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and scenario settings required for a sustainable future for the Australian land sector.
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Key Points: 

 We trained five machine learning meta-models to mimic the performance of the Land-

Use Trade-Offs (LUTO) model of Australia’s land system sustainability 

 The XG-Boost algorithm was able to reproduce LUTO outputs with 96% accuracy. 

 We performed 480,000 meta-model simulations and found 5.82% new pathways 

meeting five SDG targets for 2050. 

 Scenario discovery revealed the precise policy settings to achieve five SDG targets for 

2050. 
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Abstract 

We developed a machine learning based meta-model to identify sustainability pathways 

through rapid scenario generation and defined the safe operating space for achieving them via 

scenario discovery. We trained a meta-model to replicate the Land-Use Trade-Offs integrated 

model of the Australian land system. Latin hypercube sampling was used to create many 

scenarios exploring the impact of uncertainties in key drivers including future socio-economic 

development, climate change mitigation, and agricultural productivity at a granular level. 

Economic and environmental impacts were evaluated against nationally downscaled SDG 

targets. Scenario discovery revealed new pathways to achieving five SDG targets for 2050 

which required crop yield increases above 1.78 times, a carbon price above 100 AU$ tCO2
-1, a 

> 9% biodiversity levy on carbon plantings, and carefully regulated land-use policy. Machine 

learning based meta-modelling teamed with scenario discovery revealed the policy and 

scenario settings required for a sustainable future for the Australian land sector. 

1 Introduction 

A sustainable land sector is key to achieving several of the 17 Sustainable Development Goals 

(SDGs) and 169 targets (UN, 2015) representing the shared environmental, social, and 

economic aspirations of all UN member nations (Herrero et al., 2021). However, the feasibility 

of achieving multiple SDG targets in the land sector has been questioned due to the inherent 

trade-offs involved and calls have been made to redouble efforts in the search for sustainable 

future pathways (Gao and Bryan, 2017). Multiple land-use models have been developed both 

as stand-alone models and as a part of multi-sectoral integrated assessment models to 

understand the complex relationships and dynamics underpinning land-system sustainability 

(Hurtt et al., 2011, Schaldach et al., 2011, Souty et al., 2012, Van Asselen and Verburg, 2013, 

Meiyappan et al., 2014, Wise et al., 2014, Bryan et al., 2016b, Zilli et al., 2020, Liu et al., 

2021). However, land-use futures are characterised by substantial complexity and uncertainty 

driven by the large potential range in input data, model parameter specifications, and the 

scenario assumptions involved in land-use modelling, and the sporadic and incomplete 

consideration of these interacting uncertainties (Moallemi et al., 2020a). There is now an urgent 

need for the comprehensive exploration of this uncertainty space to better account for the 

diversity of plausible land-use futures and identify pathways to achieving the SDGs.   

A common way of coping with such uncertainties has been to characterize scenarios that 

provide a structured account of plausible futures (Moallemi et al., 2020a) derived from a 
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predefined set of scenario configurations, harmonized under a set of policy and developmental 

assumptions (Moss et al., 2010, Van Vuuren et al., 2011, O’Neill et al., 2017). However, the 

number of scenarios considered for the analysis of land-use futures is typically limited due to 

the complexity and data (including spatial data) requirements of the models, and hence, the 

time taken to run each simulation. For example, Sands et al. (2013) modelled 12 scenarios of 

future agricultural resources and land-use using the FARM model, Soergel et al. (2021) 

modelled four scenarios from the Shared Socio-economic Pathways (SSPs) for understanding 

development pathways for climate action using the MAgPIE model, Wang et al. (2022) 

modelled three scenario combinations of SSPs and Representative Concentration Pathways 

(RCPs) using the PLUS model to assess land-sector carbon storage under climate change. 

Recently, international collaborative modelling studies have extended the number of scenarios 

analysed to hundreds or even thousands (McPhail et al., 2020). For example, the ScenarioMIP 

(O'Neill et al., 2016) approach considered combinations of SSPs and RCPs as alternative future 

pathways, each modelled using a number of integrated assessment models, generating a 

scenario database of 1184 distinct views of the future (IPCC, 2014). Bryan et al. (2016a), 

modelled 648 scenarios of future land-use change in Australia using the Land-Use Trade-Offs 

(LUTO) model but still only managed to sample the six input parameter uncertainty dimensions 

at between two and four levels (e.g., low, medium, high estimates). Hence, modelling even a 

thousand or so scenarios still involves only a coarse sampling of the variance in forcing data 

and model parameters, effecting only a partial, intermittent coverage of the uncertainty space 

(Morris et al., 2022). A much more granular exploration of the uncertainty space is required, 

assessing many scenarios to help find nuanced pathways to achieving the SDGs in land systems 

(Gao and Bryan, 2017).  

Models are increasingly used to support robust decision making through exploratory modelling 

and scenario discovery in order to deal with uncertainty (Kwakkel, 2019, Moallemi et al., 

2020b). Scenario discovery works with a dataset consisting of the outputs of many scenario 

runs spanning the full range of uncertainty in model input parameters to identify regions in the 

uncertainty space that are of interest and can answer questions about requisite input parameter 

settings (Halim et al., 2016, Kwakkel and Jaxa-Rozen, 2016). For example, Bryant and 

Lempert (2010) used scenario discovery to investigate the policy settings necessary to ensure 

greenhouse gas emissions and economic targets were met for the United States to reach a goal 

of 25% of its electricity generation from renewable sources by 2025. Lamontagne et al. (2018) 

used scenario discovery to estimate the climate change mitigation costs based on the range of 
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climate change scenario assumptions, while Eker et al. (2019) used it to identify the range of 

behavioural factors required to navigate towards a more sustainable diet. Effective scenario 

discovery capable of supporting granular and specific policy recommendations requires a dense 

sampling of model runs across the uncertainty space, but land-use models generally take too 

much compute time to create a dense enough sampling. For example, the 648 future Australian 

land-use scenarios modelled by Bryan et al. (2016a) took around one week to process despite 

employing an advanced column generation algorithm (Nazari et al., 2015) and parallel 

computing on a high-performance computer cluster (Bryan, 2013, Gao and Bryan, 2016). 

Hence, meta-models (i.e., parsimonious, fast, statistical or machine learning models which 

closely mimic the behaviour of the original, complex, process-based simulation model) are 

required to produce many simulation runs which densely span the input parameter uncertainty 

space and facilitate scenario discovery of sustainable futures (Angione et al., 2022). 

In recent years, machine learning has been used to mimic complex systems models and the 

resulting meta-models have been used for uncertainty assessment across diverse socio-

economic and environmental processes such as groundwater (Miro et al., 2021), traffic (Edali 

and Yücel, 2019), soil carbon (Luo et al., 2013), asset price (Lamperti et al., 2018), and social 

care provision (Angione et al., 2022). However, very few studies have developed surrogate 

meta-models of land-use change. Harrison‐Atlas et al. (2021), used a Gaussian process-based 

surrogate modelling approach employing convolutional neural networks to understand wind 

power modelling impacts on land-use. Van Strien et al. (2019), fitted a support vector machine 

to identify stable and unstable equilibria in an agent-based model of land-use change in a Swiss 

mountain region. These results demonstrate the potential for machine learning as a suitable 

approach to surrogate meta-model development for mimicking the behaviour of complex land-

use models as a basis for scenario discovery.  

In this study, we created a machine learning based meta-model to capture the behaviour of a 

complex land systems model—the LUTO model of Australian continental land-use futures and 

used it to generate many scenarios which comprehensively span the input uncertainty space for 

multiple factors influencing future land-use in Australia. We then used the meta-model in an 

exploratory analysis, performing scenario discovery to assess land-use change implications for 

the SDGs based on the highly granular set of scenario runs. We assessed and compared the 

ability of different machine learning methods to mimic the LUTO model in terms of accuracy 

and resource requirements and assessed the sensitivity of the meta-model outputs to variation 
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in key model parameters and scenario assumptions. Via scenario discovery, we then used the 

machine learning based meta-model outputs to identify critical scenario parameter and policy 

settings which define the safe operating space required to set Australia’s land system on more 

robust future pathways to achieving multiple SDG targets.  

2 Methods 

2.1 Land-use model 

LUTO is a complex, integrated, non-linear land system model incorporating multiple 

interacting components including land-use, food demand, agricultural productivity, climate 

change, water resources, bioenergy, and biodiversity at a 1.1 km ×1.1 km pixel resolution 

which projects land-use change based on different social, ecological, climatic, economic, and 

policy scenarios (Bryan et al., 2016b). Scenario configuration settings were specified for a 

number of uncertainty dimensions resulting in 648 scenarios of land-use futures, with each 

generated from a combination of parameter settings designed to cover a range of sustainability 

outcomes under plausible global, national, socio-economic, and environmental futures (Bryan 

et al., 2015a, Bryan et al., 2015c, Connor et al., 2015, Gao and Bryan, 2017) (Table 1). 

Uncertainty dimensions included four modelled global socio-economic and climate outlooks 

(L1, M2, M3 and H3), domestic land-use policies, productivity growth rates, land-use change 

adoption hurdle rates (i.e., the profitability multiplier required to motivate land-use change), 

and land-use change capacity constraints. Each global outlook is comprised of global emissions 

abatement efforts and the resulting RCP and climatic warming, in addition to population 

growth and GDP scenario settings. Each of these dimensions affects land-use change responses 

in LUTO via their effect on the relative profitability of land-uses including agricultural 

production versus a raft of new land-uses (i.e., Carbon Plantings, Environmental Plantings, 

Biofuels, Wheat Food/Biofuels, Wheat Food/Bioenergy, and Woody Perennials Bioenergy). 

Each scenario consists of annual time series from 2013 to 2050 (38 years) resulting in an overall 

data set containing 24,624 (648 scenarios × 38 years) individual land-use projections.    
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Table 1: Downscaled scenario settings and configuration used for LUTO (Gao and Bryan, 

2017) to generate the 648-scenario output. 

 
 

2.2 Machine learning meta-modelling of scenario projections  

2.2.1 Data preparation 

We prepared the data in tabular format with all inputs and outputs for each scenario/year in the 

same row. We transformed the categorical variables to numerical dummy variables 

representing the presence or absence of each category as 1 or 0 (i.e., Constraint Settings: 

Unconstrained = 0, Constrained =1; each of three GCMs: present =1, absent =0; and each of 

four Global Outlooks: present =1, absent =0). All 17 input and output variables were linearly 

transformed to a fixed range of [0, 1] by subtracting the minimum value of the feature and then 

dividing by the range. We also transformed and cleaned the data to remove redundant and 

unimportant information for the model (known as feature selection in machine learning) 

(Supplementary Tables S1 and S2).  

Name  Global Outlooks 

L1 M3 M2 H3 

Temperature Increase in 2100 (°C) 1.3-1.9 2.0-3.0 2.0-3.0 4.0-6.1 
Representative Concentration Pathway (RCPs) 2.6 4.5 4.5 8.5 
Population Outlook 1 3 2 3 
Global Population in 2050 (billion people) 8.1 10.6 9.3 10.6 
World GDP per capita in 2050 (US$2010 thousand) 20.0 18.6 19.3 18.6 
World GDP in 2050 (US$ trillion)  161.6 197.0 179.1 197.8 
Global abatement effort Very strong Strong Modest None 
Emissions per capita in 2050 (tCO2yr-1) 2.3 4.7 5.4 8.7 
Cumulative emissions (GtCO2e) 1437.0 2091 2091 2823 
Coverage abatement policy All sources All sources except livestock No sources 
Carbon price(AU$ tCO2-1) 200 119 59 0 
Grain price (% increase from 2010 to 2050) 75 118 11 61 
Livestock price (% increase from 2010 to 2050) 147 112 22 61 
Oil price (% increase from 2010 to 2050) 42 44 45 43 

Biodiversity Fund 

Carbon          AU$125 million p.a. baseline budget for biodiversity payments, 0% levy on carbon plantings 
Balanced       AU$125 million p.a. baseline budget for biodiversity payments, 15% levy on carbon plantings 
Biodiversity   AU$125 million p.a. baseline budget for biodiversity payments, 30% levy on carbon plantings 

Production growth rate 

Low          0% p.a. increase in total factor productivity of agriculture, 0% p.a. increase in carbon plantation productivity 

Medium    1.5% p.a. increase in total factor productivity of agriculture, 0.75% p.a. increase in carbon plantation productivity 
High         3% p.a. increase in total factor productivity of agriculture, 1.5% p.a. increase in carbon plantation productivity 

Land-use change adoption hurdle rate 

1x             Land-use changes when a new land-use becomes more profitable than agriculture 
2x             Land-use changes when a new land-use becomes more than twice as profitable as agriculture 
5x             Land-use changes when a new land-use becomes more than five times as profitable as agriculture 

Land-use change capacity constraints 

Unconstrained  
No limit to the rate of land-use change. Assumes that all labour, capacity, material, technological requirements for land-
use change are met. 

Constrained  
Rates of land-use change were constrained to that observed previously or reasonably expected. Reforestation limited to 
100,00 ha yr-1, increasing by 7% p.a. for the 10 years after the first year it occurred, then by 10% p.a. thereafter. Biofuels 
feedstock demand was limited by the rate at which processing capacity could be developed which started at 400 ML p.a. 
in 2013 and increased by 50 ML p.a. to 2015 then by 100 ML p.a. to 2020 and by 400 ML p.a. thereafter. Bioenergy 
feedstock demand was similarly limited to 0.2 PJ p.a. in 2013 increasing by 2.5 PJ p.a. after 2015. 

Global Climate Model (GCM) 

CanESM            Significant warming, wetter in north and south, drier in central arid areas 
MPI-ESM-LR     Significant warming, wetter in north, drier in south and central arid areas 
MIROC5             Mild warming, wetter throughout 
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2.2.2 Meta-model preparation 

The primary advantage of using a meta-modelling approach is to reduce the time required to 

run each simulation and rapidly generate many predictions using the trained model. As speed 

and accuracy are important but likely vary between machine learning methods (Angione et al., 

2022), we trained five different types of machine learning algorithms and tested their ability to 

accurately reproduce LUTO model outputs based on different scenario and model input 

parameter settings. We focussed on decision-tree type models selected due to their short 

training times, low hyper-parameter tuning requirements, and demonstrated performance with 

structured/tabular data prediction problems (whereas neural networks tend to perform better 

with unstructured data such as images and text) (Rudin et al., 2022). 

Linear Regression (LR) was selected as a basic linear method for prediction and forecasting 

(Kashinath et al., 2021). Gradient Boosted Regression Trees (GBRT) was selected as an 

ensemble learning method that constructs a strong learning model by sequentially aggregating 

a set of weak classification and regression tree sub-models (Friedman, 2001, Friedman, 2002). 

Random Forest (RF) was selected as a technique for classification and regression (Ho, 1995) 

that combines several base models to produce one optimal predictive model. Multivariate 

Adaptive Regression Splines (MARS) was selected as an extension of linear regression that 

can capture non-linearities and interactions between variables (Friedman, 1991). Finally, 

Extreme Gradient Boosting (XGBoost) was selected as a tree-based algorithm optimized via 

parallel processing, tree pruning, efficient missing value handling, and regularisation to avoid 

overfitting or bias (Ma et al., 2020, Janizadeh et al., 2021).  

Each of these methods incorporate hyper-parameters which need to be tuned based on the data 

type, expected result, and runtime requirements. For our study, the hyper-parameters of these 

machine learning approaches were optimized using the random search method and the grid 

search method as these methods have been demonstrated to efficiently improve performance 

(Zhang et al., 2021). Finally, a single set of optimal hyper-parameters were selected for each 

model by comparing the performance indicators and results over the iterations.   

2.2.3 Training and testing 

In this study, we randomly split the LUTO model output dataset (Bryan et al., 2015b) of 24,624 

rows (648 scenarios by 38 years) into training and test datasets at a ratio of 4:1. The five 

machine learning methods were trained using a training dataset (19,700 rows) and their 
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projection accuracy was evaluated and compared using a test dataset (4,924 rows). To reduce 

any potential bias produced by train-test data splitting, all five machine learning methods were 

trained and evaluated using five-fold cross-validation which randomly divides the dataset into 

five training datasets and five test datasets. All results presented in this paper were averaged 

over the five-fold cross-validation outputs. The five machine learning methods were 

implemented using the Regressor modules of the Python 3.7 scikit-learn library on a standard 

laptop computer with an Intel(R) Core(TM) i7-4710MQ CPU@2.50 GHz, 8.00 GB RAM, and 

Windows 10 Professional (64-bit). 

We selected the root mean square error (RMSE) and the coefficient of determination (R2) to 

evaluate meta-model performance, measuring the deviation between the observed (i.e., LUTO 

projections) and predicted (i.e., meta-model outputs) values (Eq. 1) and degree of fit of the 

meta-model (Eq. 2), respectively. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−𝑦̂𝑖)2

𝑛
𝑛
1 , …………………………. (Eq. 1) 

𝑅2  = 1 −  
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

1

∑ (𝑦𝑖−𝑦̅)2𝑛
1

 ,…………………………... (Eq. 2) 

Where 𝑦𝑖 represents the actual values, 𝑦̂i is the predicted value, and n is the number of observed 

values in the test dataset samples and 𝑦̅ is the mean of the y values.  

2.2.4 Influential features 

The best performing machine learning meta-model (i.e., XGBoost) was selected and analysed 

to verify the underlying relationships between model inputs and outputs and to quantify the 

influential predictor variables. To quantify the influence of explanatory variables we excluded 

each explanatory variable from the whole dataset then applied five-fold cross-validation where 

for each fold a new model was trained and the number of times features appeared in the tree-

based model was counted to help split into the leaf nodes. Following this, we assessed the 

importance of the features using the Python scikit-learn inspection module (Pedregosa et al., 

2011). Based on this influence value we ranked all the input features (1 to 17, with 1 being the 

most influential and 17 the least) for each output variable. We then identified the most 

influential features in the overall model for use in scenario discovery by averaging these 

influence rankings across all output variables. 
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2.2.5 Model implementation and scenario discovery 

The best performing meta-model was then used to run many simulations (termed pathways) of 

Australian land-use futures. Based on the minimum and maximum values of the LUTO model 

parameter and scenario settings (Table 1) we produced a dense, high-resolution Latin 

hypercube sampling (Abyani and Bahaari, 2020, Morris et al., 2022) of the model input 

parameter and scenario uncertainty space. Plausible input parameter ranges were specified 

separately for the years 2030 and 2050 and those value ranges were used to define the 

uncertainty bounds for those years. We then took a Latin hypercube sample of 10,000 samples 

across each of the 24 possible combinations for each of three GCMs, four global outlooks, and 

two constraint settings which gave us a total of 240,000 unique scenarios for the year 2030 and 

240,000 unique scenarios for 2050.  

We then used exploratory modelling and scenario discovery to search for future pathways to 

sustainability for Australia’s land sector in the output dataset based on specified targets. We 

identified land-sector relevant Sustainable Development Goals (i.e., 2, 6, 7, 13, and 15), 

relevant indicators, and targets downscaled for Australia for 2030 and 2050 at three levels of 

ambition (Low, Moderate, and High) from Gao and Bryan (2017). Sustainability targets were 

specified for a series of six indicators (note that SDG 2 has two indicators/targets) which align 

with key meta-model output variables (Table 2) and we quantified the number of scenarios 

achieving these land-sector SDG targets.  
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Table 2: Description of land-sector relevant SDGs, indicators, and nationally downscaled 

targets for 2030 and 2050 and three levels of ambition for Australia’s land sector (Gao and 

Bryan, 2017).  

 
Target ambition 2030 2050 

SDG 2 Economic returns (total net economic returns to all land-

uses [2010 AU$ billion yr−1]) 

Weak ≥32.96  ≥40.80 

Moderate ≥37.77 ≥54.39 

Ambitious ≥41.98 ≥67.99 

SDG 2 Food/fibre production (total value of agricultural production 

[2010 AU$ billion yr−1]) 

Weak ≥53.0 ≥66.1 

Moderate ≥55.3 ≥77.7 

Ambitious ≥64.6 ≥111.4 

SDG 6 Water resource use (agricultural irrigation and water 

intercepted [gigaliters yr−1]) 

Weak ≤10676.7 ≤10676.7 

Moderate ≤9697 ≤9697 

Ambitious ≤8737.3 ≤8737.3 

SDG 7 Renewable energy (Biofuels (mobile transport fuel) 

production [petajoules yr−1]) 

Weak ≥40.6  ≥85.8 

Moderate ≥145.0 ≥286.9 

Ambitious ≥313.3  ≥590.3 

SDG 13 Emissions abatement (megatons of CO2 yr−1) 

Weak ≥55.5  ≥160.9 

Moderate ≥108.4 ≥274.8 

Ambitious ≥178.0 ≥411.1 

SDG 15 Biodiversity and land degradation (biodiversity services 

[% of maximum]) 

Weak ≥10 ≥10 

Moderate ≥15 ≥15 

Ambitious ≥20 ≥20 

 

Scenario discovery (Lempert et al., 2008) was then used to identify the regions of the model 

input space containing a high proportion of future pathways which achieve multiple 

sustainability targets. This safe operating space defined by influential input variable ranges 

were identified where multiple targets can be achieved. Mapping the number of scenarios in 

relation to the top four most influential input variables (found through influential feature 

ranking), we visualised the density of the scenarios clustered in two-dimensional space (divided 

into bins). Via this process we identified critical levels of influential input variables likely to 

lead to desirable outcomes (i.e., meeting targets) versus undesirable outcomes (i.e., failing to 

meet targets). To quantify this likelihood, we assessed the purity of regions of interest in the 

input data space by quantifying the probability of scenarios meeting targets for meta-model 

outputs (Serra and Tagliaferri, 2019). 

𝑃𝑢𝑟𝑖𝑡𝑦 (%) =  
𝐷

𝑁
× 100,…………………………... (Eq. 3) 
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Where D is number of scenarios meeting the desired target in an input data region and N is the 

total number of scenarios in the region. The safe operating space was defined by combinations 

of influential input variable ranges necessary to achieve multiple SDG targets with >80% 

purity. 

3 Results 

3.1 Meta-model selection 

Overall, the classification and regression tree based algorithms performed well on these 

datasets given the non-linearity in the data. XGBoost outperformed the other models in terms 

of R2 (0.9694) and had the second highest RMSE (0.00379) (Table 3), hence it was selected 

for further analysis and scenario discovery (Table 2). 

Table 3: Average and standard deviation (in brackets) of test dataset accuracy metrics from 

each machine learning method under five-fold cross-validation averaged across all outputs. 

Metrics 
Machine learning method 

LR GBRT RF XGBoost MARS 

R2 
0.55924 
(0.29) 

0.66259 
(0.11) 

0.8355 
(0.05) 

0.9694 
(0.046) 

0.5438 
(0.091) 

RMSE 
0.05679 
(0.023) 

0.0157 
(0.006) 

0.00571 
(0.002) 

0.00379 
(0.0021) 

0.00343 
(0.0024) 

Training Time (Minutes) 0.01723 14.4555 4.94144 5.48626 6.497 

No. of Hyper-parameters 0 5 2 6 9 

 

3.2 Parameter influence 

Out of the 17 input features, the five most influential features were Yield Increase (Crops), 

Constraint Settings, Carbon Price, Hurdle Rate, and Biodiversity Fund. Conversely, the least 

influential features overall were Global Outlook, Yield Increase (Trees), and GCM (Figure 1), 

although these features were influential for some individual outputs. Figure 1 shows the most 

influential features by output type, for example the four most influential features for Economic 

Returns related outputs were Yield Increase (Crops), Carbon Price, Constraint Settings, and 

Hurdle Rate (Figure 1).  
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Figure 1: Influence of 17 input parameters on the 68 outputs. Colours in the grid cells represent 

the total ranking position, and numbers in the grid cells represent the influence rankings. 
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3.3 SDG target achievement 

SDG target achievement varied substantially between future pathways for both 2030 and 2050. 

By design, weak targets were more achievable than moderate and ambitious ones. Moderate 

and ambitious targets tended to be achieved by more pathways for 2050 targets than for 2030. 

For example, Biodiversity services targets for 2050 were achievable under 53.56%, 41.31%, 

and 32.75% of future pathways across the weak, moderate, and ambitious levels (Table 4), 

whereas for 2030 the target was achieved at only 1.796%, 0.294% and 0.047% of future 

pathways. Some targets (e.g., ambitious targets for Water Resource Use and Food Production 

targets for 2030 and 2050) were not achievable under any pathways (Table 4). 

Table 4: The proportion (%) of pathways where each target is achieved for the year 2030 and 

2050. 

  
  

Year 2030 Year 2050 

Weak Moderate Ambitious Weak Moderate Ambitious 

Economic Returns 12.432 1.494 0.116 48.717 17.512 2.196 

Food Production 21.904 12.040 0.000 25.220 0.898 0.000 

Water Resource Use 66.239 0.506 0.000 11.761 0.588 0.000 

Biofuels Production 70.187 19.458 6.685 71.685 22.495 11.155 

Emissions Abatement 13.429 6.550 2.673 46.083 26.976 13.635 

Biodiversity Services 1.796 0.294 0.047 53.558 41.307 32.755 

 

Many scenario runs also revealed the trade-offs and joint achievement of multiple sustainability 

targets. For example, two, three, four, and five moderate 2030 targets were achieved under 

7.1%, 1.19%,  0.06%, and 0% of future pathways, while for 2050 moderate target achievement 

was considerably higher at 14.98%, 12.38%, 3.90%, and 0% of future pathways, respectively 

(Table 5, Figure 2). No pathways achieved all six targets simultaneously at any level of 

ambition.  

Table 5 – Level of SDG target achievement under future pathways. 

Year 
 

Ambition 
 

Target achievement (% of future pathways) 

2 Targets 3 Targets 4 Targets 5 Targets 6 Targets 

2030 

Weak 42.77 10.78 1.53 0.25 0.00 

Moderate 7.10 1.19 0.06 0.00 0.00 

Ambitious 1.20 0.05 0.00 0.00 0.00 

2050 

Weak 24.36 26.00 21.23 5.85 0.00 

Moderate 14.98 12.38 3.90 0.00 0.00 

Ambitious 11.65 2.53 0.24 0.00 0.00 
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The most prospective pathways for multi-target SDG achievement was the achievement of 

weak targets for Economic Returns, Food Production, Biofuel Production, Emissions 

Abatement, and Biodiversity Services under 0.2% and 5.8% of scenarios for the year 2030 and 

2050, respectively (Figure 2).  Water Resource Use and Biofuels Production targets for 2030 

and 2050 under weak target ambitions were more achievable (26.94% and 4.71%) than any 

other target pairs, whereas the Economic Returns and Food Production target pair was the least 

achievable (0.001% and 0.038%) for both 2030 and 2050 (Figure 2).  

 

Figure 2: Future land sector SDG target achievement for Australia. a.) The bars represent the 

proportion (%) of scenarios meeting the weak, moderate, and ambitious targets by the year 

2030 and 2050. 

3.4 Identifying the safe operating space using scenario discovery  

Focussing on the 5.82% of pathways meeting the weak target achievement levels for 2050 (i.e., 

Economic Returns, Food Production, Biofuels Production, Emissions Abatement, and 

Biodiversity Services targets), we picked the top four most influential parameters based on 

overall influence ranking and demonstrated in two-dimensional space (Figure 1). Other input 

parameters also influence target achievement (Figure 1) and the full list of influential 

parameters is provided in Table 6.  

The statistical distribution of input parameter settings required to meet five SDG targets is 

presented in Table 6. To achieve the five SDG targets with more than 80% purity, specific 

scenario, policy, parameter settings were required which defined the safe operating space 

(Table 6 and Figure 3). Specifically, these targets were most likely to be achieved when Yield 

Target Combinations 0 6

Economic Returns

Food Production

Water Resource Use

Biofuels Production

Emissions Abatement

Biodiversity Services

Year 2030

Year 2050

1 2 3 4 5

5
7

.7
0

4

0
.3

4
7

4
.4

1
2

3
.1

4
1

1
9

.9
7

0

0
.1

7
0

0
.6

0
1

1
.4

5
0

3
.3

0
8

6
.1

2
3

0
.0

2
3

0
.0

2
3

0
.7

9
0

1
.6

9
8

0
.2

4
2

4
1
.6

8
1

1
.9

9
5

0
.3

9
1

0
.4

9
3

5
.3

6
8

2
.3

3
3

1
6

.4
7

2

0
.0

3
8

0
.0

1
8

1
.5

3
8

3
.1

7
8

0
.0

3
4

0
.0

1
8

0
.2

5
6

0
.0

9
0

3
.2

3
0

2
.3

5
7

4
.2

2
3

0
.0

0
3

0
.0

1
5

0
.0

1
4

1
.4

3
8

0
.5

9
2

4
.7

8
1

0
.0

0
2

0
.0

0
3

0
.0

2
6

0
.0

4
0

0
.0

0
3

5
.4

6
8

0
.0

0
5

0
.0

1
4

0
.0

3
9

3
.8

4
3

0
.0

0
1

6
.3

8
5

3
.1

7
1

0
.0

1
4

3
.7

0
5

6
.5

9
7

0
.3

7
5

2
.3

1
0

0
.0

0
1

0
.5

5
6

1
.4

7
5

1
.5

7
7

4
.7

1
2

0
.0

0
3

4
.1

5
7

0
.0

4
4

0
.0

1
7

4
.7

1
0

0
.0

0
8

2
.8

1
7

3
.8

9
4

0
.3

9
3

0
.5

7
8

0
.1

5
6

0
.0

0
8

0
.1

5
2

4
.3

9
5

3
.8

9
1

4
.3

9
9

2
.3

0
8

1
.6

3
3

3
.4

5
2

0
.1

1
2

0
.0

1
5

0
.1

5
8

0
.0

0
0

4
.7

3
8

1
.6

0
6

1
.5

7
6

0
.3

6
4

0
.0

0
2

1
4

.2
8

2

0
.0

0
9

0
.0

7
3

0
.0

0
1

3
.2

9
1

0
.0

2
5

5
.8

1
6

0
.0

3
5

9
1

.7
8

1

0
.0

6
6

5
.4

7
7

1
.4

2
2

0
.0

4
5

1
.1

5
7

0
.0

0
3

0
.0

0
4

0
.0

4
4

6
9

.3
2

2

0
.9

5
4

7
.8

0
7

0
.4

8
6

1
1

.5
0

7

1
.5

5
1

0
.0

2
0

0
.0

1
4

0
.0

1
3

0
.2

5
1

0
.0

0
2

3
.2

7
3

0
.1

2
8

0
.0

0
5

3
.3

8
3

0
.0

3
0

0
.0

0
1

0
.2

4
2

0
.0

0
8

0
.0

0
4

0
.7

6
8

0
.0

0
4

0
.1

6
5

0
.0

1
2

0
.0

4
8

3
.2

1
3

1
.1

0
4

0
.3

3
1

2
0

.3
5

2

8
.8

4
6

0
.0

8
8

0
.0

3
0

3
.4

1
6

1
.6

8
9

0
.1

4
4

0
.0

0
7

0
.3

9
3

4
.9

9
8

0
.0

1
5

2
6

.9
3

5

0
.0

0
9

0
.0

1
1

5
.0

4
1

0
.0

9
8

0
.0

0
8

2
.1

9
8

0
.0

0
7

3
.0

1
7

0
.0

1
2

0
.0

0
4

1
1

.9
5

9

3
.0

1
4

0
.0

9
1

0
.0

1
8

0
.3

2
5

0
.1

0
3

0
.0

8
0

0
.2

7
8

0
.0

5
6

0
.0

0
3

0
.3

9
3

0
.1

1
7

0
.1

1
1

0
.4

8
8

0
.0

8
0

0
.0

9
0

0
.0

1
3

0
.1

4
9

A
m

b
it

io
u

s
M

o
d

e
ra

te
W

e
a
k

A
m

b
it

io
u

s
M

o
d

e
ra

te
W

e
a
k



15 
 

Increase (Crops) exceeded 1.78 (multiplier), Carbon Price was above 100 AU$ tCO2
-1, the 

Biodiversity Fund levy on carbon plantings was above 9%, under a constrained and regulated 

land-use system (Table 6 and Figure 4).  

 

Figure 3: Parameter settings for the five most influential parameters to achieve five targets 

under Weak 2050 ambition with more than 80% purity. 

Investigating further the precise safe operating space settings for pathways to multi-target 

achievement at >80% purity, complex dependencies between parameter settings were evident. 

We found that in an unconstrained environment multi-target achievement occurred only at a 

hurdle rate setting for land-use change above 3.4, whereas in a constrained and regulated 

environment multi-target achievement was possible at any hurdle rate (Figure 3 and 

Supplementary Figure 1 and Figure 2). Similarly, at Carbon Price settings between 100 and 

120 AU$ tCO2
-1) a levy on carbon plantings exceeding 12% was required in a constrained 

environment with a hurdle rate over 1.4 (Supplementary Figure 4). 
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Table 6: Statistical distribution of the parameter settings to achieve five targets under Weak 

2050 ambition (Supplementary Figure 1, Figure 2, Figure 3, and Figure 4).  

Rank Input Variables Mean SD Min 
Percentile 

Max Purity >80% 
25th 50th 75th 

1 Yield Increase Crops (multiplier) 1.95 0.10 1.65 1.87 1.96 2.03 2.11 >=1.78 

2 Constraint Setting  NA NA 0 0 0 1 1 0 or 1 

3 Carbon Price (AU$ tCO2
-1 ) 146.6 34.9 0.49 123.9 148.75 174 199.7 >=100 

4 Hurdle Rate 2.86 1.09 1.00 1.95 2.82 3.71 5.00 >=1.0 

5 
Biodiversity Fund (% levy on 
carbon plantings) 

18.4 6.7 0.29 12.9 18.6 23.9 29.97 >=9 

6 Livestock Price (multiplier) 1.93 0.42 1.07 1.59 2.03 2.29 2.47 >=2.19 

7 Crop Price (multiplier) 1.66 0.31 1.06 1.40 1.69 1.93 2.18 >=1.84 

8 Electricity Price (AU$/MWh) 78.35 23.6 42.19 57.01 76.02 99.11 122 >=50 

9 Oil Price (AUC /litre) 152.3 6.70 140.26 146.5 152.40 158.2 163.3 14>=5 

10 Global Outlooks - H3 NA NA 0 0 0 1 1 0 or 1 

11 Global Outlooks - L1 NA  NA  0 0 0 0 1 0 or 1 

12 GCM - MPI NA  NA  0 0 0 1 1 0 or 1 

13 GCM - MR5 NA  NA  0 0 0 1 1 0 or 1 

14 Global Outlooks - M2 NA  NA  0 0 0 1 1 0 or 1 

15 Global Outlooks - M3 NA  NA  0 0 0 1 1 0 or 1 

16 Yield Increase Trees (multiplier) 1.19 0.11 1.00 1.10 1.19 1.28 1.37 >=1.15 

17 GCM - CE2 NA NA 0 0 0 1 1 0 or 1 
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Figure 4: Target achievement in relation to the input parameter space for four of the most 

influential parameters. Density subplots illustrated the number of scenarios meeting the Weak 

2050 multi-target combinations (5 targets in green) and the number of scenarios not meeting 

the targets is shown in red. All Scenarios shows the density of all 240,000 scenarios. Scenarios 

(Misses) and Scenario (Hits) shows the density of hits and misses, and Purity (%) shows the 

density ratio as a percentage of hits to misses in each bin. 
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4 Discussion 

Using a machine learning approach we developed a meta-model which accurately mimicked 

the behaviour of a complex, non-linear, national-scale land-system model. Once trained, we 

were able to run hundreds of thousands of scenario outputs in minutes with little computational 

effort. This fast and accurate meta-model enabled the exploratory modelling of scenario 

configurations across a dense sampling of the input parameter uncertainty space and produce 

outputs spanning the complete space of potential futures across a range of sustainability 

indicators. Scenario discovery enabled the identification of the input parameters and policy 

settings which are essential for achieving the Sustainable Development Goals in Australia’s 

land system but which were not evident in previous scenario analyses (Gao and Bryan, 2017).  

4.1 Implications of the results for meta-modelling 

Integrated assessment models of complex social-ecological systems have helped provide a 

glimpse of the future considering plausible changes in climatic, socio-economic, and 

technological conditions. With the improvements and extension of these models over the years 

the computational complexity has increased while transparency has decreased (Keppo et al., 

2021). Over the same period, significant advances in exploratory modelling including 

techniques such as scenario discovery have occurred specifically to address the uncertainty in 

complex social-ecological systems. However, the increased computational demands of 

integrated assessment models have limited their ability to explore uncertainty using these 

techniques due to the challenges in producing the many scenario runs required. We have 

demonstrated here that machine learning based meta-models which provide a fast, accurate 

surrogate for complex, integrated, computationally-intensive models can effectively bridge this 

gap. Our results add to the momentum of machine learning based meta-modelling (Razavi et 

al., 2021).  

The accuracy of the meta-model in estimating the outputs of the original model is a key factor 

underlying the success of the methods used here. Our results show that machine learning 

methods were able to accurately mimic the behaviour of the complex LUTO model of 

Australian land-use change. We evaluated five different machine learning methods to test the 

sensitivity to the choice of method. While XGBoost was selected as the most accurate, other 

methods also performed well and consideration also needs to be given to the requirements for 

hyper-parameter tuning and compute time. For example, RF had a training time required of 4.9 

minutes and only 2 hyperparameters needed tuning but the accuracy was only 83%, whereas 



19 
 

XGBoost tuning involved 6 hyperparameters and 5.5 minutes of training time but had a 96% 

accuracy. The performance and choice of machine learning methods are likely to be dependent 

upon the specific characteristics of the data and the model being mimicked and we recommend 

the evaluation of multiple machine learning methods in future meta-modelling exercises. 

The current process-based LUTO model involves several thousand lines of computer code, 

depends upon a licensed version of the Cplex solver, and even with advanced heuristics and a 

high-performance compute cluster still takes around one hour to run a single scenario. 

Conversely, the meta-model is much more accessible, has no proprietary software limitations, 

and can run many scenarios in seconds on modest compute resources. This makes the meta-

model deployable to online platforms and publishable as open source so that the users can 

easily access and understand the approximate behaviour of LUTO without heavy 

computational requirements.   

4.2 Implications for land system sustainability 

We used a fast, accurate, machine learning based meta-model to comprehensively explore 

plausible future uncertainty space and find the dominant variables within the model. By 

producing many thousands of scenario runs, the meta-model revealed futures spanning broad 

combinations of model parameter settings including socio-economic and environmental 

forcing data, land-use policy, and global outlooks. This was not previously possible with the 

full LUTO model due to the heavy resource requirement and computational overhead (Nazari 

et al., 2015). The meta-modelling approach enabled a dense sampling of the input parameter 

and scenario space. This in turn, allowed the specification of precise regions of interest in the 

output space (i.e., achieving multiple downscaled SDGs for Australia) and indicated highly 

resolved input parameter settings which gave rise to these regions of interest as the safe 

operating space necessary for charting future pathways to sustainability. Exploring the full 

range of potential futures for Australia’s land system, the meta-model revealed new pathways 

and insights into the requirements for meeting multiple SDG targets, complementing a previous 

landmark assessment (Gao and Bryan, 2017).  

After running 240,000 scenario simulations for 2050, we identified via scenario discovery the 

most prospective pathway where five weak SDG targets (all but Water Resource Use) were 

achieved under just 5.82% of all possible future scenarios. The safe operating space was 

defined as the scenario setting configuration where the future pathways were more likely to 

achieve these 5 targets (with a purity > 80%). Target achievement required specific parameter 
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setting combinations, but typically Yield Increase (Crops) needed to more than 1.78 times of 

the 2013 levels, Carbon Price above 100 AU$ tCO2
-1, and a Biodiversity Fund levy on carbon 

plantings above 9%. In addition, multiple targets were more likely to be met in when land-use 

change was constrained and regulated, although achievement was also possible when 

unconstrained with hurdle rates exceeding 3.4 (Supplementary Figure 1-4). This indicates that 

for a sustainable future for Australia’s land sector we must focus on the research and 

development to improve productivity, manage the pace of land-use change via regulation, fund 

carbon sequestration in land systems, and implement the biodiversity fund levy policy such 

that some of the proceeds from carbon plantings go towards restoring Australia’s native 

ecosystems. 

4.3 Limitations  

Several factors limited the application of the meta-model in this study. First, the machine 

learning methods evaluated and used require the tuning of several hyper-parameters which 

affect their performance. We used a grid-search algorithm to find the most suitable hyper-

parameter values to maximise meta-model accuracy. Second, although our approach showed 

that a close approximation of a complex, process-based, land systems model is possible with 

machine learning methods, the behaviour of the model is learned only for one particular point 

in time. However, in reality, most large systems models are constantly being improved and 

extended. If the process-based model is modified via the incorporation of new variables, data, 

or scenarios, the meta-model also needs to be re-trained to capture this new behaviour. While 

the time required to retrain the machine learning is short, it still takes a significant amount of 

time and expertise to incorporate the changes to the process-based model and reanalyse the 

outputs. Third, future projections using the meta-model are also limited to the range of input 

data used in the original process-based model runs. Predicting beyond the range of these known 

values is likely to produce unreliable results. Hence, the great utility of the meta-model 

approach is to produce many model runs at a dense sampling of the input parameter uncertainty 

space and to provide a comprehensive coverage of the output space. 

5 Conclusion 

We created a machine learning based meta-model which was able to accurately mimic the 

performance of LUTO, a complex land systems model for Australia. Of the five machine 

learning methods evaluated, XGBoost was relatively quick to train, most accurate, and fast to 

run. The meta-model was used to simulate many land-use futures across a dense sampling of 
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the input uncertainty space via Latin hypercube sampling. We used the resulting future land-

use simulation dataset in an exploratory process of scenario discovery to identify the input 

parameter settings required to achieve six downscaled UN Sustainable Development Goal 

targets for Australia. We found pathways where five of the six desired sustainability targets 

(Food Production, Economic Returns, Biodiversity Services, Biofuels Use, and Emissions 

Abatement) were achieved by 2050 under just 5.82% of the total number of scenarios. Using 

scenario discovery we identified the safe operating space under which these pathways could be 

achieved defined by settings for influential model input variables. The production of many 

simulation runs densely spanning the input uncertainty space helped accurately understand the 

input parameter settings to achieve the outputs of interest. The approach in this study can be 

used to understand any complex model and increase the understanding of the uncertainty space, 

influential variables, and identify key input parameter settings required to achieve specific 

model outputs. In our case, it generated insights into the requirements for sustainable futures 

for Australia’s land sector that have not been possible using traditional integrated modelling 

approaches. 
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