
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
21
44
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

High-latitude plasma convection based on SuperDARN

observations and the locally divergence free criterion

William A. Bristow1, Larry R. Lyons2, Yukitoshi (Toshi) Nishimura3, Simon George
Shepherd4, and Eric F. Donovan5

1Pennsylvania State University
2University of California Los Angeles
3Boston University
4Dartmouth College
5University of Calgary

November 23, 2022

Abstract

A new technique for estimating the global-scale pattern of magnetospheric convection in the ionosphere is presented. The tech-

nique uses the SuperDARN line-of-sight velocity observations combined with an empirical convection model and the assumption

that the resulting velocity field is divergence free. In contrast to other techniques for convection estimation, it does not express

the velocity field in terms of known basis vectors and it does not assume that the velocity can be determined from a static

potential. The velocity is estimated by applying Bayesian inverse theory to the input data, model, and constraints. Linear

equations for the plasma velocity at every point in the domain are solved simultaneously in a least-squares sense. Application of

the technique results in convection patterns with spatial resolution equal to the calculation grid. The resulting patterns conform

with expectations based on the observed IMF conditions and display features that show close correspondence to simultaneously

observed features in the auroral luminosity.
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Abstract9

A new technique for estimating the global-scale pattern of magnetospheric convection in the ionosphere is pre-10

sented. The technique uses the SuperDARN line-of-sight velocity observations combined with an empirical con-11

vection model and the assumption that the resulting velocity field is divergence free. In contrast to other tech-12

niques for convection estimation, it does not express the velocity field in terms of known basis vectors and it13

does not assume that the velocity can be determined from a static potential. The velocity is estimated by ap-14

plying Bayesian inverse theory to the input data, model, and constraints. Linear equations for the plasma ve-15

locity at every point in the domain are solved simultaneously in a least-squares sense. Application of the tech-16

nique results in convection patterns with spatial resolution equal to the calculation grid. The resulting pat-17

terns conform with expectations based on the observed IMF conditions and display features that show close18

correspondence to simultaneously observed features in the auroral luminosity.19

1 Introduction20

Estimating the large-scale pattern of plasma motion in the high-latitude ionosphere is necessary for understand-21

ing a number of space physics phenomena. Examples range from studies of the coupling of solar wind energy22

into the magnetosphere to the generation of gravity waves in the thermosphere. It is critical for studies of the23

dynamics of any magnetosphere-ionosphere coupling phenomena, including substorms. Global-circulation mod-24

els such as the Thermosphere Ionosphere Global Circulation Model (TIME-GCM) (Roble & Ridley, 1994) and25

the Global Ionosphere-Thermosphere Model (GITM) (Ridley et al., 2006) require that the potential is spec-26

ified over their entire domain for predicting evolution of the electron density structure and quantifying the trans-27

fer of energy from the plasma to the neutral atmosphere.28

While the scientific need for estimating the convection pattern is clear there is no single instrument that can29

provide its instantaneous measurement, which has led to the development of techniques for combining dis-30

tributed local measurements to produce the large-scale pattern. The first of these techniques were based on31

magnetometer observations and a model for the ionospheric conductance (Kamide et al., 1981; Papitashvili32

et al., 1994). A number of simplifying assumptions allowed the magnetic perturbations that the magnetome-33

ters observed to be expressed in terms of a scalar magnetic potential that was determined from an ionospheric34

equivalent current function. The horizontal ionospheric currents were then determined from the equivalent cur-35

rent, and the electric fields were determined from those currents through Ohm’s law and an assumed conduc-36

tance pattern.37
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The Assimilative Mapping of Ionospheric Electrodynamics (AMIE) technique (Richmond, 1992) was a nat-38

ural progression from the original magnetometer-based estimations. While still reliant on magnetometer ob-39

servations, it allowed incorporation of additional data such as line-of-sight velocities observed by radars and40

satellite based drift meter observations. In AMIE, the electric field in the ionosphere is expressed as a series41

expansion in orthogonal polynomials and the coefficients of those polynomial are determined using a technique42

that accounts for the physical relationship between the observations and the electric field, and the for uncer-43

tainties in the observations. Many of the techniques for convection pattern estimation developed since AMIE44

build upon its rigorous formulation (e.g., Ruohoniemi & Baker, 1998; Matsuo et al., 2005; Cousins et al., 2013b).45

The Super Dual Auroral Radar Network (SuperDARN) was designed for the purpose of providing the obser-46

vations to enable estimates of the large-scale pattern of high-latitude plasma motion over as large area as pos-47

sible (Greenwald et al., 1995). The network grew out of the development of a single HF radar at Goose Bay,48

Labrador, (Greenwald et al., 1985) which demonstrated the ability of an HF radar observe the drift of field-49

aligned plasma irregularities over a field of view that spanned a sector of more than 50◦ in azimuth and more50

than 2000 km in range. The utility of HF radars for observing over large regions has led to the construction51

of more than 30 radars with fields-of-view that cover much of the high-latitude regions of both the northern52

and southern hemispheres. While research addressed by the network has expanded well beyond the original53

vision (e.g. Chisham et al., 2007; Nishitani et al., 2019), its main purpose remains estimation of the large-54

scale convection pattern.55

SuperDARN radars observe the Doppler frequency shift caused by coherent scattering from field-aligned plasma56

irregularities (FAI). The frequency shift translates to the projection of the plasma velocity (v) along the radar57

line of sight, which is referred to as the line-of-sight velocity (vlos). Because the irregularities are strongly aligned58

with the magnetic field, only signals at normal incidence to the field direction scatter back to the radars. Hence59

vlos is due to motion in the field perpendicular direction. For radar signals scattered from F-region altitudes60

the FAI move with the bulk plasma velocity, which is the so-called E-cross-B velocity, where E is the electric61

field in the frame of reference of the measurement, and B is the Earth’s magnetic field. Usually when ana-62

lyzing plasma velocity observations it is assumed that conditions are static, which means that E can be de-63

rived from a potential (E = −∇Φ). In this study a slightly different assumption is used. It is assumed that64

the velocity field is divergence free (∇ · v = 0), which will be shown to encompass the static case but ex-65

tends to some wave electric fields as well.66
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This study presents global-scale patterns of convection estimated from SuperDARN observations by solving67

for the velocity field directly rather than solving for a potential function. The solution does not rely on an ex-68

pression of the field in terms of a series of orthogonal polynomials. Rather, linear equations for the plasma ve-69

locity at every point in the domain are solved simultaneously in a least-squares sense. The system of equa-70

tions expresses the velocity at each point in terms of the radar observations, the divergence free assumption,71

and a climatological model of the velocity.72

2 Review of techniques for forming convection patterns73

The most widely used technique for generation of convection patterns is to express the electrostatic poten-74

tial in a finite order series expansion in spherical harmonics or similar functions. The technique used in this75

study is not such an expansion but the mathematical background is similar.76

Richmond and Kamide (1988) (hereafter RK88) provides a discussion of the mathematical background for es-77

timating the high-latitude potential from a collection of measurements from diverse sources. The manuscript78

describes what is now known as AMIE (Richmond, 1992), which combines measurements from different types79

of instruments (magnetometers, incoherent-scatter radars, satellite drift meters, etc.) in a mathematically rig-80

orous manner. The technique is general and other techniques that have been employed for convection pat-81

tern estimation can be understood from it. Equation 28 of RK88 expresses a set of observations in terms of82

a matrix-vector product plus a residual:83

η = Du+ v, (1)84

where, η is a vector of observations, D is a matrix formed using a set of basis vectors for the data as its columns,85

u is a vector of coefficients of those basis vectors, and v is a residual difference between the observations and86

Du. The residual represents any component of the observations that cannot be expressed in terms of the ba-87

sis vectors, which includes noise and non-noise components of the observations that project into the null space88

of D.89

RK88 assumed that the electric field in the ionosphere, E, can be determined from the electrostatic poten-90

tial, Φ, and that other ionospheric quantities related to the measurements can be determined from E:91

E = −∇Φ, Ii = Σ ·E, J∥i = ∇ · Ii, (2)92
93
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where Ii is the horizontal current vector in the ionosphere, and J∥i is the field-aligned current density in the94

ionosphere. With these assumptions, optimizing the solution in terms of E provides estimates of the other quan-95

tities. Up to this point, the various techniques for estimating the high-latitude potential are essentially the same.96

The differences come in the choice of basis in equation 1, and how the system is constrained so it can be in-97

verted to provide estimates of the vector coefficients (û).98

In RK88, all quantities (observations and fitted parameters) are expressed as the sum of an expected value99

and a deviation. The expected values are determined from ensamble averages, while the deviations are deter-100

mined through inverting equation 1. Elements of D are the values of the electric field basis functions calcu-101

lated at the measurement locations. The basis functions are constructed from the gradient of Φ, which is ex-102

pressed as a sum of functions of co-latitude, θ, and longitude. The longitude functions are simple sinusoids103

while the latitude dependence is given by a piecewise continuous merging of generalized associated Legendre104

functions, Pm
n (cos θ) with non-integer index n, over the range from a given co-latitude θ0 to the pole, and105

extensions to the equator with functions that transition monotonically from Pm
n (cos θ0) to 0 at the equator.106

Note that while similar to spherical harmonics, they use non-integer index Legendre functions and are mod-107

ified at latitudes below θ0. The null space of D includes all basis functions of order higher than the order of108

the fit.109

A covariance-weighted minimum-norm least-squares solution was used to estimate the values of the coefficients,110

u in equation 1. The minimum-norm constraint is essentially another assumption about the character of the111

high-latitude electric field that may or may not be evident in the data, however in the case that the number112

fitted parameters exceeds the number of observations, some assumption is necessary to constrain the solution.113

Further regularization of the solution is achieved by limiting the highest order of function used to form D. In114

RK88 the maximum order of the longitude functions was 10, which means the finest scales that could be rep-115

resented were on the order of 1/20 of 360◦ in longitude and a comparable fraction of the latitude range from116

θ0 to the pole.117

Ruohoniemi and Baker (1998) (RB98) presents an alternative technique, SuperDARN MapPotential, for es-118

timating high-latitude convection based on observations solely from SuperDARN. The radars of SuperDARN119

observe the projection (vlos) of the ionospheric plasma velocity, v, along the radar look directions. In limit-120

ing the ingested observations to just vlos, the amount of data that can contribute during any given interval121

is greatly reduced from what can be used by AMIE. It does however provide two advantages that compensate122

for this limitation. First, since the vlos are derived from coherent-scatter radar observations, the detected ve-123
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locity component is in the direction perpendicular to the magnetic field, B. This feature eliminates the need124

to assume a value for the field-aligned component of the velocity as is required when using observations from125

incoherent-scatter radars. Second, isn’t necessary to assume a conductivity model, which is required when us-126

ing magnetometer observations. This aspect is a significant advantage because meso-scale features associated127

with auroral features are not present in models.128

RB98 follows the technique of RK88 for expressing the E as the gradient of a scalar potential and expands129

that potential in a series of functions. They use the spherical harmonics without modification, however they130

modify the latitude variable to constrain the domain to the region above a low-latitude limit, Λ0, which was131

a circle of constant latitude. In a later study using the technique described in Shepherd and Ruohoniemi (2000)132

Λ0 was replace by ΛHMB which varies with longitude to resemble the boundary defined by Heppner and May-133

nard (1987). To estimate the coefficients of the expansion, MapPotential uses a variance-weighted least-squares134

solution that minimizes the squared-difference between the observed vlos and the projection of the E×B ve-135

locity along the radar lines of site with the additional constraint that in regions where no observations are avail-136

able, an empirical convection model is used. The number of model sample points is based on the order of the137

fit and is chosen to stabilize the solution while minimizing the influence of the model. The model (Ruohoniemi138

& Greenwald, 1996) was based on long-term averages of the SuperDARN observations binned by prevailing139

interplanetary magnetic field (IMF) and solar wind (vsw) conditions. Current versions of the MapPotential soft-140

ware allow a choice of empirical model from a number that have been developed over the years (Pettigrew et141

al., 2010; Cousins & Shepherd, 2010; Thomas & Shepherd, 2018). With similar fit orders as employed in AMIE,142

similar resolution is achieved. However, because MapPotential does not apply the minimum-norm constraint143

the solutions often exhibit more structure than appears in patterns from AMIE.144

Cousins et al. (2013b) describes another potential estimation technique, SuperDARN assimilative mapping (SAM),145

that warrants discussion. SAM is similar to both of the other techniques but with some unique features. First,146

like RB98 the assimilation uses only SuperDARN vlos data so has advantages and disadvantages discussed above.147

Likewise, it samples an empirical model based on SuperDARN observations to give the average state. It fol-148

lows a similar formulation of RK88 to determine deviations from the average state and seeks a minimum norm149

solution. The main unique feature of SAM is in it’s choice of empirical orthogonal functions (EOFs) as ba-150

sis functions (Cousins et al., 2013a). The EOFs are derived from SuperDARN data to represent the dominant151

modes of variability in convection patterns. The individual EOFs are represented in terms of the basis func-152

tions used in RK88 to an order of 12, which yields a resolution of 2.5◦ in latitude and 15◦ in longitude in each153

function. The patterns generated by SAM typically show less structure than those generated by MapPoten-154

–6–



manuscript submitted to Journal of Geophysical Research

tial. In cross validation tests (Cousins et al., 2013b), SAM produced significantly smaller errors than MapPo-155

tential when predicting a data test set, and the values of cross-polar-cap potential predicted by SAM were gen-156

erally higher than those predicted by MapPotential. Recent work by Matsuo et al. (2021) builds on the SAM157

technique by adding a needlet-based random electric field model to SAM patterns in an attempt to better char-158

acterize small-scale variability.159

Like these studies, the technique presented here provides estimates of the high-latitude convection pattern based160

on a set of distributed observations. It relies on the SuperDARN vlos alone, but could ingest other observa-161

tions with minor modifications. It uses an empirical model in addition to the observations. In contrast to the162

other techniques, it does not express the matrix D in terms of known basis vectors and it does not assume163

that the velocity can be determined from a static potential. The only explicit assumptions are (1) that the164

vlos are projections of the field-perpendicular velocities, v, along the radar look directions, and (2) that the165

velocity field is divergence free, ∇ · v = 0. Added to these, there is the implicit assumption that the empir-166

ical model selected from a set of key parameters is representative of the convection within the uncertainty of167

the model. The mathematical details of determining a velocity field from these assumptions are given in Bristow168

et al. (2016). In that paper the technique was referred to as Local Divergence Free Fitting (LDFF) since it169

provided individual vectors based on local quantities rather than a global potential. Here the LDFF technique170

is extended to provide similar local vectors but over global-scale regions. The velocities are determined by min-171

imizing the residuals in local equations over a global-scale region, so we will refer to it as the Global, Local172

Divergence Free Fitting (G-LDFF) technique.173

3 Divergence Free Criterion174

As long as the plasma is frozen to the magnetic field, the divergence free flow criterion is equivalent to say-175

ing that the magnetic flux in the ionosphere is incompressible. As has been pointed out by others (Kivelson176

& Southwood, 1991; Lockwood & Morley, 2004), the Alfven speed in the ionosphere (∼ 105 m/s) greatly ex-177

ceeds both the sound speed and the highest flow speeds (both ∼ 103 m/s), which means that any localized178

perturbations to the field are communicated away at the Alfven speed. For any time that is long compared179

to the Alfven time (τA = d/vA), which for d = 100 km is less than a second, compressions of the field can180

be ignored.181
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The assumption that the velocity field is divergence free encompasses the case of static fields but perhaps is182

more general since it can include some time varying conditions. To illustrate this point, it is assumed that the183

velocity is the E×B velocity then,184

∇ · v = ∇ ·
(
E×B/B2

)
185

= ∇
(

1

B2

)
· (E×B) +

1

B2
∇ · (E×B) . (3)186

187

Assuming that gradient of the magnitude of B is small compared to the other terms, the first term on the right188

hand side of equation 3 can be neglected. In the second term assume the magnetic field includes the Earth’s189

main field plus contributions from static currents and a wave perturbation to get:190

∇ · v ≈ 1

B2
∇ · (E×B)191

=
1

B2
B · (∇×E)− 1

B2
E · (∇×B)192

=
1

B2
B · ∂B

∂t
− E · J

B2/µ0
(4)193

194

where µ0 is the permiability of free space. The first term in equation 4 would vanish whenever the perturba-195

tion component is perpendicular to B, which is true for shear Alfven waves. Further, the magnitude of the196

term is the rate of change of B (at most ∼ 100′s of nT/s) divided by the magnitude of B, which is on the197

order of 25 − 50µT . Hence the ratio will be less than ∼ 0.004 s−1 for all perturbations. The second term198

is the ratio between Joule dissipation and the energy density in the main field. At the lowest values of the main199

field ( 25µT) the energy density is about 0.5mJ/m3. With electric fields in the range of 10-100mV/m and200

F-region Pedersen conductivities of a few times 10−5 S/m, the Joule dissipation power density is on the or-201

der of (50mV/m)2(5×10−5 S/m) = 1.25µW/m3. Hence the ratio of the dissipation to the main field en-202

ergy density would be on the order of 0.00025m/s/m. In the numerical solution for the convection pattern203

in terms of a system of linear equations, the divergence is calculated over the size of a grid cell. With a 50 km204

grid size (typical range resolution of SuperDARN) this ratio would give a would give velocity difference of 12.5m/s205

across a cell. While this value is not zero, it is small compared to other terms in the set of equations. For ex-206

ample, in a region where the electric field was 50mV/m the velocity would be on the order of 1500m/s and207

the projection onto the radar look directions would be of the same order. Hence, setting the divergence value208

to zero and using a small non-zero uncertainty in the least-squares solution is justified.209

As a side note, since dissipation appears in equation 4 it’s worth revisiting the assumption of the frozen in con-210

dition, i.e the E×B velocity. In an appendix it’s shown that in the presence of small dissipation the diver-211
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gence of the velocity is modified to be:212

∇ · v =
1

ν2/Ω2 + 1

1

B2
∇ · (E×B) +

qν/m

ν2 +Ω2
∇ ·E (5)213

The first term is similar to equation 3 but is reduced by a small factor. The proportionality in the denomina-214

tor is the square of the ratio of the ion-neutral collision frequency (ν) to the ion gyro frequency (Ω). Recent215

rocket-based measurements show the ratio (Sangalli et al., 2009) to be about 1/10 in the upper E-region. With216

the exponential decrease in neutral density and the transition to oxygen ions, the F-region ratio would be sig-217

nificantly lower. The second term is the product of the ion Pedersen mobility and the divergence of E, which218

is charge density. Over the time scales and length scales on interest any charge accumulation would be neg-219

ligible.220

4 Global-scale Bayesian inverse221

In Bayesian estimation, some desired model quantities are determined by inverting a system of equations re-222

lating the model to a set of observations along with any equations of constraint and prior information. Here,223

the desired model quantities are the plasma velocities ({vi}) at a set of locations. The system of equations224

is the set formed by combining the projection of the plasma velocity along the radar lines of sight (vlos = v·225

k̂) in every grid cell where an observation is available, along with the divergence-free field property as a con-226

straint and a climatological model of the velocity field ({ṽi}) as assumed as prior information.227

Bristow et al. (2016) presented the technique for obtaining regional estimates of the plasma velocity field with228

a spatial resolution that was comparable to the resolution of the vlos observations. The technique was a two-229

step process in which the SuperDARN vlos observations were used first in the MapPotential technique to cal-230

culate an estimate of a background field, and then a used second time in a Bayesian inversion to get the lo-231

cal velocity estimates.232

In the work presented here, the initial step of using MapPotential to get the low-resolution background was233

replaced by sampling a climatological model that provides estimates of the velocity and its variance at every234

grid point in the domain of the calculation. The model (Bristow et al., 2022) (hereafter ML-model) is based235

on using SuperDARN observations from four years to train a machine learning model. The model is keyed to236

the IMF and solar wind velocity, but also uses the auroral indicies AL and AU, and the global index SYM-H237

to capture the variability of convection driven by the internal magnetospheric state. The model has a reso-238

lution of 1-hour in MLT, and 2◦ in magnetic latitude between 55◦ and the magnetic pole. Model values were239
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Figure 1: Output of the machine learning based empirical convection model displayed on the latitude-MLT grid

for Bz = -5.14 nT, By =5.69 nT, AU=141 nT, AL= -259 nT

linearly interpolated between the model grid points to get the values at the calculation grid points used here.240

Figure 1 shows an example ML-model pattern for southward IMF of about 5 nT and AU and AL magnitudes241

of greater than 100 nT.242

The ML-model was used was because of it’s ability to capture the convection patterns dependence on the in-243

ternal magnetospheric state. With this dependence, the latitude of the convection reversal boundary and strength244

of convection respond to changes of the AU, AL, and SYM/H parameters. In comparisons to a previous con-245

vection model (Thomas & Shepherd, 2018) the ML-model showed significantly lower root-mean-squared er-246

ror when predicting a set of test data (Bristow et al., 2022).247
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The grid for convection pattern estimation was chosen to provide moderate spatial resolution (∼100 km x 100 km)248

over the entire domain, but has the option of including a nested-grid region with cells of half the dimensions249

(∼50 km x 50 km) of the main grid. This nested region provides similar resolution to that of the regional pat-250

terns described in Bristow et al. (2016). The reason for not simply using the finer grid over the entire domain251

is that the computational cost increases with at least the square of the number of grid cells so the factor of252

four increase in number of grid cells would translate in to at least a factor of 16 increase in computation time.253

The version of the code used to analyze the data in this manuscript requires about 40 seconds per time step254

on a recent model desktop computer when using a nested grid that covers about 20◦ of latitude and 100◦ of255

longitude for a total grid of just over 6000 points. Further, there is no reason to use the fine grid where there256

aren’t any observations because the results will revert to ML-model resolution in those regions.257

As in the previous work we write the system of equations constraining the estimation as Gm = d, with the258

elements give by:259 

sin θb11 0 . . . cos θb11 0 . . . . . .

0 sin θb12 . . . 0 cos θb12 . . . . . .

...

−1
∆e

1
∆e . . . −1

∆n . . . 1
∆n . . .

...

1 0 . . . 0 . . . . . . . . .

0 0 . . . 1 . . . . . . . . .





ve11

ve12

...

vn11

vn12

...



=



vlos11

vlos12

...

0

...

ṽe11

ṽn11



(6)260

The first block of rows in G give the projection operation along the beam directions, followed by rows to ex-261

press the divergence operation, and finally followed by the specification of the velocity from the ML-model.262

The corresponding elements of the vector d give the LOS observations, 0’s for the value of the divergence at263

each grid point, and the values from the ML-model velocity indicated by the components with the tilde over-264

bar.265

Each element of the vector d has an associated uncertainty, which corresponds to the variance of the prob-266

ability distribution from which it was drawn. The uncertainty in each vlos is provided in the SuperDARN data267

files. For the ML-model the mean-squared difference between model predictions and corresponding values in268

it’s test set were used. These values were interpolated from the ML-model grid to the computational grid in269
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the same way as the ML-model velocities. The uncertainty in the divergence free condition does not have a270

clearly defined value that comes from the theory. It does, however, play a significant role in determining the271

character of the resulting convection patterns. The value was set to be 0.01 (m/s/m)2, which was chosen by272

trying inversion using a number of values and examining the resulting patterns and the differences between273

the input vlos and the projections of the results onto the radar look directions. It was found that if the diver-274

gence value was higher, the resulting convection patterns exhibited discontinuities between the regions of ob-275

servations and regions outside the observations. If the uncertainty value was lower, the patterns appeared overly276

smoothed and under emphasized the observations in comparison to the ML-model. The value can be viewed277

as a tuning parameter similar to the fit order used in functional expansions. The uncertainties were used as278

the diagonal elements of the matrix Cd, which was used in inversion of equation 6.279

Equation 6 is inverted to obtain the estimated velocities using a standard weighted least squares solution:280

m = [GTC−1
d G]−1GTC−1

d d. (7)281

Because the matrix Cd is diagonal, it’s inverse is simply a matrix with the reciprocal of the diagonal elements.282

The inverse in the matrix in brackets is found using conjugate-gradient-least-squares (CGLS) (Hestenes & Stiefel,283

1952), which is an iterative algorithm for finding least-squares solutions to systems of linear equations. CGLS284

is a Krylov subspace method, which means that the solution can be decomposed into a set a basis vectors that285

are generated from products of powers of the coefficient matrix (Gn) with the data vector (d). The method286

is efficient in that the only operations in the iteration are matrix-vector products and additions. The iteration287

is stopped based on the tolerance for the magnitude of some residual norm, which is typically chosen to be288

||Gm − d||22 < δ. In our implementation the condition for terminating the iteration was:289

||Gm − d||∞
||d||2

< δ, (8)290

where δ is a small number. This form for the termination condition minimizes the error locally while simul-291

taneously yielding a low global residual.292

5 Results293

To illustrate application of this algorithm, convection patterns were calculated for the day of March 26, 2014.294

The IMF and magnetic indicies AU, AL, and SYM/H for the day are plotted in Figure 2. The data for the fig-295

ure come from the NASA OMNI database (King & Papitashvili, 2005), which provides the IMF parameters296

aligned in time to reflect solar wind propagation delays from the point of observation to the Earth’s bow shock.297

–12–



manuscript submitted to Journal of Geophysical Research

The figure shows that the IMF was steadily northward for most of the period from 0200 UT to 0530 UT, af-298

ter which it turned southward for a period of about an hour. The AL panel shows rapid decrease of the in-299

dex from about -50 nT to about -260 nT over the period from 0705UT to 0723UT, which may be evidence300

of a small substorm at that time (for a examination of the event see Lyons et al. (2019)).301

Figure 2: Observed IMF and magnetic indicies AU, AL, and SYM/H, taken from the NASA OMNI database

for the day March 26, 2014.
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Many of the northern hemisphere SuperDARN radars had nearly continuous observations throughout the pe-302

riod so the patterns are well constrained by observations in the North American sector. To illustrate the data303

coverage, Figure 3 shows vlos observed in the two-minute interval starting at 0723UT plotted in Altitude Ad-304

justed Corrected Geomagnetic Coordinates (AACGM-V2) (Shepherd, 2014) from latitude 55◦ to the pole. The305

figure illustrates that overlapping observations from multiple radars were available over the region from cen-306

tral Canada through western Alaska. The time of the plot coincided with the minimum of the rapid decrease307

in AL shown in Figure 2. At the time North America was in the midnight sector so the array was well posi-308

tioned to characterize flows in the region of the substorm onset.309

Figure 3: Velocities observed by the northern hemisphere SuperDARN radars for the two-minute interval at

0723 UT on March 26, 2014. The data are plotted in Altitude Adjusted Corrected Geomagnetic Coordinates.

The IMF and auroral indicies from the time of the plot are given in the upper right
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Figure 4 shows the flow vectors calculated for the time shown in Figure 3. Over the majority of the domain310

the grid resolution was 1◦ in latitude. To get roughly square grid cells throughout the domain, the step in lon-311

gitude was 1◦ divided by the cosine of the latitude. A nested grid region with half that grid spacing in both312

latitude and longitude covers the region from 58◦ magnetic latitude to 80◦ magnetic latitude from western313

Alaska through central Canada. At the time of the plot the IMF z-component was negative at ∼5 nT, with314

a positive y-component of comparable magnitude. The colored vectors indicate the locations where the vlos315

were available, while the gray vectors indicate locations without observation. At those locations, the veloc-316

ity is determined from the fit to the ML-model combined with the divergence-free constraint. The vectors are317

plotted over the auroral luminosity observed by the THEMIS ground-based array, which is shown in grayscale.318

Dark gray corresponds to regions of bright aurora except for the region in western Alaska, which shows the319

brightness from the twilight. In the region without significant numbers of observations, the flow lines are smooth320

and closely resemble those in Figure 1. The vectors are significantly more structured in the regions where radar321

returns were observed. They show higher velocities and small-scale features not present in the ML-model. The322

pattern near midnight shows structure that appears closely related to the auroral luminosity.323
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A

B

C D

Figure 4: Convection map for 0723 UT on the day March 26, 2014. Colored vectors indicate the locations

where vlos observations contributed to a fit. Light gray vectors indicate locations where there were no observa-

tions. Auroral luminosity observed by the THEMIS ground array is plotted in grayscale in the background. The

red boxes on the plot indicate regions that are discussed in the text.

The map in Figure 4 shows flow across the polar cap from the dayside to the nightside with a dawn-to-dusk324

component consistent with the observed positive IMF y-component, which is also reflected in the dayside flow325

entering the polar cap in the pre-noon hours. Box A encloses a region where velocities were in excess of 1000m/s326

in the dusk local time sector. Flow velocities in this area were under 500m/s in the period before the substorm327

onset and showed a gradual increase as the expansion began and moved westward. Box B indicates a region328

where the pre-midnight flows are parallel to the auroral arcs. The arcs and the flows are aligned primarily east-329

west but the arcs have a north-east to south-west tilt, which is reflected in an equatorward component of the330

flow velocity. In Box C the arcs are aligned east-west but the flow velocity is essentially equatorward and per-331

pendicular to the arcs. At the time of the frame the arcs in this region were moving equatorward with the flow.332
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In Box D, the aurora in the western portion was aligned north-west to south-east, and turned to being east-333

west aligned at about the center of the box. The flow vectors in the box show a pattern that largely paral-334

lels the arcs. A video for the interval from 0600 UT to 0900 UT is available in the supplementary material.335

The video illustrates the close association between the flow pattern and the development of the auroral arcs.336

To better illustrate the development of the flow velocities and their association with the aurora, Figure 5 shows337

a sequence of images covering the period from 0643 UT to 0751 UT, which includes the time from the south-338

ward turning of the IMF through the substorm onset and expansion. The individual frames of the figure are339

separated by 4 minutes. Substorm onset, determined from the initial brightening and decrease of AL, occurred340

at about 0703UT. In the first six frames, the pre-midnight return flow region (marked with the letter A) and341

auroral arcs moved equatorward from about 70◦ magnetic latitude to about 65◦ magnetic latitude. The flow342

velocities in the region were in the range of 500-800m/s throughout the period. Post-midnight flows were of343

similar magnitude but did not illustrate the same equatorward motion. By 0707UT the brightening near mid-344

night was clearly evident and had begun to expand westward. Flow at midnight at the latitude of the aurora345

was directed equatorward with approximately double the magnitude compared to the previous frames. The346

highest flow velocities appeared in a narrow channel (marked with the letter B) at a longitude just before lo-347

cal midnight in a region between bright arcs. In the regions dawnward and duskward of the brightening the348

flow was still aligned east-west but was showing more structure than it had prior to the onset. By 0711UT349

the entire region from about 2200MLT through midnight was filled with aurora and the flow appeared to di-350

vert away from the region and toward dusk. The aurora expanded westward, eastward, and poleward over the351

remainder of the interval. The location and magnitude of the flows showed a strong correlation with the au-352

rora. At 0731UT at a local time of about 2200MLT, a channel of high-speed poleward flow (marked with the353

letter C) appeared and persisted until about 0747UT. The channel corresponded to a significant brightening354

of the aurora at that local time and the subsequent rapid poleward motion of the arcs. When the poleward355

flow channel dissipated the arcs stopped their poleward motion. Over the eleven minute period of the flow chan-356

nel the arcs moved from about 67◦ magnetic latitude to about 72◦ magnetic latitude, a distance of about 550 km.357

That motion translates to an average velocity of just over 830 m/s, which corresponds well with the observed358

flow velocities.359
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A

B

C

Figure 5: Sequence of convection maps for the region over North America with auroral luminosity in false color

in the background. The figure covers the interval from 0643 UT to 0751 UT on March 26, 2014. Individual

frames are separated by 4 minutes.
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6 Discussion360

Mapping convection in the ionosphere based on ground-based observations enables monitoring the state of361

magnetosphere and magnetosphere-ionosphere coupling. The time series of convection patterns reveal the evo-362

lution of the magnetosphere in response to external drivers and internal processes. Techniques for estimation363

of the pattern have evolved over recent decades with development of observational infrastructure and anal-364

ysis techniques. The technique presented here represents a step in this evolution with a focus on providing bet-365

ter spatial resolution and better fidelity in regions where observations are available than has been achieved us-366

ing global potential mapping techniques.367

The G-LDFF technique presented here differs from the potential mapping techniques in several ways. One sig-368

nificant difference is that in regions without observations the result will more closely resemble the background369

climatology than would be the case for the potential maps. The reason for this difference is that the poten-370

tial mapping techniques represent the potential as a sum of a set of global basis functions with the coefficients371

of the sum determined from fitting. The contribution of any given function is global even if the support for372

it in the observations comes from a small region. In the G-LDFF technique, the influence of observations on373

regions outside of their extent decreases with distance through the divergence calculation. The distance over374

which the influence decreases depends on the assumed variance of the divergence used in the fit. It isn’t ob-375

vious which technique is better able to represent convection in regions away from observations. Clearly, if ob-376

served flow velocities within an isolated region differ significantly from the climatological model then it is likely377

that they differ elsewhere. It isn’t clear however that the functional form of a given basis function will cap-378

ture that difference accurately. Perhaps the EOFs used by the SAM technique (Cousins et al., 2013b) provide379

the highest likelihood of representing global-scale convection since they were determined from convection ob-380

servations rather than an arbitrary functional form.381

Another significant difference between techniques is that, as the name implies, potential mapping provides an382

estimate of the potential, which can be used directly by numerical ionospheric simulation models. The mod-383

els use the potential to calculate the plasma velocity as a function of altitude at every point in their domain.384

Because models are configured to use a potential, the G-LDFF results can not be used directly. Calculating385

potential patterns from the G-LDFF patterns is rather straight forward. First, the potential is assumed to be386

zero at the low-latitude boundary of the grid. The electric field (E) is determined by assuming the velocity387

is the E-cross-B velocity. The potential could be determined from the line integral of E from a reference point,388

however, because of the variance of the fitted velocities the resulting potential depends on what path is used389
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in the integral. To overcome this issue, it is possible to write the electric field as the numerical gradient of the390

potential (E = −∇Φ) at every point in the grid, which results in a set of linear equations that can be in-391

verted to provide the potential. Figure 6 shows the potential calculated using this method for the time inter-392

val shown in Figure 4. The potential shows smooth contours in the regions where the velocity was determined393

by the ML-model, and somewhat steeper gradients in the regions where there were observations as is illustrated394

by the dusk-cell minimum occurring in the region of observations.395

Figure 6: Electrostatic potential calculated from the G-LDFF velocity estimate for 0723 UT on March 26,

2014.

For comparison, Figure 7 shows the potential and flow vectors estimated using the SuperDARN MapPoten-396

tial technique. There are some noticeable differences between the patterns given by the two techniques. The397

pattern given by MapPotential is significantly smoother than that given by G-LDFF, as indicated by the ve-398
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locity vectors. The point-to-point variability of the velocity vectors is much larger in the G-LDFF pattern. The399

MapPotential vectors are constrained to lie along the potential contours, which are smooth functions of po-400

sition. The contours are determined from a finite order expansion in spherical harmonics, which oscillate in401

both latitude and longitude. The fit order used to produce the map in Figure 7 was eight, which means that402

the contours can have at most eight oscillations in latitude and in longitude over the domain. The oscillatory403

character of the solution is visible in the longitudinal variation of the potential contours at 80◦ magnetic lat-404

itude. Multiple oscillations are clearly visible in the regions where there isn’t any data coverage. In the regions405

with data coverage the oscillations result in the appearance of flow vorticies, which do not appear in the G-406

LDFF result.407

It’s also worth noting that the velocities determined by the G-LDFF in Figure 6 are somewhat larger than those408

determined by MapPotential. It is likely that this difference comes because the global nature of the MapPo-409

tential solution would tend to damp local peaks and valleys. Hence, the highest high velocities and the low-410

est low velocities would be suppressed, which is not the case for the local solution of the G-LDFF.411
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Figure 7: Electrostatic potential calculated by the SuperDARN MapPotential technique for 0723 UT on March

26, 2014.

When considering a new analysis technique it’s important to evaluate how well it estimates the desired quan-412

tities. Unfortunately, there isn’t a definitive set of convection patterns that can be considered a standard for413

comparison against. In such a case, a measure that is often used is to compare the original input data to val-414

ues that would be predicted from the final analyzed product. Here the input data are the vlos, which can be415

compared to the projection of the estimated velocities along the radar lines of sight. Figure 8 shows such a416

comparison in an overlay of three sets of vectors for the convection pattern at the time shown in Figure 4. The417

black vectors are the estimated velocities at the locations of observations, the teal vectors are the input vlos,418

and the red vectors are the velocity projections, which are plotted over the teal vectors. In locations where the419

teal is visible the projected velocity is lower magnitude than the input vlos. In locations where there is a high420

density of observations there is very little teal visible, which shows that the data are dominating the solution421
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in those regions. In regions with isolated observation points or where individual observations show a large vari-422

ance from neighboring observations, there are significant differences between the data and the projections. Fig-423

ure 9 shows a scatter plot of the velocity projections versus the corresponding vlos for the full day of March424

26, 2014. In the figure, the color contours represent the density of points. There are three lines on the plot425

for reference: a dashed black line that shows equality (vproj = vlos), a red line showing a linear fit to all of426

the points, and a green line that was determined by fitting to the peaks of the color contours. The color con-427

tours show that the vast majority of the points in the distribution lie quite close to the equality line. There428

is a tendency for the velocity projection to underestimate the vlos, however the underestimation is ∼50m/s429

at vlos = 750m/s, and smaller for smaller vlos. The green line, which aligns with the ridge of the distribu-430

tion has a slope of about 0.94. Figure 10 shows the distribution of differences between the projections and431

the observations for the data shown in Figure 9. The distribution appears symmetric about a 0 difference and432

has a full-width at half-maximum of 70m/s.433
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Figure 8: Convection velocities (black), vlos input (teal), and projections of velocities along radar lines of sight

(red) for 0723 UT on March 26, 2014.
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Figure 9: Scatter plot and density of projections of velocities along radar lines of sight and the input vlos for

the full day of March 26, 2014.

Figure 10: Distribution of differences between the projections of velocities along radar lines of sight and the

input vlos for the full day of March 26, 2014.
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The combination of this analysis with the close correspondence between flow velocity features and features434

in the aurora provide confidence that the method provides accurate convection estimates.435

7 Summary and Conclusions436

This paper presents a new technique for estimation of the global-scale convection pattern in the ionosphere.437

The technique evolved from the ideas originally applied in localized regions to examine convection structure438

(Bristow et al., 2016). The technique applies Bayseian inverse theory to derive the plasma velocity at every439

point in the domain of consideration based upon the vlos observed by the SuperDARN radars combined with440

a machine-learning based climatological model of convection and applying the assumption that the velocity441

field is divergence free. The resulting velocity field forms a coherent pattern that exhibits structure at scales442

of less than 100 km.443

The computer code for the technique has the ability to include a region with a higher spatial resolution than444

is used in the full domain. In the examples presented, the main grid used grid cells that were about 100 km x 100 km,445

and a nested region with cells that were about 50 km x 50 km. Higher resolutions are possible if higher-resolution446

input observations are available.447

In the example patterns shown, there is a close correspondence between the features of the plasma velocity448

and observations of the aurora. One particular example shows a brief interval with high-speed poleward flows449

in a localized region accompanied by rapid poleward motion of the aurora. The high-speed flow began and450

ceased at the same time as the poleward motion of the arcs, and had an average velocity that was about the451

same as an estimate of the arc velocity based on their displacement divided by the time over which they moved.452

The electrostatic potential can be estimated through integration of the electric fields obtained from the plasma453

velocities under the assumption that they result from the E-cross-B drift. The resulting patterns can be used454

to drive global circulation models of the ionosphere and theromosphere if they have the ability to ingest the455

high-resolution grid. This ability will be critical to examining the impacts of small-scale convection features456

on global geospace.457
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Appendix A Appendix458

If it is assumed that the electrons remain frozen to the field lines then the Pedersen current is due to ion mo-459

tion in the direction of E. The F-region ion velocity equation ignoring pressure gradients, inertia, and motion460

of the neutral gas can be written as:461

E+ v ×B =
mν

q
v (A1)462

where m is the F-region ion mass and q is the ion charge. Choosing a coordinate system with the z-axis par-463

allel to the local B, equation A1 can be written as:464

E+

 0 Bz

−Bz 0

v −

mν
q 0

0 mν
q

v = 0 (A2)465

Solving for velocity:466

v = β−1E (A3)467

Where β−1 is:468

β−1 =
q

mν

 ν2

ν2+Ω2
Ων

ν2+Ω2

−Ων
ν2+Ω2

ν2

ν2+Ω2

 (A4)469

The leading coefficient of the matrix, q/mν, is the mobility of ions parallel to the magnetic field. A few lines470

of algebra to split equation Appendix A in to two parts yields:471

∇ · v =
1

ν2/Ω2 + 1
∇ ·

(
E×B/B2

)
+

qν/m

ν2 +Ω2
∇ ·E (A5)472

Appendix B Data Availability473

The raw SuperDARN data are available from the British Antarctic Survey (BAS) SuperDARN data server (https://www.bas.ac.uk/project/superdarn)474

or one of the other SuperDARN data mirrors. The IMF, solar wind, and geomagnetic index data are available475

from the NASA Space Physics Data Facility OMNIWeb data server (https://omniweb.gsfc.nasa.gov/) THEMIS476

all-sky imager data were pulled from http://themis.ssl.berkeley.edu/themisdata//thg/l1/asi/477
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