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Abstract

The Radiative-Convective Equilibrium (RCE) of two models exhibiting convective aggregation has been compared. The goal

of the work, following the suggestion from the Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP),

is to identify key parameters controlling self-aggregation in RCE for both models and discuss the processes controlled by these

parameters in order to find the simulations similarities and to test their differences. The two models studied, the SAM (System

for Atmospheric Modeling) and the ARPS (Advanced Regional Prediction System), have different physical and numerical

formulations. This allowed us to compare the sensitivity to processes related to self-aggregation. When self-aggregation occurs,

the two models present similar statistics for what concerns precipitation, warming, and drying of the atmosphere and anvil cloud

area reduction (leading to an “Iris effect’), within the spread of the RCEMIP values. On the other hand, they differ both in the

degree of organization and the organization feedback: SAM is strongly organized (is on the highest quartile of the RCEMIP

for the Iorg Index) and the convective organization is achieved by cloud-radiative feedback; ARPS is weakly organized (on

the multi-model average of the RCEMIP for the Iorg Index) and the moisture-convection feedback is leading to the convective

organization. The prevalence of one mechanism over the other has been found in the interaction between the microphysics and

the sub-cloud layer properties. This comparison suggests that, in order to have a robust measure of climate sensitivity, climate

models should include both types of convective organization mechanisms as shown by the two models.

1



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Intercomparison of Convective-Aggregation States with1

two Cloud Resolving Models2

P. Bongioannini Cerlini1, M. Saraceni2, L. Silvestri23

1University of Perugia, Centro Interuniversitario di Ricerca sull’Inquinamento e sull’Ambiente Mauro Felli4

(CIRIAF) - Centro di Ricerca sul Clima e Cambiamenti Climatici (CRC), Perugia (PG)5
2University of Perugia, Department of Civil and Environmental Engineering (DICA) - Centro di Ricerca6

sul Clima e Cambiamenti Climatici (CRC), Perugia (PG)7

Key Points:8

• The two models ARPS and SAM achieve a state of convective organization through9

different mechanism and different degree of aggregation10

• The predominance of clouds-radiative or moisture-memory feedback is dependent11

on the initialization, microphysics and sub-cloud properties12

Corresponding author: M.Saraceni, miriam.saraceni@studenti.unipg.it

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract13

The Radiative-Convective Equilibrium (RCE) of two models exhibiting convective ag-14

gregation has been compared. The goal of the work, following the suggestion from the15

Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP), is to iden-16

tify key parameters controlling self-aggregation in RCE for both models and discuss the17

processes controlled by these parameters in order to find the simulations similarities and18

to test their differences. The two models studied, the SAM (System for Atmospheric Mod-19

eling) and the ARPS (Advanced Regional Prediction System), have different physical20

and numerical formulations. This allowed us to compare the sensitivity to processes re-21

lated to self-aggregation. When self-aggregation occurs, the two models present similar22

statistics for what concerns precipitation, warming, and drying of the atmosphere and23

anvil cloud area reduction (leading to an “Iris effect”), within the spread of the RCEMIP24

values. On the other hand, they differ both in the degree of organization and the organ-25

ization feedback: SAM is strongly organized (is on the highest quartile of the RCEMIP26

for the Iorg Index) and the convective organization is achieved by cloud-radiative feed-27

back; ARPS is weakly organized (on the multi-model average of the RCEMIP for the28

Iorg Index) and the moisture-convection feedback is leading to the convective organiza-29

tion. The prevalence of one mechanism over the other has been found in the interaction30

between the microphysics and the sub-cloud layer properties. This comparison suggests31

that, in order to have a robust measure of climate sensitivity, climate models should in-32

clude both types of convective organization mechanisms as shown by the two models.33

Plain Language Summary34

The Radiative-Convective Equilibrium is a paradigm for atmospheric modeling of35

the tropics. In such a paradigm, the clustering of clouds can spontaneously occur and36

it can substantially affect the energy budget of the climate system. To study this phe-37

nomenon, we selected two models, with different numerics and physics, and we investi-38

gated the equilibrium statistics. We compared our results with the ones of the Radiative-39

Convective Equilibrium Model Intercomparison Project, where different models were used.40

We found similar precipitation, warming, and drying of the atmosphere, between the two41

models and that experiment. Instead, we found different types of cloud clusters and dif-42

ferent feedback processes leading to this clustering. We attributed this difference to the43

representation of cloud formation processes in the two models and the initial properties44

of the layer below the clouds. This might have implications for the change in clouds with45

warming within the climate system.46

1 Introduction47

The radiative-convective equilibrium (RCE) of an ensemble of clouds has been used48

as a paradigm of a statistical equilibrium state of the atmosphere able to mimic the trop-49

ical part of the climate system. Given the crucial importance of moist convection inside50

the climate system and how to parameterize it inside climate models, RCE simulations51

have been used as a proxy to study the link between global circulation and convection52

(Held et al., 1993; Randall et al., 1994; Pauluis & Held, 2002b, 2002a). After these ini-53

tial numerical studies, a number of additional studies were performed using RCE as a54

starting point to study the variability and organization of convection over a wide range55

of space and time scales. Among the different approaches used to evaluate convective56

variability, there was: the simulation of RCE states to study the predictability of rain-57

fall at high resolution (Islam et al., 1993), the organization of convection (Robe & Emanuel,58

1996), and the orographic variability of precipitation (Bongioannini Cerlini et al., 2005).59

Given the aims of these last simulations, different models were used with fixed imposed60

radiation and simplistic microphysical parametrization schemes, without ice phases of61

water content. The increased computing capability available made it possible to run three-62
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dimensional high-resolution simulations (Tompkins & Craig, 1998; Bretherton et al., 2005)63

and to study the sensitivity of RCE states using models with enhanced dimensions of64

the grid reaching the dimensions of mesoscale processes, with explicit moist variables and65

different physics parameterizations.66

The characteristic that arose further the attention over the RCE simulations was67

the spontaneous development within these simulations of the convective organization (self-68

aggregation) using cloud resolving models. Such models can simulate the space-time statis-69

tics of an ensemble of clouds (Khairoutdinov & Randall, 2003) over domain sizes with70

spatial extension up to hundreds of kilometers and for a length of time much longer than71

that of a single cloud over homogeneous surface conditions. Despite the differences in72

parametrizations packages (e.g. microphysics, radiation, turbulence) between models,73

they showed in some cases spontaneous self-aggregation of clouds (Tompkins & Semie,74

2017; Khairoutdinov & Emanuel, 2010; Jeevanjee & Romps, 2013; Ruppert Jr & Hoheneg-75

ger, 2018; Holloway & Woolnough, 2016; Hohenegger & Stevens, 2016).76

Generally, it has been pointed out that convective organization is the result of feed-77

back between moisture-convection-radiation, which can be related to various processes78

(C. Muller et al., 2022; Wing et al., 2017). Bretherton et al. (2005) and C. J. Muller and79

Held (2012) found that a low level circulation from the dry to moist regions, forced by80

longwave radiative cooling in the lower troposphere, is responsible for self-aggregation,81

by transporting moist static energy (MSE) up-gradient. Wing and Emanuel (2014) us-82

ing a MSE variance budget confirmed such a mechanism. On the other hand, C. Muller83

and Bony (2015) found that aggregation could be obtained by suppressing rain evapo-84

ration, even in the absence of radiative feedback. This mechanism was called “moisture-85

memory aggregation”, where moist regions remain moist, thus more favorable to con-86

vection (Tompkins, 2001b; Craig & Mack, 2013).87

Given the differences among models, the need for comparison among them, with88

different dynamical formulations, has been stated recently in different studies (Tompkins89

& Semie, 2017; Wing et al., 2017, 2018). The impact of different model representations90

of cloud physics and convective processes has been recognized as a key point to assess91

the closeness between model self-aggregation to the atmospheric convective organization92

and to compare the climate sensitivity to self-aggregation feedback as represented by mod-93

els (Wing et al., 2020). How to assess the robustness of statistical variability and its close-94

ness to the observed variability of tropical convection for simulations of RCE states (where95

convective variables show self-aggregation), is one of the reasons for the work done within96

the Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) ex-97

periment. In fact, within RCEMIP, the different models used, one-dimensional, three-98

dimensional, and global, were driven to a radiative-convective equilibrium, using a pre-99

defined protocol to start from conditions that were as similar as possible. Despite this,100

since the equilibrium state is achieved in a statistical sense, and given the differences in101

the convection simulations of the RCEMIP models spectrum, the different sensitivity to102

various climatic parameters produced different results. Furthermore, it was underlined103

that different model responses are linked to differences in models physics and numerics104

(Wing et al., 2020). Thus, the question remains as to which factors in the models are105

prevalent in aggregation.106

For these reasons, this study sets out to compare two models in their reproduction107

of convection statistics: The Advanced Regional Prediction System (ARPS, Oklahoma108

University (OU), (Xue et al., 2000, 2001)) and the System of Atmospheric Modeling (SAM)109

(Khairoutdinov & Randall, 2003). ARPS is a state-of-the-art reference model from its110

use in three-dimensional simulations based on a non-hydrostatic formulation of conser-111

vation equation for momentum, energy, and water variables used for Numerical Weather112

Predictions (NWP) (Xue et al., 2014; Sun et al., 2021). It is recalled here that this model,113

although very similar to the most common WRF model (Skamarock et al., 2005), was114

not included in the RCEMIP (Wing et al., 2020). Therefore, this is the first study that115

investigates self-aggregation with such a model.116
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The SAM model, based on an anelastic approximation, is formulated to conserve117

the liquid/ice static energy, which is a standard variable to study an ensemble of clouds118

that is continuously forced in a RCE simulation. Thus, SAM has been used extensively119

to study convective self-aggregation (Bretherton et al., 2005; Wing & Emanuel, 2014)120

and it is the model on which the aggregation theory was based (C. J. Muller & Held, 2012;121

Emanuel et al., 2014).122

The objective of this paper is to see how an aggregated state of convection is achieved123

when ARPS is run in its standard setting and to compare it to the state achieved by the124

SAM model. The aggregation of convection is in fact an indication of the internal os-125

cillation of the model in an RCE configuration that is not used in the basic model setup.126

This configuration, where the boundary conditions are periodic and the lateral energy127

transport is absent, causes the model to reproduce a statistical oscillation within the sys-128

tem. By reaching the statistical equilibrium of precipitation, one can study the statis-129

tical oscillation of convection within the model, and its intrinsic process of convective130

organization, thus comparing the dominant processes in convection in the two families131

of models. We want to understand what kind of processes are dominant for this type of132

convection aggregation and to understand how similar or different these processes are133

when used on tropical/global scales.134

Since the ways in which convection is organized depends on both the dimension-135

ality of the domain (C. J. Muller & Held, 2012; Patrizio & Randall, 2019) and the in-136

trinsic characteristics of the models (Wing et al., 2020; Yang & Tan, 2020; Pope et al.,137

2021), it is possible that the mode of internal equilibrium of the two models analyzed138

may contain information about the mode of oscillation of the climate system, that com-139

bines both oscillations of the compared models. This idea comes from the results of RCEMIP,140

where the degree of self-aggregation in SAM-CRM is outside the multi-model spread,141

while the WRF-CRM one is on the multi-model average. ARPS statistic, for the listed142

parameters that can be compared, appears to be average with many of the models used,143

and distant from the SAM statistic.144

Thus, the research questions posed by this study are:145

• What are the statistical properties of convection when each of the models reaches146

a stable state?147

• Is the internal oscillations leading to similar aggregation processes (in terms of the148

statistical stability of convection) in the two models?149

In Section 2 the two models, the numerical simulation setup and the initialization are150

described. In Sections 3 and 4 the results of the convective organization statistics, the151

cloud properties, and the convective organization feedback are described and discussed.152

In Section 5 a summary of the work is given.153

2 Numerical Simulations154

2.1 The SAM model155

The first simulation is performed by using the System of Atmospheric Modeling156

(SAM version 6.10.6, Khairoutdinov & Randall, 2003). SAM solves the anelastic con-157

tinuity, momentum, and scalar conservation equations. The prognostic thermodynamic158

variables are the total non precipitating water (qT = qv + qc + qi = water vapour +159

cloud water + cloud ice), the total precipitating water (qp = qr + qs + qg = rain +160

snow + graupel) and the liquid/ice static energy, hL = cpT+gz−Lv(qc+qr)−Ls(qi+161

qs+qg), with Lv and Ls being the latent heat of vaporization and sublimation, respec-162

tively. By definition, hL is conserved during the moist adiabatic processes (including freez-163

ing/melting of precipitation).164

Given hL, qT and qp, the mixing ratio of the various hydrometeors (qc, qi, qr, qs,165

qg) is diagnosed by partitioning relationships that depend only on temperature. The di-166
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agnosed mixing ratios are used to compute the water sedimentation and hydrometeor167

conversion rates through a bulk microphysics scheme, where the autoconversion of cloud168

water into rain is evaluated through the Kessler scheme, while ice aggregation is parametrized169

similarly to Lin et al. (1983). Cloud ice is considered as non-precipitating water but it170

is allowed to fall with its own terminal velocity VTI = 0.4 m/s (Khairoutdinov & Ran-171

dall, 2003).172

Longwave and shortwave radiative fluxes are computed using the radiation code173

from the National Center for Atmospheric Research (NCAR) Community Atmosphere174

Model (CAM version 3.0, Collins et al., 2006).175

We choose a first-order Smagorinsky closure scheme for subgrid-scale (SGS) tur-176

bulence. The same SGS parametrization was used in previous studies by Bretherton et177

al. (2005); C. J. Muller and Held (2012); Wing and Emanuel (2014). Surface fluxes are178

interactively computed according to the Monin-Obukhov similarity theory.179

2.2 The ARPS model180

The second simulation is performed by using the Advanced Regional Prediction Sys-181

tem (ARPS version 5.3.4, Xue et al., 2000, 2001). ARPS solves the fully compressible182

conservation equations for mass, momentum, heat, and water substance (water vapor,183

liquid, and ice). The thermodynamic prognostic variables are the potential temperature,184

pressure, and the mixing ratio for six water species (water vapor, qv, cloud water, qc, cloud185

ice, qi, rain, qr, snow, qs and hail,qh).186

Precipitation is computed through a bulk microphysics scheme where autoconver-187

sion of cloud water into rain is evaluated through the Kessler scheme (Kessler, 1969) and188

ice aggregation is treated with the three ice categories (cloud ice, snow, and hail or grau-189

pel) scheme of Lin et al. (1983).190

The radiation code is adopted from the NASA/Goddard Space Flight Center, with191

shortwave radiative fluxes based on the model of Chou (1990) and longwave radiative192

fluxes based on the model of Chou and Suarez (1994). Surface fluxes are computed ac-193

cording to the Monin-Obukhov similarity theory and a first-order Smagorinsky scheme194

has been chosen for turbulence closure.195

Table 1. Main properties of the two numerical models and simulations: the model version; the

horizontal resolution, ∆x; the size of the squared domain; the initial sounding used to start the

run (see Figure ??); the total running time; the radiation, microphysics, sub-grid scale mixing

and surface fluxes parametrizations.

SAM ARPS

Model version 6.10.6 5.3.4
∆x (km) 3 3
Domain size (km) 768 1152
Initial sounding SND-301 (Figure ??) SND-296 (Figure ??)
Run time (days) 160 158
Radiation (Fully
interactive)

CAM version 3.0 (Collins et
al., 2006)

NASA/ Goddard (Chou, 1990;
Chou & Suarez, 1994)

Microphysics Original SAM single-moment
(Khairoutdinov & Randall,
2003)

Warm-rain Kessler scheme
(Kessler, 1969), Ice Lin scheme
(Lin et al., 1983)

Subgrid-scale
mixing

First-order Smagorinsky First-order Smagorinsky

Surface fluxes
(Fully interactive)

Monin Obukhov similarity Monin Obukhov similarity
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2.3 Numerical setup and initialization196

The SAM simulation is performed over a doubly periodic domain with size 768 ×197

768 km2 and a uniform horizontal resolution of 3 km. We use 64 vertical grid levels with198

a rigid lid at the top at about 27 km. The first level is at 25 m and grid spacing grad-199

ually increases from 50 m near the surface to 500 m above 5 km. Then, it increases again200

from 500 m to 1 km above 20 km. Newtonian damping is applied to all prognostic vari-201

ables in the upper third of the model domain (above 18 km). At the bottom, there is202

an oceanic surface with a constant sea surface temperature of 302 K, which is usually203

considered as the lower limit for self-aggregation to happen (Wing & Emanuel, 2014).204

The simulation is run with fully interactive radiation as done in Stephens et al. (2008);205

C. Muller and Bony (2015); Ruppert Jr and Hohenegger (2018). There is no mean wind206

and no rotation.207

The ARPS simulation has a horizontal resolution of 3 km, with a large domain of208

1152 km in length. We use 62 vertical levels with a rigid lid at the top at about 25 km.209

The first level is at 35 m and grid spacing is 35 m up to 140 m. Then the vertical grid210

is gradually stretched from about 70 m to about 700 meters up to 20 km. Above 20 km211

the grid spacing is about 800 m. Rayleigh damping is applied above 19 km. The sim-212

ulation is run with fully interactive radiation, no mean wind, no rotation, and with an213

oceanic surface at a constant SST of about 302 K.214

The main properties of numerical models and simulations are summarized in Ta-215

ble 1. Both simulations run for about 160 days. SAM runs with a time step of 10 s, while216

ARPS run with a time step of 6 s. Output fields are generated every 6 hours. The SAM217

simulation is initialized with a sounding obtained from a previous run of the SAM model218

in RCE equilibrium without self-aggregation (SND-301, see Supplementary Figure S1a).219

Convection is initiated by adding white noise to hL in the lowest five levels, with an am-220

plitude of 0.1 K in the lowest level linearly decreasing to 0.02 K in the fifth level.221

ARPS is initialized with a colder and drier profile (SND-296, see Supplementary222

Figure S1b) which is obtained by running an 80-days simulation over a small domain (96223

km x 96 km). This smaller simulation was initialized with the SND-301 profile. The new224

initialization profile, SND-296, is obtained by averaging mean temperature and water225

vapor on the smaller domain over the last 10 days, when statistical equilibrium is reached.226

Convective motions are initialized by applying a random perturbation of magnitude 0.2227

K to the potential temperature field over the whole domain.228

The initial colder and drier profile of ARPS turns out to be crucial for later stages229

of convective aggregation. Therefore we briefly introduce here some elements leading to230

the decrease in temperature and humidity of the ARPS domain. A more in-depth dis-231

cussion will be provided in Section 4. Figure 1a shows the non-aggregated state of the232

small domain simulation after 75 days. Precipitable water (Figure 1b) drops very quickly233

from about 60 mm to 42 mm, while the daily precipitation rate exhibits an opposite be-234

havior by increasing abruptly to about 6.5 mm/day (Figure 1b). After a few days of sim-235

ulation, the small domain is entirely covered by a very thin anvil cloud which remains236

there until the end of the simulation (Figure 1c). The average cooling and drying of the237

ARPS domain are due to the presence of such an anvil which blocks the incoming so-238

lar radiation. Such high cloud fraction over small domain simulations of RCE has been239

found also during the RCEMIP project by Wing et al. (2020) (see Figure 9 in the ar-240

ticle) and therefore it is not related only to the specific model configuration. When ini-241

tializing the large domain ARPS simulation (following the RCEMIP protocol by (Wing242

et al., 2018)), the cloud water and ice at 12 km, produced by the smaller domain, are243

removed (Figure 1c), removing the large anvil, while leaving its effect on the vertical pro-244

file of temperature and water vapor. Therefore convective motions of ARPS start in a245

drier and colder domain than those in SAM.246

The main mechanisms behind the anvil formation in the ARPS small domain rely247

on the properties of the microphysics scheme adopted by the model, as mentioned in the248

previous section. Further details are provided in Section 4.249
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Figure 1. Snapshots of PW at day 75 (midnight) on the small domain used to initialize

ARPS simulation (same contours and colors used in Figure 2) (a). Time evolution of daily aver-

aged precipitation rate and precipitable water over the ARPS small domain (b). Cloud fraction

and total cloud condensate averaged over the last 20 days of the small domain simulations (c).

3 Results250

3.1 Statistics of convective organization251

In SAM and ARPS simulations The precipitation rate reaches a statistical equi-252

librium, with similar values of 4.2 mm day−1 in SAM and of 4.1 mm day−1 in ARPS.253

The domain average statistics of the simulations final stages are reported in Table 2. In254

SAM, a RCE state is reached, where the Total Heat flux (THF, sum of the latent heat255

flux LHF and sensible heat flux SHF) is in balance with net column radiative cooling256

(RNET ), and the LHF, which dominates the THF, is in balance with precipitation (Pre-257

cip) (see Table 2). In ARPS, instead, the net atmospheric energy imbalance, FNET , is258

greater than in SAM (FNET = 4.16 Wm−2), reaching a value similar to that obtained259

for the model WRF in RCEMIP (see Table 2).260

Both model simulations present the convective organization as it is shown by the261

Precipitable Water (PW) pattern evolution in Figure 2. The convective organization is262

marked by the clustering of convection, as underlined in Figures 2d and 2h for ARPS263

and SAM respectively, when precipitation equilibrium is reached. There is a marked in-264

tensely convecting moist patch surrounded by a region of dry subsiding air (Bretherton265

et al., 2005).266

By looking at the evolution of the two simulations, it can be noted that in SAM267

the convective organization is achieved with the expansion of dry regions, with suppressed268

precipitation, that seclude a moist region where convection occurs. In ARPS, such ex-269

pansion is not as evident as in SAM.270

In SAM, the PW pattern is uniform until the 40th day, when a dry patch at x =271

400 km starts to form (see Figure 2f and the Homvöeller diagram of the PW in supple-272

mentary Figure S2a). Between days 40-80, the system evolves into an organized state,273

with the dry patch covering most of the domain at the equilibrium (after day 100). In274

ARPS, instead, the PW pattern is uniform until day 20 when some moist patches and275

two dry patches form at x = 400 km and x = 800 km (see Figure 2b and the Homvöeller276

diagram of the PW in supplementary Figure S2b). By day 60 the moist regions converge277

into a single moist patch when the equilibrium state is reached, with a moist region sur-278

rounded by a drier region (see also Supplementary Figure S2b).279

There is a difference between the dimensions of the developing convective clusters.280

Regarding SAM, the dry zones are very large compared to the moist zone, where con-281

vection is taking place, covering almost the 90% of the whole domain (Figure 2h). The282

convective cluster in SAM has a diameter of nearly 300 km. For ARPS instead, the or-283
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Table 2. RCE average statistics over the aggregated state (days 135-140) of simulations, fol-

lowing Table A2 of Wing et al. (2020). The values for the RCEMIP SAM-CRM model, RCEMIP

WRF-CRM model, and the average (± the standard deviation) of RCEMIP models are reported

in the last three columns for a direct comparison. Such values are directly taken from Table A2

or the text of Wing et al. (2020). FNET is the atmospheric energy imbalance, that is the magni-

tude of the difference between RNET and the total surface thermal fluxes; RNET is the column

integrated atmospheric radiative forcing (negative values indicates net atmospheric radiative

cooling) which is obtained directly by column integration of the radiative forcing (qrad, prognos-

tic variable); LHF and SHF are surface latent and sensible heat (positive values indicates fluxes

into the atmosphere); PW is the precipitable water; Precip. is the daily precipitation rate; LWP

and IWP are the cloud liquid water path and cloud ice water path respectively. LR is the tropo-

spheric (15 km) Lapse Rate; Ts, RHs are respectively the absolute temperature and the relative

humidity at the lowest model level.

Var Unit SAM ARPS RCEMIP-SAM RCEMIP-WRF RCEMIP-AVG (STD)

FNET W m−2 4.16 26.15 3.87 21.73 4.12 (±5.66)

RNET W m−2 -122.80 -102.46 -118.05 -106.54 -110.17 (±16.08)

LHF W m−2 120.26 65.46 113.15 90.37 101.93 (±15.29)

SHF W m−2 6.71 10.85 8.77 37.90 11.16 (±5.74)

PW mm 25.7 38.1 31.2 41.2 32.8 (±4.1)

Precip. mm day−1 4.2 4.1 3.9 3.1 3.5 (±0.5)

LWP mm 0.056 0.015 0.048 0.065 0.041 (±0.028)

IWP mm 0.015 0.001 0.025 0.097 0.037 (±0.038)

LR K km−1 -6.68 -7.08 -7.2 -6.91 -6.83 (±0.65)

Ts K 300.3 298.4 n/a n/a n/a

RHs % 64 75 n/a n/a 73 (n/a)

Iorg 0.9 0.6 0.9 0.5 0.6 (n/a)
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Figure 2. Time evolution of Precipitable Water (PW, filled contours) for ARPS (a,b,c,d) and

SAM (e,f,g,h) simulations. The region where aggregation occurs is moister and presents a higher

PW (lighter colors). For both models snapshots are taken on midnight after 10 (a,e), 35 (b,f), 75

(c,g) and 125 (d,h) days. The thick white line represents the boundary between moist and dry

patches, taken as PW=40 mm. Black lines are contours of total water condensate of 0.4 g/kg at

a height of 1.5 km, representing low-level clouds. It is important to recall here the different scales

on the X and Y-axis.

ganization of convection comes with dry areas that cover near the same percentage of284

the moist areas, with 40% of the simulation domain covered by the convective cluster,285

which has a diameter of approximately 550 km (Figure 2d). The greater domain size of286

ARPS could have influenced this percentage, by allowing the formation of multiple clus-287

ters (as is evident in Figure 2d), as it has been found in previous studies (Stephens et288

al., 2008; Wing et al., 2018; Patrizio & Randall, 2019).289

The difference underlined by PW patterns can be further explained by looking at290

the moisture sorted time series of the Water Vapor Path (WVP) (Figure 3). These are291

computed by dividing the two simulations domain into blocks of equal area (96 km2),292

and then sorting them into four quartiles from driest to moistest, based on their daily293

WVP.294

Figure 3a shows that while in SAM there is a very large inter-quartile difference,295

especially between the driest and moistest quartiles, in ARPS this difference is smaller.296

Indeed, for SAM, as in (Bretherton et al., 2005), the driest WVP quartile is the one that297

decreases most dramatically from day 25 until day 75 by about 27 g/m2, when the or-298

ganization is developing, while the moistest quartile increases in WVP of about 3 g/m2.299

Instead in ARPS, the moistest and driest quartiles seem to be 5 g/m2 higher and 5 g/m2
300

lower than the WVP domain daily mean respectively, after organization occurs (Figure301

3b).302
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Figure 3. Moisture-sorted time series of the daily averaged Water Vapor Path (WVP) g/m2

for SAM (a) and for ARPS (b). The thick lines are the domain mean and the other curves are

the means over the 96 km2 blocks sorted into four quartiles based on their daily WVP.

In both SAM and ARPS, WVP increases only in the quartiles where deep convec-303

tion is taking place and decreases in the dry regions. This is also reflected by the pre-304

cipitation quartiles (not shown), in which after aggregation has occurred, the moister and305

moistest quartiles present precipitation, while in the driest and drier quartiles, it is ab-306

sent. However, the equilibrium is reached in both models, where the whole system reaches307

its statistical equilibrium, and the PW oscillates around a mean value (Figure 4d).308

Convective organization in both SAM and ARPS has the same impact on the sim-309

ulated atmosphere, leading to its warming and drying, as it is reported in Figure 4a 4b310

and 4c. The warming produced by the organization process can be inferred from the mean311

state profiles of MSE, Temperature (T), and Relative humidity (RH) averaged at equi-312

librium (between 135-140 days) over the whole domain with respect to the initial ones313

(averaged between the first 5-10 days).314

In fact, in the case of SAM, we notice a decrease of MSE in the lower troposphere315

(around 2 km), due to the general drying of the atmosphere, and growth of MSE in the316

upper troposphere due to warming (Figure 4a). In ARPS, on the other hand, it can be317

seen that the MSE profile is initially dryer than the SAM one and remains dry in the318

lower troposphere, while it warms up at equilibrium with an MSE growth occurring in319

the mid-troposphere. The warming is underlined by the increase in temperature (Fig-320

ure 4b) in both simulations, while the drying can be noted in Figure 4c with the rela-321

tive humidity decreasing in the whole troposphere in both simulations, and in Figure 4d322

where the PW is shown to decrease with the organization in both SAM and ARPS.323

These results are in line with the main results of the RCEMIP (Wing et al., 2020)324

who found that there is a robustness of the results on heating and drying of the mean325

state with convective organization among models. The temperature and relative humid-326

ity profiles of both SAM and ARPS are within the ensemble spread of RCEMIP mean327

state profiles (see Figures 7 and 8 of (Wing et al., 2020)). However, SAM final state is328

warmer and drier than the ARPS one (Figure 4). This is also evident from the values329

at the surface shown in Table 2, which are near the RCEMIP range values. The surface330

relative humidity (RHs) is 64% for SAM and 75% for ARPS and the surface temper-331

ature (Ts) is 300.3 K for SAM and 298.4 K for ARPS. As already stated in the previ-332
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Figure 4. Horizontally averaged profiles of Moist Static Energy (MSE) (a), absolute Temper-

ature (T) (b), and Relative Humidity (RH) (c) for the two simulations, averaged at the initial

stage (5-10 days) and at the final aggregated state (135-140 days). Time evolution of Precip-

itable Water (PW) for both simulations (d). Precipitable water is evaluated by considering all

condensates.

ous section, given the different initialization, ARPS starts already with an initial colder333

profile compared to SAM.334

The warmer and drier final state of SAM is reflected also in the values of the sur-335

face fluxes (see Table 2). Given the smaller RHs in the SAM model, the LHFs are larger336

(LHF = 120 W m−2) than those of ARPS (LHF = 65 W m−2). On the other hand, given337

the smaller Ts of ARPS, the SHFs are larger (SHF = 11 W m−2) than those of SAM338

(LHF = 7 W m−2). The same behavior is observed by comparison with the RCEMIP339

results from WRF and SAM models (see Table 2).340

Regarding the state of the convective organization degree in the two models, we341

have decided to compute the Organisation index (Iorg) (Tompkins & Semie, 2017), which342

is shown in Figure 5a. It is a measure of the convective organization, which compares343

the nearest neighbor distribution of convective cores of the simulated and random con-344

vection. In ARPS it reaches an averaged daily value of 0.6 at equilibrium, a value much345

lower than the one of 0.9 attained by SAM at equilibrium. This is in agreement with the346

results of the RCEMIP project (Wing et al., 2020), where similar values were found for347

both models (see their Figure 12). The Iorg value reached by ARPS is closer to the av-348

erage value of the multi-model comparison in RCEMIP (mean value of 0.6, see Table 2),349

while SAM is in the highest quartile among the models. Based on such metrics, we can350
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Figure 5. The daily Organization index (Iorg) for SAM and ARPS, as computed by

(Tompkins & Semie, 2017) is reported in (a), while the corresponding cumulative density func-

tion of the calculated Nearest Neighbor distances (NNCDF) versus nearest neighbor distance of

observed and idealized Poisson convective distribution is displayed for SAM in (b) and for ARPS

in (c).

infer that SAM undergoes a strongly organized convection, while in ARPS the organ-351

ization is weaker (Figure 5a).352

The Iorg evolution mirrors the evolution of the PW (Figure 4d) and that of the WVP353

(Figure 3). Interestingly, between days 35-40 in ARPS, the Iorg index oscillates, reach-354

ing its maximum value of 0.7. This corresponds to a decrease in PW, caused by an ex-355

pansion of dry patches and a corresponding clustering of moist regions (see Supplemen-356

tary Figure S2b).357

The observed cumulative density function of the calculated Nearest Neighbor dis-358

tances (NNCDF) in ARPS (Figure 5c) indicates the presence of regular convection at359

distances less than 10 km, while the clustering occurs at larger spatial scales, up to 60360

km. This regular convection is noticeable also in Figure 2c and Figure 2d, where shal-361

low clouds are regularly distributed over the domain. A similar distribution was obtained362

from WRF-RCE simulations (Tompkins & Semie, 2017) and also from satellites obser-363

vations of tropical convection (Semie & Bony, 2020). This regular convection is absent364

in SAM (Figure 5b), where the clustering of convection occurs immediately at very small365

spatial scales. Indeed, in Figure 2h only one cluster is present, made by very small and366

packed convective structures.367
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Figure 6. Temporal evolution of the domain averaged standard deviation of relative humidity

(σRH) for the SAM (a) and ARPS (b) simulation.

3.2 Cloud properties368

The evolution of the convection variability can be followed by looking at the do-369

main averaged standard deviation of the relative humidity (σRH), as shown in Figure370

6. After the initial time steps, there is a relevant perturbation at 10 km that amplifies371

in both models. Convection is occurring immediately after the initialization, starting from372

the middle troposphere, thus slightly increasing the σRH there. Then, for SAM (Figure373

6a), after 75 days, the σRH starts increasing – reaching a value of around σRH = 40 %374

– in the lower to middle troposphere (from 1.5 km to 7.5 km), as deep convection orga-375

nizes. Instead, for ARPS, the initial perturbation starts expanding to all troposphere376

after 10 days, and then, after 25 days, the increase of σRH reaches its maximum in the377

middle troposphere, at 7.5 km with a value of σRH = 35 %, as convection organizes. Sim-378

ilar results to ARPS have been found in (Tompkins & Semie, 2017) for the WRF model.379

From this analysis, it can be inferred that, although the convective organization380

is occurring in the two models, the type of convection is different. If in SAM the σRH381

increases especially in the lower troposphere, in ARPS this happens in the mid-troposphere,382

thus convection is located at different heights in the two models.383

The difference in the cloud properties in the two models is underlined in Figures384

7a, 7b, 7c and 7d, which show respectively the radiative forcing, the cloud fraction, the385

cloud water and the cloud ice at the initial stage (averaged between 5-10 days) of the386

considered simulations. As adopted in RCEMIP (Wing et al., 2020), a cloud is defined387

according to a threshold value of cloud condensate (10−5 kg kg−1 or 1% of the satura-388

tion mixing ratio over water, whichever is smaller).389

The cloud fraction profiles at the initial state are very different among the two sim-390

ulations, especially regarding the high-level clouds (> 8 km). This is also visible in Fig-391

ure S3, where anvil clouds evolution is shown. The peak high cloud fraction (“anvil”)392

is very large for ARPS: the ARPS anvil is located at 12 km and reaches an average value393

of cloud fraction of 0.9, and the cloud fraction is equally distributed between 10 and 15394

km. On the other hand, SAM simulation develops an anvil with a much smaller aver-395

age cloud fraction of 0.13 at 12 km height. (Khairoutdinov et al., 2022) showed that the396

single moment microphysics of SAM, as used in this article, underestimates the amount397

of high cloud. This is also visible from our results, where the high cloud fraction is much398

less than in the ARPS model, where different microphysics is used. The major differ-399

ence in the microphysics parameterization between the two models is the presence of ice400
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Figure 7. Radiative forcing, cloud fraction, cloud water, and cloud ice for the initial state

(a,b,c,d) and the final state (e,f,g,h) of the two simulations. The initial (final) state is averaged

over the days 5-10 (135-140) days for both simulations.

sedimentation, which in SAM is permitted, with an ice terminal velocity of 0.4 m/s. In401

Khairoutdinov and Randall (2003) it was verified that the presence of ice sedimentation402

in SAM leads to a reduced anvil below 9km. Thus, in the absence of ice sedimentation,403

the anvil in SAM would have been more extensive.404

The thick anvil of ARPS heats the upper troposphere, while it cools the middle and405

lower troposphere (Figure 7a). In SAM there is cooling in all troposphere except for the406

top of the anvil at 15 km. This is because ice cirrus clouds act to reflect incoming short-407

wave radiation and entrap long-wave radiation from the clouds below (Liou, 1986; Schlimme408

et al., 2005). In both models, especially in ARPS, the effect of anvil clouds on the ra-409

diative heating profile is to warm near the cloud base and cool near the cloud top, as pointed410

out by (Hartmann & Berry, 2017).411

With the convective organization, the anvil cloud fraction is greatly reduced both412

in ARPS and SAM as is shown in Figure 7f, while the low cloud fraction notably increases413

only in SAM. The presence of low clouds in SAM has been considered a necessary fac-414

tor for convective organization (C. J. Muller & Held, 2012; Wing & Emanuel, 2014; C. Muller415

& Bony, 2015), which increases with increasing resolution (Khairoutdinov et al., 2009).416

In general, the presence of low clouds in RCEMIP models is highly variable and presents417

a strong spread among CRMs in the mean state. The presence of low clouds in SAM com-418

pared to ARPS may be related to the formation of downdraft and in general to the tem-419

perature profile reached by the two models, as will be discussed in more detail in the fol-420

lowing sections.421
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Indeed, at the top of the boundary layer, SAM presents a simulated cloud fraction422

slightly higher than ARPS, with a cloud cover fraction > 0.1 and a higher content of qc423

(qc = 0.015 g/kg for SAM and qc = 0.009 g/kg for ARPS). Then, the cloud water in-424

creases drastically in SAM with aggregation, with an equilibrium value of 0.04 g/kg, while425

in ARPS is slightly reduced (Figure 7g). The cloud ice decreases in SAM, almost by half,426

while increases in ARPS, reaching a value of 0.005 g/kg (Figure 7h). This is probably427

related to the ice to snow different conversion threshold used in the models microphysics428

scheme, being higher for ARPS than for SAM.429

The correspondent radiative forcing in SAM is a pronounced cooling at 2 km of al-430

most -4 K/day (see also the radiative forcing quartiles in Supplementary Figure S4). This431

marked cooling is absent in ARPS simulation because low clouds are too few and the cloud432

water is low. Around 6 km height, ARPS show a larger radiative cooling than that of433

SAM (Figure 7e). Such cooling comes mainly from the dry regions (see Supplementary434

Figure S4). One possible reason behind the difference between the SAM and the ARPS435

mid-tropospheric cooling is to be found on the different anvil properties. Ticker anvils436

are more efficient in blocking the removal of heat in the convective region, with respect437

to dry regions. Thus, a larger amount of heat must be transported to the dry regions438

and radiated out to space (Wing et al., 2017; Yang & Tan, 2020).439

The spatial difference in cloud fraction between the two models is also shown in440

Figure 2, where the black dots represent the low clouds. In SAM the presence of low clouds441

is significant from the beginning of the simulation and increases with the organization442

of convection (Figure 2e and Figure 2h), while in ARPS the low clouds decrease with443

aggregation (Figure 2a and Figure 2d).444

3.3 Convective organization feedback445

The convective organized state in SAM is characterized by the onset of a virtual446

circulation of MSE from the dry to the moist regions (C. J. Muller & Held, 2012). The447

mesoscale circulation that develops with the organization can be visualized using the stream448

function Ψ (Bretherton et al., 2005), derived as the horizontal integral over vertical ve-449

locity starting from the driest column to the moistest, after having sorted them from low-450

est to highest Column Relative Humidity (CRH). The same sorting described in the pre-451

vious section 3.1 is applied here, but in this case, it is done based on the CRH. By look-452

ing at the advective tendencies of MSE, implied by the stream function, one can cap-453

ture the general mechanism of energy exchange between the columns. In SAM, the MSE454

“circulation” is imposed between the moist and dry columns only after the 50th day (not455

shown). By day 100, SAM has attained a state of convective organization. An up-gradient456

transport of MSE is visible (Figure 8a), with the low MSE being accumulated in the dry457

columns. In the moistest blocks (40-64) there is an inflow in the lowest level (1-2 km),458

while the outflow is mainly between 8 to 10 km. These fluxes are in correspondence with459

the presence of a deck of low clouds (Figure 8a).460

This is in accordance with what is underlined in the equilibrium state sorted mass461

flux (taken as M = ρw with units of kg m−2s−1). Indeed in SAM, there is a pronounced462

updraft in the moist region at 1.5 km with the downdraft occurring in the moister and463

drier column (Figure 9c). Once convective aggregation has been imposed in the simu-464

lation, the sorted quartiles become divergent, compared to the initial days (Figure 9a).465

In the dry quartiles there is a strong radiative cooling at the top of the moist bound-466

ary layer generated by low-level clouds, which drives subsidence (see Figure 7e and Sup-467

plementary Figure S4). The simulation shows pronounced cooling only at the top of the468

low clouds, formed in the moist columns. As C. J. Muller and Held (2012) has highlighted,469

this cooling generates subsidence in the dry regions, and the mid-level warming enhances470

the upward motion in the moist regions. The former induces a horizontal convergence471

of air from the moist columns to the subsidence top area, the latter instead corresponds472

to an upward flux raised by surface heat fluxes. To close the circulations a lateral inflow473

of dry air develops from dry columns to moist columns at low elevation (1 to 1.5 km).474
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Figure 8. The average value of the MSE “circulation” between 135-140 days for SAM (a) and

ARPS (b), with columns ranked by Column Relative Humidity (CRH), from driest to moistest.

Black contours show the stream function Ψ (contour interval 0.05 kg m−2s−1, starting at 0.01

kg m−2s−1, solid for positive values and dashed for negative values ) as a function of CRH and

height. White contours show cloud condensate (cloud ice and cloud water) qN = qi + qc (contour

interval 0.005 g/kg, starting at 0.001 mg/kg). Shaded contours represent MSE.

This circulation advectively diverges MSE out of the driest columns, increasing the MSE475

gradient.476

This low-level cooling is purely attributable to longwave cooling produced by the477

presence of low clouds, as previously recognized in the literature (C. J. Muller & Held,478

2012; Wing & Emanuel, 2014; C. Muller & Bony, 2015). The low clouds, as stated also479

in the previous sections, are of primary importance for the onset of aggregation. By look-480

ing at Figure 8a one can see that they reach more than half of the sorted blocks, while481

the SAM anvil at equilibrium occupies only the moistest ones.482

Emanuel et al. (2014) demonstrated similar feedback in a two-layer model where483

the phenomenon of self-aggregation is regarded as the result of the linear instability of484

the RCE state, which leads to deep convection and upward motion in part of the domain485

and dry air with few clouds in the rest, reconciling the stable equilibria of Sobel et al.486

(2007). The instability happens when a negative moisture perturbation leads the dry columns487

to become dryer, owing to an increased longwave cooling and the consequent downward488

motion. In the moist columns, a positive moisture perturbation leads them to enhance489

their upward motion by decreasing the long-wave cooling.490

In ARPS, on the other hand, the “circulation” of MSE is not noticeable, both in491

the days before the organization (not shown) or once the simulation has reached the or-492

ganized equilibrium (Figure 8b). There is no sign of circulation below 2 km (as also no-493

ticeable in Figure 9d). Instead, there are updrafts in the moist regions, reaching their494

maximum at around 8 km, and downdrafts in the dry regions (see Figure 8b). This, rather495

than being a sign of the up-gradient transport of MSE, is a result of the occurrence of496

ARPS convective towers in the moist regions with downdrafts at the edges of these re-497

gions and in the remaining part of the dry domain. Also in Figure 8b, it can be seen the498

absence of low clouds covering the domain (as already pointed out in previous sections),499

as well as the greater size of the ARPS anvil compared to that of SAM.500

The fact that the low-level circulation never appears in ARPS is also demonstrated501

by looking at the bottom layer wind speed at the boundary between the moist and the502
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Figure 9. Average values of the CRH blocks-quartiles binned of the mass-weighted vertical

velocity between the 5th and the 10th day for SAM (a) and ARPS (b), and between the 135th

and the 140th day for SAM (c) and ARPS (d).

dry regions (see Figure 10c). While in SAM such velocity increases (which is a clear sig-503

nal of a radiatively driven aggregation as shown by Windmiller and Craig (2019), see their504

Figure 8), in ARPS it remains almost constant. Thus, rather than being a convective505

organization led by radiative feedback, there must be other processes at play in the ARPS506

model.507

Indeed, C. Muller and Bony (2015) found another type of aggregation called “moisture-508

memory aggregation”, which is favored by weak downdrafts below clouds. Weak down-509

drafts can occur when the sub-cloud layer is nearly saturated and rain cannot evaporate.510

Figures 10a and 10b show that ARPS has a saturated sub-cloud layer both at the start511

(not shown) and at the end (Figure 10a) of the simulation. Instead, SAM never reaches512

such condition (Figure 10b). The saturation of the sub-cloud layer in ARPS directly in-513

fluences the downdrafts properties: ARPS downdrafts are weaker than those in SAM and514

they cover a smaller fraction of the domain (see Supplementary Figure S5). This again515

does not favor the radiative aggregation which is mostly sustained by downdrafts induced516

by the radiative cooling above shallow clouds.517
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Figure 10. Vertical profiles of ARPS saturation water vapor mixing ratio (qsat) and water

vapor mixing ratio (qv) over cloudy grid points (defined as grid points at 1.5 km height where

the total cloud water condensate exceeded 10−3 g/kg) between days 135 and 140 a); b) same as

a) but for SAM simulation; time evolution of bottom layer horizontal wind speed (Uh) averaged

over the boundary between moist and dry patch (identified with the same criterion as in Figure

2) c).

4 Discussion518

In the literature, (C. Muller & Bony, 2015; C. J. Muller & Held, 2012; Wing & Emanuel,519

2014; Tompkins & Semie, 2017; Coppin & Bony, 2015) many experiments have been car-520

ried out in order to assess the sensitivity of convective organization to different choices521

of physical parameters and processes within the same CRM. Here we wanted to study522

the same robustness of the convective organization process found within the same model,523

by using two different models. In particular, we recognize different physical mechanisms524

leading to the convective organization in the ARPS and SAM model.525

In general, the SAM model undergoes a ”radiative aggregation” (Emanuel et al.,526

2014), where the MSE up-gradient circulation, driven by the contrasting radiative cool-527

ing rates between the moist and the dry regions, is the main driver of convective aggre-528

gation (C. J. Muller & Held, 2012). On the other hand, the organized state in the ARPS529

model does not exhibit such MSE circulation (Figure 8), but it can be traced back to530

a ”moisture-memory aggregation” (C. Muller & Bony, 2015; C. Muller et al., 2022) or531

moisture-convection feedback (Tompkins, 2001b).532

C. Muller and Bony (2015) found a similar result within the SAM model, by weak-533

ening the effect of cold pools. In particular, the moisture memory aggregation was fa-534

vored by weaker downdrafts below clouds, which can occur when the sub-cloud layer is535

nearly saturated and rain cannot evaporate. Such condition has been verified in ARPS536

by looking at the profiles of the water vapor saturation mixing ratio (Figure 10), where537

the sub-cloud layer is saturated between 1 and 2.5 km both at the start and at the end538

of the simulation. SAM never reaches such conditions due to the higher temperature through-539

out the troposphere and, hence, a greater saturation mixing ratio. The saturation of the540

sub-cloud layer in ARPS causes less rain evaporation, weaker downdrafts, and a weaker541

cold pool effect than those in SAM. Another signal of a weaker cold pool effect is the weaker542

surface fluxes in ARPS, compared to those in SAM (see Table 2). As shown by (Tompkins,543

2001a; Schlemmer & Hohenegger, 2014; Drager & van den Heever, 2017), gusty wind brought544

by cold pools generally enhance surface fluxes. The weakening of cold pools has been gen-545

erally proven to favor convective aggregation (Jeevanjee & Romps, 2013; C. Muller &546

Bony, 2015) through the moisture-memory feedback: moist regions remain moist and547

thus become more favorable to convection since downdrafts are not able to suppress deep548

clouds.549
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Moreover, radiative aggregation and the MSE up-gradient circulation are not fa-550

vored in ARPS by the smaller amount of shallow clouds (and also a smaller domain frac-551

tion covered by downdrafts). On the contrary, the SAM model exhibits a larger amount552

of low clouds with a strong radiative cooling at their top (Figure 7). This creates the so-553

called “radiatively-driven” cold pools (Coppin & Bony, 2015) and the downdrafts which554

initiate the low-level circulation of MSE. Low clouds are sensitive both to domain hor-555

izontal resolution and size (C. J. Muller & Held, 2012; C. Muller & Bony, 2015) and also556

to the downdrafts strength (Khairoutdinov et al., 2009). Lower resolution and smaller557

domain size have been found to decrease the number of shallow clouds in SAM (C. Muller558

& Bony, 2015). Such argument was used to explain why self-aggregation does not oc-559

cur below a certain resolution and domain size. Khairoutdinov et al. (2009) showed that560

removing the evaporation of rain in their simulation (thus weakening cold pools), also561

results in a lower shallow cloud fraction covering the domain. In this case, new deep clouds562

were found to develop at the sites of previous deep clouds, resembling the moisture-memory563

feedback. When rain evaporation was present, deep clouds tended to appear along the564

edges of spreading cold pools, favoring also the formation of shallow clouds.565

Therefore, the convective organization can occur even with a low amount of shal-566

low clouds and weak MSE circulation, once it is ensured that the sub-cloud layer is enough567

saturated to weaken downdrafts (Wing et al., 2017). Different sub-cloud layer proper-568

ties can arise spontaneously from different models even when starting from a similar set-569

ting as in the RCEMIP project (Wing et al., 2018). Indeed, Wing et al. (2020) found570

a substantial spread in the domain average temperature and humidity profiles after reach-571

ing equilibrium.572

Differences in the way the convective organization is achieved in CRM, by using573

other models than SAM, have been noticed in previous studies (Jeevanjee & Romps, 2013;574

Yang & Tan, 2020; Tompkins & Semie, 2017; Holloway & Woolnough, 2016). For exam-575

ple, Holloway and Woolnough (2016) found that a low level circulation was present in576

the Met Office Unified Model, but was driven mainly by anomalies in low-level diabatic577

heating from convection and other microphysical processes, and not by radiative cool-578

ing gradients between the moist and dry regions. Furthermore, they found that this wasn’t579

a crucial organizing feedback. Similarly, this has been found by Yang and Tan (2020)580

with WRF. For them, the expansion of dry areas was due to the dry-subsidence feed-581

back. Tompkins and Semie (2017), using WRF, found that water vapor feedback with582

convection is a necessary but not sufficient condition for convective aggregation. Our work,583

as these results, points out that there are still some disagreements between models in584

reproducing convective aggregation, as also underlined by (Wing et al., 2020), depend-585

ing on their physics and numerics.586

The ARPS and SAM model reaches their equilibrium in very different ways. We587

believe that this is the main reason behind their different final equilibrium state of con-588

vective organization. In particular, the small domain simulation of ARPS is entirely cov-589

ered by a large anvil (Figure 1) when reaching its equilibrium. Such an anvil blocks in-590

coming radiation and the simulation domain starts to get colder and drier with a high591

precipitation rate. When initializing the new large simulation, the cloud water and ice592

at 12 km are removed, removing the large anvil, while leaving its effect on the vertical593

profile of temperature and water vapor. Therefore, an aggregated state is obtained, but594

this occurs in a drier and colder domain, with a nearly saturated sub-cloud layer. The595

usually adopted procedure of initialization by a small domain (see RCEMIP protocol (Wing596

et al., 2018)), is thought to eliminate a long spin-up period to reach the model’s RCE597

state without large adjustments (Wing et al., 2018). However, such a procedure could598

be affected by the presence of a large optically thin clouds anvil, which will dry and cool599

the whole domain. Such presence is evident also in other models of the RCEMIP project,600

as shown by large cloud fractions in Figure 9 of Wing et al. (2020).601

The reason behind the large anvil cloud fraction and cloud ice in the ARPS small602

domain simulation has to be found in the microphysics scheme (Lin et al., 1983) and is603

closely linked to both the ice aggregation process for snow formation and ice sedimen-604
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tation. Regarding the former process, the threshold for ice aggregation in ARPS is very605

high, meaning that in ARPS there is less aggregation of ice to form snow, thus leading606

to the presence of more cloud ice. Furthermore, the sedimentation of ice is removed in607

ARPS since cloud water and cloud ice are considered to be small enough to have neg-608

ligible terminal velocities when compared to rain, snow, and graupel. For these reasons,609

in the small domain simulation of the ARPS model, the cloud water/ice covers the en-610

tire domain. Instead, in the SAM model, cloud ice is allowed to fall with its own termi-611

nal velocity. In Khairoutdinov and Randall (2003) it was verified that the presence of612

ice sedimentation in SAM leads to a reduced anvil below 9 km. Thus, in the absence of613

ice sedimentation, the anvil in SAM would have been more extensive, than the ARPS614

one. As already mentioned in the previous section, the microphysics differences among615

the same schemes influence not only the cloud fraction but also the cloud condensate.616

The updrafts number and velocity are lower in ARPS than in SAM. They could617

be diluted by the larger lateral mixing of ARPS (not shown). Following Tompkins and618

Semie (2017) greater lateral mixing would help the convective organization. The effect619

of mixing will be investigated in more detail in a following paper. However, we note here620

that an organized state in SAM is reached with a very small lateral mixing, in contrast621

to what was predicted by (Tompkins & Semie, 2017). SAM is likely compensating the622

mixing effect with numerical diffusion due to the second-order accurate advection scheme623

(Smolarkiewicz & Grabowski, 1990), or the radiative feedback is so strong that aggre-624

gation can occur also in an environment where deep convection is not sensitive to en-625

trainment (as occurring in the SAM model).626

5 Conclusions627

In this study, we performed two RCE simulations with two different CRM (SAM628

and ARPS) and we compared their properties while reaching a statistical equilibrium629

of precipitation. This study, like other papers using different models besides SAM to in-630

vestigate convective organization (Jeevanjee & Romps, 2013; Holloway & Woolnough,631

2016; Tompkins & Semie, 2017; Yang & Tan, 2020) point out that there are still some632

disagreements between models in reproducing convective aggregation, as also underlined633

by (Wing et al., 2020), depending on their physics and numerics.634

The two models, when reaching the organized state, present a warmer and drier635

domain, with a smaller anvil cloud fraction. Similar findings have been obtained in stud-636

ies involving idealized 3D simulations (Bretherton et al., 2005; Emanuel et al., 2014; Wing637

& Emanuel, 2014), in the RCEMIP project (Wing et al., 2020) and in observations (Tobin638

et al., 2012). On the other hand, during the organization, different feedback are at play.639

In the SAM model convective organization is achieved due to clouds-radiative feedback640

(Stephens et al., 2008; C. J. Muller & Held, 2012; Wing & Cronin, 2016), where the pres-641

ence of a deck of low shallow liquid clouds generates a shallow level circulation which trans-642

ports MSE up-gradient, making the moist (dry) regions moister (drier). In the ARPS643

model, instead, the mechanism behind the onset of the convective organization is that644

of moisture-memory feedback (Tompkins, 2001b; Jeevanjee & Romps, 2013; C. Muller645

& Bony, 2015), where the convection amplifies in the already moist regions. We found646

that, with convective organization, in both models, a warmer atmosphere leads to a re-647

duction of the anvil cloud area fraction, the so-called “Iris Effect” (Lindzen et al., 2001;648

Mauritsen & Stevens, 2015). Indeed, as mentioned above, in both models the anvil cloud649

fraction decreases with the organization.650

We found that the sub-cloud layer properties are very important for the organi-651

zation, because of their relation with downdrafts and cold pools in the RCE simulations,652

leading to different feedback between convection and water vapor. This aspect can be653

different for different models, even if run in a similar setup, as shown in the RCEMIP654

(Wing et al., 2020). Thus it may have important implications for the convective aggre-655

gation in models.656
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We have measured the convective organization in the two models with the same657

metrics used in RCEMIP. Although a state of the convective organization is reached by658

both models, their properties are different. We found that SAM and ARPS differ for the659

final convective cluster dimensions and type and for the degree of organization. The lat-660

ter is indicated by the value of the Iorg index, higher for the SAM model than for the661

ARPS model, meaning a stronger organization for the SAM model compared to the ARPS662

model. Although the RCE average statistics of ARPS, for some aspects (atmospheric663

energy imbalance and total heat fluxes) are outside the typical range of RCEMIP mod-664

els; its degree of aggregation corresponds to the average value for the RCEMIP models.665

Different degrees of aggregation and different mechanisms bringing to the convec-666

tive organization, as found in the two models, have different impacts on the climate sys-667

tem. Therefore, theories about climate sensitivity should always consider different types668

of models, with respect to their physical and numerical formulation.669

Open Research670

Data Availability Statement671

SAM and ARPS models output used in this manuscript are publicly available via672

Zenodo. The SAM output is available at https://doi.org/10.5281/zenodo.6949308 and673

the ARPS output is available at https://doi.org/10.5281/zenodo.6953873.674

Acknowledgments675

This research has been funded by the Italian Ministry of University and Research (MIUR)676

and University of Perugia within the program Dipartimenti di Eccellenza 2018-2022. The677

authors thank Ming Xue and Marat Khairoutdinov for providing the ARPS and the SAM678

models, and Kerry Emanuel for the useful discussion during the development of this work.679

References680

Bongioannini Cerlini, P., Emanuel, K. A., & Todini, E. (2005). Orographic effects on681

convective precipitation and space-time rainfall variability: preliminary results.682

Hydrology and Earth System Sciences, 9 (4), 285–299.683

Bretherton, C. S., Blossey, P. N., & Khairoutdinov, M. (2005). An energy-balance684

analysis of deep convective self-aggregation above uniform SST. Journal of the685

atmospheric sciences, 62 (12), 4273–4292.686

Chou, M.-D. (1990). Parameterizations for the absorption of solar radiation by o687

2 and co 2 with application to climate studies. Journal of Climate, 3 (2), 209–688

217.689

Chou, M.-D., & Suarez, M. J. (1994). An efficient thermal infrared radiation pa-690

rameterization for use in general circulation models. NASA Technical Memo-691

randum, 3 , Article ID 104606.692

Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson,693

D. L., . . . Zhang, M. (2006). The formulation and atmospheric simulation of694

the Community Atmosphere Model version 3 (CAM3). Journal of Climate,695

19 (11), 2144–2161.696

Coppin, D., & Bony, S. (2015). Physical mechanisms controlling the initiation of697

convective self-aggregation in a general circulation model. Journal of Advances698

in Modeling Earth Systems, 7 (4), 2060–2078.699

Craig, G. C., & Mack, J. M. (2013). A coarsening model for self-organization of700

tropical convection. Journal of Geophysical Research: Atmospheres, 118 (16),701

8761–8769.702

Drager, A. J., & van den Heever, S. C. (2017). Characterizing convective cold pools.703

Journal of Advances in Modeling Earth Systems, 9 (2), 1091–1115.704

Emanuel, K., Wing, A. A., & Vincent, E. M. (2014). Radiative-convective instabil-705

ity. Journal of Advances in Modeling Earth Systems, 6 (1), 75–90.706

Hartmann, D. L., & Berry, S. E. (2017). The balanced radiative effect of tropi-707

–21–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

cal anvil clouds. Journal of Geophysical Research: Atmospheres, 122 (9), 5003–708

5020.709

Held, I. M., Hemler, R. S., & Ramaswamy, V. (1993). Radiative-convective equilib-710

rium with explicit two-dimensional moist convection. Journal of Atmospheric711

Sciences, 50 (23), 3909–3927.712

Hohenegger, C., & Stevens, B. (2016). Coupled radiative convective equilibrium713

simulations with explicit and parameterized convection. Journal of Advances714

in Modeling Earth Systems, 8 (3), 1468–1482.715

Holloway, C. E., & Woolnough, S. J. (2016). The sensitivity of convective ag-716

gregation to diabatic processes in idealized radiative-convective equilibrium717

simulations. Journal of Advances in Modeling Earth Systems, 8 (1), 166–195.718

Islam, S., Bras, R. L., & Emanuel, K. A. (1993). Predictability of mesoscale rain-719

fall in the tropics. Journal of Applied Meteorology and Climatology , 32 (2),720

297–310.721

Jeevanjee, N., & Romps, D. M. (2013). Convective self-aggregation, cold pools, and722

domain size. Geophysical Research Letters, 40 (5), 994–998.723

Kessler, E. (1969). On the distribution and continuity of water substance in atmo-724

spheric circulations. In On the distribution and continuity of water substance725

in atmospheric circulations (pp. 1–84). Springer.726

Khairoutdinov, M. F., Blossey, P. N., & Bretherton, C. S. (2022). Global system727

for atmospheric modeling: Model description and preliminary results. Journal728

of Advances in Modeling Earth Systems. (e2021MS002968 2021MS002968) doi:729

https://doi.org/10.1029/2021MS002968730

Khairoutdinov, M. F., & Emanuel, K. (2010). Aggregated convection and the regu-731

lation of tropical climate. In 29th conf. on hurricanes and tropical meteorology732

(pp. P2–69).733

Khairoutdinov, M. F., Krueger, S. K., Moeng, C.-H., Bogenschutz, P. A., & Randall,734

D. A. (2009). Large-eddy simulation of maritime deep tropical convection.735

Journal of Advances in Modeling Earth Systems, 1 (4).736

Khairoutdinov, M. F., & Randall, D. A. (2003). Cloud resolving modeling of the737

ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensi-738

tivities. Journal of Atmospheric Sciences, 60 (4), 607–625.739

Lin, Y.-L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the snow740

field in a cloud model. Journal of Applied Meteorology and climatology , 22 (6),741

1065–1092.742

Lindzen, R. S., Chou, M.-D., & Hou, A. Y. (2001). Does the earth have an adaptive743

infrared iris? Bulletin of the American Meteorological Society , 82 (3), 417–432.744

Liou, K.-N. (1986). Influence of cirrus clouds on weather and climate processes: A745

global perspective. Monthly Weather Review , 114 (6), 1167–1199.746

Mauritsen, T., & Stevens, B. (2015). Missing iris effect as a possible cause of muted747

hydrological change and high climate sensitivity in models. Nature Geoscience,748

8 (5), 346–351.749

Muller, C., & Bony, S. (2015). What favors convective aggregation and why? Geo-750

physical Research Letters, 42 (13), 5626–5634.751

Muller, C., Yang, D., Craig, G., Cronin, T., Fildier, B., Haerter, J. O., . . . others752

(2022). Spontaneous aggregation of convective storms. Annual Review of Fluid753

Mechanics, 54 , 133–157.754

Muller, C. J., & Held, I. M. (2012). Detailed investigation of the self-aggregation755

of convection in cloud-resolving simulations. Journal of the Atmospheric Sci-756

ences, 69 (8), 2551–2565.757

Patrizio, C. R., & Randall, D. A. (2019). Sensitivity of convective self-aggregation758

to domain size. Journal of Advances in Modeling Earth Systems, 11 (7), 1995–759

2019.760

Pauluis, O., & Held, I. M. (2002a). Entropy budget of an atmosphere in radiative–761

convective equilibrium. part ii: Latent heat transport and moist processes.762

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Journal of Atmospheric Sciences, 59 (2), 140–149.763

Pauluis, O., & Held, I. M. (2002b). Entropy budget of an atmosphere in radiative–764

convective equilibrium. part i: Maximum work and frictional dissipation. Jour-765

nal of the Atmospheric Sciences, 59 (2), 125–139.766

Pope, K. N., Holloway, C. E., Jones, T. R., & Stein, T. H. (2021). Cloud-Radiation767

Interactions and Their Contributions to Convective Self-Aggregation. Journal768

of Advances in Modeling Earth Systems, 13 (9), e2021MS002535.769

Randall, D. A., Hu, Q., Xu, K.-M., & Krueger, S. K. (1994). Radiative-convective770

disequilibrium. Atmospheric Research, 31 (4), 315–327.771

Robe, F. R., & Emanuel, K. A. (1996). Moist convective scaling: Some inferences772

from three-dimensional cloud ensemble simulations. Journal of Atmospheric773

Sciences, 53 (22), 3265–3275.774

Ruppert Jr, J. H., & Hohenegger, C. (2018). Diurnal circulation adjustment and or-775

ganized deep convection. Journal of Climate, 31 (12), 4899–4916.776

Schlemmer, L., & Hohenegger, C. (2014). The formation of wider and deeper clouds777

as a result of cold-pool dynamics. Journal of the Atmospheric Sciences, 71 (8),778

2842–2858.779

Schlimme, I., Macke, A., & Reichardt, J. (2005). The impact of ice crystal shapes,780

size distributions, and spatial structures of cirrus clouds on solar radiative781

fluxes. Journal of the Atmospheric Sciences, 62 (7), 2274–2283.782

Semie, A. G., & Bony, S. (2020). Relationship between precipitation extremes783

and convective organization inferred from satellite observations. Geophysical784

Research Letters, 47 (9), e2019GL086927.785

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,786

W., & Powers, J. G. (2005). A description of the advanced research wrf ver-787

sion 2 (Tech. Rep.). National Center For Atmospheric Research Boulder Co788

Mesoscale and Microscale .789

Smolarkiewicz, P. K., & Grabowski, W. W. (1990). The multidimensional positive790

definite advection transport algorithm: Nonoscillatory option. Journal of Com-791

putational Physics, 86 (2), 355–375.792

Sobel, A. H., Bellon, G., & Bacmeister, J. (2007). Multiple equilibria in a single-793

column model of the tropical atmosphere. Geophysical Research Letters,794

34 (22).795

Stephens, G. L., Van Den Heever, S., & Pakula, L. (2008). Radiative–convective796

feedbacks in idealized states of radiative–convective equilibrium. Journal of the797

Atmospheric Sciences, 65 (12), 3899–3916.798

Sun, S., Zhou, B., Xue, M., & Zhu, K. (2021). Scale-similarity subgrid-scale tur-799

bulence closure for supercell simulations at kilometer-scale resolutions: Com-800

parison against a large-eddy simulation. Journal of the Atmospheric Sciences,801

78 (2), 417–437.802

Tobin, I., Bony, S., & Roca, R. (2012). Observational evidence for relationships be-803

tween the degree of aggregation of deep convection, water vapor, surface fluxes,804

and radiation. Journal of Climate, 25 (20), 6885–6904.805

Tompkins, A. M. (2001a). Organization of tropical convection in low vertical wind806

shears: The role of cold pools. Journal of the atmospheric sciences, 58 (13),807

1650–1672.808

Tompkins, A. M. (2001b). Organization of tropical convection in low vertical wind809

shears: The role of water vapor. Journal of the atmospheric sciences, 58 (6),810

529–545.811

Tompkins, A. M., & Craig, G. C. (1998). Radiative–convective equilibrium in a812

three-dimensional cloud-ensemble model. Quarterly Journal of the Royal Mete-813

orological Society , 124 (550), 2073–2097.814

Tompkins, A. M., & Semie, A. G. (2017). Organization of tropical convection in815

low vertical wind shears: Role of updraft entrainment. Journal of Advances in816

Modeling Earth Systems, 9 (2), 1046–1068.817

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Windmiller, J. M., & Craig, G. C. (2019). Universality in the spatial evolution of818

self-aggregation of tropical convection. Journal of the Atmospheric Sciences,819

76 (6), 1677–1696.820

Wing, A. A., & Cronin, T. W. (2016). Self-aggregation of convection in long channel821

geometry. Quarterly Journal of the Royal Meteorological Society , 142 (694), 1–822

15.823

Wing, A. A., Emanuel, K., Holloway, C. E., & Muller, C. (2017). Convective self-824

aggregation in numerical simulations: A review. Shallow clouds, water vapor,825

circulation, and climate sensitivity , 1–25.826

Wing, A. A., & Emanuel, K. A. (2014). Physical mechanisms controlling self-827

aggregation of convection in idealized numerical modeling simulations. Journal828

of Advances in Modeling Earth Systems, 6 (1), 59–74.829

Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S., & Ohno, T. (2018).830

Radiative–convective equilibrium model intercomparison project. Geoscientific831

Model Development , 11 (2), 793–813.832

Wing, A. A., Stauffer, C. L., Becker, T., Reed, K. A., Ahn, M.-S., Arnold, N. P.,833

. . . Zhao, M. (2020). Clouds and convective self-aggregation in a multimodel834

ensemble of radiative-convective equilibrium simulations. Journal of Advances835

in Modeling Earth Systems, 12 (9), e2020MS002138.836

Xue, M., Droegemeier, K. K., & Wong, V. (2000). The Advanced Regional Predic-837

tion System (ARPS)–A multi-scale nonhydrostatic atmospheric simulation and838

prediction model. Part I: Model dynamics and verification. Meteorology and839

Atmospheric Physics, 75 (3), 161–193.840

Xue, M., Droegemeier, K. K., Wong, V., Shapiro, A., Brewster, K., Carr, F., . . .841

Wang, D. (2001). The advanced regional prediction system (arps)–a multi-842

scale nonhydrostatic atmospheric simulation and prediction tool. part ii:843

Model physics and applications. Meteorology and atmospheric physics, 76 (3),844

143–165.845

Xue, M., Hu, M., & Schenkman, A. D. (2014). Numerical prediction of the 8 May846

2003 Oklahoma City tornadic supercell and embedded tornado using ARPS847

with the assimilation of WSR-88D data. Weather and Forecasting , 29 (1),848

39–62.849

Yang, B., & Tan, Z.-M. (2020). The initiation of dry patches in cloud-resolving con-850

vective self-aggregation simulations: Boundary layer dry-subsidence feedback.851

Journal of the Atmospheric Sciences, 77 (12), 4129–4141.852

–24–


