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Abstract

Because spatio-temporal variations in ocean heat content (OHC) are strongly predicted by ocean conductivity content (OCC)

over most of the global ocean, we analyze the dynamical budget and behavior of the electrical conductivity of seawater. To

perform these analyses, we use an ocean-model state estimate designed to accurately represent long-term variations in ocean

properties in a dynamically and kinematically consistent way. We show that this model accurately reproduces the spatio-

temporal variations in electrical conductivity seen in satellite-derived and in a seasonal climatology product derived from in-situ

data, justifying use of the model data to perform further analyses. An empirical orthogonal function analysis suggests that the

vast majority of the variance in OHC and OCC can be explained by similar mechanisms. The electrical conductivity budget’s

most important term is the temperature forcing tendency term, suggesting that ocean heat uptake is the mechanism responsible

for the strong relationship between OCC and OHC.
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Abstract14

Because spatio-temporal variations in ocean heat content (OHC) are strongly predicted15

by ocean conductivity content (OCC) over most of the global ocean, we analyze the dynami-16

cal budget and behavior of the electrical conductivity of seawater. To perform these analyses,17

we use an ocean-model state estimate designed to accurately represent long-term variations18

in ocean properties in a dynamically and kinematically consistent way. We show that this19

model accurately reproduces the spatio-temporal variations in electrical conductivity seen in20

satellite-derived and in a seasonal climatology product derived from in-situ data, justifying21

use of the model data to perform further analyses. An empirical orthogonal function analysis22

suggests that the vast majority of the variance in OHC and OCC can be explained by simi-23

lar mechanisms. The electrical conductivity budget’s most important term is the temperature24

forcing tendency term, suggesting that ocean heat uptake is the mechanism responsible for25

the strong relationship between OCC and OHC.26

Plain Language Summary27

The ocean conducts electricity because it contains charged particles. While the dynam-28

ical budget and behavior of ocean temperature and salinity have been well studied, similar29

basic analyses have not been conducted for ocean conductivity. The goal of this study is to30

provide this using realistic ocean conductivity data describing spatial and temporal varia-31

tions. Providing a realistic description of conductivity and its dynamical variability is moti-32

vated by recent interest in using in-situ and remote estimates of ocean conductivity content33

(OCC) to infer ocean heat content (OHC). The latter is both highly important in understand-34

ing climate change and inadequately observed using traditional methods. The primary result35

of this study is that, in most of the global ocean, both spatial and temporal variability in OHC36

are strongly predicted by OCC through ocean heat uptake, raising the importance of develop-37

ing electric and magnetic methods for monitoring OCC and thereby OHC by proxy.38

1 Introduction39

While electrical conductivity is a fundamental parameter in the electrodynamics of the40

ocean, in the more typical fields of physical oceanography treating fluid dynamics and ther-41

modynamics, electrical conductivity is usually only discussed as a proximate variable for42

conveniently obtaining salinity. Conductivity is indeed much easier to measure than salinity43

directly. In fact, ocean salinity has become defined by referencing observations of electrical44

conductivity of a seawater sample to that of a potassium chloride solution under standard-45

ized temperature and pressure conditions [UNESCO, 1985]. At given pressure, the electrical46

conductivity of the ocean alone does not provide sufficient information to associate it with a47

unique combination of temperature and salinity. However, given two of the three (electrical48

conductivity, temperature, and salinity), the third can be uniquely determined, despite their49

nonlinear relationship.50

Because salinity is required to estimate the dynamically important density, conductiv-51

ity has been extensively measured in the ocean to high accuracy. However, the conductivity52

data itself has not typically been archived. Rather, it must be estimated from the archived53

temperature and salinity co-observations. This approach was followed in developing the first54

’climatology’ data set for ocean conductivity [Tyler et al., 2017], which has since been up-55

dated in Reagan et al. [2019]. Climatology data sets (long available for temperature and56

salinity) refer to gridded data products constructed from an objective analysis of the many57

observations. The latest WOA18 data in Reagan et al. [2019] provides global ocean con-58

ductivity at 0.25-degree (latitude and longitude) resolution and 102 standard levels spanning59

the ocean depth. This data includes sets (used in the present study) describing the temporal60

mean as well as each of four seasons. Further, satellite-derived sea surface temperature and61
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salinity observations provide some information about the interannual variability in sea sur-62

face conductivity.63

While conductivity depends on both temperature and salinity, an interesting finding in64

the climatology data [Tyler et al., 2017] was that the depth average of conductivity is strongly65

related to that of temperature, motivating further studies which have found support for using66

depth-integrated conductivity (“conductance” or, as shall be referred to here, “ocean conduc-67

tivity content” (OCC)) to predict depth-integrated heat (“ocean heat content” (OHC)) [Tross-68

man and Tyler, 2019; Irrgang et al., 2019; Trossman and Tyler, 2022]. Of course depth-69

integrated parameters can show strong spatial co-variability simply due to the common depth70

and the relationships referred to here involve either depth-averaged variables or covariability71

beyond what can be simply explained by depth. The goal of the present study is to describe72

conductivity data sets that contain realistic spatial and temporal variability and apply this for73

elucidating the dynamical reasons for the high covariability between OCC and OHC.74

A second reason for describing the realistic behavior of ocean conductivity is that75

this data is needed in forward models of ocean electrodynamics. The ocean is permeated76

by large-scale electric currents generated by induction (involving excitation by field sources77

in the ionosphere and magnetosphere; e.g., Kuvshinov [2008]) and motional induction (due78

to the motion of the electrically conducting fluid, such as the ocean, through the Earth’s79

main magnetic field), which have associated local and remote magnetic fields (e.g., [San-80

ford, 1971; Stephenson and Bryan, 1992; Tyler et al., 1997; Manoj et al., 2006]). Because81

the ocean is electrically thin for periods longer than about 10 minutes [Tyler, 2017], the hori-82

zontal electric currents associated with the ocean’s remotely-observable magnetic fields pass83

through the whole water column, with the result that the ocean’s magnetic fields are modu-84

lated by depth-integrated electrical conductivity (OCC) rather than surface electrical conduc-85

tivity. However, due to the insufficient spatio-temporal sampling of the full-depth observa-86

tions of electrical conductivity, our knowledge of the interannual variability in the subsurface87

ocean’s electrical conductivity is lacking, which is one focus of the present study.88

No previous study has balanced a tracer tendency equation for the ocean’s electri-89

cal conductivity, in which each physical factor impacting the electrical conductivity has its90

time-rate of change quantified and balanced with the total time derivative (referred to as a91

“budget” hereafter). However, there are numerous studies that have evaluated these types of92

budgets for ocean heat, salt, and (steric) sea level. For example, using an observationally-93

constrained but dynamically and kinematically consistent ocean state estimate, Piecuch and94

Ponte [2011] showed that the interannual variations in sea level are primarily associated with95

steric sea level and that variations in steric sea level are mostly due to advection in the tropi-96

cal Indian and Pacific oceans and both advection and diffusion at extratropical latitudes, with97

local surface buoyancy fluxes contributing in relatively few regions. Using a free-running98

coupled climate model, Palter et al. [2014] found diffusion to be more important to steric sea99

level variability on a global-mean scale than Piecuch and Ponte [2011], at least when con-100

sidering vertical versus lateral diffusion separately, but their results otherwise qualitatively101

agree. Piecuch and Ponte [2014] further demonstrated that the global-mean steric sea level102

trend is set by surface heat and freshwater exchanges that are primarily offset by the redis-103

tribution of heat and salt through advection and diffusion, which generally agrees with the104

results of Palter et al. [2014]. The relative roles of temperature and salinity variability asso-105

ciated with different physical processes in determining the electrical conductivity variability106

remain unknown.107

The modeling system used to generate the electrical conductivity budget data analyzed108

here (a run of the Estimating the Circulation & Climate of the Ocean (ECCO) framework109

[Fukumori et al., 2017] from 1992 to 2015 without having to optimize the model’s free pa-110

rameters again, a “re-run”) is described in the following section. Essentially, the optimized111

run of ECCO solves for the initial conditions, model parameters, and forcing fields using112

an adjoint-based data assimilation method. These estimates are then utilized in a forward113

simulation (the re-run) with new diagnostics (e.g., each tendency term in the electrical con-114
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ductivity budget, broken up by temperature and salinity contributions) saved as model out-115

put. There are at least three strengths in using ECCO to assess whether OHC can be pre-116

dicted from OCC. First, model output is more globally complete than observational datasets117

in both time and space. Second, ECCO has been validated against several independent data118

sets [Forget et al., 2015a; Heimbach et al., 2019]. Third, its re-run is guaranteed to maintain119

consistency in the dynamics and physics of its underlying ocean model, which filter-based re-120

analyses cannot do due to their use of analysis increments [Stammer et al., 2016; Pilo et al.,121

2018].122

In this study, we consider how advection, diffusion, and forcings of heat and salt de-123

termine the variability in electrical conductivity using a more updated version of the same124

ocean state estimation framework as Piecuch and Ponte [2011]. We organize this manuscript125

as follows. In the Supplementary Information, we describe the observations with which we126

use to assess how realistic the ECCO state estimate’s output is and the observation-model127

comparisons. In the main text, we describe ECCO and the conductivity budget. We then de-128

scribe the analysis of what explains the variability in depth-integrated electrical conductivity129

and other correlates, and the electrical conductivity budget results. We lastly make conclud-130

ing remarks for the consequences of our findings and for future research.131

2 Model description and budget framework132

2.1 Modeling system133

The modeling system used here is the ECCO-Production version 4 revision 3 (ECCO-134

Production ver4.rev3 or ECCOv4r3) run, which was accomplished and described by Fuku-135

mori et al. [2017]. The same framework was used by Trossman and Tyler [2019, 2022], but136

is described again here. The underlying ocean-sea ice model for ECCOv4r3 is based on137

the Massachusetts Institute of Technology general circulation model (MITgcm), which is a138

global finite volume model. The ECCOv4r3 global configuration uses curvilinear Cartesian139

coordinates (Forget et al. [2015a] - see their Figs. 1-3) at a nominal 1> (0.4> at equator) res-140

olution and rescaled height coordinates [Adcroft and Campin, 2004] with 50 vertical levels141

and a partial cell representation of bottom topography [Adcroft et al., 1997]. The MITgcm142

uses a dynamic/thermodynamic sea ice component [Menemenlis et al., 2005; Losch et al.,143

2010; Heimbach et al., 2010] and a nonlinear free surface with freshwater flux boundary144

conditions [Campin et al., 2004]. The wind speed and wind stress are specified as 6-hourly145

varying input fields over 24 years (1992-2015). Average adjustments to the wind stress, wind146

speed, specific humidity, shortwave downwelling radiation, and surface air temperature are147

re-estimated and then applied over 14-day periods. These adjustments are based on estimated148

prior uncertainties for the chosen atmospheric reanalysis [Chaudhuri et al., 2013], which149

is ERA-Interim [Dee et al., 2011]. The net heat flux is then computed via a bulk formula150

[Large and Yeager, 2009]. The ocean variables, on the other hand, do not get periodically ad-151

justed. A parameterization of the effects of geostrophic eddies [Gent and McWilliams, 1990]152

is used. Mixing along isopycnals is accounted for according to the framework provided by153

Redi [1982]. Vertical mixing is the sum of diapycnal mixing and the vertical component of154

the along-isopycnal tensor, where diapycnal mixing is determined according to the Gaspar155

et al. [1990] mixed layer turbulence closure and estimated background diapycnal diffusivity.156

Convective adjustment does not act through the diapycnal diffusivity in the MITgcm. Here,157

the model’s diapycnal diffusivity represents a combination of processes, including–but poten-158

tially not limited to–internal wave-induced mixing. The background diapycnal diffusivity, the159

Redi coefficient, and the Gent-McWilliams coefficient are time-independent because of the160

under-determined problem of inverting for initial conditions and model parameters would be161

even more under-determined if they were allowed to vary in time. The electrical conductivity162

is calculated using the TEOS-10 package [MacDougall and Barker, 2011] as the model runs163

by solving for the in-situ temperature based on the simulated potential temperature.164
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The objective of the optimized ECCOv4r3 solution is to minimize the cost function,165

which is a combination of 1) a weighted sum of squares of the disagreements between the166

model and observations and 2) a sum of penalties that do not appear in the estimation itself167

but push control variables towards certain parts of the control space. The least-squares prob-168

lem solved by the ECCO model uses the method of Lagrange multipliers through iterative169

improvement, which relies upon a quasi-Newton gradient search [Nocedal, 1980; Gilbert170

and Lemarechal, 1989]. Algorithmic (or automatic) differentiation tools [Griewank, 1992;171

Giering and Kaminski, 1998] have allowed for the practical use of Lagrange multipliers in172

a time-varying non-linear inverse problem such as ocean modeling, eliminating the need for173

discretized adjoint equations to be explicitly hand-coded. Contributions of observations to174

the model-data misfit function are weighted by best-available estimated data and model rep-175

resentation error variance [Wunsch and Heimbach, 2007]. The observational data included176

in the ECCO state estimation procedure are discussed in Forget et al. [2015a] and Fuku-177

mori et al. [2017]. These data include satellite-derived ocean bottom pressure anomalies,178

sea ice concentrations, sea surface temperatures, sea surface salinities, sea surface height179

anomalies, and mean dynamic topography, as well as profiler- and mooring-derived temper-180

atures and salinities [Fukumori et al., 2017] (see their Table 3). The control variables that181

are inverted for iteratively by ECCO include the initial condition of the velocities, sea sur-182

face heights, temperatures, and salinities; time-mean three-dimensional Redi [Redi, 1982]183

coefficients, Gent-McWilliams Gent and McWilliams [1990] coefficients, and vertical dif-184

fusivities [Gaspar et al., 1990]; and time-varying two-dimensional surface forcing fields.185

The error covariances for each of the ocean subgrid-scale transport and mixing parameters186

are specified by imposing a smoothness operator [Weaver and Courtier, 2001] at the scale187

of three grid points–decorrelation length scale diameter of ∼ 100 km–which allows for the188

dynamical model to regionally adjust from the information provided by observations [Forget189

et al., 2015b]. Fifty-nine iterations of the parameter and state estimation procedure–the “op-190

timization” run–were performed to arrive at the ECCOv4r3 solution, which we use for initial191

conditions and model parameters in our experiments.192

2.2 Electrical conductivity budget193

In order to examine the importance of particular processes to variations in electrical194

conductivity (f) we analyze a modified version of ECCOv4r3’s temperature and salinity195

budgets to calculate the electrical conductivity budget. In order words, we calculate the in-196

stantaneous time-rate of change in electrical conductivity, mf/mC, and each physical pro-197

cess that affects the electrical conductivity (their “tendencies”) for each model time step. The198

tracer tendency equation terms required for the potential temperature (Θ) budget are related199

to those for the electrical conductivity budget by multiplying by mf/mΘ and the tracer ten-200

dency equation terms required for the salinity (() budget are related to those for the electrical201

conductivity budget by multiplying by mf/m(. Each of these terms are computed online and202

saved as the model runs. That is, we compute the terms in the electrical conductivity bud-203

get inline before saving them as model output instead of calculating these fields offline from204

averaged model output of tendencies in temperature and salinity because the chain rule is205

applied to get tendencies in electrical conductivity. Finally, the monthly averages of the re-206

sulting electrical conductivity tendencies are saved to the output files used in this analysis.207

The tracer equations can be broken down into individual contributions [Palter et al.,208

2014],209

d
3Θ

3C
= −∇ · JΘ + d&Θ (1)

d
3(

3C
= −∇ · J( + d&( ,

where 3/3C = m/mC + (v + v∗) · ∇ is the material derivative, v is the resolved velocity field,210

v∗ is the eddy-induced or quasi-Stokes velocity field that represents parameterized motions,211

Θ is the potential temperature, ( is the salinity, d is the locally referenced potential density,212
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JΘ and J( are the parameterized along-isopycnal and diapycnal mixing fluxes associated with213

potential temperature and salinity, and &Θ and &( are the sums of sources and sinks of po-214

tential temperature and salinity.215

The potential temperature and salinity budget terms summarized by Equation (1) are216

computed as follows. The resolved and mesoscale transports are accounted for in the ma-217

terial derivatives Θ and (, and the along-isopycnal and diapycnal diffusion of Θ and ( are218

accounted for by JΘ and J(. The diapycnal diffusion term is added to the vertical component219

of the along-isopycnal diffusion term, which is against convention (e.g., Palter et al. [2014]).220

Shortwave radiation flux is allowed to penetrate down to 200 m in an exponentially decaying221

manner [Paulson and Simpson, 1977]. The sources and sinks of Θ and ( accounted for by222

&Θ and &( include surface buoyancy fluxes (latent, sensible, shortwave, longwave, and frazil223

heat fluxes); geothermal heat flux; precipitation minus evaporation; freshwater fluxes from224

land ice; and frazil ice formation.225

3 Results226

The high level of agreement between ECCOv4r3 and observations (see Supplementary227

Information; Figs. S1-S2) justifies using the ECCOv4r3 data for the remainder of this study.228

Unlike the observational comparisons, when we refer to OCC, OHC, and OSC, hereafter, we229

are referring to full depth-integrated quantities. We present the temporally averaged OCC,230

its spatial gradients, and depth-averaged equivalents (Fig. S3) and their temporal variability231

(Fig. S4) over the length of the ECCOv4r3 simulation (1992-2015) in the Supplementary232

Information for reference.233

3.1 Covariability of OCC, OHC, and OSC in ECCOv4r3234

Using the ECCOv4r3 output from our new simulations, we investigate the covariability235

between OCC, OHC, and OSC. We perform an empirical orthogonal function (EOF) decom-236

position of each field after removing each of their means (Fig. 1) and extend this to a multi-237

variate EOF (MEOF) analysis in the Supplementary Information to demonstrate the spatial238

patterns of covariability in OCC and OHC (Fig. S5). We area-weight each field and normal-239

ize them by their standard deviations prior to calculating the EOFs. The first EOF for OHC240

and the first EOF for OCC are related to ocean warming (Figs. 1a-b) and explain between241

one-third and one-half of each of their variances. The first EOF for OSC is related to land242

ice melt (Fig. 1c) and explains 60% of the variance. The second EOF for OHC and the sec-243

ond EOF for OCC are related to natural climate variability (Figs. 1d-e) such as the El Niño244

Southern Oscillation, consistent with previous analyses that used observations of only the up-245

per 700 meters (e.g., Wang et al. [2020]). The second EOF for OSC is related to sea ice melt246

and evaporation minus precipitation trends (Fig. 1f). While the OCC, OHC, and OSC tend247

to be highly correlated regardless of season and it is unclear whether any EOF beyond the248

second has a physical interpretation (not shown), the first several EOFs for OHC and OCC249

are significantly correlated in space (Fig. 1g), whereas only the first EOF for OSC and OCC250

are significantly correlated in space (Fig. 1h). The maximum and minimum bootstrapped251

spatial correlations are shown in Figs. 1g-h (red dashed curves) around their averages (solid252

green curves) in comparison to maximum canonical spatial correlations (solid black curves)253

to indicate which EOFs are significantly correlated. Consistent with the low predictability254

of OHC from OCC on seasonal time scales found by Trossman and Tyler [2022], only the255

first several EOFs for OCC and OHC highly correlate when a filter is not applied, but the vast256

majority of EOFs for OCC and OHC highly correlate when a year-long moving average filter257

is applied to the OCC and OHC data (Fig. 1g). Thus, it is likely that the same mechanisms258

that explain the variability in OHC can also explain the annual-to-longer-term variability in259

OCC. We investigate this further below.260
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3.2 Conductivity budget analysis261

We next decompose the electrical conductivity budget into contributions from tem-262

perature and salinity and for each of those, the depth-average of the horizontal advection,263

vertical advection, horizontal diffusion, vertical diffusion, forcing, and total tendency terms264

are shown in Fig 2. Regionally, there are large differences between the magnitudes of the265

temperature and salinity contributions for a given advective, diffusive, or forcing term. The266

temperature forcing term tends to dominate not only the salinity forcing term but every other267

term in the electrical conductivity budget. However, the redistribution of electrical conduc-268

tivity (or its transport) is primarily determined by the advection of both temperature and269

salinity. Salinity’s advective contributions are larger than temperature’s advective contribu-270

tions in high-latitude regions and temperature’s advective contributions are larger than salin-271

ity’s advective contributions in low-latitude regions. The vertical advection contributions272

tend to be of opposite sign from the horizontal advection contributions, with the exception273

of salinity’s advective contributions in equatorial regions. The sign is actually opposite be-274

tween temperature’s horizontal diffusion contributions and the salinity’s horizontal diffusion275

contributions in equatorial regions. The total tendency term for temperature is primarily de-276

termined by the temperature forcing term and the total tendency term for salinity is mostly277

set by salinity’s horizontal advection term, with a net non-zero tendency when you add these278

two tendency terms together because there is a trend in ECCO’s electrical conductivity.279

We lastly present the electrical conductivity budget tendency terms in Fig. 3. We first280

focus on the zonally- and depth-averaged tendencies (Fig. 3a). The temperature forcing term281

tracks the total temperature tendency term very closely over all latitudes. The temperature282

forcing, vertical advection of salinity, and horizontal advection of temperature contributions283

to the electrical conductivity dominate but are slightly offset by vertical diffusion of salinity284

near Antarctica. There is a trade-off of temperature forcing, vertical advection of tempera-285

ture, and horizontal advection of temperature in low-latitude regions. In subpolar regions of286

the Northern Hemisphere, temperature forcing and vertical advection of salinity are partially287

offset by horizontal advection of salinity. All other terms are relatively small in their zonal288

and depth averages, but the diffusion terms may be underestimated, as suggested by Tross-289

man et al. [2022]. The temporal variations in the tendency terms are primarily seasonal with290

amplitudes that can be larger than the average tendencies for many terms (Fig. 3b). The tem-291

perature and salinity advection tendency terms, particularly temperature’s horizontal advec-292

tion term, can be comparable in magnitude to the temperature forcing tendency term during293

July-September. The area-weighted global averages of the temporal correlations between294

each tendency term and the total tendencies (Table 1) reveal that only the temperature forc-295

ing tendency term is significantly positively correlated with the total electrical conductivity296

tendency term, but the vertical advection of salinity term is marginally anti-correlated with297

the total electrical conductivity tendency term, suggesting a redistributive role. The temporal298

correlations between the temperature forcing tendency term and the total tendency term are299

lower in the Arctic Ocean, consistent with lower predictability of OHC from OCC and other300

factors found by Trossman and Tyler [2022]. Each term can be significantly correlated with301

the total tendency at some location in the ocean. However, the only field with both signifi-302

cant temporal correlations with the total tendency term (Table 1) and a non-negligible global303

area-weighted tendency (Fig. 3b) is the temperature forcing tendency term. These findings304

suggest that the electrical conductivity tendencies are primarily determined by ocean heat305

uptake, which is consistent with the high correlation between OCC and OHC found by Tross-306

man and Tyler [2019, 2022] given that ocean heat uptake is mostly passively advected and307

diffused globally, particularly outside of the Atlantic Ocean [Garuba and Klinger, 2018; Zika308

et al., 2021].309

4 Conclusions310

In the present study, we investigated the reasons for the high level of full-depth ocean311

heat content (OHC) predictability from full-depth ocean conductivity content (OCC) Tross-312
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man and Tyler [2019, 2022] that could potentially be calculated from magnetic data. We313

used an ocean state estimate (ECCO) to perform this analysis, which we justified by assess-314

ing its agreement with two different observational products (one from satellites and one from315

in-situ data – see Supplementary Information). We performed multiple calculations to as-316

sess the covariability between OHC and (with an EOF analysis) and to ascribe causality to317

specific processes (with an electrical conductivity budget analysis).318

This study provided a first long-term assessment of sea surface electrical conductivity319

statistics using satellite data and found good agreement with the ECCOv4r3 product. Con-320

sistent with the high level of agreement with in-situ temperature and salinity observations321

summarized by Heimbach et al. [2019], we found good agreement between the electrical322

conductivity from ECCOv4r3 and in-situ observations on a seasonal time scale. However,323

the agreement between ECCOv4r3 and in-situ observations degrades at deeper depths and is324

relatively worse below 2000 meters depth in high-latitude regions.325

Lastly, we investigated why OCC and OHC are so strongly related to each other. We326

first demonstrated that the near-surface conductivity predominates the variability in OCC327

and near-surface velocities determine the variability in the horizontal gradients in OCC. We328

then performed EOF and electrical conductivity budget analyses. The EOF analysis sug-329

gested that the drivers of the vast majority of the variance in the OHC and OCC fields from330

ECCOv4r3 are similar. We further found that the temperature forcing tendency dominates331

the electrical conductivity budget, but the advection tendency terms can be important locally332

and at particular times of the year. These results suggest that the main reason why the OHC333

(anomaly) is highly predictable from the OCC (anomaly) is that ocean heat uptake is pri-334

marily driving the trends in electrical conductivity. This study suggests that developing the335

capability to monitor OCC using available observing systems (e.g., satellite magnetometry336

and land observatories) would be beneficial to ocean heat content monitoring efforts.337
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Table 1. The area-weighted global averages of the pointwise temporal correlations between each of the

electrical conductivity budget terms and the total tendency term, plus or minus the spatial standard deviation

of the temporal correlations. Also listed are in parentheses are the (minimum, maximum) values of these

temporal correlations.

528

529

530

531

budget term correlation with total tendency term

Horiz adv T -0.032 + 0.10 (-0.60, 0.57)

Vert adv T 0.0062 + 0.11 (-0.56, 0.66)

Horiz diff T -0.0072 + 0.11 (-0.82, 0.84)

Vert diff T -0.061 + 0.15 (-0.79, 0.53)

Forcing T 0.82 + 0.35 (0.00070, 1.0)

Horiz adv S 0.014 + 0.18 (-0.81, 0.90)

Vert adv S -0.29 + 0.22 (-0.99, 0.40)

Horiz diff S 0.015 + 0.11 (-0.64, 0.74)

Vert diff S -0.017 + 0.092 (-0.69, 0.60)

Forcing S 0.0035 + 0.037 (-0.50, 0.36)
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a) First EOF of OCC (51% of variance)

d) Second EOF of OCC (12% of variance)
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Figure 1. The first (panels a-c) and second (panels d-f) empirical orthogonal functions for area-weighted

and normalized (scaled by standard deviations of) ocean conductivity content (OCC - panels a and d), ocean

heat content (OHC - panels b and e), and ocean salt content (OSC - panels c and f). The inset time series

over Eurasia are the corresponding Principal Components as a function of time. The units are dimensionless

in panels a-f. Also shown are the maximum canonical spatial correlations (black curves) and maximum and

minimum bootstrapped samples of spatial correlations (red dashed curves) around average spatial correlations

(solid green curves) between the OCC EOFs and OHC EOFs as a function of EOF number (panel g) and

between the OCC EOFs and OSC EOFs as a function of EOF number (panel h).
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a) Horizontal advection of T [S m-1 s-1]
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e) Horizontal diffusion of T [S m-1 s-1] f) Vertical diffusion of T [S m-1 s-1] g) Horizontal diffusion of S [S m-1 s-1] h) Vertical diffusion of S [S m-1 s-1]

i) Forcing term of T (divided by 10) [S m-1 s-1] j) Total tendency of T [S m-1 s-1] k) Forcing term of S [S m-1 s-1] l) Total tendency of S [S m-1 s-1]
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Figure 2. The depth-averaged electrical conductivity budget contributions (units in S m−1 s−1) broken up

into (a,c) horizontal advection, (b,d) vertical advection, (e,g) horizontal diffusion, (f,h) vertical diffusion, (i,k)

forcing, and (j,l) total tendency terms for temperature (a-b, e-f, i-j) and salinity (c-d, g-h, k-l) terms. Note that

the temperature forcing term has been divided by a factor of 10 to appear on the same colorbar scale as the

other terms.
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Latitude Time

a) Zonally- and depth-averaged tendencies [S m-1 s-1] b) Globally-averaged tendencies [S m-1 s-1]

Figure 3. (Panel a) The zonally- and depth-averaged electrical conductivity budget contributions (units in

S m−1 s−1) broken up into horizontal advection (blue), vertical advection (red), horizontal diffusion (green),

vertical diffusion (cyan), forcing (magenta), and total (black) tendency terms for temperature (solid) and salin-

ity (dotted) terms and (panel b) the globally-averaged electrical conductivity budget contributions (units in S

m−1 s−1) broken up into the same tendency terms.
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a) Average of OCC linear trend [S] b) Average of OCC gradients linear trend [S m-1]
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a) Standard deviation of OCC [S] b) Standard deviation of OCC gradients [S m-1]
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4. Multivariate empirical orthogonal function (MEOF) analysis of ECCOv4r3

5. Figures S1-S5

Additional Supporting Information

1. Captions for Figures S1-S5

Observations for assessment of ECCOv4r3

We make use of the optimally interpolated sea surface temperature (OISST) combined with

either the Jet Propulsion Laboratory’s Soil Moisture Active Passive (SMAP) satellite mission

Level-2 sea surface salinity (SSS) or the European Space Agency’s Soil Moisture and Ocean

Salinity (SMOS) mission Level-2 SSS data sets [Reul et al., 2020] to calculate the sea surface

conductivity (SSC). We require the OISST and either SMAP or SMOS data to be within 3.5

days and 50 km of each other to be considered simultaneous. We also mask out regions where

the cold brightness temperature biases prevent us from retrieving reliable SSS data. These

requirements prevents us from calculating an average or standard deviation of the SSC at every

point where there are OISST data.

Because the ECCOv4r3 data are monthly, SMAP samples the same location every eight days,

SMOS samples approximately the same location every eight days, and OISST is daily, we av-

eraged the satellite-derived data over monthly time frames to compare its temporal variability

with the same from model output. The ECCOv4r3 data have a longer time frame than the

SMAP+OISST or SMOS+OISST time frames, so we only used 2010-2015 for ECCOv4r3; us-

ing the entire 1992-2015 time period isn’t noticeably different. Such a short time frame doesn’t

allow us to distinguish temporal trends in the data and there are no visually distinguishable

differences in the temporal standard deviations of the ECCOv4r3 data over 2010-2015 with
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or without detrending. Thus, we only remove the temporal mean (as opposed to trend) when

computing the temporal standard deviations in the SSC.

We also make use of the climatological conductivity data described in the Introduction, specif-

ically WOA18 Reagan et al. [2019]. The climatology conductivity data is not simply calculated

from the temperature and salinity climatology data sets, as in Manoj et al. [2006] and Grayver

[2021]. Rather, to retain thermodynamic consistency and also avoid known observational bi-

ases in the differently sampled temperature and salinity observations, the conductivity data is

calculated only from co-sampled temperature and salinity observations. To perform a point-

wise comparison of the WOA18 product with the ECCOv4r3 product, we calculate a seasonal

climatology from the ECCOv4r3 output with the electrical conductivity computed in-line as the

model runs and interpolate the WOA18 seasonal climatology data to the LLC90 grid.

Observational assessment of ECCOv4r3

Using the model output of the ECCO re-run, we compare the variability in electrical conduc-

tivity with that seen in observations. We first focus on the agreement between satellite-derived

data and ECCOv4r3. Figure S1 shows qualitative and generally good quantitative agreement

between the satellite-derived sea surface conductivity (SSC) and the ECCOv4r3-calculated sur-

face layer conductivity. The average SSC is highest between 30oS and 30oN and lowest at high-

latitudes in both the satellite-derived and ECCOv4r3-calculated fields, with their magnitudes

very similar (Figs. S1a-c). The temporal standard deviation of SSC is highest in the vicinity

of the Gulf Stream and Kuroshio Extension as well as in the Mediterranean Sea, Sea of Japan,

and Sea of Okhotsk in ECCOv4r3 (Fig. S1f). These regions are poorly sampled in the satellite

data, but to the extent these regions are sampled, the satellite data also find these regions to have
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the highest temporal variability (Figs. S1d-e). The satellite-derived data and ECCOv4r3 output

agree that the regions with the lowest temporal variability are in both the low- and high-latitude

regions (Figs. S1d-f). There is very high correlation between the satellite-derived data and

ECCOv4r3 output (> 0.9) everywhere with sufficient satellite sampling.

We turn to assessing the agreement between the WOA seasonal conductivity climatology

Tyler et al. [2017] and a seasonal climatology constructed from ECCOv4r3 output first pre-

sented in Trossman and Tyler [2019]. Figure S2 shows that the disagreements between the

World Ocean Atlas (2018) and ECCOv4r3 products increase with depth, which is to be ex-

pected because of the relative dearth of observations with which ECCO is constrained at deeper

depths. Over July-September, the contrast between < 2000 meters depth and > 2000 meters

depth is particularly evident in the root-mean-square errors (RMSEs) because summer is the

only season when northern high-latitude observations are taken, suggesting the disagreements

below 2000 meters depth at northern high-latitudes are larger than elsewhere. The seasonal

correlations are high in a globally averaged sense, but are highest (nearly perfect: > 0.98) at

shallow depths in the open ocean and go down quickly to about 0.5 or less below about 700 me-

ters depth (not shown). The disagreements are particularly evident at depths approaching 6000

meters depth because of the few constraints, even with ship-based hydrographic data. ECCO

achieves relatively small values on continental shelves (particularly where is river outflow) and

along some mid-ocean ridges (where geothermal heating is inadequately applied). However,

electrical conductivities in ECCO are highly consistent with observations in the vast majority

of the ocean.

Temporal variability of OCC and its spatial gradients in ECCOv4r3
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We assess the temporal variability in OCC and its horizontal spatial gradients over the entire

length of the ECCOv4r3 product (1992-2015). We first remove the averages of the OCC (Fig.

S3a), its horizontal spatial gradients (Fig. S3b), and depth-averaged equivalents (Figs. S3c-d),

estimated with a best fit via linear regression, before computing the temporal standard deviations

of each quantity. The averages of the OCC and its depth-average are very similar to the clima-

tology constructed by Tyler et al. [2017] (see their Figure 2). The horizontal spatial gradients

in OCC and its depth-average are largest near the coasts and in the Arctic Ocean, with a wealth

of fine-scale spatial variability. This is important as these gradients appear in the equations

governing ocean electrodynamics. The temporal standard deviations of the linearly detrended

OCC (Fig. S4a) are largest in regions with the largest air-sea fluxes. Without detrending, the

standard deviations of OCC (not shown) look almost identical to the standard deviations of the

sea surface conductivity (Fig. S1f), suggesting that the majority of the variability in OCC oc-

curs near the surface. This is consistent with the findings of Irrgang et al. [2018]. The standard

deviations of the horizontal gradients in OCC (Fig. S4b) tend to be largest in regions with the

steepest topographic slopes as well as in some equatorial regions. The standard deviations of the

depth-averaged conductivity (Fig. S4c) are largest on continental shelves and next-largest over

mid-ocean ridges because of higher surface variability and their relatively shallow depths, indi-

cating that the seafloor depths primarily determine the spatial pattern. The standard deviations

of the horizontal gradients in OCC divided by the seafloor depth h (Fig. S4d) attain their largest

values in regions with the largest topographic slopes, demonstrating that their spatial pattern is

again primarily set by the seafloor depths. While the near-surface variability clearly plays an

important role in setting the variability in OCC and the horizontal gradients in OCC, how the
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variability in OCC relates to that in OHC needs to be better understood, which we investigate

next.

Multivariate empirical orthogonal function (MEOF) analysis of ECCOv4r3

We apply a multivariate empirical orthogonal function (MEOF) analysis of OCC and OHC

to assess their spatial patterns of covariability. We remove the temporal means of the OCC and

OHC fields, area-weight each field, and normalize them by their standard deviations prior to

calculating the MEOFs, as we did with the EOF analyses shown in Fig. 1. The MEOF analysis

suggests the first MEOF (Figs. S5a-b) explains about the same percent of the (co)variance

(between one-third and one-half) as our EOF analyses shown in the main text (Figs. 1a-b). The

second MEOF for OCC and OHC are related to natural climate variability (Figs. S5c-d) and

explains about the same percent of the (co)variance (10-15%) as our EOF analyses shown in the

main text (Figs. 1d-e). The MEOF spatial patterns shown in Fig. S5 are visually identical to

those shown in Figs. 1a-b and 1d-e, apart from their sign.
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a) Average of SSC from SMAP+OISST [S m-1] b) Average of SSC from SMOS+OISST [S m-1] c) Average of SSC from ECCO [S m-1]
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d) Standard deviation of SSC
    from SMAP+OISST [S m-1]

e) Standard deviation of SSC
    from SMOS+OISST [S m-1]

f) Standard deviation of SSC from
ECCO [S m-1]

Figure S1. The average sea surface conductivity (SSC [units in S m−1]) (panels a-c) and standard

deviation of SSC (panels d-f) over the length of the SMAP mission (April of 2015 through 2021 -

panels a and d), over the length of the SMOS mission (June of 2010 through 2021 - panels b and e),

and over the length of the ECCOv4r3 product (January of 1992 through 2015 - panels c and f).
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Figure S2. The depth-averaged electrical conductivity from the World Ocean Atlas (2018) or WOA

(abscissa) and ECCOv4r3 (ordinate) seasonal climatologies from January-March (panel a), April-June

(panel b), July-September (panel c), and October-December (panel d). The inset profiles in each panel

indicate the root-mean-square error (RMSE) between the WOA and ECCOv4r3 products as a function

of depth.
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a) Average of OCC linear trend [S] b) Average of OCC gradients linear trend [S m-1]
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c) Average of OCC/h linear trend [S m-1] d) Average of OCC/h gradients linear trend [S m-2]

Figure S3. The temporal averages of the linear regression-based predictions for the ocean conductivity

content (OCC) (panel a; units in S); horizontal gradients in OCC (b; units in S m−1); depth-averaged

electrical conductivity (OCC/h) (c; units in S m−1), and the horizontal gradients in OCC divided by the

seafloor depth (d; units in S m−2) from ECCOv4r3.
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a) Standard deviation of OCC [S] b) Standard deviation of OCC gradients [S m-1]
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c) Standard deviation of OCC/h [S m-1] d) Standard deviation of OCC/h gradients [S m-2]

Figure S4. The temporal standard deviations of the ocean conductivity content (OCC) (panel a; units

in S); horizontal gradients in OCC (b; units in S m−1); depth-averaged electrical conductivity (OCC/h)

(c; units in S m−1), and the horizontal gradients in OCC divided by the seafloor depth (d; units in S

m−2) from ECCOv4r3.
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a) First MEOF of OCC (44% of variance)
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b) First MEOF of OHC (44% of variance)
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c) Second MEOF of OCC (13% of variance)
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Figure S5. The first (panels a-b) and second (panels c-d) multivariate empirical orthogonal func-

tions for area-weighted and normalized (scaled by standard deviations of) ocean conductivity content

(OCC) and ocean heat content (OHC) from ECCOv4r3. The inset time series over Eurasia are the

corresponding Principal Components as a function of time. The units are dimensionless for each panel.
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