
disparities are slight regardless (~5% difference in rates between subgroups; Figure S5B).   113 
 114 
Lastly, exploring the impact of age standardization highlights how differences in the population age 115 
structure can influence results. When no age standardization is applied, the least Hispanic population 116 
subgroup consistently emerges as the most exposed ethnic subgroup, regardless of the choice of RR 117 
estimates or underlying rates (Figure S5B). Both the most white and least Hispanic subgroups have a 118 
larger shares of their population that reach older ages (Figure S4). Underlying incidence rates for the 119 
elderly are considerably higher than rates for younger age groups (not shown). For example, the 120 
nationwide average of state-level rates of death from ischemic heart disease for the population aged 85 121 
and greater is nearly 2,000 times higher than for the population aged 25-29 (3314 per 100,000 versus 2 122 
per 100,000). Without age standardization even a relatively small difference in the elderly population 123 
between population subgroups could skew results. 124 
 125 
Based on the results of this sensitivity analysis, incorporating higher resolution rates is unlikely to 126 
materially change our key conclusion that ethnoracial minorities in the U.S. face disproportionately 127 
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higher rates of premature mortality attributable to PM2.5. Future studies that include higher resolution 128 
estimates of underlying rates or rates stratified by race and ethnicity could see disparities accentuated as 129 
we showed in Figure S5. While we have not explicitly investigated how higher resolution incidence rates 130 
of pediatric asthma impact our results, it is likely that these higher resolution rates could also lead to even 131 
starker disparities.              132 
 133 
Text S3: Tract-level pollution and health burdens geographical information system data 134 
 135 
We provide census tract-averaged PM2.5 and NO2 concentrations and total pollution-attributable health 136 
burdens for each endpoint examined in our study (pediatric asthma, chronic obstructive pulmonary 137 
disease, ischemic heart disease, stroke, lung cancer, lower respiratory infection, type 2 diabetes) as well as 138 
the corresponding crude rates for each endpoint. These data are provided as supplementary data files in 139 
shapefile format for easy integration in geographic information system (GIS) software. Index of feature 140 
geometry (.shx) and attribute information (.dbf) files are included alongside the feature geometry (.shp) 141 
file.  142 
 143 
Census tract boundaries and select metadata (GEOID, latitude, longitude; Table S1) are taken from the 144 
2010 Census TIGER/Line shapefiles17. Table S1 lists the fields included in the shapefiles and a short 145 
description of each field. Note that there are a small number of census tracts missing NO2 and PM2.5 146 
concentrations (77 and 234, respectively) and have a value of NaN. These missing tract-averaged 147 
concentrations represent tracts whose underlying grid cells in the native datasets had NaN values and are 148 
generally found near bodies of water. NaN values for pollutant concentrations propagate to the associated 149 
disease burdens and rates.  150 
 151 
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Field Description 
NO2 Annual average NO2 concentration, units of ppbv  
PM25 Annual average PM2.5 concentration, units of µg m-3 
BURDENASTH Total new NO2-attributable pediatric asthma cases 
BURDENCOPD Total PM2.5-attributable premature deaths from COPD 
BURDENIHD Total PM2.5-attributable premature deaths from ischemic heart disease 
BURDENSTR Total PM2.5-attributable premature deaths from stroke 
BURDENLC Total PM2.5-attributable premature deaths from lung cancer 
BURDENLRI Total PM2.5-attributable premature deaths from lower respiratory infection 
BURDENT2D Total PM2.5-attributable premature deaths from type 2 diabetes 
RATEASTH NO2-attributable pediatric asthma rates per 100,000 population aged 18 years or 

less 
RATECOPD PM2.5-attributable death rates from COPD per 100,000 population aged 25 years 

and greater 
RATEIHD PM2.5-attributable death rates from ischemic heart disease per 100,000 

population aged 25 years and greater 
RATESTR PM2.5-attributable death rates from stroke per 100,000 population aged 25 years 

and greater 
RATELC PM2.5-attributable death rates from lung cancer per 100,000 population aged 25 

years and greater 
RATELRI PM2.5-attributable death rates from lower respiratory infection per 100,000 

population  
RATET2D PM2.5-attributable death rates from type 2 diabetes per 100,000 population aged 

25 years and greater 
GEOID Unique census tract identifier; the GEOID is an 11 digit concentration of the 

state Federal Information Processing System (FIPS) codes (2 digits), county 
FIPS code (3 digits), and census tract code (6 digits).   

INTPTLAT Latitude of census tract centroid 
INTPTLON Longitude of census tract centroid 

Table S1. Fields included in supplementary data shapefile, representing concentrations, burdens, and 209 
rates in 2019. Rows in gray represent fields taken directly from the native TIGER/Line shapefiles

17
 and 210 

can be used for mapping as well as matching pollutant concentrations and attributable health burdens 211 
with census data.  212 
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 213 
Figure S1. For the endpoints of interest, curves indicate the proportion of their incidence attributable to 214 
PM2.5 and NO2 exposure, generated with RR estimates from the GBD. The abscissa has been truncated to 215 
the nearest multiple of 10 that corresponds to the maximum tract-averaged PM2.5 or NO2 concentrations 216 
in the U.S. during 2010-2019. The grey regions denote the concentrations of PM2.5 and NO2 equal to or 217 
less than the counterfactual scenario of theoretical minimum risk exposure used in this study.   218 
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 219 
 220 
Figure S2. Underlying premature mortality and incidence rates from the GBD for 2010, 2015, and 2019. 221 
Rates vary for each five-year age, and rates shown in this figure represent an average over these groups.  222 
 223 
 224 
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225 
Figure S3. Census tract-averaged surface level NO2 and PM2.5 concentrations in 2010, 2015, and 2019. 226 
These time periods were chosen to reflect the beginning, middle, and end years of this study. Tracts 227 
colored in gray either lie outside the coverage of the datasets or represent unorganized territories without 228 
tracts.  229 
 230 
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 231 
Figure S4. Differences in population age structure for the top and bottom deciles of population 232 
subgroups in 2019. The shaded region in plots denotes the age groups which are included in our 233 
calculation for NO2-attributable pediatric asthma. 234 
 235 
 236 
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 237 

 238 
Figure S5. Disparities in PM2.5-attributable premature mortality rates for (A) racial and (B) ethnic 239 
extreme deciles of population subgroups in the U.S. during 2015 using different RR estimates and 240 
underlying incidence rates. Lighter colors signify rates calculated without the age standardization 241 
applied throughout the main text.  242 
 243 
 244 
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245 
Figure S6. Interpretation follows Figure 4 in the main text, but subplots show trends in concentrations of 246 
(A-B) PM2.5 and (C-D) NO2 for different (A,C) racial and (B,D) ethnic population subgroups, defined 247 
using the top and bottom deciles approach.   248 
 249 
 250 
 251 
 252 
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 253 
 254 
Figure S7. Same as Figure 3 in the main text but concentrations or rates are formed with population-255 
weighted categories rather than population subgroups.  256 
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 257 
Figure S8. Same as Figure 4 in the main text but rates and disparities are calculated using population-258 
weighting.  259 


