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Abstract

We re-examine data from a deep earthquake beneath NE Taiwan as recorded by the Formosa Array to explain mechanisms of a

significant later P phase. For 2D simulations, we set up an initial velocity structure with (A) a high Vp anomaly in the mantle

wedge above Ryukyu subduction, and (B) a slightly high Vp Eurasian lithosphere to the west with a sub-vertical boundary –

based on results of tomographic studies. We conclude that (1) the small-amplitude first P phase is attributed to the energies

radiated near the nodal point of the focal mechanism and propagated through (A), (2) those of the significant later P phase are

analogous to a head wave that propagates and generates spherical waves along (B) that are received at the surface. Accordingly,

stations of zero delay time between the first and second P provide a first-ever portrayal of the Eurasian lithosphere boundary

by waveform constraints.
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Key Points: 9 

• The major waveform characteristics of the significant later P phase are simulated in 2D 10 

profile. 11 

• We explain the significant later P phase as a head wave propagating along the Eurasian 12 

Lithosphere boundary. 13 

• The Eurasian Lithosphere boundary beneath NE Taiwan are portrayed by waveform 14 

constraints.  15 
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Abstract 16 

We re-examine data from a deep earthquake beneath NE Taiwan as recorded by the Formosa 17 
Array to explain mechanisms of a significant later P phase. For 2D simulations, we set up an 18 
initial velocity structure with (A) a high Vp anomaly in the mantle wedge above Ryukyu 19 
subduction, and (B) a slightly high Vp Eurasian lithosphere to the west with a sub-vertical 20 
boundary – based on results of tomographic studies. We conclude that (1) the small-amplitude 21 
first P phase is attributed to the energies radiated near the nodal point of the focal mechanism 22 
and propagated through (A), (2) those of the significant later P phase are analogous to a head 23 
wave that propagates and generates spherical waves along (B) that are received at the surface. 24 
Accordingly, stations of zero delay time between the first and second P provide a first-ever 25 
portrayal of the Eurasian lithosphere boundary by waveform constraints. 26 

Keywords: Formosa Array, two-phase first P arrivals, high-velocity mantle wedge and Eurasian 27 
Lithosphere Boundary 28 

 29 

1 Introduction 30 

The termination of the Ryukyu Trench offshore NE Taiwan heralds the ensuing NW 31 
indentation of the Philippine Sea Plate (PSP) into the Eurasian Plate (EUP), which may have been 32 
torn by the NW movement of PSP (Lallemand et al., 2001) or detached by the negative buoyancy 33 
of EUP slab posterior to arc-continent collision (Teng 1996). While the former suggests a passive 34 
role of EUP on the flipping of subduction polarity in Taiwan – from the east-dipping Manila Trench 35 
offshore to the south to the north-dipping Ryukyu Trench offshore to the northeast (Figure 1), the 36 
latter calls for an active role of EUP (Su et al., 2019). Knowing the upper mantle structures beneath 37 
NE Taiwan is key to discriminating between different geodynamical models of flipping of 38 
subduction polarity as well as in situ tectonic evolution (Lallemand et al., 2001; Teng, 1996; Wu 39 
et al., 2009); i.e., the existence of EUP boundary favors an active role of EUP over a passive one.   40 

 41 
Typical slab edges (e.g., the Kamchatka subduction zone) exhibit lateral mantle flow and 42 

melting of subducting oceanic lithosphere characterized by seismic anisotropy (Peyton et al., 2001) 43 
and adakite rocks (Yogodzinski et al., 2001), respectively. However, the mantle wedge beneath 44 
NE Taiwan adjacent to the SW edge of Ryukyu slab is likely atypical as a result of coupling with 45 
the thick EUP lithosphere to the west and exhibits cold and sluggish rheology, as attested by 46 
observations of low seismic wave attenuation (high Q) (Ko et al., 2012), high Vp anomalies (Fan 47 
et al., 2021; Huang et al., 2014a; Kuo-Chen et al., 2012; Su et al., 2019), and low Vp/Vs ratios 48 

(Huang et al., 2014b). 49 
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 50 

Figure 1. High resolution 3D P-wave velocity anomalies beneath North Taiwan adopted from 51 
Su et al. (2019), with H1 and H2 denoting high Vp anomalies of PSP slab and in the mantle 52 
wedge, respectively. Circle indicates earthquake hypocenter. Triangles are distributions of FA 53 
stations with P1-P2 delay times color-keyed. KE07 is a representative station for two P 54 
observations with ray paths traced (Rawlinson et al., 2006), LK02 for a single P observation. 55 
Yellow line: 2D profile (AA’) for waveform simulations. Red line: EUP-PSP boundary by 56 
stations of zero P1-P2 delay time. Orange line: surface projection of NW PSP termination 57 
from Ko et al. (2012). Blue line: the same as orange line but from Wu et al. (2009). Inset: 58 
Tectonic setting of Taiwan. Red box marks study area. 59 
 60 

The deployments of the Formosa Array (FA) – a dense broadband seismic array operating 61 
over northern Taiwan since 2017 (Figure 1) – make it possible to capture the waveform imprints 62 
of the mantle wedge beneath NE Taiwan. Data from a few deep earthquakes (55-152 km) offshore 63 
NE Taiwan indeed exhibit significant later P waves (Lin et al., 2019, 2021). Unlike those of seismic 64 
waves guided inside the subducted lithosphere (Chiu et al., 1985), by the subducted plate as a 65 
whole (Chen et al., 2013), by subducted oceanic crust (Martin et al., 2003; Wu & Irving, 2018), or 66 
by the heterogeneity structure of the subducted plate (Furumura & Kennett, 2005), for which the 67 
two P phases are commonly observed by stations at fore-arc side with the later P possessing 68 
relatively high frequency contents, the aforementioned FA observations neither require fore-arc 69 
stations nor possess higher frequency later P. Using ray tracing and based solely upon arrival time 70 
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patterns, mechanisms of later P are attributed to either a strong seismic reflector within the mantle 71 
wedge (Lin et al., 2019) or various diapirs in the mantle wedge for each and every event (Lin et 72 
al., 2021). 73 

 74 
In recognition of waveform sensitivity over travel times to structural boundaries and spatial 75 

resolvability of FA, in this study we not only re-examine data from the event (12 Mar. 2019, Figure 76 
1) that exhibit the most prominent later P in the studies of Lin et al. (2019, 2021), but we also 77 
conduct a thorough compilation of waveform characteristics among FA observations. The resultant 78 
patterns are then simplified in a 2D profile that we deem representative of overall patterns and 79 
where waveforms are simulated by finite-difference schemes. By successfully simulating the 80 
waveform patterns, we attribute the later P phase to an analogous head wave propagating along a 81 
sub-vertical Eurasian lithosphere boundary to the west of the hypocenter. 82 

2 Materials and Methods 83 

2.1 Waveform and Arrival Time Characteristics 84 

 85 
Having deconvolved with instrument response, we plot the ground displacements recorded 86 

by FA stations, as a function of epicentral distance (ED). It is clear that only stations with ED less 87 
than 25 km exhibit two P phases (labelled as P1 and P2). On the other hand, stations with ED 88 
greater than 25 km appear to exhibit single-phase first arrivals (labelled as P), either by merging 89 
of the two phases or by missing one phase (Figure 2a). We determine the P1-P2 delay times (Figure 90 
2b) and color-code the resulting 0 to ~1.45 sec range on each station (Figure 1). The delay times 91 
are in general inversely proportional to ED (Figure 2a), and based on their patterns, we extract 92 
observations along profile AA’ (Figure 1) as a simplified representation for waveform simulations 93 
(Figures 2b). 94 

 95 
The waveform and arrival time characteristics are compiled as follows. (1) Although arrival 96 

times of P1 seem to follow the trend of P indicating less travel time with smaller ED, the 97 
amplitudes of P2 indeed bear much more resemblance to those of P (Figures 2a and 2b). (2) The 98 
arrival times of P2 exhibit a reverse pattern with greater travel time on smaller ED, resulting a 99 
delay time between P1 and P2 anticorrelated with ED (Figures 1, 2a and 2b). (3) The amplitudes 100 
of P1 are much smaller than those of P2 and P. The phase of P1 is nearly opposite to that of P and 101 
the phase differences between P2 and P are only minor (Figures 2a and 2b). However, the particle 102 
motions of P1, P2 and P are all predominantly in the vertical component. 103 
  104 
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(a) (b)

Figure 2. (a) Vertical displacements of the 2019/03/12 event as recorded by all FA stations, with 105 
P, P1, and P2 labeled to indicate distinctive first-arrival patterns separated by red dashed line. (b) 106 
Observation (black) and synthetic (red) waveforms of stations along profile AA’ (epicentral 107 
distance positive to the right). Dashed traces are synthetics for virtual stations. The picked arrival 108 
times for P, P1, and P2 phases are shown in blue, red, and green triangles, respectively. Inset: 109 
AA’ profile with epicenter, real FA stations, and virtual stations shown. 110 
 111 
2.2 2D waveform modelling 112 

Having simplified the observations with a representative 2D profile (AA’), we aim at 113 
reproducing the aforementioned characteristics with proper velocity structures. We employ an 114 
Open-source Seismic Wave Propagation Code (OpenSWPC, Maeda et al., 2017) for 2D (P-SV) 115 
simulation in viscoelastic media based on the finite difference method. The attenuation is 116 
frequency-independent as modelled by the Generalized Zener Body (JafarGandomi & Takenaka, 117 
2007). While the top side is a free-surface boundary, the other three sides are absorbing boundaries 118 
using a Perfectly Matched Layer condition with an implementation proposed by Zhang and Shen 119 
(2010). 120 

 121 
For proper heterogeneous velocity structures, we, based on a 1D velocity model (ak135, 122 

Kennett et al., 1995), refer to results of tomographic studies on profile AA’ and determine three 123 
key features with preliminary percentages of velocity anomalies – (1) a slight overall reduction 124 
(~2%) in velocity for depth greater than 20 km to account for warmer mantle wedge, (2) a high 125 
velocity anomaly (~8%) in the mantle wedge to account for H2 in Su et al. (2019) (Figure 3a), and 126 
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(3) a slightly high velocity anomaly (~3%) in the left domain with a nearly vertical boundary to 127 
imitate the EUP lithosphere (EL) and the EUP-PSP boundary (EPB), respectively, as suggested by 128 
Huang et al. (2014a) (Figure 3b). 129 

 130 
Using the Küpper’s wavelet of a single cycle (Mavroeidis & Papageorgiou, 2003) with a 0.5 131 

sec rise time as source time function and using the moment tensor solutions determined by Central 132 
Weather Bureau (https://scweb.cwb.gov.tw/en-us/earthquake/details/EE2019031304191553016) 133 
(Figure 3c), we conduct simulations of 2D wave propagation as recorded, on the surface, by a 134 
virtual array of FA stations along AA’. Having examined the interactions of waves with the key 135 
features, a theory on the mechanisms of the three phases (P1, P2, and P) was established (in 136 
Results). The main parameters to describe heterogeneity of the three key features are: (1) 137 
percentage of Vp reduction for depth greater than 20 km; (2) horizontal location, depth extent, and 138 
percentage of Vp high anomaly in the mantle wedge; (3) horizontal location and depth extent of 139 
EPB, percentage of Vp high anomaly for EL. Based on the theory, we systematically vary each of 140 
the main parameters, with others being fixed, and investigate the impact on resulting patterns of 141 
waveform and travel time characteristics. 142 
  143 
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(a) (b)

 
(c) 

Figure 3. (a) Velocity anomalies across profile AA’ (position shown in inset) adopted from Su et 144 
al. (2019), with hypocenter (red star) and rays (black lines) to stations along profile AA’ (top 145 
panel, with color from Fig. 2(b)) shown. Gray dots are background seismicity relocated by Wu et 146 
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al. (2008) (b) Similar to (a) with the profile easterly extended to A”, as opposed to A’ (black 147 
dashed line) and the velocity anomalies adopted from Huang et al. (2014a). The corresponding 148 
Eurasian lithosphere (EL) and Philippine Sea Plate (PSP) are marked. (c) The final velocity 149 
structures for 2D waveform simulations to reproduce observations along AA’ profile. Main 150 
heterogeneous features are high velocity mantle wedge (solid line) and EPB (dashed line). 151 
Radiation pattern and source time function are shown in bottom right and left. 152 
 153 

3. Results 154 

The exercise of systematically varying the main parameters helps us gain experience in 155 
adjusting the key heterogeneous features for waveform fitting. The resultant features and the 156 
waveform fitting are shown in Figure 2b. Although they are not fitting exactly, the simulated 157 
waveforms do capture all major characteristics of the observations. Figure 4 shows snapshots of 158 
wave propagation at 2, 7, 13, and 16 seconds after the occurrence of the earthquake (Figure S1 for 159 
animation), where we establish the theory on the mechanisms of the three phases.     160 

 161 
We first note that the horizontal divide of (P1, P2) and P coincides with location of EPB on 162 

the AA’ profile (~25 km to the west of hypocenter) (Figures 2a, 2b, and 3c). Secondly, the nodal 163 
point (referring to the one of upward propagation hereafter) of the earthquake is pointing exactly 164 
upwards on AA’ (Figure 4a), resulting in opposite polarity of initial phases between those easterly 165 
and westerly propagating upwards. Since the high Vp anomaly in the mantle wedge is just above 166 
the hypocenter with the main content to the right (Figure 3c), the energy radiated to the right of 167 
and proximal to the nodal point will have the most ray path within the high Vp anomaly and arrive 168 
first to the surface as P1 phase. While the small amplitudes of P1 are easily conceptualized as 169 
radiation near the nodal point, the arrival time patterns of P1 (Figures 2a and 2b) are mainly 170 
determined by the shape and depth of upper bound of the high Vp anomaly (Figures 3c) that 171 
constrain our final result (Figures 2a and 4). 172 

 173 
The scenario of westerly upward propagation is analogous to that of two-layer structures in 174 

refraction seismology (Stein & Wysession, 2001) – a low-velocity horizontal layer on top of a high 175 
velocity half space – but with a 90° clockwise rotation with a sub-vertical EPB. As a result, those 176 
waves with incident angles smaller than the critical angle between mantle and EL are refracting 177 
into EL and recorded by stations west of EPB as P phase (Figure 4c). On the other hand, the waves 178 
with incident angle equal to the critical angle propagate along the EPB as a head wave and radiate 179 
energy back all the way with the critical angle, which are recorded by stations to the east of EPB 180 
as P2 phase (Figure 4d). The proposed mechanisms for P and P2 phases explain (1) the reverse 181 
travel times of P2 initiated near horizontal location of EPB, (2) the positive polarity and relatively 182 
great amplitudes of P and P2 (radiated from the west of the nodal point), (3) the slight phase 183 
differences between P and P2 (refracted vs. head waves). A virtual array of 15 stations was set up 184 
along AA’ to better follow the spatial variation of synthetic P1, P2, and P phases (Figure 2b). 185 

 186 
  187 
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(a) (b)

 
(c) (d)

 
Figure 4. Snapshots of wave propagation at 2, 7, 13, and 16 secs after the occurrence of the 188 
earthquake, with red color for P waves and green for SV waves. The wavefronts of 189 
corresponding phases (P, P1, and P2) are marked. 190 

4. Discussion 191 

Although FA data from the same event have been previously studied with the source of later 192 
P attributed to a strong reflector in the mantle wedge (Lin et al., 2019) or mantle wedge diapirs 193 
(Lin et al., 2021), we re-examine the data with additional attention on waveform characteristics 194 
and conclude that the later P (P2) is analogous to a head wave propagating along a sub-vertical 195 
EPB. Despite the 2D simplification and the inherited non-uniqueness of the forward trial-and-error 196 
approach, the legitimacy of the resultant model is appealing in its capability of reproducing not 197 
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only arrival time but also waveform characteristics. By the same token, the model is more complete 198 
than those of tomographic studies (e.g., Huang et al., 2014a; Su et al., 2019), simply due to 199 
waveforms being more sensitive to structural boundaries.    200 
 201 

The sluggish rheology of adjacent mantle wedge attributable to coupling with EL (Ko et al., 202 
2012) is evidenced by the waveform-detected EPB beneath NE Taiwan. More importantly, the 203 
existence of EPB beneath NE Taiwan provides evidence of detached EUP slab (Teng, 1996) and 204 
is not consistent with tearing of EUP by NW indention of PSP (Lallemand et al., 2001). Here, we 205 
intend to constrain the surface projection of EPB to better formulate the active role of EUP on 206 
evolution of Taiwan tectonics. Based on our theory of the mechanisms of P1, P2, and P, the 207 
horizontal divide of (P1, P2) and P coincides with horizontal distance of sub-surface EPB, i.e., 208 
~25 km west of the hypocenter on AA’. If we connect the horizontal divides by following those of 209 
FA stations with zero delay time, the sub-surface EPB in NE Taiwan is thus determined (Figure 1). 210 
Note that the waveform-constrained EPB in this study is consistent with the NW termination of 211 
PSP determined by distributions of deep seismicity (Ko et al., 2012). However, the EPB does not 212 
necessarily have to be a vertical one. According to our systematic tests, the best horizontal distance 213 
of EPB at depth to fit waveforms of P2 is at 15 km west of the hypocenter, resulting in EPB in the 214 
final result curving slightly to the west near the surface (Figure 3c). Having tested various depth 215 
extents of EPB, the depth range between 60 and 100 km is the most sensitive for the generation of 216 
P2 phase. 217 

5 Conclusions 218 

The additional constraints of waveforms provide an alternative explanation for the 219 
mechanisms of a significant later P phase that is more comprehensive than those based only on 220 
travel time patterns. Upon simulating waveform and travel time characteristics of a deep 221 
earthquake beneath NE Taiwan (12 Mar. 2019) across a 2D profile of FA, we confirm the existence 222 
of a high Vp anomaly in the mantle wedge above Ryukyu subduction and a sub-vertical EPB to 223 
the west. We propose that the small amplitudes of P1 result from a near-nodal-point-of-earthquake 224 
radiation pattern and P2 represents the phase of a head wave propagating along the sub-vertical 225 
EPB to the west of the hypocenter. Phase differences of observations are also accounted for by the 226 
proposal. Accordingly, the horizontal divides between (P1, P2) and P indicate the sub-surface 227 
location of EPB, which is portrayed by connecting zero P1-P2 delay times of FA stations. 228 

 229 
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