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Abstract

Increased flood risks have been projected in the Kabul River Basin, but with large uncertainties. To place future changes in

a long-term perspective, we produce a 501-year precipitation reconstruction for the basin using seven tree-ring chronologies

of Cedrus deodara, Picea smithiana, and Pinus gerardiana from the Hindukush Mountains, a monsoon-shadow area. The

reconstruction proves robust over rigorous cross-validations (R2 = 0.62, RE = 0.61, CE = 0.53). The full reconstruction (1517–

2018) shows heterogeneous changes in the precipitation distribution: there is a weak increasing trend in the median annual

precipitation, no apparent trend in the 50-year maximum precipitation, and, importantly, a steadily decreasing trend in 50-year

minimum precipitation. In other words, our reconstruction shows that drought risks have been increasing over the past five

centuries. Drought risks, compounded with projected flood intensification, pose significant threats for the transboundary river.

Future water management decisions should factor in past long-term climate variability.
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Abstract20

Increased flood risks have been projected in the Kabul River Basin, but with large un-21

certainties. To place future changes in a long-term perspective, we produce a 501-year22

precipitation reconstruction for the basin using seven tree-ring chronologies of Cedrus23

deodara, Picea smithiana, and Pinus gerardiana from the Hindukush Mountains, a monsoon-24

shadow area. The reconstruction proves robust over rigorous cross-validations (R2 = 0.62,25

RE = 0.61, CE = 0.53). The full reconstruction (1517–2018) shows heterogeneous changes26

in the precipitation distribution: there is a weak increasing trend in the median annual27

precipitation, no apparent trend in the 50-year maximum precipitation, and, importantly,28

a steadily decreasing trend in 50-year minimum precipitation. In other words, our re-29

construction shows that drought risks have been increasing over the past five centuries.30

Drought risks, compounded with projected flood intensification, pose significant threats31

for the transboundary river. Future water management decisions should factor in past32

long-term climate variability.33

Plain Language Summary34

The Kabul River is a transboundary river spanning northern Afghanistan and Pak-35

istan. It is an important tributary of the Indus, one of the world’s largest rivers with in-36

tensive water withdrawals for human use. With climate change, the Kabul River is pro-37

jected to have more frequent and larger floods, but the projections are very uncertain.38

To have a better understanding of these future projections, we need to look at how the39

region’s climate has changed in the past. Tree rings are a valuable source of information40

to serve that need. Using tree ring data from the Hindukush Mountains, western Himalaya,41

we reconstruct five century of precipitation (rainfall) history for the Kabul River Basin.42

From the reconstruction, we observe that while a “typical” year is indeed getting wet-43

ter (as indicated by the median precipitation), dry years are getting drier, as shown by44

the progression of the years with the lowest precipitation. Thus, the risks of severe droughts45

are increasing. Our results imply that the Kabul River Basin is facing both floods and46

drought risks, and these are significant threats to the water security of the basin.47
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1 Introduction48

The Indus River system is one of the largest basins in the world (Best, 2019). Yet,49

owing to the extensive man-made water storage and withdrawal infrastructure along its50

course, the river is nearly depleted (Sharma et al., 2010). Shared by four countries—Pakistan,51

Afghanistan, China, and India—the basin supports a population of about 300 million52

people (Laghari et al., 2012). Among these, the semi-arid countries of Afghanistan and53

Pakistan are particularly reliant on the Indus, and are facing acute water and food short-54

ages as well as threats of transboundary water conflicts (Akhtar & Iqbal, 2017; Atef et55

al., 2019). Located in the Indus headwaters, and originated from the Hindu Kush–Karakoram56

Mountains, the Kabul River is an important tributary of the Indus, accounting for about57

10% of the annual flow, and supplying water directly to the Afghan capital, Kabul (Lashkaripour58

& Hussaini, 2008). The Kabul River has experienced intensive human-induced environ-59

mental changes in the last 40-years (Ahmadullah & Dongshik, 2015), and new dams are60

planned to be built (Yousaf, 2017). Development in both the Afghan and Pakistani sides61

of the river, such as dam construction and increase in built-up and cultivated areas, may62

worsen transboundary water conflicts (Akhtar & Iqbal, 2017; Atef et al., 2019; Taraky63

et al., 2021).64

On top of the increasing water stresses due to human activities, the Kabul River65

Basin faces an uncertain future because of climate change. Climate models predict con-66

sistent warming and drying trends in the Indus Basin, but with considerable uncertain-67

ties surrounding the magnitude and spatial pattern of these changes (Shakir et al., 2010;68

Z. Ahmad et al., 2012; Wi et al., 2015). Despite the overall projected drying trend in69

the Indus Basin, little change has been observed in annual precipitation in the Indus head-70

waters over the past decades (Khattak et al., 2011), and most climate models project71

an increase in precipitation in the Kabul River particularly (Iqbal et al., 2018). The com-72

bination of higher precipitation and enhanced snowmelt due to warming is thus projected73

to increase flood frequency and intensity in the Kabul River Basin (Iqbal et al., 2018;74

S. Ahmad et al., 2021).75

A major factor that confounds projections of water resources availability in the re-76

gion is a peculiar phenomenon named the “Karakoram Anomaly”, where glaciers in the77

Karakoram Mountains gain masses and experience higher frequencies of glacial surges,78

contradicting the overall trends in High-Mountain Asia and other glaciated regions world-79

wide (Hewitt, 2005). The cause of this anomaly remains undetermined, although sev-80

eral plausible causes have been put forth (see e.g., Yao et al., 2012; Kapnick et al., 2014;81

Forsythe et al., 2017; Farinotti et al., 2020). Furthermore, while evidence from tree rings82

suggests that the anomaly may have been stable for centuries (Zafar et al., 2016), the83

future stability of the phenomenon is highly uncertain with global warming (Farinotti84

et al., 2020). As the Indus derives a significant amount of runoff from the Karakoram85

Mountains, these uncertainties greatly hamper the assessment of future surface water86

availability in the region.87

Against this back drop of increasing water stress and uncertain hydroclimatic pro-88

jections, we turn our attention to the past hydroclimatic variability of the Kabul River89

Basin. This knowledge could help constraint future projections and put recent and fu-90

ture changes in a long-term perspective. Here, we present a five-century annual precip-91

itation reconstruction for the Kabul River Basin using seven old-growth conifer chronolo-92

gies developed from both the Afghan and Pakistani sides of the basin. Our reconstruc-93

tion provides a long-term record of moisture input to the basin—an important step to-94

wards understanding the long-term changes in the water cycle and their implications to95

regional water management.96

–3–



manuscript submitted to Geophysical Research Letters

2 Materials and Methods97

2.1 Study Area and Sampled Species98

We sampled three coniferous species on the Hindu Kush Mountains (Figure 1): Ce-99

drus deodara (Roxb.) G. Don (commonly known as Himalayan cedar), Picea smithiana100

(Wall. Boiss; Himalayan spruce) and Pinus gerardiana (Wall. Ex. Lamb.; Chilgoza pine).101

Additional details of the sites are provided in Table S1. Pinus gerardiana is typically found102

in the inner semi-arid regions of the north-western Himalaya, between 1,800 and 3,000103

m asl (Singh et al., 2021), with low summer monsoon rainfall but high winter snowpack.104

Cedrus deodara is found through the western Himalayas at elevations between 1,500 and105

3,300 m asl. This species forms mixed stands with Picea smithiana at 2,500 m and above,106

whereas at lower elevations usually forms associations with Abies pindrow and Pinus wal-107

lichiana (Champion et al., 1965). Cedrus deodara generally prefers sites with low humid-108

ity and high winter snowpack (Raizada & Sahni, 1960; Sahni, 1990). In addition, well-109

drained soils, good amount of winter snowfall, and not too abundant summer rain are110

its fundamental ecological requirements (Brandis, 1906; Champion & Seth, 1968). In the111

study area, the three species were found growing on steep rocky slopes in Chitral Gol112

National Park, Bumburat Kalash valley, and Lowari Top (Figure 1) with very thin soil113

cover. All the three species grow in open stands; this might be due to very long-term (e.g.,114

millennial time scales) anthropogenic interventions, as the local people depends on these115

forests (Khan et al., 2013). As a result, tree-ring patterns of the sampled trees should116

not be influenced much by stand dynamics such as suppression and release due to inter-117

tree competition.118

2.2 Tree Ring Data119

During the sampling phase, care was taken to select healthy trees without visible120

injuries or fire scars. Cores were sampled at breast height (1.3 m), dried, glued, and sanded121

following standard dendrochronological protocols. Samples were cross-dated with the skele-122

ton plot method (Stokes & Smiley, 1996; Speer, 2010) and measured with a LINTAB tree-123

ring measurement station (Rinntech, Heidelberg Germany). Measurements were then sta-124

tistically validated using the software COFECHA (Holmes, 1983).125

Finally, we detrended and standardized the chronologies using the program AR-126

STAN (Cook, 1985). We found that the Friedman variable span smoother was generally127

most suitable for removing non-climatic signals from our series. In a few cases where the128

Friedman variable span smoother showed a lack of fit, the cubic smoothing spline (Cook129

and Peters 1981) was used. From the output of ARSTAN, three chronologies can be derived—130

i.e., standard, residual, and ARSTAN—but for climate reconstruction we selected the131

residual chronology, which is the average of residuals from autoregressive modeling of132

the detrended measurements. The final chronologies and their subsample signal strength133

(SSS; Wigley et al., 1984) are shown in Figure S1, and other statistics are reported in134

Table S2. Following recommendations by Buras (2017), we used SSS rather than the ex-135

pressed population signal (EPS) to determine the length of chronology to retain. The136

SSS was computed using the R package dplR (Bunn, 2008). Wigley et al. (1984) recom-137

mended a threshold of 0.85 (and this is the value commonly used in the literature); how-138

ever, they noted that it was only a guideline. Here, in order to maximize the usable length139

of tree ring data, we chose a threshold of 0.6, at which point the chronologies still ap-140

pear stable.141

2.3 Climate Data142

We obtained monthly precipitation and temperature data for the Chitral meteo-143

rological station (Figure 1b). Our record covers the period 1965–2018, among the longest144

records in Pakistan. The station is located in a monsoon shadow area, away from sum-145
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Figure 1. a) Location of the study region. b) Map of the study area showing the sampling

sites, Chitral meteorological station (blue dot), as well as the topography. c) Monthly distribu-

tion of precipitation and temperature at Chitral.

mer monsoon winds. Precipitation is predominantly delivered by western disturbances146

originating from the Mediterranean Sea (Ridley et al., 2013; Iqbal et al., 2018). Precip-147

itation peaks in March, and the wet season spans from December to May, contributing148

more than 70% of the total annual precipitation (Figure 1c). June to August are usu-149

ally the driest months. As temperatures are mostly above freezing, precipitations are typ-150

ically in liquid form.151

2.4 Climate–Growth Relationship152

To determine the target reconstruction season, we calculated the correlations be-153

tween each chronology and the precipitation of each month from prior year’s January154

to current year’s December (Figure 2). All sites display a generally consistent correla-155
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tion pattern between tree ring widths and precipitation, with stronger correlations ob-156

served between January and May, during the wet season. Highest correlations values are157

above 0.5, observed in March, April, and May at the CDBK, PGBK, PGBK sites, re-158

spectively. Several sites (e.g., CDBK and PGCG) also correlate significantly with pre-159

cipitation in the shoulder months (September to December). Based on these results, we160

chose the full water year (September to August) as the reconstruction target. Reconstruct-161

ing the water year precipitation provides the total annual moisture input to the basin,162

which is potentially useful for hydrological modelling and water management applica-163

tions.164
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Figure 2. Correlations between each tree ring chronology and monthly precipitation at Chi-

tral from prior year’s January to current year’s December. Correlations are bootstrapped 1,000

times using the stationary bootstrap (Politis & Romano, 1994). The dots are the median and

the line ranges are the 5%–95% quantiles of the bootstrap replicates. Correlations that are not

statistically significant (α = 0.05) are faded. The months of the prior year are labelled in red.

2.5 Reconstruction Procedure165

We performed principal component analysis (PCA) to account for multicollinear-166

ity. However, PCA could not be implemented directly because the chronologies start and167

end at different times, leaving data gaps. Therefore, we first imputed the data gaps us-168

ing the R package missMDA (Josse & Husson, 2016). The imputation procedure iteratively169

fills the data gaps until the principal components (PCs) obtained from the gap filled data170

–6–
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converge to those of the observed data. This gap filling strategy has been implemented171

with good results in earlier reconstruction works (e.g., Stagge et al., 2018; Nguyen et al.,172

2021). The results of the gap filling procedure are shown in Figure S2.173

After gap filling, we conducted the final PCA. Only PC1 has an eigenvalue greater174

than one, but PC2 and PC3’s eigenvalues are very close to one (0.96 and 0.93, respec-175

tively; Figure S3). Therefore, PC2 and PC3 were also considered candidate predictors.176

We then carried out backward stepwise linear regression, which resulted in PC1 and PC2177

being retained in the final model.178

The reconstruction was cross-validated with a moving-block cross-validation pro-179

cedure, in which contiguous, rolling blocks of k years were left out for verification while180

the model was calibrated with the remaining data (Nguyen et al., 2020; Higgins et al.,181

2022). Here k was set as 14 years, or 25% of the data length. The commonly used met-182

rics Reduction of Error (RE) and Coefficient of Efficiency (CE) (Cook & Kairiukstis, 1990;183

Nash & Sutcliffe, 1970) were used to assess the reconstruction quality.184

Finally, the reconstructed time series was bias-corrected using the quantile map-185

ping method from the R package qmap (Gudmundsson, 2016; Robeson et al., 2020). This186

step is important to ensure that the instrumental period’s portion of the reconstruction187

has a similar distribution to that of the instrumental data. If the distributions were not188

matched, subsequent statistical comparisons between the paleo and instrumental peri-189

ods would not be fair.190

2.6 Trend and Drought Analyses191

To understand how precipitation in the Kabul River Basin has changed over a long192

term, we analyzed the trends in median precipitation and extremes in a rolling window193

manner. For each 50-year window, we obtained the maximum, median, and minimum194

precipitation from the bias-corrected time series, then calculated the trends in these rolling195

values, and tested these trends with the Mann-Kendall test. To account for serial au-196

tocorrelations, we employed the trend-free pre-whitening procedure (Yue & Wang, 2002)197

before performing the Mann-Kendall test, and estimated the slope of the trend with Sen’s198

method (Sen, 1968). These steps were conducted using the R package modifiedmk (Patakamuri199

& O’Brien, 2021).200

For the purpose of drought analysis, we define a meteorological drought event as201

one that starts with two consecutive years of negative precipitation anomalies, and ends202

with two consecutive years of positive anomalies (Herweijer et al., 2007; Coats et al., 2013).203

The last two years with positive anomalies are not counted towards the duration. Anoma-204

lies are calculated with respect to the mean precipitation over the full reconstruction (1517–205

2018). A drought’s severity is taken as the worst precipitation anomaly during its du-206

ration.207

3 Results208

3.1 Model Performance209

The mean performance scores of the reconstruction across 30 cross-validation runs210

are: R2 = 0.62, RE = 0.61 and CE = 0.53. In all cross-validation runs, RE and CE are211

always positive (Figure S4). The reconstruction explains 62% of variance in precipita-212

tion, and the model shows robustly good skills under a rigorous cross-validation scheme.213

This is also reflected by the reconstruction trajectory, which matches observation closely214

(Figure 3a). However, agreement between the reconstruction and observations are not215

as good in the extremes, particularly in the wettest years. This leads to a mismatch be-216

tween the density of the reconstruction and that of the instrumental data (Figure 3b):217

frequencies of extremely dry and extremely wet years are underestimated by the recon-218

–7–
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struction. This is a common limitation of tree-ring-based reconstructions (see e.g. Robe-219

son et al., 2020). There are two possible causes: first, the climate–growth relationship220

may become nonlinear at the extremes (Torbenson & Stagge, 2021); second, trees may221

not be able to capture moisture inputs beyond the soil saturation level (Nguyen et al.,222

2021). These shortcomings can be mitigated by bias correction. We found that the bias-223

corrected precipitation distribution matches very closely with observations, much bet-224

ter than the uncorrected distribution does (Figure 3b).225
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Figure 3. a) Comparison between observed, reconstructed, and bias-corrected water-year

precipitation time series for the instrumental period (1965–2018). b) Comparison between the

densities of observed, reconstructed, and bias-corrected water year precipitation. All densities are

calculated for the instrumental period only.

3.2 Five Centuries of Precipitation Variability226

We found no significant trend in 50-year maximum precipitation (p = 0.64), and227

a statistically significant but very small increasing trend in median annual precipitation228

(0.04 mm/year, p ≈ 0). There is, however, a significant and considerable decreasing trend229

in 50-year minimum precipitation (-0.17 mm/year, p ≈ 0) (Figure 4a). This decreasing230

trend caused a clear shift in the precipitation in the second half of the record compared231

to the first half (Figure 4b): the left tail of the distribution decreased from about 270232

mm in the first half to only about 200 mm in the second half (a 26% reduction). Me-233

dian precipitation increased from 425 mm to 438 mm. The right tail of the distribution234

remains almost the same. However, that does not mean maximum precipitation did not235

change. Between 1650–1700, and between 1925–2018, there were multiple years with ex-236

tremely high precipitation, while maximum precipitation was lower from 1700–1900.237

The negative trend of minimum precipitation prompted us to examine droughts238

in the reconstruction. Based on precipitation anomalies (Figure 4c), and using drought239

definitions outlined in Section 2.6, we determined the duration and severity of each drought240

event in the past five centuries (Figure 4d). The three most severe droughts in the record241

all happened during the latter half (1718–2018), one of which (1805–1822) was the longest242

–8–
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on record. While drought duration remains the same, drought severity has increased be-243

cause of the decline in minimum precipitation.244
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Figure 4. a) Time series of the full reconstruction, as well as its maximum, median, and

minimum in rolling 50-year windows. The trends in maximum, median, and minimum are also

shown with thick straight lines. b) Precipitation distributions in the first and second halves of

the reconstruction. The red vertical lines denote the mean in each period. c) Time series of pre-

cipitation anomalies. Highlighted are the three most severe droughts (1805–1822, 1901–1904, and

1976–1985). d) Scatterplot of drought duration and severity. The three most severe droughts are

annotated.

4 Discussion and Conclusions245

Using seven tree-ring width chronologies from the Hindu Kush Mountains, we re-246

constructed five centuries of precipitation history for the Kabul River Basin (Pakistan247

and Afghanistan). The reconstruction is skillful and robust under rigorous cross-validation.248

Trend analyses of the reconstruction revealed heterogeneous changes: no trend in max-249

imum precipitation, statistically significant but small increasing trend in median precip-250

itation, and lastly, significant and considerable decline in annual precipitation. These het-251

erogeneous trends show that when analyzing hydrological changes, it is important to look252

at the full distribution shifts, rather than just one portion of the distribution, be it the253

bulk or the extremes.254

–9–
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Our reconstruction reveals that meteorological drought risks have been increasing255

over the past five centuries: droughts in the last 250 years are more severe than those256

in the preceding 250 years. This result is disconcerting, amidst projections of increased257

precipitation and floods for the basin as reported in the literature (S. Ahmad et al., 2021).258

The main moisture source for the basin is western disturbances in the Mediterranean Sea,259

which have been projected to occur more frequently in the Karakoram (Ridley et al., 2013).260

Modeling studies involving hydrological models forced with outputs from global circu-261

lation models have projected flood intensification for the Kabul River as a whole (Iqbal262

et al., 2018), but with declining streamflow for some sub-catchments (Shakir et al., 2010;263

Naeem et al., 2013). There are still large uncertainties to be resolved in future projec-264

tions, as discrepancies among climate models have been shown to be greater than cal-265

ibration uncertainties in hydrological models (Wi et al., 2015).266

Even when future uncertainties are resolved and flood intensification turns out to267

be true, our findings do not contradict such projections, because floods and droughts are268

not mutually exclusive—floods act on short time scales (hours or days) while droughts269

manifest on longer time scales (months, years, or longer). On the contrary, our results270

corroborate that the water cycle is intensifying (Huntington, 2006; Seager et al., 2010;271

Yu et al., 2020), as evidenced by the increased variability in precipitation particularly272

since 1800s in our reconstruction. “Typical” years, as indicated by median precipitation,273

are getting wetter but dry years, indicated by minimum precipitation, are getting drier.274

Our findings are of concerns for the transboundary management of the Kabul River Basin.275

Facing both flood and drought risks, water management decisions across the basin need276

to consider climate variability at multiple time scales, and tree-ring-based reconstruc-277

tions is a valuable source of information to serve that need.278

5 Open Research279

All data and code necessary to reproduce this paper are available on GitHub at https://280

github.com/ntthung/chitral-precip (DOI: 10.5281/zenodo.6941584). An HTML note-281

book, rendered from R Markdown, that documents the full process of analysis, includ-282

ing code, discussion, and outputs, is included in the Supporting Information (Code S1).283

Additionally, tree ring data will be made available on the International Tree Ring Data284

Bank.285
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October). Megadroughts in Southwestern North America in ECHO-G Mil-322

lennial Simulations and Their Comparison to Proxy Drought Reconstructions.323

Journal of Climate, 26 (19), 7635–7649. doi: 10.1175/JCLI-D-12-00603.1324

Cook, E. R. (1985). A time series analysis approach to tree ring standardisation325

(Unpublished doctoral dissertation). The University of Arizona.326

Cook, E. R., & Kairiukstis, L. A. (Eds.). (1990). Methods of Dendrochronology. Dor-327

drecht: Springer Netherlands. doi: 10.1007/978-94-015-7879-0328

Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J., & Dehecq, A. (2020,329

January). Manifestations and mechanisms of the Karakoram glacier Anomaly.330

Nature Geoscience, 13 (1), 8–16. doi: 10.1038/s41561-019-0513-5331

Forsythe, N., Fowler, H. J., Li, X.-F., Blenkinsop, S., & Pritchard, D. (2017,332

September). Karakoram temperature and glacial melt driven by regional333

atmospheric circulation variability. Nature Climate Change, 7 (9), 664–670.334

doi: 10.1038/nclimate3361335

Gudmundsson, L. (2016). Qmap: Statistical transformations for post-processing cli-336

mate model output. R package version 1.0-4.337

Herweijer, C., Seager, R., Cook, E. R., & Emile-Geay, J. (2007, April). North Amer-338

ican Droughts of the Last Millennium from a Gridded Network of Tree-Ring339

Data. Journal of Climate, 20 (7), 1353–1376. doi: 10.1175/JCLI4042.1340

Hewitt, K. (2005, November). The Karakoram Anomaly? Glacier Expansion and the341

‘Elevation Effect,’ Karakoram Himalaya. Mountain Research and Development ,342

25 (4), 332–340. doi: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2343

Holmes, R. L. (1983). Computer assisted quality control. Tree-Ring Bulletin, 43 ,344

69–78.345

Huntington, T. G. (2006, March). Evidence for intensification of the global water cy-346

cle: Review and synthesis. Journal of Hydrology , 319 (1), 83–95. doi: 10.1016/347

j.jhydrol.2005.07.003348

Iqbal, M. S., Dahri, Z. H., Querner, E. P., Khan, A., & Hofstra, N. (2018, April).349

Impact of Climate Change on Flood Frequency and Intensity in the Kabul350

River Basin. Geosciences, 8 (4), 114. doi: 10.3390/geosciences8040114351

Josse, J., & Husson, F. (2016). missMDA: A Package for Handling Missing Values352

in Multivariate Data Analysis. Journal of Statistical Software, 70 (1). doi: 10353

.18637/jss.v070.i01354

Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S., & Milly, P. C. D. (2014,355

November). Snowfall less sensitive to warming in Karakoram than in Hi-356

malayas due to a unique seasonal cycle. Nature Geoscience, 7 (11), 834–840.357

–11–



manuscript submitted to Geophysical Research Letters

doi: 10.1038/ngeo2269358

Khan, N., Ahmed, M., & Shaukat, S. (2013, September). Climatic signal in tree-ring359

chronologies of Cedrus deodara from Chitral Hindukush Range of Pakistan.360

Geochronometria, 40 (3), 195–207. doi: 10.2478/s13386-013-0115-8361

Khattak, M. S., Babel, M. S., & Sharif, M. (2011, February). Hydro-meteorological362

trends in the upper Indus River basin in Pakistan. Climate Research, 46 (2),363

103–119. doi: 10.3354/cr00957364

Laghari, A. N., Vanham, D., & Rauch, W. (2012, April). The Indus basin in the365

framework of current and future water resources management. Hydrology and366

Earth System Sciences, 16 (4), 1063–1083. doi: 10.5194/hess-16-1063-2012367

Lashkaripour, G. R., & Hussaini, S. A. (2008, September). Water resource manage-368

ment in Kabul river basin, eastern Afghanistan. The Environmentalist , 28 (3),369

253–260. doi: 10.1007/s10669-007-9136-2370

Naeem, U. A., Hashmi, H. N., Habib-ur-Rehman, & Shakir, A. S. (2013, Jan-371

uary). Flow trends in river Chitral due to different scenarios of glaciated372

extent. KSCE Journal of Civil Engineering , 17 (1), 244–251. doi: 10.1007/373

s12205-013-1978-1374

Nash, J. E., & Sutcliffe, J. V. (1970, April). River flow forecasting through concep-375

tual models part I — A discussion of principles. Journal of Hydrology , 10 (3),376

282–290. doi: 10.1016/0022-1694(70)90255-6377

Nguyen, H. T. T., Galelli, S., Xu, C., & Buckley, B. M. (2021). Multi-Proxy, Multi-378

Season Streamflow Reconstruction with Mass Balance Adjustment. Water Re-379

sources Research, 57 (8), e2020WR029394. doi: 10.1029/2020WR029394380

Patakamuri, S. K., & O’Brien, N. (2021). Modifiedmk: Modified versions of Mann381

Kendall and Spearman’s rho trend tests.382

Politis, D. N., & Romano, J. P. (1994). The Stationary Bootstrap. Journal of the383

American Statistical Association, 89 (428), 1303–1313. doi: 10.1080/01621459384

.1994.10476870385

Raizada, M., & Sahni, K. (1960). Living Indian gymnosperms. Part 1 (Cycades,386

Ginkgoales and Coniferales). Indian Forest Records (Botany), 5 (2), 73–150.387

Ridley, J., Wiltshire, A., & Mathison, C. (2013, December). More frequent occur-388

rence of westerly disturbances in Karakoram up to 2100. Science of The Total389

Environment , 468–469 , S31-S35. doi: 10.1016/j.scitotenv.2013.03.074390

Robeson, S. M., Maxwell, J. T., & Ficklin, D. L. (2020). Bias Correction of Paleocli-391

matic Reconstructions: A New Look at 1,200+ Years of Upper Colorado River392

Flow. Geophysical Research Letters, 47 (1), 1–12. doi: 10.1029/2019GL086689393

Sahni, K. C. (1990). Gymnosperms of India and adjacent countries. Dehradun:394

Bishen Singh Mahendral Pal Singh.395

Seager, R., Naik, N., & Vecchi, G. A. (2010, September). Thermodynamic and396

Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in397

Response to Global Warming. Journal of Climate, 23 (17), 4651–4668. doi:398

10.1175/2010JCLI3655.1399

Sen, P. K. (1968, December). Estimates of the Regression Coefficient Based on400

Kendall’s Tau. Journal of the American Statistical Association, 63 (324), 1379–401

1389. doi: 10.1080/01621459.1968.10480934402

Shakir, A. S., Rehman, H.-u., & Ehsan, S. (2010). Climate Change Impact on River403

Flows in Chitral Watershed. Pakistan Journal of Engineering and Applied Sci-404

ences.405

Sharma, B., Amarasinghe, U., Xueliang, C., de Condappa, D., Shah, T., Mukherji,406

A., . . . Smakhtin, V. (2010, November). The Indus and the Ganges: River407

basins under extreme pressure. Water International , 35 (5), 493–521. doi:408

10.1080/02508060.2010.512996409

Singh, G., Kumar, D., & Dash, A. K. (2021, May). Pinus gerardiana Wallichex. D.410

Don. -A review. Phytomedicine Plus, 1 (2), 100024. doi: 10.1016/j.phyplu.2021411

.100024412

–12–



manuscript submitted to Geophysical Research Letters

Speer, J. H. (2010). Fundamentals of tree-ring research. University of Arizona413

Press.414

Stagge, J. H., Rosenberg, D. E., DeRose, R. J., & Rittenour, T. M. (2018). Monthly415

paleostreamflow reconstruction from annual tree-ring chronologies. Journal of416

Hydrology , 557 , 791–804. doi: 10.1016/j.jhydrol.2017.12.057417

Stokes, M. A., & Smiley, T. L. (1996). An Introduction to Tree-Ring Dating. Tucson,418

Arizona: The University of Arizona Press.419

Taraky, Y. M., McBean, E., Liu, Y., Daggupati, P., Shrestha, N. K., Jiang, A., &420

Gharabaghi, B. (2021, January). The Role of Large Dams in a Transboundary421

Drought Management Co-Operation Framework—Case Study of the Kabul422

River Basin. Water , 13 (19), 2628. doi: 10.3390/w13192628423

Torbenson, M. C. A., & Stagge, J. H. (2021). Informing Seasonal Proxy-Based Flow424

Reconstructions Using Baseflow Separation: An Example From the Potomac425

River, United States. Water Resources Research, 57 (2), e2020WR027706. doi:426

10.1029/2020WR027706427

Wi, S., Yang, Y. C. E., Steinschneider, S., Khalil, A., & Brown, C. M. (2015, Febru-428

ary). Calibration approaches for distributed hydrologic models in poorly gaged429

basins: Implication for streamflow projections under climate change. Hydrology430

and Earth System Sciences, 19 (2), 857–876. doi: 10.5194/hess-19-857-2015431

Wigley, T. M. L., Briffa, K. R., & Jones, P. D. (1984, February). On the Average432

Value of Correlated Time Series, with Applications in Dendroclimatology and433

Hydrometeorology. Journal of Applied Meteorology and Climatology , 23 (2),434

201–213. doi: 10.1175/1520-0450(1984)023⟨0201:OTAVOC⟩2.0.CO;2435

Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., . . . Joswiak, D. (2012,436

September). Different glacier status with atmospheric circulations in Tibetan437

Plateau and surroundings. Nature Climate Change, 2 (9), 663–667. doi: 10438

.1038/nclimate1580439

Yousaf, S. (2017). Kabul River and Pak-Afghan relations. Central Asian Journal ,440

80 , 97–112.441

Yu, L., Josey, S. A., Bingham, F. M., & Lee, T. (2020). Intensification of the global442

water cycle and evidence from ocean salinity: A synthesis review. Annals of443

the New York Academy of Sciences, 1472 (1), 76–94. doi: 10.1111/nyas.14354444

Yue, S., & Wang, C. Y. (2002). Applicability of prewhitening to eliminate the influ-445

ence of serial correlation on the Mann-Kendall test. Water Resources Research,446

38 (6), 4-1-4-7. doi: 10.1029/2001WR000861447

Zafar, M. U., Ahmed, M., Rao, M. P., Buckley, B. M., Khan, N., Wahab, M., &448

Palmer, J. (2016, March). Karakorum temperature out of phase with hemi-449

spheric trends for the past five centuries. Climate Dynamics, 46 (5-6), 1943–450

1952. doi: 10.1007/s00382-015-2685-z451

–13–



Code for Tree-Ring Evidence of Increasing Drought Risks
amidst Projected Flood Intensification in the Kabul River Basin

(Afghanistan and Pakistan) by Khan et al. (2022)

Hung Nguyen

2022-05-14

Introduction and Preparations

This document details the process of producing the results presented in Tree-Ring Evidence of Increasing
Drought Risks amidst Projected Flood Intensification in the Kabul River Basin (Afghanistan
and Pakistan) by Khan et al. (2022).

To reproduce the results, please do the following:

• This code requires R 4.1.0 and above.
• Download the code repository from the GitHub repo and extract the downloaded .zip file to your

working folder.
• Open chitral-precip.Rproj in RStudio (It’s important to open this first so that the file path

is loaded properly).
• Install and load the following packages if you don’t already have them. For package ldsr, please use

the development version which can be installed from GitHub with

remotes::install_github('ntthung/ldsr')

library(dplR) # Tree ring data processing
library(ldsr) # Tree ring data processing
library(data.table) # Data handling
library(missMDA) # Imputation
library(qmap) # Bias correction
library(modifiedmk) # Trend analysis
library(ggplot2) # Plotting
library(cowplot) # Plotting
library(patchwork) # Plotting
library(ggprism) # Plotting
library(ggnewscale) # Plotting
theme_set(theme_prism(base_size = 10, base_fontface = 'plain', base_line_size = 0.2))

• Open paper-code.Rmd, which is the source code for this document.
• Follow the written details below and run the code chunks one by one.

This R Markdown is set to render both HTML and PDF outputs. To do so, please run

1



rmarkdown::render('paper-code.Rmd', output_format = 'all', output_options = list(hightlight = 'tango'))

For quick access to the final results please see the .csv file in results/.

The code utilities to support the main code are stored in the folder R/. We need to load them first before
running the main code.

source('R/init.R')
source('R/correlation_functions.R')
source('R/drought_analysis_functions.R')

Data

Climate data

# Monthly temperature
TmWide <- fread('data/chitral-monthly-T.csv')
Tm <- melt(TmWide, id.var = 'year', variable.name = 'month2', variable.factor = TRUE, value.name = 'Tm'

)[, month := as.integer(month2)
][order(year, month)]

# Monthly precipitation
PmWide <- fread('data/chitral-monthly-P.csv')
Pm <- melt(PmWide, id.var = 'year', variable.name = 'month2', variable.factor = TRUE, value.name = 'Pm'

)[, month := as.integer(month2)
][order(year, month)]

Figure 1c

p1 <- ggplot(Pm) +
geom_boxplot(aes(month2, Pm), fill = 'steelblue', alpha = 0.5) +
labs(x = NULL, y = 'Precipitation [mm]', tag = 'c)') +
scale_x_discrete(labels = \(x) substr(x, 1, 1)) +
scale_y_continuous(guide = guide_prism_minor()) +
panel_border('black', 0.2)

p2 <- ggplot(Tm) +
geom_boxplot(aes(month2, Tm), fill = 'darkorange', alpha = 0.5) +
labs(x = NULL, y = 'Temperature [\u00b0C]') +
scale_x_discrete(labels = \(x) substr(x, 1, 1)) +
scale_y_continuous(guide = guide_prism_minor()) +
panel_border('black', 0.2)

p1 + p2
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Tree ring data

# Read ARSTAN outputs
crnRaw <- lapplyrbind(

list.files('data/', '.tabs', full.names = TRUE),
function(fn) {

dt <- fread(fn)
dt[, site := substr(fn, 6, nchar(fn) - 5)]

})
setkey(crnRaw, site)
sssOut <- fread('data/sss.csv', key = 'site')
crn <- merge(crnRaw, sssOut, by = c('site', 'year'))

firstYear <- crn[sss > 0.6][, .N, by = year][N >= 4, first(year)]
lastYear <- 2018
# Use the residual chronology
crnWide <- crn[year %in% firstYear:lastYear, dcast(.SD, year ~ site, value.var = c('res'))]

Figure S1 - Chronology and SSS plot

sf <- 2.2
ggplot(sssOut) +

geom_hline(aes(yintercept = 1, linetype = 'Mean', color = 'Mean')) +
# geom_hline(aes(yintercept = 0.85 * sf,

# color = 'SSS = 0.85', linetype = 'SSS = 0.85')) +
geom_hline(aes(yintercept = 0.6 * sf,

color = 'SSS = 0.6', linetype = 'SSS = 0.6')) +
geom_line(aes(year, sss * sf,

col = 'Subsample signal strength',
linetype = 'Subsample signal strength'), size = 0.5) +

geom_line(aes(year, res,
col = 'Ring width index',
linetype = 'Ring width index'), crn) +

facet_wrap(~site, ncol = 2) +
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scale_x_continuous(
name = NULL,
breaks = seq(1300, 2000, 100),
minor_breaks = seq(1300, 2000, 50),
guide = guide_prism_minor(),
expand = c(0, 0)) +

scale_y_continuous(

sec.axis = sec_axis(~ . / sf, name = 'Subsample signal strength',
breaks = seq(0, 1, 0.25)),

expand = c(0, 0)) +
scale_color_manual(

name = NULL,
breaks = c('Ring width index', 'Mean',

'Subsample signal strength', 'SSS = 0.6'),
values = c('steelblue', 'black', 'darkorange', 'black')) +

scale_linetype_manual(
name = NULL,
breaks = c('Ring width index', 'Mean',

'Subsample signal strength', 'SSS = 0.6'),
values = c(1, 1, 1, 2)) +

guides(color = guide_legend(override.aes = list(size = 0.50))) +
theme(

strip.background = element_rect('gray95', NA),
legend.position = c(0.75, 0.1),
legend.key.width = unit(1, 'cm'),
panel.border = element_rect(NA, 'black', 0.2),
axis.ticks.y.right = element_line(color = 'darkorange'),
axis.text.y.right = element_text(color = 'darkorange', size = 9),
axis.title.y.right = element_text(color = 'darkorange', size = 9),
axis.line.y.right = element_line(color = 'darkorange'),
axis.ticks.y.left = element_line(color = 'steelblue'),
axis.text.y.left = element_text(color = 'steelblue', size = 9),
axis.title.y.left = element_text(color = 'steelblue', size = 9),
axis.line.y.left = element_line(color = 'steelblue'))
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Climate-growth relationship

First we infill the tree ring data.

X <- crnWide[, -'year'] |>
as.matrix() |>
imputePCA(ncp = 6) |>
{\(x) x$completeObs}()

PC <- prcomp(X, scale. = TRUE)$x
Xraw <- as.matrix(crnWide[, -'year'])
impModel <- imputePCA(Xraw, ncp = 6)
Xfilled <- impModel$completeObs
Xfitted <- impModel$fittedX
colnames(Xfitted) <- colnames(Xfilled)

crnFitted <- as.data.table(as.data.frame(Xfitted))
crnFitted[, year := 1517:2018]
crnFittedLong <- melt(
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crnFitted, id.vars = 'year', variable.name = 'site', value.name = 'rwi')
crnMerge <- rbindlist(

list(Infilled = crnFittedLong, Original = crn[, .(site, year, rwi = res)]),
use.names = TRUE,
idcol = 'type')

Figure S2

ggplot(crnMerge[year >= 1517]) +
geom_line(aes(year, rwi, color = type)) +
facet_wrap(vars(site), ncol = 2, scales = 'free_y') +
scale_color_manual(values = c('darkorange', 'steelblue')) +
scale_x_continuous(breaks = seq(1500, 2000, 100)) +
labs(x = NULL, y = 'RWI [-]') +
panel_border('black', 0.2) +
theme(legend.position = c(0.6, 0.1))
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Original

Calculate bootstrapped correlations.

treeYears <- crnWide$year
# Current year
# Merge TR in 1965-2018 with precipitation in 1965-2018
instIndc <- which(treeYears %in% 1965:2018)
XYc <- cbind(Xfilled[instIndc, ], as.matrix(PmWide[, -'year']))

# Tree rings and previous year precipitation
# Merge TR in 1966-2018 with precipitation in 1965-2017
instIndp <- which((treeYears - 1) %in% 1965:2017) # previous year streamflow
XYp <- cbind(Xfilled[instIndp, ], as.matrix(PmWide[-.N, -'year']))

# Tree rings and next year precipitation
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# Merge TR in 1963-2016 with precipitation in 1965-2018
# instIndn <- which((treeYears + 1) %in% 1965:2018) # next year streamflow
# XYn <- cbind(Xfilled[instIndn, ], as.matrix(PmWide[, -'year']))

set.seed(2022)
corDTc <- cor_boot(XYc, 1:7, 8:19, groupNames = c('site', 'month')) # current year
corDTp <- cor_boot(XYp, 1:7, 8:19, groupNames = c('site', 'month')) # current year
# corDTn <- cor_boot(XYn, 1:7, 8:19, groupNames = c('site', 'month')) # current year

corDTc[, month := paste0(month, 'c')]
corDTp[, month := paste0(month, 'p')]
# corDTn[, month := paste0(month, 'n')]

corDTPm <- rbind(corDTp, corDTc)
corDTPm[, month := factor(month, c(paste0(month.abb, 'p'), paste0(month.abb, 'c')))]

Figure 2

ggplot(corDTPm) +
geom_linerange(

aes(x = month, ymin = low, ymax = high, alpha = signif), color = 'steelblue') +
geom_point(

aes(x = month, y = rho0, alpha = signif), color = 'steelblue') +
geom_hline(aes(yintercept = 0)) +
geom_vline(xintercept = 12.5) +
facet_wrap(vars(site), ncol = 2) +
scale_x_discrete(name = NULL, labels = monthLab) +
scale_y_continuous(name = 'Correlation [-]',

breaks = c(-0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6)) +
scale_alpha_manual(

values = c(0.25, 1), labels = c('Not significant', 'Significant')) +
theme(

legend.position = c(0.75, 0.1),
axis.text.x = ggtext::element_markdown()) +

panel_border('black', 0.2)
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Principal compnent analysis

PCfit <- prcomp(X, scale. = TRUE)
PC <- PCfit$x
pcDT <- as.data.table(as.data.frame(summary(PCfit)$importance),

keep.rownames = 'var') |>
melt(id.vars = 'var', variable.name = 'PC')

Figure S3

p1 <- ggplot(pcDT[var == 'Standard deviation']) +
geom_col(aes(PC, value), color = 'black', fill = 'gray95') +
geom_hline(yintercept = 1, size = 0.8) +
scale_y_continuous(expand = expansion(add = c(0, 0.01)),
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limits = c(0, 2)) +
labs(x = NULL, y = 'Eigenvalue [-]', tag = 'a)') +
theme(

panel.grid.major.y = element_line('gray'),
panel.ontop = TRUE,
axis.ticks = element_blank(),
axis.line = element_blank())

p2 <- ggplot() +
geom_col(

aes(PC, value * 100),
pcDT[var == 'Proportion of Variance'],
fill = 'steelblue', color = 'black', alpha = 0.8) +

geom_line(
aes(PC, value * 100, group = 1),
pcDT[var == 'Cumulative Proportion'],
color = 'firebrick', size = 0.8) +

geom_point(
aes(PC, value * 100),
pcDT[var == 'Cumulative Proportion'],
color = 'firebrick', size = 1.6) +

labs(x = NULL, y = 'Proportion of variance [%]', tag = 'b)') +
scale_y_continuous(expand = expansion(add = c(0, 1))) +
theme(

panel.grid.major.y = element_line('gray'),
panel.ontop = TRUE,
axis.ticks = element_blank(),
axis.line = element_blank())
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Reconstruction

Pm[, year2 := fifelse(month %in% 9:12, year + 1, year)]
PSepAug <- Pm[, .(Qa = sum(Pm)), by = .(year = year2)][year %in% 1966:lastYear]
instInd <- which(firstYear:lastYear %in% PSepAug$year)

# Stepwise linear regression
DT <- cbind(PC[450:502, 1:3], Qa = PSepAug$Qa) |> as.data.frame()
step(lm(Qa ~ ., DT), direction = 'backward')

## Start: AIC=480.5
## Qa ~ PC1 + PC2 + PC3
##
## Df Sum of Sq RSS AIC
## - PC3 1 496 395002 478.57
## <none> 394506 480.50
## - PC2 1 51858 446364 485.05
## - PC1 1 302975 697481 508.70
##
## Step: AIC=478.57
## Qa ~ PC1 + PC2
##
## Df Sum of Sq RSS AIC
## <none> 395002 478.57
## - PC2 1 52713 447715 483.21
## - PC1 1 302816 697819 506.73

##
## Call:
## lm(formula = Qa ~ PC1 + PC2, data = DT)
##
## Coefficients:
## (Intercept) PC1 PC2
## 459.50 -37.96 38.41

Build final model

sPC <- as.data.table(PC[, 1:2])
lmFit <- PCR_reconstruction(PSepAug, sPC, firstYear, transform = 'none')
set.seed(42)
cvFolds <- make_Z(PSepAug$Qa, frac = 0.25, contiguous = TRUE)
lmCV <- cvPCR(PSepAug, sPC, firstYear, transform = 'none',

Z = cvFolds, use.robust.mean = FALSE)

Performance scores

round(lmCV$metrics[, 1:3], 2)

## R2 RE CE
## 1: 0.62 0.61 0.53
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Figure S4 - score distribution

scores <- melt(lmCV$metrics.dist[, .(R2, RE, CE)],
measure.vars = 1:3,
variable.name = 'metric')

ggplot(scores) +
geom_boxplot(aes(metric, value), fill = 'grey95') +
geom_jitter(aes(metric, value, color = metric), width = 0.25) +
scale_color_brewer(palette = 'Set2') +
scale_x_discrete(

name = NULL,
guide = guide_prism_bracket(),
labels = c('R\u00b2', 'RE', 'CE')) +

scale_y_continuous(
name = 'Metric value [-]',
limits = c(0.25, 0.85),
breaks = seq(0.2, 0.9, 0.1),
minor_breaks = seq(0.25, 0.85, 0.05),
guide = guide_prism_offset_minor()) +

theme(legend.position = 'none')
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Final reconstruction with bias correction.

recFinal <- lmFit$rec
recFinal[, lp20 := dplR::pass.filt(Q, 20, 'low')]
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recFinal[, lp50 := dplR::pass.filt(Q, 50, 'low')]
bcFit <- fitQmap(

PSepAug$Qa,
recFinal[year %in% PSepAug$year, Q],
'RQUANT',
wet.day = FALSE)

recFinal[, Qbc := doQmap(Q, bcFit)]

Figure 3

p1 <- ggplot(recFinal[year %in% PSepAug$year]) +
geom_line(aes(year, Q, colour = 'Reconstruction', linetype = 'Reconstruction'), size = 0.4) +
geom_line(aes(year, Qbc, colour = 'Bias-corrected', linetype = 'Bias-corrected'), size = 0.4) +
geom_line(aes(year, Qa, colour = 'Observation', linetype = 'Observation'),

PSepAug, size = 0.4) +
scale_colour_manual(

name = NULL,
values = c('Observation' = 'gray30',

'Reconstruction' = 'steelblue',
'Bias-corrected' = 'darkorange')) +

scale_linetype_manual(
name = NULL,
values = c('Observation' = 1,

'Reconstruction' = 1,
'Bias-corrected' = 2)) +

scale_x_continuous(
minor_breaks = seq(1965, 2020, 5),
limits = c(1966, 2018),
guide = guide_prism_offset_minor()) +

scale_y_continuous(
minor_breaks = seq(100, 850, 50),
breaks = seq(100, 850, 100),
limits = c(100, 850),
guide = guide_prism_offset_minor()) +

labs(x = 'Year', y = 'Precipitation [mm]', tag = 'a)') +
theme(

plot.margin = margin(r = 10),
legend.box.margin = margin(),
legend.margin = margin(),
legend.key.width = unit(2, 'cm'),
legend.position = 'top')

p2 <- ggplot() +
stat_density(aes(y = Q, colour = 'Reconstruction', linetype = 'Reconstruction'),

recFinal[year %in% PSepAug$year], geom = 'line', bw = 60, size = 0.4) +
stat_density(aes(y = Qbc, colour = 'Bias-corrected', linetype = 'Bias-corrected'),

recFinal[year %in% PSepAug$year], geom = 'line', bw = 70, size = 0.4) +
stat_density(aes(y = Qa, colour = 'Observation', linetype = 'Observation'),

PSepAug, geom = 'line', bw = 70, size = 0.4) +
scale_colour_manual(

name = NULL,
values = c('Observation' = 'gray30',

'Reconstruction' = 'steelblue',
'Bias-corrected' = 'darkorange')) +
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scale_linetype_manual(
name = NULL,
values = c('Observation' = 1,

'Reconstruction' = 1,
'Bias-corrected' = 2)) +

scale_x_continuous(guide = guide_prism_offset()) +
scale_y_continuous(

minor_breaks = seq(100, 850, 50),
breaks = seq(100, 850, 100),
limits = c(100, 850),
guide = guide_prism_offset_minor()) +

labs(y = NULL, x = 'Density', colour = NULL, tag = 'b)') +
theme(

axis.text.y = element_blank(),
legend.box.margin = margin(),
legend.margin = margin(),
legend.key.width = unit(2, 'cm'),
legend.position = 'top') +

theme(legend.position = 'top')

layout <- '
CCC
AAB
AAB
AAB
AAB
AAB
AAB
'

p1 + p2 + guide_area() +
plot_layout(design = layout, guides = 'collect')
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Trend and drought analyses

Calculate rolling statistics and extract drought events.

alignType <- 'right'
recFinal[, rolMax := frollapply(Qbc, 50, max, align = alignType)]
recFinal[, rolMin := frollapply(Qbc, 50, min, align = alignType)]
recFinal[, rolMed := frollapply(Qbc, 50, median, align = alignType)]
recFinal[, period := fcase(

year %in% 1517:1767, 1,
default = 2)]

densCals <- recFinal[, {
d <- density(Qbc, cut = 0, bw = 45)
list(x = d$x, y = d$y / max(d$y) * 1.5)

}, by = period]

medians <- recFinal[, {
d <- density(Qbc, cut = 0, bw = 45)
m <- median(Qbc)
y <- approx(d$x, d$y, m)$y
list(x = m, y = y / max(d$y) * 1.5)

}, by = period]

recFinal[, dP := Qbc - mean(Qbc),
][, type := classify_events(dP)
][, dp10 := pass.filt(dP, 10)]

droughts <- get_timing(recFinal$dP, recFinal$type)[type == 'drought']
droughts[, ':='(yearStart = recFinal[start, year],

period = recFinal[start, period],
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yearFinal = recFinal[final, year])]
worstDroughts <- droughts[order(peak)][1:3]

Mann-Kendall trend test with trend-free pre-whitening.

recFinal[!is.na(rolMax), tfpwmk(rolMax)] |> round(6)

## Z-Value Sen’s Slope Old Sen’s Slope P-value S
## 0.576500 0.000000 0.000000 0.564277 1844.000000
## Var(S) Tau
## 10220016.000000 0.018092

recFinal[!is.na(rolMin), tfpwmk(rolMin)] |> round(6)

## Z-Value Sen’s Slope Old Sen’s Slope P-value S
## -30.312840 -0.168350 -0.168237 0.000000 -97260.000000
## Var(S) Tau
## 10294526.000000 -0.954222

recFinal[!is.na(rolMed), tfpwmk(rolMed)] |> round(6)

## Z-Value Sen’s Slope Old Sen’s Slope P-value S
## 15.055906 0.040892 0.041507 0.000000 48308.000000
## Var(S) Tau
## 10294526.000000 0.473952

Figure 4

p1 <- ggplot(recFinal) +
labs(x = NULL, y = 'P [mm]') +
geom_line(aes(year, rolMax, colour = '50-yr max'), na.rm = TRUE, size = 0.4, alpha = 0.5) +
geom_line(aes(year, rolMin, colour = '50-yr min'), na.rm = TRUE, size = 0.4, alpha = 0.5) +
geom_line(aes(year, rolMed, colour = '50-yr median'), na.rm = TRUE, size = 0.4, alpha = 1) +
geom_line(aes(year, Qbc, color = 'Annual')) +
geom_smooth(aes(year, rolMax, colour = '50-yr max'), size = 0.6,

formula = 'y ~ x', method = 'lm', na.rm = TRUE, fill = NA) +
geom_smooth(aes(year, rolMin, colour = '50-yr min'), size = 0.6,

formula = 'y ~ x', method = 'lm', na.rm = TRUE, fill = NA) +
geom_smooth(aes(year, rolMed, colour = '50-yr median'), size= 0.6,

formula = 'y ~ x', method = 'lm', na.rm = TRUE, fill = NA) +
scale_x_continuous(

expand = c(0, 0),
minor_breaks = seq(1500, 2025, 25),
limits = c(1500, 2025),
guide = guide_prism_offset_minor()) +

scale_y_continuous(
minor_breaks = seq(200, 900, 50),
breaks = seq(200, 900, 100),
limits = c(200, 900),
labels = skip_label(2),
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guide = guide_prism_offset_minor()) +
labs(x = NULL, y = 'Precipitation [mm]', colour = NULL, tag = 'a)') +
scale_color_manual(values = c(RColorBrewer::brewer.pal(3, 'Set2'), 'gray')) +
theme(

legend.key.width = unit(0.5, 'cm'),
legend.position = 'top')

p2 <- ggplot(densCals) +
geom_ribbon(aes(x, ymin = period, ymax = y + period, group = factor(period),

fill = factor(period)),
alpha = 0.5) +

geom_line(aes(x, y + period, group = factor(period))) +
geom_linerange(aes(x, ymin = period, ymax = period + y), medians, colour = 'firebrick') +
scale_fill_manual(

labels = c('1517-1717', '1718-2018'),
values = wesanderson::wes_palette('Royal1', 4)[c(1, 4)]) +

scale_x_continuous(
guide = guide_prism_offset_minor(),
breaks = seq(200, 900, 100),
minor_breaks = seq(200, 900, 20)) +

scale_y_continuous(
expand = c(0, 0),
breaks = c(1.5, 2.5),
labels = c('1517-1717', ' 1718-2018')) +

labs(x = 'Precipitation [mm]', y = NULL, tag = 'b)') +
theme(

legend.position = 'none',
axis.line.y = element_blank(),
axis.text.y.left = element_text(angle = 90, hjust = 0.5),
axis.ticks.y = element_blank())

p3 <- ggplot(recFinal) +
geom_rect(

aes(xmin = yearStart, xmax = yearFinal, ymin = -Inf, ymax = Inf),
worstDroughts,
fill = 'magenta4', alpha = 0.1) +

geom_col(aes(year, dP, fill = dP), recFinal[dP > 0]) +
scale_fill_distiller(

palette = 'BrBG',
limits = abs_range(recFinal$dP),
# limits = abs_range(recFinal$dP),
guide = guide_none(),
direction = 1) +

ggnewscale::new_scale_fill() +
geom_col(aes(year, dP, fill = dP), recFinal[dP < 0]) +
scale_fill_distiller(

palette = 'BrBG',
# limits = abs_range(recFinal$dP),
limits = c(min(recFinal$dP), -min(recFinal$dP)),
guide = guide_none(),
direction = 1) +

scale_color_manual(values = 'black') +
scale_x_continuous(
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expand = c(0, 0),
minor_breaks = seq(1500, 2025, 25),
limits = c(1500, 2025),
guide = guide_prism_offset_minor()) +

scale_y_continuous(
breaks = seq(-300, 400, 100),
minor_breaks = seq(-300, 400, 50),
guide = guide_prism_offset_minor()) +

labs(x = NULL, y = 'Precipitation anomaly [mm]', tag = 'c)') +
theme(

legend.position = 'top')

p4 <- ggplot(droughts) +
geom_point(aes(dur, peak, color = as.character(period)), alpha = 0.6) +
geom_text(

aes(dur, peak, label = paste(yearStart, yearFinal, sep = '-')),
worstDroughts,
size = 2, hjust = 0.8, nudge_y = -15) +

scale_x_continuous(
breaks = seq(2, 20, 2),
guide = guide_prism_offset_minor()) +

scale_y_continuous(
breaks = seq(-300, 0, 50),
limits = c(-275, -25),
guide = guide_prism_offset_minor()) +

scale_color_manual(
labels = c('1517-1717', '1718-2018'),
values = wesanderson::wes_palette('Royal1', 4)[c(1, 4)]) +

labs(x = 'Drought duration [years]', y = 'Drought severity [mm]', tag = 'd)') +
theme(legend.position = 'top')

p1 + p2 + p3 + p4 +
plot_layout(widths = c(1.5, 1))
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d)

Export the reconstruction.

recFinal[, period := NULL]
fwrite(

recFinal[, .(year, P = Q, Plower = Ql, Pupper = Qu, Pbc = Qbc)],
'results/chitral-sep-aug-precip-reconst.csv')
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