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Abstract

Accurate models of water withdrawal are crucial in anticipating the potential water use impacts of drought and climate change.

Machine-learning methods are increasingly used in water withdrawal prediction due to their ability to model the complex,

nonlinear relationship between water use and potential explanatory factors. However, most machine learning methods do not

explicitly address the hierarchical nature of water use data, where multiple observations are typically available for multiple

facilities, and these facilities can be grouped an organized in a variety of different ways. This work presents a novel approach for

prediction of water withdrawals across multiple usage sectors using an ensemble of models fit at different hierarchical levels. A

dataset of over 300,000 records of water withdrawal was used to fit models at the facility and sectoral grouping levels, as well as

across facility clusters defined by temporal water use characteristics. Using repeated holdout cross validation, it demonstrates

that ensemble predictions based on models learned from different data groupings improve withdrawal predictions for 63% of

facilities relative to facility-level models. The relative improvement gained by ensemble modeling was greatest for facilities with

fewer observations and higher variance, indicating its potential value in predicting withdrawal for facilities with relatively short

data records or data quality issues. Inspection of the ensemble weights indicated that cluster level weights were often higher

than sector level weights, pointing towards the value of learning from the behavior of facilities with similar water use patterns,

even if they are in a different sector.
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Key points:  6 

1. A novel method for withdrawal prediction using hierarchical machine learning is presented.  7 

2. Hierarchical ensemble models reduce predictive errors for a majority of facilities analyzed. 8 

3. Ensemble models are most beneficial in facilities with high variance and fewer observations of 9 

withdrawal.   10 
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Abstract:  16 

Accurate models of water withdrawal are crucial in anticipating the potential water use impacts 17 

of drought and climate change. Machine-learning methods are increasingly used in water 18 

withdrawal prediction due to their ability to model the complex, nonlinear relationship between 19 

water use and potential explanatory factors. However, most machine learning methods do not 20 

explicitly address the hierarchical nature of water use data, where multiple observations are 21 

typically available for multiple facilities, and these facilities can be grouped an organized in a 22 

variety of different ways. This work presents a novel approach for prediction of water 23 

withdrawals across multiple usage sectors using an ensemble of models fit at different 24 

hierarchical levels. A dataset of over 300,000 records of water withdrawal was used to fit models 25 

at the facility and sectoral grouping levels, as well as across facility clusters defined by temporal 26 

water use characteristics. Using repeated holdout cross validation, it demonstrates that ensemble 27 

predictions based on models learned from different data groupings improve withdrawal 28 

predictions for 63% of facilities relative to facility-level models. The relative improvement 29 

gained by ensemble modeling was greatest for facilities with fewer observations and higher 30 

variance, indicating its potential value in predicting withdrawal for facilities with relatively short 31 

data records or data quality issues. Inspection of the ensemble weights indicated that cluster level 32 

weights were often higher than sector level weights, pointing towards the value of learning from 33 

the behavior of facilities with similar water use patterns, even if they are in a different sector.  34 

 35 
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1. Introduction 38 

 Sustainable water resources management requires accurate models, predictions, and 39 

projections of water demand. Short-term water use forecasting can be crucial in drought 40 

management and utility operations, particularly given the climatic sensitivity of outdoor and 41 

cooling water use. Longer-term projections of water use can help identify potential supply risks 42 

under conditions of population growth (Vörösmarty et al., 2000) and climate change (Brown et 43 

al., 2013). Accurate models and projections of water demand are especially valuable in locations 44 

where water management institutions have relatively limited control on water use; this is the case 45 

in many Eastern states where large portions of withdrawal are not subject to permitting 46 

requirements (Virginia Department of Environmental Quality, 2022). However, the factors that 47 

govern water demand are highly complex and involve interactions between climatic and 48 

environmental conditions, socio-economic factors, pricing, and institutional governance 49 

structures. Given this complexity, it is unsurprising that many water use forecasts turn out to be 50 

inaccurate in hindsight (Perrone et al., 2015).  51 

 Recognizing this need, numerous studies have used statistical regression models to 52 

identify the environmental, socioeconomic, and institutional factors associated with greater 53 

volumes of water use. For instance, multiple studies have demonstrated the relationship between 54 

climatic conditions, land use, and household water use in specific municipalities (e.g., Balling et 55 

al., 2008; L. House-Peters et al., 2010; Lee et al., 2015; Mini et al., 2014). Several studies have 56 

leveraged broad-scale water use data to characterize drivers of broad geographic variability in 57 

per-capita municipal water use efficiency and trends (Chinnasamy et al., 2021; 58 

Sankarasubramanian et al., 2017; Worland et al., 2018) and irrigation withdrawals (Das et al., 59 

2018).   60 



Because the factors that influence water use tend to be highly complex and nonlinear, 61 

there has been increasing interest in the use of machine learning to model the relationship 62 

between water use and potential explanatory factors. For instance, Bolorinos et al. (2020) used 63 

random forests to model bi-monthly water demand for municipal customers and identify 64 

drought-induced changes in water consumption. Lamb et al. (2021) demonstrated how boosted 65 

regression trees could be used to model the relationship between groundwater pumping and 66 

numerical and categorical explanatory variables that can better represented governance 67 

differences. Recognizing that a large number of machine learning methods exist and may differ 68 

in terms of their predictive capabilities, Wongso et al. (2020) compared the ability of four 69 

different machine learning methods to predict state-level per-capita water use. When compared 70 

with linear regression approaches, ML models are often able to achieve lower predictive errors 71 

(Bolorinos et al., 2020; Wongso et al., 2020), pointing towards their potential value in water use 72 

modeling.  73 

Across this body of research, one factor that is not always explicitly considered is the 74 

way in which the structure of water use data influences model predictions and inferences. Water 75 

use data is inherently hierarchical, with multiple potential options for grouping and categorizing 76 

observations. For instance, water use datasets often include observations through time for 77 

multiple customers or water users. These water users in turn can be grouped or classified based 78 

on geographic location, water use sector, or institutional governance structures. Depending on 79 

their structure, regression approaches may be capturing different drivers of variability that lead to 80 

different management implications. Models of cross-sectional variability across different users 81 

and locations can assist in targeting conservation measures (Deoreo & Mayer, 2012; Suero et al., 82 

2012), whereas models of temporal variability can lead to more accurate predictions of water use 83 



under different policy and drought conditions (Hester & Larson, 2016). Recognizing this, 84 

longitudinal or mixed effects regression has become a standard statistical approach in modeling 85 

water use (Baerenklau et al., 2014; L. A. House-Peters & Chang, 2011; Polebitski & Palmer, 86 

2010; J. Shortridge & DiCarlo, 2020). Longitudinal regression, and other forms of hierarchical 87 

regression more generally, allow model parameters to differ across groups in the data, while still 88 

constraining those parameter values based on population-level characteristics. This provides a 89 

middle ground between pooled regression models, where all observations are grouped together 90 

and described via a single set of model parameters, and unpooled regression where a unique 91 

model is fit for each group in the data (Gelman & Hill, 2007).  92 

Although hierarchical data structures have received less focus in the machine learning 93 

methodologies, recent research has begun to develop new approaches that account for grouped 94 

data structures. For example, the mixed effects random forest (MERF) approach models 95 

individual predictions through time as an additive function of a random forest model of 96 

population-level mean behavior processes and individual-level random effects (Hajjem et al., 97 

2014). This approach was later extended to account for high-dimensional data that includes a 98 

large number of predictor variables relative to observations (Capitaine et al., 2021). Several 99 

studies have proposed methods that integrate regression and classification trees within a mixed 100 

modeling framework to address subgroups and hiearchies that exist in clinical trial data 101 

(Fokkema et al., 2018; Fokkema et al., 2021; Seibold et al., 2019). Other methods leverage 102 

ensemble learning, where predictions from multiple models are aggregated into a single 103 

prediction. For instance, Eygi Erdogan et al. (2021) create an ensemble of support vector 104 

machine models trained on different time intervals in a panel dataset. Ensemble learning, in 105 

which multiple models are independently fit to a dataset and combined into a single prediction, 106 



has been found to generally reduce model variance which results in more accurate predictions on 107 

new data (James et al., 2021; Kuncheva, 2014). 108 

The objective of this research was to develop and assess a novel approach for prediction 109 

of water withdrawals across multiple usage sectors using an ensemble of machine learning 110 

models fit at different hierarchical levels. This work leverages 29 years of monthly withdrawal 111 

data from approximately 2,500 water using facilities across Virginia. Models were fit at different 112 

grouping levels, ranging from single-facility models to sector-wide models, and used multiple 113 

climatic and socioeconomic variables as predictor variables. A cluster analysis was also 114 

conducted to identify clusters of facilities with similar temporal patterns of water withdrawal, 115 

even if they were not in the same usage sector, with cluster-level models fit to observations 116 

within these groups. Grouping level models were then combined into a weighted ensemble 117 

prediction using quadratic programming. The predictive accuracy of all models was evaluated 118 

through a repeated holdout cross validation approach, and compared to a null model where 119 

facility-level withdrawal was based on long-term averages. In addition to assessing predictive 120 

accuracy, the relative weights applied to different grouping level models were used to evaluate 121 

the relative value of different grouping levels within the ensemble approach. Finally, the facility-122 

level characteristics associated with improved ensemble predictions were identified to better 123 

understand the conditions in which ensemble modeling provides the most value.  124 

2. Methods 125 

2.1 Data Sources and Processing 126 

2.1.1 Withdrawal Data 127 



This analysis used long-term records water withdrawal provided by the Virginia 128 

Department of Environmental Quality (VDEQ). All water users in Virginia who withdrawal 129 

more than 10,000 gallons per day (non-agricultural users) or 1 million gallons (MG) in any 130 

single month for crop irrigation are required to report monthly water withdrawal to VDEQ. This 131 

dataset includes 313,321 nonzero monthly withdrawal records between 1990 and 2018 from 132 

2,579 water using facilities across eight water use sectors (Table 1). County location is available 133 

for all facilities within the dataset. Note that agriculture refers to livestock and agricultural 134 

processing operations, rather than crop irrigation. Additional details on withdrawal data are 135 

presented in Shortridge and DiCarlo (2020). However, many of these facilities only have short-136 

term records of water withdrawal or a majority of months with zero reported withdrawals. To 137 

ensure that all facilities had sufficient data available for model training, weighting, and 138 

validation, only facilities with at least 36 nonzero withdrawal observations were retained for 139 

inclusion in the analysis.  140 

 All Data Retained for Analysis 

Sector 

Facilities 

(n) 

Observations 

(n) 

Facilities 

(n) 

Observations 

(n) 

Total water use 

(MG/month) 

Agriculture (Ag) 155 7,032 36 5,914 129 

Aquaculture (Aq) 14 2,978 12 2,913 866 

Commercial (Com) 463 55,573 292 52,721 740 

Industrial (Ind) 211 37,464 154 36,968 16,000 

Irrigation (Irr) 727 23,036 187 18,157 1,310 

Mining (Min) 91 14,394 70 14,260 1,320 

Municipal (Mun) 894 166,747 735 164,718 24,900 

Thermoelectric (Thm) 24 6,097 23 6,073 201,000 

Total 2,579 313,321 1,509 301,724 246,000 

Table 1: Summary of withdrawal data used in model development 141 

   142 



Water withdrawal volumes across different users, even within a single usage sector, often 143 

vary across several orders of magnitude. Many water users also exhibit significant seasonal water 144 

user patterns as well. To address this variability, all water withdrawal records were converted to 145 

water withdrawal anomalies as in Equation 1: 146 

 147 

𝑊_𝐴𝑁𝑓,𝑡 =  
𝑊_𝑂𝑓,𝑡− 𝑊_𝑂̅̅ ̅̅ ̅̅ 𝑓,𝑚

𝑠𝑑(𝑊_𝑂𝑓,𝑚)
         (1) 148 

 149 

where W_ANf,t is the withdrawal anomaly in facility f at time period t; W_Of,t is the observed 150 

withdrawal in facility f at time t, 𝑊_𝑂̅̅ ̅̅ ̅̅
𝑓,𝑚  is the average withdrawal in facility f for month m; 151 

and sd(W_Of,m) is the standard deviation of withdrawal in facility f during month m. Note that 152 

estimating anomalies thus requires at least two years of data for each facility. 153 

2.1.2 Predictor Variables 154 

 A total of thirteen socio-economic and four climatic predictor variables were included as 155 

potential predictors of water withdrawal. Socio-economic variables are summarized in Table 2. 156 

These variables represented a variety of population, economic, and land-use characteristics that 157 

have been shown to have relationships with water withdrawals in previous research (e.g., 158 

Sankarasubramanian et al., 2017; Shortridge & DiCarlo, 2020; Worland et al., 2018). Socio-159 

economic predictor variables were obtained from the U.S. Census (US Census Bureau, 2022), 160 

U.S. Bureau of Economic Analysis (US Bureau of Economic Analysis, 2022), USDA National 161 

Agricultural Statistics Service (US Department of Agriculture, 2017), the USGS FORecasting 162 

SCEnarios of Land-use Change (FORE-SCE) model (Sohl et al., 2007), and the U.S. Energy 163 



Information Administration (US Energy Information Administration, 2022). Predictor variables 164 

that exhibited trends through time were linearly detrended prior to inclusion in the model (see 165 

Table 2).  166 

 Additionally, three climatic predictor variables were included to account for widespread 167 

evidence of the relationship between weather and water withdrawals (e.g., Brown et al., 2013; 168 

House-Peters & Chang, 2011; Lee et al., 2015). This included maximum daily temperature, total 169 

precipitation, and daily precipitation variability as quantified by the Gini coefficient (Marston & 170 

Ellis, 2019; Rajah et al., 2014). The Gini coefficient is a non-dimensional representation of the 171 

inequality in a distribution ranging from 0 to 1, with higher values indicating more inequality. 172 

Recent research has demonstrated an increasing trend in Gini coefficient rainfall values in the 173 

Eastern U.S., indicating that a larger portion of rainfall is occurring on a smaller number of days 174 

(Marston & Ellis, 2019; Rajah et al., 2014); this increase in rainfall variability is also correlated 175 

with greater water use (Shortridge & DiCarlo, 2020). Gridded daily values of maximum 176 

temperature and precipitation from 1990 – 2018 were obtained from the PRISM dataset (Daly et 177 

al., 2008) and spatially aggregated to county-level daily values. These county level values were 178 

then temporally aggregated to monthly estimate of average high temperature, total precipitation, 179 

and precipitation Gini coefficient.  180 

Virginia exhibits several spatial patterns of variability in long-term climate conditions, 181 

most notably higher temperatures in the southern inland portion of the state, lower temperatures 182 

in the Appalachian and Blue Ridge Mountains, and a rain shadow along the western border of 183 

the state. To account for this cross-sectional variability as well as seasonal differences, all 184 

monthly climate data were transformed to monthly anomaly values prior to inclusion within the 185 

model (Shortridge et al., 2016):  186 



 187 

𝐴𝑁𝑐,𝑡 =  
𝑂𝑐,𝑡− �̅�𝑐,𝑚

𝑠𝑑(𝑂𝑐,𝑚)
         (2) 188 

 189 

where Oc,t is the observed value of a climate variable (e.g., total precipitation) in county c and 190 

time period t; Ōc,m is the monthly normal (long-term mean from 1990-2018) observation of that 191 

variable in that county; and sd(Oc,m) is the standard deviation of all observations in that month. 192 

In this way, the anomaly value can represent how weather conditions compared to long-term 193 

averages for that specific month and location. For instance, an anomaly temperature value of 0.0 194 

would indicate that the temperature in that month and county was exactly equal to the long-term 195 

mean temperature in that month and county, while a value of 1.0 would indicate that the 196 

temperature was one standard deviation higher than the long-term mean.197 



Explanatory 

Variable  

Description and Rationale  

(temporal and geographic resolution in parentheses) Source Sector models  

Population 

County-level population (detrended); included to account for higher municipal water 

withdrawals as population grows (annual, county) 
US Census 

Mun 

Per-capita 

personal 

income 

Percent change (from previous year) in personal income per capita; Spatially-explicit 

representation of general economic conditions at the county level (annual, county) US Bureau of 

Economic 

Analysis  

All 

Manufacturing 

GDP 

Virginia GDP in current dollars from manufacturing (detrended); Spatially-general 

representation of manufacturing sector economic strength (annual, state) Com, Ind, Min 

Agricultural 

GDP 

Virginia GDP in current dollars from agriculture (detrended); Spatially-general representation 

of agricultural sector economic strength (annual, state) Ag, Aq, Com, Irr 

USDA Price 

Ratio 

Ratio of USDA Prices Received Index to Prices Paid Index (detrended); Spatially-general 

representation of economic conditions for agricultural producers (monthly, national) 
USDA NASS 

Ag, Aq, Irr 

Agricultural 

Land Cover 

Percentage of county land use classified as cultivated cropland, hay or pasture; Account for 

expansion and decline of agricultural land cover over study period (annual, county) 
USGS FORE-

SCE land cover 

model 

Ag, Aq, Irr 

Developed land 

cover density 

Population per square kilometer of developed area; Included to account for differing 

development densities (annual, county) Mun 

Energy Prices 

Virginia total energy prices in dollars per million BTU (detrended); Spatially-general 

representation of energy prices (annual, state) 
US Energy 

Information 

Administration  

All 

Electricity 

Sales 

Virginia retail electricity sales in millions of kWh (detrended); Spatially-general 

representation of energy consumption (annual, state) Thm 

Energy 

Production 

Virginia primary energy production in trillion BTU (detrended); Spatially-general 

representation of energy production (annual, state) Min, Thm 

Table 2: Summary of socio-economic predictor variables 



2.2 Modeling Approach 198 

 The predictor variables described above were used to estimate monthly water withdrawal 199 

at the facility level using an ensemble of models fit across different grouping levels. Grouping 200 

level refers to the specificity of data included to fit the model and included a facility level, sector 201 

level, and two cluster level groupings. At each level, multiple model formulations (parametric 202 

linear models, semi-parametric non-linear models, and nonparametric machine learning models) 203 

were tested and the best model in terms of out-of-sample predictive error minimization was 204 

retained. These models were combined into a multi-level ensemble model that predicted 205 

withdrawal as a weighted average of predictions from the different grouping level models. Model 206 

performance was quantified via a repeated cross validation approach where the data were 207 

randomly partitioned at each iteration into distinct training, weighting, and testing datasets. An 208 

overview of this process is shown in Figure 1, and additional details are presented in the 209 

following sections.  210 



 211 

Figure 1: Diagram overview of modeling approach used during each iteration of cross 212 

validation 213 

  214 



 Model name Description and Rationale 

Facility Grouping 

Level 

Separate model fit to each facility in the dataset. Captures facility 

level water use behavior, but not generalizable to other facilities.  

Sector Grouping 

Level 

Model fit using data from all facilities within each water use sector. 

Captures general water use behavior across multiple facilities at the 

expense of accuracy at individual facility level.  

Large Cluster 

Grouping Level 

Model fit using data from all facilities within each large cluster 

(k=3). Clusters are defined based on temporal water use patterns, and 

thus contain facilities with similar withdrawal patterns even if they 

are different water use sectors.  

Small Cluster 

Grouping Level 

Model fit using data from all facilities within each small cluster 

(k=8). Same as large clusters, but with facilities partitioned into 

smaller groups with less in-group variability in temporal withdrawal 

patterns. 

Ensemble  Withdrawal predictions are a weighted average of the four grouping 

level models above.  

Null  Withdrawal predictions are equal to the long-term average 

withdrawal in each month for each facility. Included as a baseline for 

comparison.  

Table 3: Summary of models and rationale for inclusion 215 

2.2.1 Facility Grouping and Clustering 216 

 The water withdrawal data used in this study can be grouped at multiple different levels, 217 

some of which are hierarchical. Each water using facility has multiple observations of water use 218 

through time. Facilities are often categorized by water use sector, under the assumption that two 219 

facilities in the same water use sector will exhibit similar water use behavior. For this study, 220 

predictive models were fit at four different levels of facility grouping: facility level, sectoral 221 

level, small cluster level, and large cluster level (Table 3). At the finest level, facility level 222 

grouping entailed fitting a distinct model for each facility in the dataset. This allows for the 223 

model to be highly tailored to the water use characteristics of that facility. However, it can result 224 

in a model that is less generalizable to new data, particularly in instances where a facility does 225 

not have many observations to draw from (Gelman & Hill, 2007). The next level of grouping 226 

was the sectoral level, where a single model was fit to all facilities within that sector. This 227 



provides a representation of generalized water use patterns in a given sector, such as the higher 228 

irrigation withdrawals that are observed during periods of high temperature and low rainfall 229 

(Shortridge & DiCarlo, 2020). This provides a model of how sectoral water withdrawals relate in 230 

general with predictor variables, but will likely result in less accurate predictions for a single 231 

facility.  232 

 One limitation with sectoral grouping is that facilities in a single sector might actually 233 

exhibit very different pattern of water use, particularly in the industrial and commercial sectors 234 

(Attaallah, 2018; McCarthy et al., 2022). Thus, the small and large cluster grouping levels were 235 

determined based on the results of a hierarchical cluster analysis (Everitt et al., 2011) that 236 

identified coherent facility groupings based on five water use characteristics calculated for each 237 

facility:  238 

• Mean withdrawal volume (MG/month), log transformed. 239 

• Coefficient of variation: standard deviation of withdrawal divided by mean. 240 

• Seasonality: the lowest three-month mean withdrawal divided by the highest three-month 241 

mean withdrawal, where lower values indicate greater seasonality in withdrawal volume. 242 

• Autocorrelation: maximum degree of autocorrelation observed at any time lag.  243 

• Number of Observations: the number of nonzero withdrawal observations available.  244 

Figures summarizing observed values for the five characteristics for all facilities are included as 245 

supplementary material. To determine the optimal number of clusters, facilities were divided into 246 

k ∈ {1, 15} hierarchical clusters based on Euclidian distance using the FactoExtra package in R 247 

(Kassambara & Mundt, 2020). Gap statistic estimates for each value of k (included in the 248 

supplementary material) exhibited non-monotonic behavior indicating well defined clusters at k 249 



= 3 and k = 8, suggesting that there were three large clusters of facilities that could be further 250 

divided into eight smaller subclusters (Tibshirani et al., 2001). An analysis of correspondence 251 

between cluster assignment and sector indicated that while certain clusters largely corresponded 252 

to a single sector, the majority did not. This suggests that there are certain patterns of water use 253 

behavior that cannot be explained simply by sectoral classifications, echoing previous research 254 

that demonstrates significant variability across water use behavior across facilities that are 255 

generally grouped into a single sectoral classification (Attaallah, 2018; McCarthy et al., 2022). 256 

Thus, models were also fit at the large (k = 3) and small (k = 8) cluster levels, where data from 257 

all facilities within a single cluster were combined into a single model. Additional details and 258 

results of the cluster analysis are included in the supplementary material. 259 

2.2.2 Regression and Machine Learning Models 260 

 For each of the grouping levels described above, multiple regression and machine 261 

learning approaches were compared to identify the most effective predictor of water 262 

withdrawals. The general formulation used in modeling withdrawal anomalies is shown in 263 

Equation 3, where W_ANf is a vector of anomaly withdrawal predictions of length t in facility f, 264 

where t is the number of months of observations available in the training dataset. These were 265 

estimated using a generalized function of a m x t matrix of m predictor variables across t months 266 

Xc, plus an error term ε. Note that because predictor variables were available at the county rather 267 

than facility level, facility withdrawal is estimated as a function of predictor variables for its 268 

county location.   269 

𝑾_𝑨𝑵𝒇 = 𝑓(𝑿𝒄) +  𝜀      (3) 270 



Three different forms for the functional relationship f were tested at each grouping level. The 271 

first was a gaussian linear regression (GLM) model. The second was a semi-parameteric 272 

Gaussian generalized additive model (GAM), where smoothing functions are applied to the 273 

predictor variables to capture non-linear relationships between the predictor and response 274 

variables without a- priori assumptions about the form of that relationship (Hastie & Tibshirani, 275 

1986). GAM models were fit using the mgcv package in R (Wood, 2011). The final model form 276 

was a nonparametric random forest (RF) model, where predictions from multiple rule-based 277 

regression trees are combined into a single prediction (Breiman, 2001). RF models were fit using 278 

the randomForest package in R (Liaw & Wiener, 2002). All model predictions were then 279 

converted from anomaly values back to a vector of withdrawal predictions as in Equation 4 prior 280 

to estimating model error: 281 

𝑾_𝑷𝒇 =  𝑾_𝑨𝑵𝒇 𝑥 𝑠𝑑(𝑊_𝑂𝑓,𝑚) +  𝑊_𝑂̅̅ ̅̅ ̅̅ ̅
𝑓,𝑚    (4) 282 

 283 

 For each grouping level model, the GLM, GAM, and RF models were compared in terms 284 

of their mean absolute error across the weighting dataset, with the lowest error model retained. 285 

Following this process, each facility had four sets of withdrawal predictions generated by models 286 

fit at the facility, sector, small cluster, and large cluster grouping level. These predictions were 287 

then combined into a weighted ensemble prediction as follows: 288 

𝑾_𝑷_𝑬𝒏𝒔𝒇 = 𝒘𝒇 ∙  𝑾_𝑷𝒇_𝒂𝒍𝒍      (5) 289 

Where wf is a facility-specific vector of weights summing to 1.0, and W_Pf_all is an n x 4 matrix 290 

of predictions from the four different grouping level models (facility, sector, large cluster, and 291 

small cluster) for the n weighting data observations for facility f. The resulting W_P_Ensf  is thus 292 



a vector of n predictions obtained from a weighted average of individual grouping level model 293 

predictions. The values of the weights wf for each facility were estimated using quadratic 294 

programming problem (Goldfarb & Idnani, 1983) implemented via the quadprog package in R 295 

(Turlach et al., 2019) of the form:  296 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑾_𝑶𝒇 −  𝒘𝒇 ∙  𝑾_𝑷𝒇_𝒂𝒍𝒍)
𝟐      (6)  297 

Subject to 298 

∑ 𝑤𝑖

4

𝑖=1

= 1.0 299 

𝑤𝑖  ≥ 0.0 ∀ 𝑖 ∈ [1,4]         (7) 300 

 301 

The four grouping level models, as well as the ensemble model based on the weights calculated 302 

in equations 6-7, were then used to generate withdrawal predictions for the testing dataset.  303 

 304 

2.3 Model Evaluation 305 

 To evaluate models in terms of their out-of-sample predictive accuracy, a 100-fold cross-306 

validation approach was used (Hastie et al., 2009). At each iteration, the data were partitioned 307 

into three groups, with approximately 60% assigned to model training, 20% to model weighting, 308 

and 20% to model testing. The training data were used to fit three models of different functional 309 

forms (GLM, GAM, and RF) for each grouping level described above. These models were then 310 

used to predict withdrawal in the weighting dataset, with a single functional form selected for 311 

each grouping level based on root mean absolute error (RMAE). The predictions from the 312 



selected models were then used to determines the weights used in the ensemble model. Finally, 313 

the grouping level and ensemble models were used to predict withdrawals in the testing dataset. 314 

These predictions were compared to a null model where each prediction of monthly water use 315 

was equal to the long-term monthly mean value for that facility. Thus, the null model captured 316 

seasonal variation for each facility but did not include climatic or socio-economic factors that 317 

could induce variation beyond seasonal patterns. Mean absolute error (MAE) across the testing 318 

dataset was calculated for each model and facility by averaging absolute differences between 319 

observed and predicted withdrawal in each observation n across each holdout iteration h 320 

(Equation 8). Because absolute errors tend to scale with withdrawal volume, relative mean 321 

absolute error (RMAE), where MAE was presented as a fraction of mean facility withdrawal, 322 

was also calculated to allow for comparison of error across facilities with different magnitudes of 323 

withdrawal (Equation 9). 324 

𝑀𝐴𝐸𝑓 =  
1

𝐻
∑  

1

𝑁
∑ 𝑎𝑏𝑠(

𝑁

𝑛=1

𝐻
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𝑊_𝑂𝑓,𝑛 − 𝑊_𝑃𝑓,𝑛) 326 

 (8) 325 
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 (9) 328 

  To better understand the characteristics associated with facilities where ensemble 330 

modeling provided the most benefit relative to facility-specific models, the difference between 331 

RMAE from the facility grouping and ensemble models (Equation 10) was linearly regressed 332 



against facility water use characteristics C. This included the logarithm of mean faculty 333 

withdrawal, the number of nonzero observations, the coefficient of variation, autocorrelation, 334 

seasonality, and a use sector, as defined in Section 2.2.1 above.  335 

𝐸𝑛𝑠𝐼𝑚𝑝𝑓 =  𝑅𝑀𝐴𝐸𝑓_𝑓𝑎𝑐 −  𝑅𝑀𝐴𝐸𝑓_𝑒𝑛𝑠    (10) 336 

 337 

𝐸𝑛𝑠𝐼𝑚𝑝𝑓 =  𝛼 +  𝜷 𝑪𝒇 + 𝜀        (11) 338 

 339 

3. Results  340 

3.1 Model Performance 341 

A summary of RMAE for testing dataset predictions across all 100 holdout cross validations is 342 

presented in Figure 2. For all model structures, relative error depended strongly on the sector 343 

assessed, with the highest predictive errors in agricultural and irrigation sectors. Variations in 344 

error across model structures were relatively small compared to differences across sectors and 345 

the variation in error across facilities within a sector (represented by the size of each box).  346 



 347 

Figure 2: Relative percent errors across facilities in each water use sector. Boxplots show the 348 

distribution of RMAE for all facilities in each sector averaged across cross validation iterations.  349 

 350 

Figure 3 presents a summary of the highest performing grouping level across facilities in 351 

each water use sector, as well as all facilities in the dataset. Across all facilities, the model form 352 

that most often resulted in lowest errors was the facility grouping, which had the best 353 

performance for 33.1% of the analyzed facilities, followed by the ensemble model (21.0%). On 354 

the other hand, the null model had the lowest errors in 15.9% of analyzed facilities. Facilities 355 

across different sectors exhibited different patterns in terms of optimal model selection. For 356 

instance, facility grouping models resulted in lowest errors in a large percentage of industrial 357 

(46.1%), mining (42.9%) and thermoelectric facilities (52.2%). However, facility models 358 

resulted in lowest errors in only 16.7%, 26.0%, and 27.8% of aquaculture, commercial, and 359 



agricultural facilities, respectively. Sector-level models performed well for a relatively high 360 

percentage of irrigation facilities (lowest errors in 27.3% of facilities), but less well in the mining 361 

(7.1%), municipal (9.9%), and industrial (11.0%) sectors.  362 

 363 

 364 

Figure 3: Percentage of facilities where each model type resulted in the highest 365 

performance in terms of RMAE.   366 

  367 

Figure 4 presents a summary of the percentage of facilities where predictions are 368 

improved through the use of a model ensemble relative to the other model forms. Across all 369 

facilities, the use of a model ensemble results in lower errors in 63% - 65% of facilities, 370 

depending on the model form with which it’s compared. The ensemble process results in the 371 

broadest improvement for all non-facility models in the thermoelectric sector. For thermoelectric 372 

facilities, the ensemble model resulted in lower errors in anywhere from 78.3% to 95.7% of 373 

facilities when compared to the null, sector, and cluster grouping models. However, it only 374 



resulted in improved performance in 39.1% of thermoelectric facilities when compared to 375 

facility-specific models. Similar behavior is observed for industrial facilities, with the ensemble 376 

approach reducing errors in 72.7% to 79.2% of facilities relative to the null, sector, and cluster 377 

models, but only 50% of facilities relative to facility-specific models. Ensemble improvements 378 

were most consistent in the municipal sectors, where errors were reduced by 61.5% to 68.3% of 379 

facilities, regardless of the grouping level model with which the ensemble is compared. The 380 

results in Figures 3 and 4 collectively demonstrate that while the ensemble process is unlikely to 381 

result in the optimum prediction for any single individual facility, it is likely to result in better 382 

predictions relative to single grouping level models when applied to many facilities. In this 383 

sense, its value is in providing a general approach that could be applied to many facilities across 384 

a broad, heterogenous dataset, rather than being an optimum approach for a single facility.   385 

 386 

Figure 4: Percentage of facilities where ensemble model reduced errors relative to null 387 

and grouping level models   388 

 389 



3.2 Ensemble Model Structure 390 

 To better understand the relative influence that different individual grouping level models 391 

play within the ensemble predictions, Figure 5 shows density plots of the average weights for each 392 

grouping level model for all facilities in each sector. In all sectors, facility-level weights were 393 

generally higher than weights for other grouping levels models, with the highest facility-level 394 

weights in the sectors where the facility models tended to perform best (industrial, mining, and 395 

thermoelectric). It is notable that the sector-level weights were generally no higher than the cluster 396 

weights, and in several sectors (agriculture, aquaculture, and thermoelectric), the small cluster 397 

weights were often higher than sector level weights. This demonstrates the value of learning from 398 

the behavior of facilities with similar water use patterns, even if they are in a different sector.  399 



 400 

Figure 5: Density plot of mean ensemble model weights across facilities in each sector, averaged 401 

across cross validation iterations 402 



 403 

 Estimate 

Std. 

Error p-value 

Intercept 0.014 0.008 0.078 

log(Water.Use.MGM) -0.001 0.001 0.127 

n.obs.nonzero -2.85E-05 1.13E-05 0.012 

Water.Use.COV 0.016 0.001  < 0.001 

Water.Use.ACF.strength -0.022 0.004 < 0.001 

Water.Use.Seasonality 0.007 0.005 0.186 

UseType (aquaculture) 0.003 0.013 0.839 

UseType (commercial) -0.001 0.007 0.832 

UseType (industrial) -0.005 0.008 0.466 

UseType (irrigation) -0.016 0.007 0.026 

UseType (mining) 0.015 0.008 0.078 

UseType (municipal) 0.004 0.007 0.603 

UseType (thermoelectric) -0.005 0.011 0.631 

Table 4: Factors associated with improved ensemble performance  404 

relative to facility model performance. Bold rows indicate factors significantly associated with a 405 

difference in facility and ensemble performance (p < 0.05). 406 

 407 

 To better understand the facility water use characteristics associated with improved 408 

ensemble model performance relative to facility-grouping models, the predictive improvement 409 

from use of a model ensemble for each facility was regressed against facility water use 410 

characteristics. The results of this regression are presented in Table 4. The ensemble model 411 

tended to provide the most improvement relative to the facility-grouping model in facilities with 412 

a lower number of observations, higher coefficient of variation, and less autocorrelation. 413 

4. Discussion  414 

 Comparing the relative accuracy of different model grouping levels can provide some 415 

insights into the situations in which different model structures may provide optimal predictions. 416 

Across all facilities, the facility-grouping level model most frequently resulted in the lowest 417 

errors, but this still only occurred in 33.1% of facilities. Thus, there were numerous facilities 418 



where a facility-specific model resulted in higher errors than other grouping levels. While the 419 

ensemble model only resulted in error minimization in 21% of facilities, it resulted in error 420 

reduction relative to grouping level models in over 60% of facilities. In this sense, its value is 421 

likely highest in situations where a general modeling approach is needed to simulate withdrawals 422 

across a heterogenous body of water users. The regression results in Table 4 indicate that this is 423 

particularly true in facilities with fewer observations, greater variance, and less autocorrelation. 424 

This result mirrors previous discussions of pooled and unpooled regression models, where 425 

unpooled models fit tend to be overfit and less generalizable when a small number of 426 

observations are available (Gelman & Hill, 2007). High variance in water use observations could 427 

also potentially be indicative of data quality issues in self-reported water use data that have been 428 

observed elsewhere (Chini & Stillwell, 2017; McCarthy et al., 2022; Zhang & Balay, 2014). The 429 

ability to reduce the impact of these errors in predictive models is another potential benefit to the 430 

ensemble modeling approach.   431 

 This work also provides some insights into the relative abilities and limitations in 432 

applying sector-based models for facility-level predictions. Sector grouping models performed 433 

relatively well among agricultural and irrigation facilities, but less well in the industrial, mining, 434 

and municipal sectors. This is possibly due to the high variability in water withdrawal practices 435 

in those sectors. In particular, the industrial sector contains facilities that have a wide range of 436 

end uses for water, including cooling, incorporation into products, and landscape irrigation; this 437 

has been shown to lead to a high degree of variability across facilities in terms of water use and 438 

consumption rates (Attaallah, 2018; McCarthy et al., 2022). It should also be noted that a single 439 

municipal water withdrawing facility in our dataset could potentially serve multiple water supply 440 

utilities beyond the county in which the water is withdrawn. These water transfers present a 441 



challenge for modeling and predicting withdrawal as water demand may be driven by conditions 442 

in counties other than the location of the withdrawal.  443 

Several areas of additional research could be envisioned to build on the results presented 444 

here. For instance, we grouped facilities based on temporal water usage characteristics and 445 

sectoral classifications. However, water withdrawals could also depend on regulatory 446 

governance, with different withdrawal patterns expected in more strict regulatory environments 447 

(such as groundwater management zones). Water source could also be used as a grouping level, 448 

as surface water sources may experience more short-term fluctuations in water availability than 449 

groundwater. Exploration of alternative grouping strategies could be a valuable area of additional 450 

research. Similarly, this work used a global error metric (MAE) that aggregates predictive error 451 

across all observations equally to select the best performing model. However, as water supply 452 

management is typically more concerned with periods of stress and potential water shortage, 453 

other metrics that quantify model performance in terms of identifying periods of high withdrawal 454 

may be of value. For instance, event detection metrics quantify the degree to which the model 455 

captures specific conditions of interest, such as values above a predefined threshold (Liemohn et 456 

al., 2021). The concept of domain applicability can also be used to identify subdomains or 457 

conditions (such as high or low withdrawal periods) in which different models perform optimally 458 

(Sutton et al., 2020). The exploration of different performance measures for model selection 459 

would be a valuable area for further research.  460 

5. Conclusions  461 

This work presents a novel approach for prediction of longitudinal water withdrawals 462 

across multiple usage sectors using an ensemble of machine learning models fit at different 463 

hierarchical grouping levels. These grouping levels included facility and sectoral-level models, 464 



as well as facility clusters determined based on temporal water use characteristics. Grouping 465 

level models were also combined into an ensemble model that predicted withdrawal as a 466 

weighted average of predictions from each individual grouping level model. For all model 467 

structures, relative error depended strongly on the sector assessed, with the highest predictive 468 

errors in agricultural, irrigation, and municipal sectors. Across all facilities, the model form that 469 

most often resulted in lowest errors was the facility grouping model (33.1%) followed by the 470 

ensemble model (21.0%). The use of an ensemble model resulted in more accurate predictions 471 

relative to the facility model in 63% of facilities, and ensemble improvements were greatest for 472 

facilities with relatively few records and high variance in withdrawal. This points to their 473 

potential value in predicting withdrawal for facilities with relatively short records of withdrawal 474 

or data quality issues that could lead to highly variable withdrawal estimates. Inspection of the 475 

weights used in the ensemble model indicated that small cluster weights were often higher than 476 

sector level weights, pointing towards the value of learning from the behavior of facilities with 477 

similar water use patterns, even if they are in a different sector. The ensemble modeling method 478 

presented here can thus provide a general approach for prediction of water withdrawals that can 479 

be applied across heterogenous, multi-sector groupings of water users.  480 
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