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Abstract

Soil biogeochemical models (SBMs) simulate element transfer processes between organic soil pools. These models can be used to

specify falsifiable quantitative assertions about soil system dynamics and their responses to global surface temperature warming.

To determine whether SBMs are useful for representing and forecasting data-generating processes in soils, it is important to

conduct data assimilation and fitting of SBMs conditioned on soil pool and flux measurements to validate model predictive

accuracy. SBM data assimilation has previously been carried out in approaches ranging from visual qualitative tuning of model

output against data to more statistically rigorous Bayesian inferences that estimate posterior parameter distributions with

Markov chain Monte Carlo (MCMC) methods. MCMC inference is better able to account for data and parameter uncertainty,

but the computational inefficiency of MCMC methods limits their ability to scale assimilations to larger data sets. With

formulation of efficient and statistically rigorous SBM inference frameworks remaining an open problem, we demonstrate the

novel application of a variational inference framework that uses a method called normalizing flows to approximate SBMs that

have been discretized into state space models. We fit the approximated SBMs to synthetic data sourced from known data-

generating processes to identify discrepancies between the inference results and true parameter values and ensure functionality

of our method. Our approach trades estimation accuracy for algorithmic efficiency gains that make SBM data assimilation

more tractable and achievable under computational time and resource limitations.
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Abstract19

Soil biogeochemical models (SBMs) simulate element transfer processes between organic20

soil pools. These models can be used to specify falsifiable quantitative assertions about21

soil system dynamics and their responses to global surface temperature warming.22

To determine whether SBMs are useful for representing and forecasting data-generating23

processes in soils, it is important to conduct data assimilation and fitting of SBMs con-24

ditioned on soil pool and flux measurements to validate model predictive accuracy. SBM25

data assimilation has previously been carried out in approaches ranging from visual qual-26

itative tuning of model output against data to more statistically rigorous Bayesian in-27

ferences that estimate posterior parameter distributions with Markov chain Monte Carlo28

(MCMC) methods. MCMC inference is better able to account for data and parameter29

uncertainty, but the computational inefficiency of MCMC methods limits their ability30

to scale assimilations to larger data sets.31

With formulation of efficient and statistically rigorous SBM inference frameworks32

remaining an open problem, we demonstrate the novel application of a variational in-33

ference framework that uses a method called normalizing flows to approximate SBMs34

that have been discretized into state space models. We fit the approximated SBMs to35

synthetic data sourced from known data-generating processes to identify discrepancies36

between the inference results and true parameter values and ensure functionality of our37

method. Our approach trades estimation accuracy for algorithmic efficiency gains that38

make SBM data assimilation more tractable and achievable under computational time39

and resource limitations.40

Plain Language Summary41

Soil biogeochemical models (SBMs) simulate soil systems in a quantifiable and fal-42

sifiable manner. Climate researchers rely on SBMs to predict how soil systems could be43

globally affected by climate change. However, SBMs differ widely in their predictions of44

changes in soil measurements including rates of soil carbon dioxide emissions. It is un-45

clear which SBMs offer more realistic climate projections, and the establishment of sta-46

tistical techniques to rigorously compare the predictive performance of SBMs is still a47

work in progress. We make a contribution to SBM comparison efforts by developing a48

statistical framework to assess SBM accuracy that leverages deep learning for compu-49

tational efficiency gains. Results of our case study demonstrate that we can fit two SBMs50

to soil observation data and estimate ranges of SBM parameter values compatible with51

those observations. Our modular framework is flexible and stimulates future work to im-52

prove on our procedure with modifications of our existing methods.53

1 Introduction54

Soil biogeochemical models (SBMs) are differential equation systems that repre-55

sent dynamics of organic matter transfer between soil pools, including the soil organic56

(SOC), dissolved organic (DOC), and microbial biomass carbon (MBC) pools. The state57

variables of SBMs typically are densities or masses of elements in those pools (Manzoni58

& Porporato, 2009), and heterotrophic soil CO2 emissions can be estimated from those59

state values and microbial parameters (Allison et al., 2010). As soil microbe communi-60

ties influencing organic mass transfer dynamics evolve and shift under the selection pres-61

sures of terrestrial warming, SBMs have become an important tool for soil scientists and62

biogeochemists to quantify changes in soil system activity and predict future heterotrophic63

soil respiration levels (Sulman et al., 2018; Saifuddin et al., 2021).64

SBMs offer falsifiability of their dynamics through their depiction of biological soil65

processes as interpretable mathematical equations governed by model parameters θ. How-66
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ever, the formulation of statistically sound frameworks to assess the dynamical validity67

and predictive accuracy of SBMs remains an open problem in soil biogeochemistry (Luo68

et al., 2016; Xie et al., 2020; Bradford et al., 2021; Georgiou et al., 2021; Raczka et al.,69

2021). One approach for assessing SBM utility involves comparing models by their abil-70

ity to assimilate soil observation data with suitable θ values, assuming that models that71

can more accurately describe the past will also be better at predicting the future (Wieder72

et al., 2014; Bradford et al., 2021). Past SBM fit evaluations have ranged from visual73

juxtapositions of manually calibrated model outputs against empirical observations (Sulman74

et al., 2014; Wieder et al., 2015) to quantitative frequentist comparisons involving cor-75

relation coefficients and root-mean-square errors (K. E. O. Todd-Brown et al., 2013; K. E. Todd-76

Brown et al., 2014; Wieder et al., 2014). In an effort to account for uncertainty in θ val-77

ues and data observations and encode expert domain beliefs, other comparisons have in-78

volved the use of Bayesian Markov chain Monte Carlo (MCMC) inference methods and79

goodness-of-fit metrics with some success (Hararuk et al., 2014; Hararuk & Luo, 2014;80

J. Li et al., 2019; Xie et al., 2020; Saifuddin et al., 2021; Wang et al., 2022).81

MCMC transition sampling methods, such as the Gibbs (Geman & Geman, 1987)82

and No-U-Turn (NUTS) (Hoffman & Gelman, 2014) samplers deployed in widely-used83

probabilistic programming platforms like JAGS (Plummer, 2003), Stan (Carpenter et84

al., 2017), and PyMC (Salvatier et al., 2016), are powerful algorithms for inference, but85

their relative computational cost presently limits their ability to scale for use on model86

comparisons involving more complex SBM systems conditioned on larger data sets span-87

ning decades (Kucukelbir et al., 2017). Stochastic gradient optimization variational in-88

ference (VI) is an alternative approach to Bayesian inference and model-fitting that trades89

asymptotic exactness and the ability to estimate non-parametric posterior distributions90

for increased computational efficiency and simplicity (Blei et al., 2017). It does so by re-91

framing Bayesian inference from a transition sampling problem to an optimization ob-92

jective of maximizing a metric called the evidence lower bound (ELBO), which corre-93

sponds to minimizing the discrepancy between an approximate parametric posterior and94

true posterior distribution (Salimans et al., 2015).95

VI on differential equation models benefits from the use of stochastic differential96

equation (SDE) over ordinary differential equation (ODE) systems. SDE noise provides97

a means of adjusting and correcting for proposals of system initial conditions and un-98

derlying dynamics that are inconsistent with the true data-generating process sourcing99

the data observations (Whitaker, 2016; Särkkä & Solin, 2019; Wiqvist et al., 2021). Ad-100

ditionally, noise-driven fluctuation and variation in state trajectories can account for out-101

lier data measurements during inference to reduce optimization pressures that can drive102

rigid deterministic models into unstable θ regimes. SDE noise thereby improves infer-103

ence flexibility, stability, and efficiency through the acommodation and mitigation of dis-104

crepancies between model outputs and data generation or observation. Furthermore, SDEs105

offer a more realistic and accurate representation of the stochasticity that is inherent to106

biological processes across all scales (Golightly & Wilkinson, 2011; Abs et al., 2020; Brown-107

ing et al., 2020). The ability to effectively fit SDEs is an advantage of VI over many es-108

tablished MCMC methods; off-the-shelf MCMC implementations are frequently not de-109

signed to tolerate the noisy likelihood estimates of SDEs (Golightly & Wilkinson, 2010;110

Fuchs, 2013; Chen et al., 2014).111

With the goal of applying VI to SBMs in mind, we formulated SDE versions of the112

linear deterministic “conventional” (CON) SBM system (Allison et al., 2010; J. Li et al.,113

2014) to establish an SCON family of models and leverage the versatility of stochastic114

optimization. As is the case for CON, SCON models have three state variables repre-115

senting SOC, DOC, and MBC densities in a soil system. We parameterized two SCON116

variants, “constant diffusion” SCON (SCON-C) and “state-scaling diffusion” SCON (SCON-117

SS). Diffusion coefficients are model parameters that govern the noise dynamics of an118
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Figure 1. In our study, we use normalizing flows to approximate SCON soil biogeochemical

model solution trajectories x over time t. The flow operates in a generative direction, mapping a

simpler base distribution to a more complex one representing SCON output.

SDE system. In SCON-C, diffusion, or noise, was set to be independent of time and states,119

while in SCON-SS, noise was made to depend on and scale with state values.120

We used a class of methods called normalizing flows to approximate SCON mod-121

els in our inference approach. In simple terms, flows can be thought of as one or more122

layers of random variable mappings that transform an initial base probability distribu-123

tion to a new distribution (Papamakarios et al., 2021). When we deploy flows to trans-124

form a simpler probability density into a more complex one (Figure 1), as we do in our125

study, it is classified as a generative normalizing flow (Kobyzev et al., 2020). The flow126

approximation refashions SCON from an SDE that depicts state variable dynamics dx
dt127

in continuous time to a probabilistic state space model that specifies distributions of state128

measurements yt noisily observed from underlying states xt in discrete time (Särkkä &129

Solin, 2019).130

The replacement of differential equation solver integration with state space mod-131

els to approximate dynamical systems offers substantial computational efficiency gains132

in inference (Ryder et al., 2018; Särkkä & Solin, 2019). At each inference iteration or133

epoch, rather than sequentially computing state trajectories x one time step at a time134

with solvers including Euler, Runge-Kutta, and Adams’ schemes, as was demonstrated135

in studies like Xie et al. (2020), we can instead simultaneously sample multiple x in one136

vectorized draw from a flow-transformed state space distribution object. This increased137

efficiency allows us to more capably assimilate SBMs with time series data sets spanning138

longer periods under computing resource limitations, especially when highly paralleliz-139

able graphical processing units (GPUs) can be leveraged.140

Drawing from the methodologies of previous work that test various inference ap-141

proaches (Golightly & Wilkinson, 2006; Whitaker et al., 2017; Ryder et al., 2018, 2021),142

our study demonstrates functional stochastic VI of flow-approximated SBMs conditioned143

on soil observations data y that includes various soil pool and respiration measurements.144

To support the notion that our VI approach is operational, we show that it can fit model145

output to y sourced from a known data-generating process and estimate model θ pos-146

teriors in line with the true θ values used by that process.147

Hence, to begin our study workflow, we generated synthetic y consisting of SOC,148

DOC, and MBC state and heterotrophic CO2 respiration rate observations correspond-149

ing to SCON-C and SCON-SS data-generating processes. The processes used “true” θ150

values randomly sampled from constrained data-generating distributions that were cho-151

sen to produce faster and more dramatic SOC decay dynamics reminiscent of organic152

matter decomposition at soil surface, which contrasts with the slower and deeper soil de-153

composition depicted in J. Li et al. (2014) and Xie et al. (2020). Faster decay provided154

our inference approach with substantive dynamical information in shorter time series to155

operate and optimize on. We then conditioned our state space model VI on those syn-156
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Figure 2. A workflow diagram summarizing the steps involved in our study’s stochastic vari-

ational Bayesian framework. Our workflow efficiently conducts inference and data assimilation

on stochastic differential equation (SDE) soil biogeochemical models (SBMs) with their approx-

imation into state space models (SSMs). Our modular workflow is designed to serve as a basis

for building future soil biogeochemical model inferences, as the “black box” inference method

used can be modified or substituted. Our “black box” inference method of choice was stochastic

gradient descent mean-field variational inference. Within the nodes of the diagram, blue lines

and shading correspond to prior means and distributions, while orange lines and shading corre-

spond to posterior means and distributions. Orange dots represent observations upon which the

inference is conditioned.

thetic y for estimation of approximate posterior densities q(θ) that were compared with157

prior densities p(θ). Priors were made to be equivalent to our data-generating distribu-158

tions.159

Ultimately, we found that our VI approach allowed us to reasonably fit y. When160

possible, our fits were checked against solutions from a Kalman smoother algorithm, and161

we observed that the flow fits were mostly consistent with the Kalman solutions. Cru-162

cially, we were also able to recover some of the true θ values used by our data-generating163

processes against model identifiability limitations that could not be resolved by the ex-164

tent of information contained in our synthetic data. Model identifiability can be sum-165

marized as the ability to update prior beliefs about θ and align model to true θ based166

on available data. Our identifiability issues related to the presence of ambiguous SCON167

equation terms involving the multiplication of more than two parameters. Our work of-168

fers insights and suggestions for improving the identification of θ, which is of interest for169

experimentalists and biogeochemists who are interested in building effective data sets170

for SBM inference.171
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2 Materials and Methods172

2.1 Inference workflow overview173

The general steps constituting our study’s SBM data assimilation workflow are out-174

lined in Figure 2. We established SCON-C and SCON-SS to serve as known data-generating175

processes whose true θ values can be compared with the inferred posteriors to test our176

flow VI method. Discrepancies between the true θ and posterior means inform on the177

effectiveness of our selected inference algorithm. Differences between the priors and pos-178

terior densities further indicate algorithm efficacy and additionally point to the infor-179

mativeness of the data y for identifying and constraining posteriors.180

True SCON-C and SCON-SS θ were sampled from data-generating distributions181

truncated between lower and upper support bounds to ensure that data-generating pro-182

cesses would remain in parameter regimes with faster state decay corresponding to soil183

surface decomposition occurring on the order of thousands of hours, rather than tens or184

hundreds of thousands. This allows us to generate shorter data sets y that enable reduced185

computational loads and faster turnaround times for testing our inference algorithm while186

retaining dynamical richness that can inform the algorithm to estimate more certain pos-187

teriors. We used logit-normal distributions to handle truncation in our data-generating,188

prior, and posterior distributions, which we will describe in section 2.3. Our inference189

priors matched our data-generating distributions.190

Synthetic data y were observed and processed from our data-generating SDE so-191

lution trajectories. We parameterized our SCON models based in time units of hours,192

so observations were collected every 5 hours by default. State space approximation of193

SDE output, which we will describe in section 2.4, requires regular time series discretiza-194

tion (Kalman, 1960), so in an empirical setting, all existing, imputed, or missing obser-195

vations must coincide with discrete time steps of the state space model in our approach196

and cannot transpire in between. Different SDE approximation methods would be needed197

for irregular time discretization.198

We selected mean-field stochastic VI as our black box inference method for its math-199

ematical simplicity and efficiency. Mean-field inference makes the simplifying assump-200

tion that model parameters are independently distributed. This aligns with our synthetic201

data-generating processes, in which our true θ values are sampled from independent logit-202

normal distributions. VI frames Bayesian inference as an optimization goal of finding203

the set of mean-field posterior distributions that best describes y. The optimization pro-204

cess takes place over a number of training iterations in which θ values are sampled at205

each iteration and the likelihood of the resultant model output conditioned on y and θ206

is evaluated in fulfillment of the objective of the VI algorithm to locate θ correspond-207

ing to higher model likelihood. We present an overview of our VI implementation and208

key algorithm steps in section 2.5.209

We used normalizing flows to approximate SCON-C and SCON-SS from continuous-210

time SDEs to time-discretized state space models. These state space approximations then211

served as our bases for VI optimization. A brief treatment on state space models is given212

in section 2.4. Flow state space approximation increased the computational efficiency213

of sampling SCON solution trajectories (also referred to as latent variables, states, or paths214

in machine learning literature) such that multiple trajectories would be simultaneously215

collected from a flow distribution object rather than sequentially simulated from a dif-216

ferential equation solver at each training iteration. The flow is assembled through deep217

neural network layers that transform simpler random input into more complex approx-218

imated SCON output. The constituent pieces of the machine learning architecture un-219

derlying our flow are detailed in section 2.6.220

Per equations (3) and (4), SCON-C is a completely linear SDE. Consequently, SCON-221

C flow-approximated x and its fit of y can be visually benchmarked against output from222
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an instance of the Kalman smoother algorithm summarized in section 2.7. Given a known223

data-generating process and observation error, a Kalman smoother exactly solves the true224

mean latent path x of the SDE data-generating process sourcing y. We successfully com-225

pared SCON-C flow x to the true x solution computed by the smoother, which we de-226

scribe in section 3.1. The smoother algorithm cannot resolve the non-linear diffusion de-227

picted in equation (5), so SCON-SS flow output could not be validated in the same man-228

ner.229

2.2 SCON SDE parameterization and data generation230

SDE system equations are frequently written with the state value derivatives dx
on the left-hand side, and consist of a drift coefficient vector, frequently notated as α,
and a diffusion coefficient matrix, notated as β, on the right-hand side. For biological
SDE models, a square-root diffusion structure is frequently used such that these systems
follow the form

dxt = α(xt, t, θ)dt+
√
β(xt, t, θ)dWt (1)

where dWt denotes a continuous stochastic Wiener process. Evolution of SDE trajec-231

tories x across a simulation duration T in time increments dt can be interpreted as a se-232

ries of small steps whose values are independently drawn from a normal distribution with233

mean α(xt, t)dt and variance β(xt, t)dt (Särkkä & Solin, 2019).234

Like the CON model introduced in Allison et al. (2010), SCON has three state di-
mensions made up of soil organic C (SOC), dissolved organic C (DOC), and microbial
biomass C (MBC) densities. We notate total state dimensions with D, so D = 3 for all
systems in the SCON family. SOC, DOC, and MBC are respectively notated in the sys-
tem equations as S, D, and M . Thus, xt, the solutions of the continuous SCON system
at time t, expand to the vector,

xt =

St

Dt

Mt

 (2)

and observations of the system yt are similarly three-dimensional.235

We established two SCON versions for inference and data generation use, SCON-
C and SCON-SS. SCON-C and SCON-SS share the same underlying α drift vector, equiv-
alent to the deterministic CON dynamics and following the form: dS
dD
dM

 =

 IS + aDS · kD ·D + aM · aMSC · kM ·M − kS · S
ID + aSD · kS · S + aM · (1− aMSC) · kM ·M − (uM + kD) ·D

uM ·D − kM ·M

 dt+ β0.5

dWS

dWD

dWM


(3)

where β now refers to the diffusion matrix component of the SDE and the WS , WD, and236

WM elements of the Wiener process vector represent random draws from the distribu-237

tion N (0,
√
dt).238

For simplification purposes, the β diffusion matrices of both systems were made
to be diagonal only and free of covariance diffusion terms. SCON-C diffusion dynam-
ics are given by

β =

cS 0 0
0 cD 0
0 0 cM

 (4)

while SCON-SS diffusion dynamics are

β =

sS · S 0 0
0 sD ·D 0
0 0 sM ·M

 (5)

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Thus, SCON-C diffusion noise is additive, meaning it is independent of the values of states239

S, D, and M , and also stationary, meaning that is not a function of t. Meanwhile, SCON-240

SS noise is multiplicative, meaning it is dependent on the states. As such, SCON-C is241

linear in drift and diffusion, while SCON-SS is linear in drift but non-linear in diffusion.242

IS and ID respectively represent the exogenous input of C mass in units of mgCg−1 soil h−1

into the SOC and DOC soil pools from litter decay and can be modeled as constants or
functions. We used sinusoidal litter input functions with annual periods that assumed
litterfall peaking through late summer and early fall in a pattern resembling those ob-
served in tropical forest ecosystems (Giweta, 2020). The functions are given by

IS,t = 0.001 + 0.0005 · sin
(

2π

365 · 24 t
)

(6)

ID,t = 0.0001 + 0.00005 · sin
(

2π

365 · 24 t
)

(7)

As was previously instituted for CON (Allison et al., 2010; J. Li et al., 2014), the
SCON linear first-order decay parameters ki∈{S,D,M} remain dependent on temperature.
Temperature sensitivity of the ki∈{S,D,M} linear first-order decay parameters is enforced
by a function derived from the original Arrhenius equation (Arrhenius, 1889),

ki,t = ki,ref exp

[
−Eaki

R

(
1

tempt
− 1

tempref

)]
(8)

where R is the ideal gas constant 8.314 JK−1 mol−1 and tempref specifies a “reference”243

equilibrium temperature which we set at 283 K.244

Through changing values of ki∈{S,D,M}, SCON systems respond to day-night and
seasonal temperature cycles through the composite sinusoid forcing function,

tempt = tempref +
5t

80 · 365 · 24 + 10 · sin
(
2π

24
t

)
+ 10 · sin

(
2π

365 · 24 t
)

(9)

The function assumes a gradual linear increase in mean soil surface temperature by 5245

°C over 80 years from the start of the simulation, in line with the upper bound of mean246

surface temperature increases predicted in emissions scenarios by 2100 (O’Neill et al.,247

2017).248

SDE systems rarely admit tractable analytic solutions. To sample state trajecto-249

ries accurately approximating SCON-C and SCON-SS dynamics and construct our syn-250

thetic time series data y, we used the long-established and reliable Euler-Maruyama SDE251

solver (Maruyama, 1955) to numerically integrate solution paths x corresponding to θ252

randomly sampled from logit-normal distributions. Our solver step size was set to dt =253

0.1 hour. We note that we recover the exact SCON-C and SCON-SS processes in con-254

tinuous time as dt is decreased to 0.255

If inference involved conditioning with CO2 observations in y in addition to state
measurements, model CO2 respiration rate would be computed from the time-corresponding
x state values with the equation

rCO2,t = (1− aSD) · kS,t · St + (1− aDS) · kD,t ·Dt + (1− aM ) · kM,t ·Mt (10)

where rCO2,t is in units of µg g−1 soil h−1. We then sliced x and CO2 time series at some
regular interval, i.e. every 1 hour or 5 hours, and normally sampled about the sliced val-
ues with an observation error vector σobs in the manner of

yt ∼ N (xt, ηobs) (11)
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to arrive at y. We lower bounded y such that y ∈ R≥0 to preclude nonsense negative
state measurements. We used constant ηobs that was 10% of the overall state mean such
that

ηobs = 0.1⊙

S̄ 0 0
0 D̄ 0
0 0 M̄

 (12)

where ⊙ indicates elementwise multiplication. This corresponds to an empirical scenario256

where measurement instruments and processes introduce a stable level of observation noise.257

We generated and conditioned inferences on synthetic y of up to 5000 hours in to-258

tal timespan T . Data-generating θ distribution hyperparameters were chosen to produce259

stable and informative state dynamics in a shorter span of time and minimize the mem-260

ory footprint of the data set under available computing resources. We used elevated ki,ref261

means compared to previous literature values (Allison et al., 2010; J. Li et al., 2014; Xie262

et al., 2020). Sampled θ values and T scale are thereby reminiscent of an organic decay263

process occurring at the soil surface, rather than a slower subterranean decomposition.264

θ data-generating distribution hyperparameters, equivalent to the prior distribution p(θ)265

hyperparameters, along with the biogeochemical interpretations associated with each θ,266

are detailed in Table S1.267

2.3 The generalized univariate logit-normal distribution268

We used a univariate logit-normal distribution family for our data-generating, in-269

formed prior p(θ), and mean-field variational posterior q(θ|y) probability density func-270

tions. To avoid being restricted to the standard [0, 1] distribution support that the logit-271

normal density is typically associated with in statistics, we defined a generalized form272

of the family whose supports could be enclosed between an arbitrary positive [a, b], where273

a, b ∈ R≥0 and b > a. Generalized logit-normal distributions provide similar utility274

to truncated normal distributions used previously in SBM inference projects for constrain-275

ing θ values to finite supports (Xie et al., 2020), but are more stable for backpropaga-276

tion, as the inverse cumulative distribution function of the truncated normal distribu-277

tion has inherent stability issues close to support boundaries.278

We notate logit-normal distribution parameters in order of desired “target” mean
µ, standard deviation σ, support lower bound a, and upper bound b akin to

θ ∼ L N (µ, σ, a, b) (13)

Via passage through a sigmoid function, logit-normal distributions are transformed from
normal distributions N (µ̌, σ̌), where µ̌ and σ̌ are respectively the “parent” mean and
standard deviation distribution parameters:

θ̌ ∼ N (µ̌, σ̌) (14)

θmid =
1

1 + exp(−θ̌)
(15)

θ = (b− a) · θmid + a (16)

The logit-normal distribution has no closed form probability density function and279

its probability moments are not analytically resolvable, so no formula can be deduced280

that allows us to make random variable transformations between logit normal and nor-281

mal distributions. Hence, to arrive at a particular logit-normal density with target µ and282

σ in each VI optimization iteration to sample from, we must first numerically solve for283

the parent µ̌ and σ̌ of a normal distribution that corresponds to the desired logit-normal284

properties following the transformations from equations (14) to (16). We can do this with285

root-finding algorithms like the bisection method that search for an appropriate µ̌ in the286

truncated support interval between a and b and σ̌ within a provided range of tolerated287

standard deviation values (Daunizeau, 2017).288
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2.4 State space model approximation of the SDE289

Instead of optimizing SCON θ via an iterative SDE solver, we optimized time-discretized
state space models approximating the SCON-C and SCON-SS SDEs. State space mod-
els describe the distribution of a discrete sequence of observations y sourced from dis-
crete latent states x. They can take the general form

xt ∼ p(xt|xt−1, θ) (17)

yt ∼ p(yt|xt, θ) (18)

Equation (17) indicates that the transition from xt−1 to xt occurs at a probability den-290

sity of p(xt|xt−1, θ) and that subsequent states of a state space model depend on pre-291

vious ones, thus indicating that x constitutes a Markov chain. Equation (18) specifies292

that yt is observed from xt at a density of p(yt|xt, θ). An initial state x0 must be nom-293

inated to compute x and it can be set as a constant, or informed as a density, p(x0), which294

we do in our case.295

The state space model θ are the same model parameters as in the SDE counter-
part. When accounting for the SDE α drift and β diffusion dynamics, xt, the latent states
of the state space model at time t can be written as

xt = xt−1 + α(xt−1, θ)∆t+ ϵt
√

β(xt−1, θ)∆t (19)

with the same α and β as in (1). ϵt is a random noise vector of length D independently296

sampled via ϵt ∼ N (0, ID). ID is an identity matrix with number of diagonal elements297

equal to D. ∆t is the state space model time step, not to be confused with SDE solver298

time step dt. We used ∆t = 1.0 hour for our state space model approximations in con-299

trast to the aforementioned dt = 0.1 for Euler-Maruyama solving of our data gener-300

ating processes.301

There is overlap between SDEs and state space models. Both depict the evolution302

of state values in a series of steps where future values depend on past ones. Both require303

the specification of initial conditions x0 to compute state trajectories.304

However, SDEs and state space models treat time differently. A key distinction that305

makes state space model approximation helpful for inference efficiency is that ∆t can be306

made relatively large versus SDE solver dt. This is helpful for common biological infer-307

ence and data assimilation situations where y is sparsely observed due to the expense308

and difficulty of collecting measurements.309

Differential equation systems are instead typically numerically integrated and like310

state space models, are solved in discrete steps, as only smooth analytic solutions can311

only be obtained from the simplest systems. But, the differential equation integration312

procedures still assume that states are evolving in continuous time. The integrating solvers313

almost always require relatively small integration time steps dt that are as close to 0 as314

possible; the solvers tend to fail at higher dt.315

The divergent handling of time in state space models and SDEs renders them more316

apt for different objectives. State space models are better suited for estimating obser-317

vations over long T , whereas SDEs are required for precise analyses of accurately sim-318

ulated system dynamics. With their differing but related purposes, we can ultimately319

use state space models to represent discrete observations from continuous SDEs.320

2.5 VI optimization321

Under a Bayesian statistics framework, the goal of statistical inference broadly con-
sists of estimation of the θ posterior density function for some model, p(θ|y), conditioned
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on some data set y via Bayes’ rule,

p(θ|y) = p(y|θ)p(θ)
p(y)

(20)

p(y|θ), also notated as ℓ(θ|y), is the likelihood function, which indicates model goodness-322

of-fit across various values of individual parameters comprising θ. p(θ) is the prior prob-323

ability representing beliefs about θ uncertainty. p(y) is the probability density of the ob-324

served data.325

The prior density p(θ) can be specified in an informed fashion, as we did in our work-
flow with distributions that matched our known data-generating distributions, or with
less certainty in the absence of empirical information or domain experience. In most cases,
p(y|θ) is not obtainable in closed analytic form and has to be numerically estimated with
methods including Monte Carlo sampling and Laplace approximation (Reid, 2015). Ad-
ditionally, p(y), sometimes known as the marginal evidence, tends to be unresolvable (Gelman
et al., 2013; McElreath, 2020). Thus, we take advantage of the proportionality relation-
ship based on (20),

p(θ|y) ∝ p(y|θ)p(θ) = p(y, θ) (21)

to estimate p(θ|y) and practically conduct inference.326

For Bayesian inference on state space models, we additionally need to account for
the transition and observation densities generalized in equations (17) and (18), which
influence the θ posterior. Estimation of the posterior of θ in state space model inference
must occur along with estimation of the posterior of x, whether in a joint or marginal
fashion, in a case such as ours where the transition and observation distributions are not
known. We opted for joint estimation. The joint posterior density of θ and x is notated
as p(θ, x|y). We arrive at an expression for p(θ, x|y) by substituting (17) and (18) into
(21):

p(θ, x|y) ∝ p(y, θ, x) (22)

= p(y|θ, x)p(θ, x) (23)

= p(y|θ, x)p(θ)p(x|θ) (24)

= p(θ)
∏
i∈N

p(yi|xi, θ)

T∏
t=1

p(xt|xt−1, θ) (25)

T denotes the final discretized integer time index of x. Since we set state space model327

∆t = 1.0 hour, our final time index matches total synthetic experiment hours and T328

can signify both. We also use T to represent the set of x state space model discretiza-329

tion indices not including the initial state at t = 0. We can then adopt a T ⊆ T to330

indicate the set of y observation time indices not including an initial observation at t =331

0, which is required in our VI procedure. The total number of x discretizations is N =332

T + 1 when including the t = 0 index. N = {0} ∪ T notates the full set of y indices.333

In stochastic VI on state space models, we optimize a parametric density q(θ, x)
to match the true joint posterior p(θ, x|y) as closely as possible. Per the probability chain
rule, q(θ, x) expands to,

q(θ, x) = q(x|θ)q(θ) (26)

The density functions we select for our marginalized q(θ) and q(x|θ) are known as our
variational families. As mentioned in section 2.3, we chose a mean-field logit-normal vari-
ational family for q(θ) that assumed independent univariate distributions per θ such that

q(θ) = q(θ1, θ2, . . . , θP) =
P∏

j=1

qj(θj) (27)
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where P is the total number of individual SBM θ and P = 14 for SCON-C and SCON-334

SS (Table S1). We chose a class of normalizing flow called a neural moving average flow335

in Ryder et al. (2021) for our q(x|θ) variational family, which we will describe subsequently336

in section 2.6.337

We can index individual representatives of our joint variational family by the prop-338

erties and hyperparameters of the distribution symbolized in aggregate by ϕ(θ,x) such339

that an instance of q(θ, x) is notated as q(θ, x;ϕ(θ,x)). q(θ, x;ϕ(θ,x)) can be decomposed340

into q(θ;ϕθ)q(x|θ;ϕx) since ϕ(θ,x) = (ϕθ, ϕx). ϕ are termed variational parameters, as341

they represent the distribution settings that can be varied and tuned to adjust the ap-342

proximation. For neural network models like flows, variational parameters would include343

the hidden neural network parameters and weights. A particular distribution can be re-344

ferred to by its variational parameter index in shorthand.345

Our VI framework seeks a set of variational parameters ϕ that minimizes discrep-
ancies between q(θ, x;ϕ(θ,x)) and p(θ, x|y), the approximate and true posteriors. One mea-
sure of distance between distributions customarily employed in statistics and machine
learning literature is called the Kullback-Leibler (KL) divergence, notated as DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)]
(Kullback & Leibler, 1951; Perez-Cruz, 2008; Joyce, 2011). Targeting the KL divergence
for minimization, our optimization objective can then be mathematically stated as,

q(θ, x;ϕ∗
(θ,x)) = argminq(θ,x;ϕ(θ,x))

(DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)]) (28)

where ϕ∗
(θ,x) indexes the set of variational parameters that corresponds to the idealized

global KL divergence minimum. After several omitted steps that can be referenced in
greater detail from Blei et al. (2017), we proceed from (28) to

DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)] = Eq(θ,x;ϕ(θ,x))[log q(θ, x;ϕ(θ,x))]− Eq(θ,x;ϕ(θ,x))[log p(y|θ, x)]
(29)

= Eq(θ,x;ϕ(θ,x))[log q(θ, x;ϕ(θ,x))]− Eq(θ,x;ϕ(θ,x))[log p(y, θ, x)] + log p(y) (30)

where the expectations E subscripted with q(θ, x;ϕ(θ,x)) are taken with respect to the346

density q(θ, x;ϕ(θ,x)).347

Reviewing the notion that p(y) and in turn, the log marginal evidence, are typi-
cally unavailable (Christensen et al., 2010), we then rely on a reduced and rearranged
expression that constitutes the ELBO function, notated as L,

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))[log p(y, θ, x)]− Eq(θ,x;ϕ(θ,x))[log q(θ, x;ϕ(θ,x))] (31)

= Eq(θ,x;ϕ(θ,x))[log p(y, θ, x)− log q(θ, x;ϕ(θ,x))] (32)

= Eq(θ,x;ϕ(θ,x)) ⟨log p(y, θ, x)− log[q(x|θ;ϕx)q(θ;ϕθ)]⟩ (33)

= Eq(θ,x;ϕ(θ,x)) ⟨log p(y, θ, x)− log q(x|θ;ϕx)− log q(θ;ϕθ)⟩ (34)

Substituting in (25) for p(y, θ, x) results in

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))⟨log
[
p(θ)

∏
i∈N

p(yi|xi, θ)

T∏
t=1

p(xt|xt−1, θ)

]
− log q(x|θ;ϕx)− log q(θ;ϕθ)⟩ (35)

which, recalling that the set of total y indices N = {0} ∪ T, expands into

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))⟨log p(θ) + log p(y0|x0, θ) +
∑
i∈T

log p(yi|xi, θ) +

T∑
t=1

log p(xt|xt−1, θ)

− log q(x|θ;ϕx)− log q(θ;ϕθ)⟩ (36)
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We will decompose the marginal variational log-density of x, log q(x|θ;ϕx), in more gran-348

ular detail when we describe the architecture of the neural moving average flow in sec-349

tion 2.6.350

The ELBO function is called as such because it is the lower bound of the log marginal
evidence:

log p(y) = L[ϕ(θ,x)] +DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)] (37)

≥ L[ϕ(θ,x)] (38)

Maximizing L[ϕ(θ,x)], or minimizing the negative ELBO −L, as we need to do in ma-351

chine learning libraries like PyTorch that implement gradient descent rather than ascent,352

is commensurate to minimizing DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)]. Hence, L[ϕ(θ,x)] is our op-353

timization objective function.354

For pithier description of the ELBO gradient, ∇L, used to update ϕ(θ,x) via au-
tomatic differentiation, we set log p(y, θ, x)−log q(θ, x;ϕ(θ,x)) in (32) equal to R(θ, x, y, ϕ),
where R is a log-density ratio function. This reduces the ELBO equation to

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))

[
R(θ, x, y, ϕ(θ,x))

]
(39)

and the ELBO gradient is

∇L[ϕ(θ,x)] = ∇ϕ

〈
Eq(θ,x;ϕ(θ,x))

[
R(θ, x, y, ϕ(θ,x))

]〉
(40)

= ∇ϕ

[∫
θ

∫
x

q(θ, x;ϕ(θ,x))R(θ, x, y, ϕ(θ,x))dxdθ

]
(41)

=

∫
θ

∫
x

∇ϕ

[
q(θ, x;ϕ(θ,x))R(θ, x, y, ϕ(θ,x))

]
dxdθ (42)

which decomposes to

∇L[ϕ(θ,x))] =

∫
θ

∫
x

q(θ, x;ϕ(θ,x))∇ϕ

[
R(θ, x, y, ϕ(θ,x))

]
dxdθ

+

∫
θ

∫
x

R(θ, x, y, ϕ(θ,x))∇ϕ

[
q(θ, x;ϕ(θ,x))

]
dxdθ (43)

Note that the gradients ∇ϕ are taken with respect to the variational parameters. This355

presents a complication, as examining the second term of (43), we are left with the sit-356

uation that ∇ϕ

[
q(θ, x;ϕ(θ,x))

]
is by and large unavailable, as q can be sampled from, but357

is usually not analytically differentiable. Our joint variational family q is no exception358

to that pattern; our marginal mean-field q(θ;ϕθ) has the straightforward analytic form359

given in (27), but use of the neural moving average flow as the variational family for q(x|θ;ϕx)360

precludes the overall joint density q(θ, x;ϕ(θ,x)) from having an orderly closed form.361

To ultimately compute the gradient of an expectation as in (40) in numerical fash-362

ion, we thereby turn to the reparameterization trick set forth in Salimans and Knowles363

(2013) and Kingma and Welling (2014). The reparameterization trick involves setting364

(θ, x) as an output of an invertible, deterministic, and differentiable function g(z, ϕ(θ,x)),365

where z is a random vector sampled from some fixed density q(z). This enables us to tractably366

take a gradient of a simpler fixed distribution whose probability density function is eas-367

ier to differentiate and not dependent on the variational parameters ϕ (Ruiz et al., 2016).368

In our case, z elements are sampled from standard normal distributions and un-
dergo invertible transformations to proceed to x. θ is still directly sampled from its mean-
field logit-normal family described in section 2.5 as part of the operations of g. Hence,
L can be estimated with each VI training iteration with Monte Carlo sampling of z and
θ entries starting with the steps

z(s) ∼ N (0, IN ) (44)

θ(s), x(s) = g(z(s), ϕ(θ,x)) (45)

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

where IN is an identity matrix with number of diagonal entries matching the total x dis-
cretization indices N . The superscript (s) indexes an individual draw from a distribu-
tion. We can then re-frame (40) from an analytically intractable gradient of an expec-
tation to a numerically assessable expectation of a gradient with

∇L[ϕ(θ,x)] = ∇ϕ

〈
Eq(z)

[
R(θ, x, y, ϕ(θ,x))

]〉
(46)

= Eq(z)

[
∇ϕ

〈
R(θ, x, y, ϕ(θ,x))

〉]
(47)

≈ 1

S
S∑

s=1

∇ϕ

〈
R(θ(s), x(s), y, ϕ(θ,x))

〉
(48)

̂∇L[ϕ(θ,x)] =
1

S
S∑

s=1

∇ϕ

〈
R

[
g(z(s), ϕ(θ,x)), y, ϕ(θ,x))

]〉
(49)

S denotes the total number of independent θ and z samples drawn per training itera-369

tion. ̂∇L[ϕ(θ,x)] specifies the Monte Carlo estimate of ∇L[ϕ(θ,x)].370

2.6 Masked neural moving average flow architecture371

Delineating a normalizing flow more formally than in section 1, a general flow is
a chain of bijections, or invertible transformation functions mapping an object in a set
one-to-one to an object in another set. Flows can be decomposed into

x = g(z) = gM ◦ gM−1 ◦ · · · ◦ gm ◦ · · · ◦ g1(z) (50)

where ◦ notates function composition operations and M marks the total number of bi-372

jections. In the generative direction, our flow takes us from a random object z to a ran-373

dom object x corresponding to a set of approximated SCON state trajectories.374

A generative flow is constructed such that computation of log q(x|θ;ϕx) in (36) is
available to facilitate the optimization of q(x|θ;ϕx). The log-density of x is available through
the change of variables formula:

log q(x) =

T∑
t=1

φ(zt)− log |det J | (51)

log q(x) =

T∑
t=1

φ(zt)− log

M∏
m=1

|det Jm| (52)

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

log |det Jm| (53)

where J is the Jacobian matrix of the overall transformation and Jm is the Jacobian of375

bijection gm with respect to the intermediate transformed variable gm−1 ◦gm−2 ◦ · · · ◦376

g1(z). We use φ(zt) to indicate the log-density of each element of z, zt. We establish that377

z here is equivalent to the z introduced in section 2.5, so each φ(zt) is then a unit stan-378

dard normal log-density in our framework. We notate the density function of z with q(z).379

Since q(z) is the starting distribution before transformations are layered, it is also termed380

the base distribution.381

The particular flow we implemented as the marginal variational family for q(x|θ)
was patterned after the original neural moving average flow introduced in Ryder et al.
(2021). Neural moving average flows include affine bijections (Dinh et al., 2015; Kingma
et al., 2016; Dinh et al., 2017; Papamakarios et al., 2017) among the functions consti-
tuting g in which an xout is transformed from an xin in the general form of

xout = µ+ σ ⊙ xin (54)
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where ⊙ represents elementwise multiplication to denote that µ, σ, and xin can be ma-382

trices and vectors in addition to scalars, though our explicit situation involves scalars.383

µ and σ are respectively known as shift and scale values of the bijection and it is required384

that σ ∈ R+. Cumulative µ and σ values of a flow are usually implemented as trained385

outputs of a neural network and are super- and subscripted to identify the transforma-386

tion layer and input elements they correspond to. They are notated as such by conven-387

tion and not to be confused with the similarly notated target logit-normal mean and stan-388

dard deviation parameters in section 2.3.389

These linear affine transformations are basic in structure and consequently are in-390

dividually not so expressive, or able to flexibly transition a base distribution into sub-391

stantially different distributions of varying complexity. However, when layered repeat-392

edly and stacked, their cumulative expressivity increases and with sufficient layers, com-393

posite affine functions can come to embody any distribution that is log-concave and book-394

ended by declining density tails (Lee et al., 2021), which represents a large swath of prob-395

ability distributions.396

Neural moving average flows are specifically distinguished from other flows contain-397

ing affine layers through their execution of affine bijections with 1-dimensional convo-398

lutional neural networks (CNNs). To apply 1-dimensional CNNs rather than 2-dimensional399

CNNs, we note that for systems with D > 1, like SCON family instances, we must be-400

gin with z in a 1-dimensional “melted” form that is D·T elements in length before re-401

shaping the final transformed x to a D × T matrix matching the SDE solution struc-402

ture demonstrated in (2) following the conclusion of g. Thus, in equations (44) and (53),403

we replace T with D · T in our implementation.404

Through masking, in which inputs to the convolution patch are zeroed out through
multiplication by weights, the flow is imbued with an autoregression property in which
the σi and µi values producing an ith element of an output vector x does not depend
and convolve on any element zj≥i in the base input vector. This autoregression is crit-

ical for the intent of arranging the computation of
∑M

m=1 log |det Jm| in (53) to be man-
ageable. The autoregression ensures that J is a diagonal matrix whose non-zero elements
are the σ scale parameters underlying the overall transformation, which simplifies cal-
culation of detJ and log q(x) to

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

log σm
t (55)

where σm
t is the shift parameter of the bijection producing the tth term of the mth affine405

layer output of length T .406

Figure 3b portrays a schematic of the autoregressive convolutions and affine bijec-407

tions used in our specific neural moving average flow implementation. The operations408

occur within residual blocks, component pieces of deep learning networks consisting of409

organizations of layers oriented toward the mitigation of training and approximation er-410

ror that can otherwise snowball with greater network depth. Residual blocks do this with411

the use of skip connections, which preserve and carry over output from previous layers412

to serve as input to subsequent layers and in doing so prevent noisy degradation of in-413

formation cascading through the network (He et al., 2016).414

In each residual block, we perform two masked 1-dimensional convolutions, Con-
volution A and Convolution B, that each have a kernel length of 3 elements and a stride
length of 1. To enshrine autoregressiveness of the flow, Convolution A applies a kernel
masked as [1, 0, 0] that outputs a shift and scale value pair. The Convolution A oper-
ation and associated affine bijection can be generally expressed as

(µi, σi) = fA
i (xin

i−1) (56)

xout
i = µi + σi · xin

i (57)
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(b)

(a)

Figure 3. Architecture blueprint of the neural moving average flow used as the marginal vari-

ational family for q(x|θ). (a) outlines the sequence of layers and operations. The affine block

is a residual block in which the autoregressive convolution operations that distinguish neural

moving average flows occur. (b) illustrates the two bijections, Convolution A and Convolution

B, that link three hypothetical layers xin, xmid, and xout together in each instance of an affine

layer in our particular flow. Convolution A applies a [1, 0, 0] mask, while Convolution B applies a

[1, 1, 0] mask. The example affine µ and σ parameters are indexed by superscripts and subscripts

respectively identifying the layer and element they are associated with.
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where µi, σi, x
in
i , and xout

i are scalar elements of vectors and fA
i is the Convolution A

operation. The subsequent Convolution B involves a single stride kernel masked as [1, 1, 0]
and it can be expressed together with its associated bijection as

(µi, σi) = fB
i (xin

i−1, x
in
i ) (58)

xout
i = µi + σi · xin

i (59)

Combined, the two convolutions in sequence have a total receptive field length of 2.415

To be able to produce the µ and σ parameters associated with the affine transfor-416

mation of vector endpoint elements under autoregressive alignment, both convolutions417

require zero padding, in which zero elements are added to either end of the vector. As418

can be gleaned from Figure 3b, without zero padding, the kernels producing (µmid
1 , σmid

1 )419

and (µout
1 , σout

1 ) would lack 1 element to convolve on, and the kernels sourcing (µmid
N , σmid

N )420

and (µout
N , σout

N ) would by overhang their vectors by 1. A zero pad of length 1 was thereby421

sufficient for our purposes.422

Simplified from our actual implementation and not pictured in Figure 3b is our ex-423

pansion of input into many channels, which are duplicates of the input vector that are424

stacked on top of each other in a matrix. At each convolution stage, the same kernel is425

applied in parallel across all the channels. Enlarging channel depth broadens the space426

of neural network weight values constituting fA
i and fB

i that can be explored per train-427

ing iteration. We set the number of channels at 96 for both convolutions and did not ex-428

periment further with channel depth. Also not pictured in Figure 3b, but implied in Fig-429

ure 3a, is the injection of auxiliary features extracted from y and observation indices N430

in the form of vectors stacked on top of the input channels to inform training of the neu-431

ral network weights associated with the shift and scale values. Further elaboration on432

the incorporation of auxiliary information is available in the supplement of Ryder et al.433

(2021).434

In the overall flow procedure, the convolutions and affine bijections in the affine435

residual block are linked with other transformations that we organize into repeatable sets436

of layers. The order of transformations for each layer set is outlined in Figure 3a. Pre-437

ceding the affine blocks are order-reversing permutations, in which element order of a438

vector input is flipped such that a vector [xin
1 , xin

2 , ..., xin
N ] becomes [xout

1 , xout
2 , ..., xout

N ] =439

[xin
N , xin

N−1, ..., x
in
1 ]. Order-reversing permutations are a method of extending the expres-440

sivity and stability of a flow by enabling more complex dependency structures while pre-441

serving flow autoregression (Papamakarios et al., 2021). We found that adding order re-442

versals allowed us to modestly boost our ELBO learning rates. The permutations can443

be seamlessly interspersed between other transformations since their absolute Jacobian444

determinant is valued at 1, so they do not affect the computation of log q(x).445

Differing from the neural moving average flow of Ryder et al. (2021), our flow fol-446

lows affine blocks with batch renormalization transformations. Batch renormalization447

is a simple extension of batch normalization, which is a means of normalizing and reg-448

ularizing our variational samples such that our optimization is less influenced by ran-449

dom fluctuations in neural network weights and sample characteristics from one train-450

ing iteration to the next (Ioffe & Szegedy, 2015). Similar in intent but not operation to451

permutations, batch normalization and renormalization are applied to bolster algorithm452

stability and flexibility with increasing layer depth. They empirically allow VI algorithms453

to tolerate higher learning rates (Bjorck et al., 2018), poor initialization of variational454

parameters ϕ (Zhu et al., 2020), and erratic base distribution z(s) draws.455

Batch normalization and renormalization overlap in the following steps that com-
pute a batch mean µS and batch standard deviation σS from input xin samples, not to
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be confused with the affine bijection and logit-normal µ and σ:

µS =
1

S
S∑

s=1

xin
s (60)

σS =

√√√√ε+
1

S
S∑

s=1

(xin
s − µS)2 (61)

where ε is a small constant added for stability. µS and σS are involved in computation456

of the optimization objective—again, L[ϕ(θ,x)] for our purposes—during the model train-457

ing phase. They also update a lagging running average µR and running mean σR that458

are less sensitive to change. µR and σR are used after training of the model—the joint459

variational family q(θ, x;ϕ(θ,x)) in this setting—has been halted to estimate the objec-460

tive metric at the testing stage.461

In the testing phase, batch renormalization and normalization are equivalent in trans-
forming input to output:

xmid =
xin − µR

σR
(62)

xout = γ · xmid +Υ (63)

The collection of γm
t and Υm

t parameters in each flow layer set are learned neural net-
work outputs. Batch renormalization diverges from batch normalization during train-
ing with the steps

r =
σS
σR

(64)

d =
µS − µR

σR
(65)

xmid =
xin − µS

σS
· r + d (66)

xout = γ · xmid +Υ (67)

where r and d are variable correction factors. r and d are intended to limit the diver-462

gence between batch and running sample characteristics. r is clipped between the inter-463

val [1/rmax, rmax], where rmax is gradually increased to 3 over the course of inference,464

and d is clipped between the interval [−dmax, dmax], where dmax is gradually increased465

to 5. These intervals were established based on guidelines from previous empirical work466

(Ioffe, 2017). Batch normalization is a special case of batch renormalization where r =467

1 and d = 0.468

Batch renormalization’s changes more tightly correlate the batch and running sam-469

ple characteristics and have been documented to minimize discrepancy between train and470

test objectives (Ioffe, 2017). We observed this with our ELBO results, where consistent471

gaps remained between the train and test L[ϕ(θ,x)] until we swapped batch normaliza-472

tion for renormalization. Batch renormalization also improves training on low batch sizes473

(Ioffe, 2017; Summers & Dinneen, 2020), and in our position where variational path sam-474

ples were limited by GPU video memory constraints, renormalization was helpful for de-475

creasing the total number of training iterations we needed for algorithm convergence.476

With batch (re)normalization layers, log q(x) accrues log determinant Jacobian sum-
mation terms corresponding to those transformations and develops from (55) to become,
in the training phase,

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

[
log σm

t − log rmt − log γm
t + log σm

S,t

]
(68)
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or in the testing phase,

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

[
log σm

t − log γm
t + log σm

R,t

]
(69)

where we now take M to mark the total number of layer sets rather than layers as we
did before in (55). This assumes that each layer set always includes 1 single affine block
and 1 batch renormalization layer. Substituting (68) or (69) into (36) for log q(x|θ;ϕx)
leads respectively to our fully decomposed train or test L[ϕ(θ,x)] calculation unless an
optional single softplus transformation is used to ensure constraint of flow output to R≥0.
In that case, the resulting train log q(x) is

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

[
log σm

t − log rmt − log γm
t + log σm

S,t

]
−

T∑
t=1

log(−e−xt + 1) (70)

where x is our terminally transformed random variable following softplus constraint. Set-
ting

λt = φ(zt)− log(−e−xt + 1)−
M∑

m=1

(
log σm

t − log rmt − log γm
t + log σm

S,t

)
(71)

log q(x) =

T∑
t=1

λt (72)

our fully decomposed train L[ϕ(θ,x)] calculation that we use in each iteration of VI op-
timization (Algorithm 1) then consolidates from (36) into

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))⟨log p(θ) + log p(y0|x0, θ)− log q(θ;ϕθ)

+
∑
i∈T

log p(yi|xi, θ) +

T∑
t=1

[log p(xt|xt−1, θ)− λt]⟩ (73)

with softplus flow termination. The test ELBO equation is equivalent except for use of477

a different λt assignment that lacks the log rmt term and swaps σm
S,t for σ

m
R,t.478

We note that it is not required for the total permutation layers, affine blocks, and479

batch renormalization layers constituting a neural moving average flow architecture to480

match in count; we can choose to omit certain layers in a layer set. To slightly reduce481

the neural network size, we would frequently use 1 less batch renormalization layer than482

total affine blocks or permutation layers, omitting batch renormalization in the first layer483

set since we empirically observed little qualitative difference in visual fit quality between484

running with 3, 4, or 5 batch renormalizations. If the numbers of affine blocks and batch485

renormalization layers do not match, then the log Jacobian determinant summations in486

(68) to (71) need to be adjusted accordingly.487

It is apparent that each layer set of our neural moving average flow corresponds488

to a matrix of hidden parameters, including affine and batch renormalization parame-489

ters, of dimensions [T, h], where h is the count of hidden parameters per layer set. Thus,490

when conditioning on long, dense T data that is complex in such a manner that would491

require many layer sets for flow representation, we note that a different choice of marginal492

variational family for q(x|θ) aside from the neural moving average flow may be appro-493

priate for minimizing computational expense.494
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Algorithm 1: Synopsis of the operations occuring in each iteration of our soil
biogeochemical state space model VI framework

Data: Time series matrix y of soil pool state and other observations, including
CO2 respiration measurements

Result: q(θ, x;ϕ(θ,x)) corresponding to the L[ϕ(θ,x)] value at the stoppage of
stochastic gradient optimization

Define q(θ;ϕθ) and q(x|θ;ϕx);
Initialize (ϕθ, ϕx);
n← total desired training iterations;
for i← 1 to n do

for s← 1 to S do
Draw θ(s) ∼ q(θ;ϕθ);

Draw x(s) ∼ q(x|θ;ϕx) transformed from z(s);

end
Compute L[ϕ(θ,x)] (or −L[ϕ(θ,x)] for gradient descent) as per (73);

Compute the gradient ̂∇L[ϕ(θ,x)] from (49) with automatic differentiation;
Update variational parameters ϕ(θ,x) based on the gradient;

end

2.7 Kalman smoother validation495

When a state space model is linear in drift and its diffusion is stationary and ad-496

ditive, as is the state space model approximation of SCON-C, the posterior density p(x|y)497

can be determined analytically and precisely in closed form with the Kalman smoother498

algorithm, provided the algorithm is fed the true θ and observation noise (Kalman, 1960;499

Rauch et al., 1965). Flow VI in contrast can only numerically estimate p(x|y) through500

a variational approximation, but has the critical advantage of being capable of function-501

ing without exact knowledge of θ given uninformed prior distributions and is able to es-502

timate the joint density p(x, θ|y) via variational approximations. Thus, comparing a Kalman-503

derived true p(x|y) to a post-optimization q(x|θ;ϕx) can be a revealing means of bench-504

marking flow approximation performance and accuracy before applying an architecture505

with confidence to approximation, optimization, and θ inference of models like SCON-506

SS that cannot be resolved by the smoother.507

The Kalman smoother procedure is a two part process consisting of a forward pass508

followed by a backward pass. The forward pass computes a “filtering” posterior p(xt|y0:t),509

which notates the posterior of xt given observations up to the time indexed by t, going510

forward in time from t = {0, . . . , T}. The backward pass computes a “smoothing” pos-511

terior p(xt|y), which notates the posterior of xt given all observations, going backward512

in time from t = {T, . . . , 0}. Reconciling the “filtering” and “smoothing” posteriors pro-513

duces the true p(x|y). A comprehensive explication of Kalman smoothing is available514

in Särkkä (2013).515

2.8 Flow neural network training tuning choices516

We settled on using 5 layer sets of permutation, affine, and batch renormalization517

layers for our neural moving average flow. This offered qualitatively superior fits over518

flow architectures with lower layer set counts. For inferences of duration T = 5000 with519

∆t = 1.0 with 5 layers, maximum training batch size S at 16 GB of VRAM was 31,520

so we set S = 31. For T = 1000, we used S = 150, though use of smaller S also ap-521

peared functional. For T = 5000 inferences we used 120000 non-warmup ELBO train-522
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ing iterations. For T = 1000 inferences we used 60000 non-warmup ELBO training it-523

erations.524

With respect to gradient optimizers including AdaMax (Kingma & Ba, 2015), which525

was the particular optimizer we selected to carry out gradient descent, the learning rate526

is a hyperparameter that scales the objective gradient and in doing so regulates the ex-527

tent to which neural network weights can updated with each training iteration. The learn-528

ing rate can be adjusted over the course of training based on a schedule. It is frequently529

decayed over the course of training to promote convergence of our objective function to-530

ward a maximum (for gradient ascent) or minimum (for gradient descent) ((You et al.,531

2019)). We chose a step decline schedule for learning rate decay. For our T = 5000 in-532

ferences, we started with a pre-decay ELBO learning rate of 1 × 10−2 and decayed it533

by a factor of 0.6 every 10000 iterations. For our T = 1000 inferences, we started with534

a pre-decay learning rate of 4×10−3 and decayed it by a factor of 0.6 every 5000 iter-535

ations.536

We employed training warmup, in which we began optimization with a phase of low537

learning rate at 1×10−6 before increasing the rate to its initial pre-decay levels. As has538

been demonstrated previously (Goyal et al., 2017), we found warmup allowed us to use539

higher pre-decay learning rates, experience more stable ELBO loss trajectories, and con-540

verge to lower average ELBO values over training (Figure S1). We found 5000 warmup541

iterations to be sufficient for those purposes.542

2.9 Software and hardware543

With respect to the computational software and hardware powering the inference544

operations, our DGP and inference code was developed for a Python 3.9.7 environment545

distributed by Anaconda (Anaconda Software Distribution, 2020) and used the Numpy546

1.20.3 (Harris et al., 2020) and PyTorch 1.10.2 (Paszke et al., 2019) software libraries.547

PyTorch 1.10.2 was compiled with the Nvidia CUDA 10.2 toolkit. The inferences were548

run on one Nvidia Tesla V100 GPU at a time updated to CUDA version 11.4.0 with a549

maximum of 16 GB of video random access memory and two Intel Xeon Gold 6148 CPU550

cores clocked at 2.40 GHz on the University of California, Irvine HPC3 cluster. Our flow551

VI framework code modules, data-generating notebooks, and synthetic data are avail-552

able via the address https://doi.org/10.5281/zenodo.6969782.553

The deterministic CON p(θ|y) posteriors compared with flow VI q(θ;ϕθ) in Fig-554

ure 5 were estimated using Stan’s NUTS algorithm, which is an extension of the Hamil-555

tonian Monte Carlo inference algorithm (Hoffman & Gelman, 2014). Application of Hamil-556

tonian Monte Carlo for data assimilation and inference of SBMs is further described in557

Xie et al. (2020) and intuition behind the algorithm can be found in Betancourt (2017).558

The Stan inference was conducted on a 2017 Intel MacBook Pro in an R 4.0.4 environ-559

ment using Stan 2.29.1 (Carpenter et al., 2017) through the CmdStanR interface (Gabry560

& Češnovar, 2021). The NUTS simulation ran with 2 chains of 1000 warmup iterations561

and 5000 sampling iterations each. In our experience, 1000 warmup iterations were suf-562

ficient for locating the bulk of the posterior density.563

3 Results564

We generated synthetic y of various lengths, dimensions (i.e. whether CO2 obser-565

vations were included in addition to state information), and regular observation densi-566

ties (i.e. whether we observed measurements from our SCON family data generating pro-567

cesses every 1 or 5 hours). We explored the validity of our state space model VI approach568

for data assimilation and posterior identification of model θ with inferences conditioned569

on those y. Below, our results suggest the neural moving average flow framework was570

functional for approximating the SCON family of SDE systems as state space models,571
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fitting y, constraining posteriors, and recovering some true θ values. We also demonstrate572

subsequently that stochastic gradient optimization in our case was more stable, efficient,573

and capable at θ identification than an MCMC procedure involving deterministic ODE574

models adapted from Xie et al. (2020) conditioned on the same y.575

3.1 Flow-approximated SCON-C converges to fit synthetic data576

Following optimization, an SCON-C state space model approximated by our neu-577

ral moving average flow implementation reasonably assimilated a T = 5000 hour y pro-578

duced by an SCON-C data-generating process that included CO2 observations (Figure579

4a). The relatively flat −L[ϕ(θ,x)] trajectory steadily hovering between −1550 and −1600580

in the latter half of variational training iterations indicates that our flow VI algorithm581

converged to a local ELBO minimum (Figure S2).582

The mean of the marginal posterior density of latent states q(x|θ;ϕx) was estimated583

from 250 x samples drawn from the joint variational density after ELBO training. The584

mean latent SOC, DOC, and MBC paths and state-derived CO2 measurements corre-585

sponding to the SCON-C flow sit centrally between the y data points and observation586

noise across the entire time series (Figure 4a). The latent means are able to adhere to587

many of the sharp peaks and valleys in the dynamics of the data and the flow CO2 mean588

was able to reproduce the rapid oscillatory behavior of the observed CO2 time series.589

Upon closer qualitative inspection and comparison to the true latent distribution590

computed by a Kalman smoother (Figure 4b), we note the presence of visual discrep-591

ancies between the Kalman and flow means and 95% q(x) diffusion distribution inter-592

vals. Firstly, the extent of SOC diffusion noise is substantially underestimated by the593

flow, which is line with documentation in literature that a mean-field VI approach tends594

to underestimate posterior uncertainty compared to more complex full-rank approaches595

(Kucukelbir et al., 2017). For the other two states, DOC and MBC, the extent of dif-596

fusion noise is more consistent to that which is observed in the Kalman output, but the597

flow DOC and MBC densities and means appear noisier and more uneven than the Kalman598

means.599

Still, the flow encouragingly is generally congruous with the true Kalman solution600

in dynamics. The flow means fall entirely within the bounds of the 95% Kalman diffu-601

sion interval from t = 0 to 500 as can be seen in Figure 4b and we observed for this par-602

ticular optimization that they almost always remain within those Kalman diffusion bounds603

through the rest of the time series. Also, we see that the CO2 mean and distribution cal-604

culated from the 250 SCON-C state space model x draws closely matches their Kalman605

counterparts. The ability of the flow to align with the Kalman smoother in latent state606

densities improves our confidence in the ability of the neural moving average flow to ap-607

proximate systems that are non-linear in diffusion, like SCON-SS.608

3.2 SCON-C flow VI marginal θ posteriors indicate appropriate opti-609

mization610

Beyond fitting data, we needed to ascertain that proper posterior optimization was611

occurring for confidence in inference algorithm function. In our setting, we would expect612

our posterior densities to at least always be as informed and certain about θ values as613

our prior densities, not less. With a mean-field logit-normal variational family for q(θ;ϕθ),614

evidence of suitable optimization would come in the form of marginal posterior densi-615

ties being narrower than priors to indicate greater certainty after the introduction of in-616

formation from y along with posterior means separating from prior means and approach-617

ing the true θ used by the data-generating process.618

Figure 5 indicates that valid posterior optimization indeed occurred in our SCON-619

C state space model inference to support the notion that our flow VI framework was func-620
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(b)

(a)

Figure 4. Marginal posterior q(x|θ;ϕx) soil pool state means (orange lines) of the SCON-

C state space model approximated by the neural moving average flow following VI optimiza-

tion. The means are estimated from 250 x samples drawn from the optimized joint den-

sity q(θ, x;ϕ(θ,x)). The states are in units of mgCg−1 soil. In (a), the trajectories of flow-

approximated state means are compared to the synthetic observations an SCON-C T = 5000

hour y backgrounded by the 95% interval of the observation noise (blue dots over blue shading).

In (b), we zoom into a subset of the above plot from t = 0 to 500 hour and additionally compare

the state means and 95% interval of the diffusion distribution of the optimized model to the true

posterior means and 95% diffusion noise computed by a Kalman smoother with knowledge of the

true θ values.
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Figure 5. SCON-C state space model marginal q(θ;ϕθ) posterior densities following flow VI

optimization (orange) compared to mean-field prior p(θ) densities (blue) and non-parametric

CON ODE marginal p(θ|y) posterior densities estimated with Stan’s NUTS algorithm (green).

Flow VI and NUTS were conditioned on the same T = 5000 hour y generated by an SCON-C

SDE. The true θ values sampled during data generation are marked by vertical dashed gray lines.

Being a deterministic ODE system, CON does not have β diffusion θ, so subplots portraying the

marginal q(θ;ϕθ) densities for the SCON-C state space model cS , cD, and cM θ were not included

in this figure due to a lack of comparison.
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tional. Almost all the marginal posterior densities narrowed compared to the priors with621

the information learned from y by the algorithm. Moreover, many of the marginal q(θ;ϕθ)622

means drifted closer to the true θ, including the means of uM , aSD, and kS,ref.623

We contrasted the flow VI parametric q(θ;ϕθ) posterior densities to the non-parametric624

p(θ|y) posterior densities estimated with an SBM inference framework conditioned on625

the same T = 5000 SCON-C y that was previously applied in Xie et al. (2020). This prior626

framework involves Stan’s NUTS algorithm and can only infer θ of deterministic mod-627

els, so the CON system that the SCON family was parameterized from served as the ba-628

sis for inference in this approach. With the flexibility and stability afforded by the abil-629

ity of stochastic optimization to adjust for poor initial condition proposals, noisy state630

path fluctuations, and outlier observations, the flow VI framework expectedly outper-631

formed the deterministic NUTS workflow. The flow VI marginal q(θ;ϕθ) densities were632

all-around better informed and identified, exemplified by the subplots corresponding to633

the uM , aSD, aM , kS,ref, kD,ref, EaS , and EaM θ (Figure 5). Moreover, some NUTS pos-634

terior densities, including those corresponding to the aMSC , aM , and EaS θ, consolidated635

near their lower or upper support bounds, which points to the deterministic model in-636

ference method compensating for its lack of versatility with more extreme θ proposals.637

Scrutiny of the posterior for the transfer fraction parameter aMSC brings the is-638

sue of θ identifiability limitations to our attention. We see that the SCON-C flow VI marginal639

aMSC posterior density barely budged from the aMSC p(θ) density post-optimization (Fig-640

ure 5). For good posterior identifiability, the aMSC posterior should both narrow sub-641

stantially to signal reduced uncertainty and shift its density peak toward the true aMSC642

value.643

3.3 Flow VI can effectively assimilate both full and reduced SCON-SS644

state space approximations645

After visually demonstrating the ability of the flow VI framework to optimize q(θ, x;ϕ(θ,x))646

through the fitting of the approximated SCON-C state space model to synthetic SCON-647

C y and the informing and identification of some marginal q(θ;ϕθ) densities, we proceeded648

to test if the flow VI approach could similarly function with a moderately more complex649

model in SCON-SS that is non-linear in diffusion.650

Reviewing the fact that the SCON-SS state space model diffusion is not station-651

ary or additive, it was no longer possible for us to validate SCON-SS q(x|θ;ϕx) estimated652

from post-optimization x samples against a true p(x|y) determined by a Kalman smoother.653

Nonetheless, we observed that flow VI was able to optimize q(θ, x;ϕ(θ,x)) adequately enough654

to fit the approximated SCON-SS state space model q(x|θ;ϕx) means to T = 5000 y gen-655

erated by an SCON-SS SDE. As was the case for the SCON-C flow, the mean latent SOC,656

DOC, and MBC trajectories of the trained SCON-SS flow traced a central route through657

the observed state values and diffusion noise (Figure S3). The trajectories were able to658

follow the peaks and valleys of the state dynamics recorded in y, and the flow CO2 mean659

derived from the sampled states tightly replicated the y CO2 oscillations.660

SCON-SS q(θ;ϕθ) posterior densities were consistent with proper optimization from661

information learned in y. Juxtaposed with priors p(θ), marginal q(θ;ϕθ) densities mostly662

narrowed and did not move drastically away from their corresponding true θ to inhibit663

identifiability (Figure S4). There were clear exceptions for the state-scaling diffusion θ664

posteriors due to reasonable flow neural network approximation error that prompts an665

overestimate of diffusion noise and, again, for the aMSC posterior. The modest shift of666

some θ posterior means away from the true θ is counterbalanced by movement of other667

related θ, like in the circumstance of the EaD posterior mean being counterbalanced by668

EaM to satisfy equation (10).669
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Figure 6. Optimized marginal posterior q(θ;ϕθ) densities (orange) of a reduced SCON-SS

model with all but the ki∈S,D,M,ref decay and state-scaling diffusion θ fixed compared to mean-

field priors p(θ) (blue).

For one more test to corroborate proper functioning of our flow VI framework, we670

established a reduced SCON-SS model with all θ fixed in value except for the ki∈S,D,M,ref671

linear decay and state-scaling β diffusion parameters. Mirroring above procedures, a syn-672

thetic T = 5000 y was produced by a reduced SCON-SS data-generating process to con-673

dition an SCON-SS state space model optimization. For an appropriately behaving in-674

ference algorithm, we would expect that removing degrees of freedom should bolster θ675

identifiability.676

We verified that identifiability was indeed clarified and improved in the remaining677

drift θ (Figure 6). The marginal kS,ref q(θ;ϕθ) posterior density was tightly constrained678

right about the true kS,ref value. The kD,ref and kM,ref posterior means did not align ex-679

actly with their true θ, but unambiguously offset each other in a manner that plainly680

fulfilled (3) and (10).681

We were unable to fix the state-scaling diffusion θ without breaking the flow VI frame-682

work, as it became apparent that the algorithm needed to maintain the ability to over-683

estimate diffusion noise to work. This makes intuitive sense as the flow neural network684

approximation process will always come with some amount of noisy approximation er-685

ror that adds to the base diffusion of the unapproximated system. The algorithm can686

no longer work if the flow diffusion noise needs to be fixed at about the same level as it687

is in the unapproximated system, as it leaves no room for the approximation error to over-688

flow into. So, with the diffusion θ left unfixed during VI training, the algorithm once more689

overestimated their q(θ;ϕθ) means, but this is not a cause for concern since the discrep-690

ancy can be explained by neural network approximation error.691

3.4 Increasing information in y alters SCON posterior certainty and iden-692

tifiability693

The preceding results all involved y that had CO2 respiration observations included.694

Inference conditioned on just state observations is also possible and in our experience695

was able to fit the data well, but it was much less effective for constraining posteriors696

and identifying θ (Figure S5). Without CO2 information, marginal q(θ;ϕθ) posterior den-697
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sities tended to be wider and less informed and density means were frequently farther698

away from true θ, as exemplified by panels corresponding to the aSD and EaS SCON-699

C θ in Figure S5.700

We separately observed that increasing the amount of information in y by length-701

ening duration T of the time series greatly benefitted posterior identifiability (Figure S6).702

Alternatively, θ identifiability was boosted without elongating T by bolstering observa-703

tion density. Individually, the two actions trade off between improvements. In compar-704

ison to densifying observations across T = 1000 such that the set of observation indices705

N matches the set of state space model discretization indices N , extending T to 5000706

more tightly constrained q(θ;ϕθ) posterior densities for all θ and concentrated aSD, kS,ref,707

kD,ref, EaS , and EaM posterior means closer to the true θ.708

However, increasing observation density for T = 1000 data had the benefit of fur-709

ther constraining posterior densities without also enlarging the divergence in identifica-710

tion of the true SCON-C β diffusion θ, cS , cD, and cM by the means of their correspond-711

ing q(θ;ϕθ) densities. The enlarged divergence and uncertainty of the diffusion θ in the712

T = 5000 hour inference compared to the T = 1000 inferences is not unexpected. Cu-713

mulative approximation error of state space x trajectories compounds for the flow with714

greater T in a manner typical to approximation methods. Larger accrued approxima-715

tion error then corresponds to estimation of greater diffusion noise during inference.716

4 Discussion717

We developed a stochastic SBM data assimilation and inference framework that718

is a versatile, stable, and computationally efficient alternative to MCMC approaches as-719

similating deterministic ODE systems, especially when GPU hardware is available. The720

framework involves approximation of SBMs as state space models whose state trajec-721

tories can be sampled at reduced computational and temporal cost in comparison to SDEs.722

In our demonstration, we carried out state space model approximation with a class723

of normalizing flows called neural moving average flows that successively transition ran-724

dom variables from simpler to more complex distributions with the stacking of neural725

network layers. We applied this framework to fit approximated representatives of the SCON726

family of SBMs to synthetic data. Conditioning with synthetic rather than empirical data727

allowed us to visualize discrepancies between estimated posterior densities, data-generating728

densities, and true θ values used by the data-generating process for an assessment of frame-729

work performance.730

Flow-approximated SCON-C state trajectories were able to effectively track state731

and CO2 observations after variational optimization and graphically align with the true732

latent state distributions determined by a Kalman smoother. Following Kalman valida-733

tion of our SCON-C inference, we then successfully assimilated synthetic observations734

and estimated posteriors with SCON-SS, which is non-linear in diffusion and modestly735

more complex than SCON-C.736

4.1 More data promotes model θ identifiability and constraining of pos-737

teriors738

In terms of implications for experimental work focused on producing data sets suit-739

able for SBM inference and data assimilation, we firstly recommend that CO2 respira-740

tion measurements be collected and included in y. CO2 information is highly beneficial741

for informing the posteriors of SBMs like SCON for which CO2 efflux equations have been742

established (Figure S5). Additionally, the collection of supplemental measurements, such743

as radiolabeled C densities linked to SBM pool transfer fraction θ, should further con-744

strain and identify θ posteriors. Our results indicate that just the CO2 and state obser-745
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vations were not enough to effectively identify the marginal posterior of the SCON MBC-746

to-SOC transfer θ, aMSC (Figure 5, S4, S5, S6).747

With respect to aMSC posterior identifiability or lack thereof, inspection of the SCON748

system drift in (3) and CO2 efflux rate equation in (10) suggests that the consistent lack749

of identifiability is not the consequence of a general algorithm issue but instead stems750

from a dearth of information in y to further constrain the marginal aMSC q(θ;ϕθ) den-751

sity. The aMSC parameter appears in two terms of (3) that are each the product of four752

elements, the aM · aMSC · kM ·M term in the dS equation denoting C mass transfer753

from the MBC to SOC soil pool and the aM ·(1−aMSC)·kM ·M term in the dD equa-754

tion denoting C transfer from the MBC to DOC soil pool. The posterior densities of the755

aM and kM θ in those terms appear in (10) and are accordingly better constrained and756

identified with CO2 measurements in y. This is not the case for aMSC , which is not present757

in (10). Informing of aMSC can thereby only occur through the state measurements in758

y, and as only one element in the drift product terms, aMSC can take many values be-759

tween its [0, 1] support bounds without greatly affecting the products.760

Furthermore, our results suggests that raising both study time or data collection761

frequency would improve posterior estimation accuracy and identifiability in our frame-762

work (Figure S6). But, under budget and personnel limitations, empiricists creating in-763

ference data sets should prioritize one or the other depending on the specific SBMs tar-764

geted for data assimilation and their research objectives. For model comparison of naive765

stochastic SBM parameterizations where the conceived diffusion θ are less biologically766

meaningful, accumulating approximation error is less of a concern and prioritizing the767

maximization of T would be reasonable. In scenarios involving SBMs parameterized with768

more biogeochemically sophisticated β matrices where accurate estimation of system dif-769

fusion θ takes precedence and falsification of specific dynamics is the goal, it would be770

more important to minimize approximation error with denser observations.771

4.2 Future work and research directions772

Having demonstrated functional flow VI on more compact synthetic data sets, we773

highlight some engineering expansions and modifications to our existing framework that774

would facilitate efficient SBM inferences conditioned on empirical data sourced from long-775

term ecological (LTER) experiments like those documented in Melillo et al. (2017) and776

Wood et al. (2019). Efficiently scaling to these data sets is a key priority to assimilate777

them into SBMs on the scale of hours rather than weeks, as experienced in Xie et al. (2020),778

for statistically rigorous head-to-head model comparison and selection.779

The T of data sets sourced from LTER experiments can be on the order of 100,000780

to 200,000 hours, much larger than the peak T = 5000 hour timespan we explored in our781

study. With the ability of our framework to leverage GPU hardware, our T = 5000 in-782

ferences typically ran between one to two days to ensure convergence, but even more lim-783

iting than time were GPU memory thresholds preventing adequate variational sample784

sizes with T much longer than 5000. A way forward for conditioning inferences on y with785

longer T is to avoid simulating state space model x for the entire T at each training it-786

eration, and this can be done in stochastic gradient optimization with the leveraging of787

the mini-batching technique. Under a mini-batching scheme, y is partitioned into smaller788

sub-sequences yi during training, where i ∈ 1 : B and B is the total number of parti-789

tions. In each training iteration, a yi can then be randomly selected for likelihood eval-790

uation such that the SBM only needs to simulate an xi subsequence for calculation of791

the optimization objective. Mini-batching is targeted for future incorporation in our frame-792

work, having been demonstrated in recent flow-related machine learning literature in-793

cluding Papamakarios et al. (2021) and Ryder et al. (2021).794

LTER data sets tend to have constituent observation vectors whose elements greatly795

vary in information density and measurement intervals due in part to the varying phys-796
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ical practicality associated with the sampling and measurement of different observations.797

Hence, it would also be helpful to engineer our flow to handle irregular and “ragged” ob-798

servations. Moreover, alterations can be made to the flow network architecture to en-799

able more efficient conditioning on SBM θ values and allow for feature extraction from800

additional auxiliary information, such as the time elapsed between observations.801

Beyond flow engineering and architecture, other relevant research priorities include802

the study of less naive SCON treatments for inference use. SCON family representatives803

that explicitly and mechanistically model system diffusion as a function of the under-804

lying system reaction stoichiometry can be formulated (Golightly & Wilkinson, 2011; Fuchs,805

2013) and the stability and predictive accuracy associated with different diffusion covari-806

ance structures can be compared. Moreover, stochastic parameterizations of SBMs that807

simulate mass transfer with Michaelis-Menten dynamics and would be non-linear in drift808

should be investigated so that their predictive accuracy can be compared to those of lin-809

ear drift models under our VI framework. This would go toward an existing priority in810

biogeochemistry to examine whether explicit representation of enzyme catalysis in SBMs811

improves model performance (J. Li et al., 2014; Sulman et al., 2014; Wieder et al., 2015;812

J. Li et al., 2019; Xie et al., 2020).813

Application of our VI approach to head-to-head model comparison and selection814

begets a need for incorporation of goodness-of-fit quantification into our framework. MCMC815

has access to metrics like the widely application information criterion (Vehtari et al., 2017),816

leave-one-out cross-validation, and leave-future-out cross-validation (Bürkner et al., 2020)817

for Bayesian predictive accuracy quantification, but with their established formulations,818

these metrics cannot be computed under a VI procedure without prohibitive computa-819

tional expense (Dao et al., 2022). The development of Bayesian goodness-of-fit metrics820

for VI is still an open area (Yao et al., 2018; Giordano et al., 2018), but there has been821

recent work adapting cross-validation for VI that is promising for integration with a state822

space model inference pipeline (Magnusson et al., 2019; Dao et al., 2022).823

4.3 Conclusion824

Going forward, we recommend that inference approaches involving state space model825

approximation of stochastic SBMs be used in future biogeochemical data assimilation,826

fitting, and model comparison research in pursuit of superior computational stability,827

flexibility, and efficiency. SDE systems are far more robust than ODE systems at accom-828

modating prior density, initial condition, and model structure proposals that are incon-829

sistent with the true data generating process (Whitaker, 2016; Wiqvist et al., 2021). Then,830

state space approximation greatly reduces the burden of sampling SDE model state tra-831

jectories for likelihood evaluation. Rather than integrating an SDE solver S times at great832

computational cost with each algorithm training iteration, we can efficiently sample S833

paths from the variational approximation in one pass. Additionally, the discrete nature834

of state space models integrates well with likelihood estimation conditioned on sparsely835

observed data sets from long term ecological research where fine-grained knowledge of836

continuous state dynamics of a model are not necessary or useful for the inference al-837

gorithm. State space model discretization can be handled much more coarsely, which fa-838

cilitates more efficient scaling to larger T .839

Many of the steps of our data assimilation framework are common to those of other840

Bayesian inference approaches and hence, a wealth of options exist for modification of841

this approximated SBM inference framework depending on computational resources and842

desired posterior estimation accuracy. Different non-variational black box inference meth-843

ods that are compatible with state space approximation of SDEs can be substituted, such844

as sequential Monte Carlo algorithms (Golightly & Kypraios, 2018), stochastic gradient845

Hamiltonian Monte Carlo (Chen et al., 2014), stochastic gradient langevin dynamics (Brosse846
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et al., 2018), and stochastic gradient Markov chain Monte Carlo (Aicher et al., 2019; Nemeth847

& Fearnhead, 2021).848

Resesarchers using variational Bayesian methods for their black box can opt for q(θ)849

variational approximations that are more complex than mean-field representation. These850

include full-rank multivariate logit-normal families in which θ are not assumed to be in-851

dependent and covariance is established. The full-rank modeling of covariance mitigates852

underestimation of q(θ) uncertainty, which is prevalent in mean-field inference, to cor-853

respond to wider marginal q(θ) densities (Kucukelbir et al., 2017; Sujono et al., 2022).854

Additionally, when memory availability inhibits the establishment of larger neu-855

ral networks to train affine shift and scale values for long T or when another method is856

known to be faster and more convenient for approximating a particular SBM class, dif-857

ferent variational families can be used in place of neural moving average flows for rep-858

resentation and optimization of q(x|θ). These include multivariate normal distributions859

with specialized covariance structures (Archer et al., 2015), automatic differention VI860

(Kucukelbir et al., 2017) with Gauss-Markov distributions (Sujono et al., 2022), neural861

stochastic differential equations (Tzen & Raginsky, 2019; Jia & Benson, 2019; X. Li et862

al., 2020), and recurrent neural networks (Krishnan et al., 2017; Ryder et al., 2018), among863

others. Thus, our framework is flexible and can be repurposed as needed for assimila-864

tion of different SBMs or Earth system models that vary in complexity and simulation865

requirements.866

5 Open Research867

A repository containing synthetic time series data of soil pool state and CO2 ob-868

servations, Python notebooks containing the code for SCON-C and SCON-SS data-generating869

processes, and Python modules scaffolding the neural moving average flow VI algorithm870

are available at https://doi.org/10.5281/zenodo.6969782. Stan code for the deter-871

ministic CON inference whose results were compared to in Figure 5 is available at https://872

doi.org/10.5281/zenodo.6969769.873

Acknowledgments874

We would like to thank Anton Obukhov (ETH Zurich) for his PyTorch truncated875

normal distribution class that was used in exploratory work that this study was built876

on and Andrew Golightly (Durham University) for his advice on ODE-to-SDE conver-877

sion and reparameterization.878

This research was financially supported by the U.S. National Science Foundation879

(grant no. DEB-1900885 and IIS-1816365), the U.S. Department of Energy (grant no.880

DE-SC0014374 and DE-SC0020382), and a UC Irvine ICS Exploration Research Award.881

The authors affirm that they have no financial conflict of interest.882

–30–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

References883

Abs, E., Leman, H., & Ferrière, R. (2020). A multi-scale eco-evolutionary model884

of cooperation reveals how microbial adaptation influences soil decomposition.885

Communications Biology , 3 (1). Retrieved from https://doi.org/10.1038/886

s42003-020-01198-4 doi: 10.1038/s42003-020-01198-4887

Aicher, C., Ma, Y.-A., Foti, N. J., & Fox, E. B. (2019). Stochastic Gradient888

MCMC for State Space Models. SIAM Journal on Mathematics of Data889

Science, 1 (3). Retrieved from https://doi.org/10.1137/18M1214780 doi:890

10.1137/18M1214780891

Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil-carbon response892

to warming dependent on microbial physiology. Nature Geoscience, 3 (5). Re-893

trieved from https://doi.org/10.1038/ngeo846 doi: 10.1038/ngeo846894

Anaconda Software Distribution. (2020). Anaconda Inc. Retrieved 2022-06-17, from895

https://docs.anaconda.com/896

Archer, E., Park, I. M., Buesing, L., Cunningham, J., & Paninski, L. (2015). Black897

box variational inference for state space models. arXiv. Retrieved from898

https://arxiv.org/abs/1511.07367 doi: 10.48550/ARXIV.1511.07367899
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1. Figures S1 to S6

2. Table S1

Introduction

This document contains figures supporting the validity and functionality of our neural

moving average flow VI framework. Figure S1 illustrates the benefit of initiating VI with

an ELBO training warmup phase at low learning rates. Figure S2 demonstrates with an

example −L trajectory from an SCON-C approximation inference that our VI algorithm

is able to stably converge in ELBO. Figures S3 and S4 indicate that the neural moving
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X - 2 :

average flow VI approach remains viable for inference on approximated SCON-SS, and by

extension, state space models that are linear in drift but non-linear in diffusion. Figure

S5 depicts the importance of including CO2 information in the data y for subtantial

improvement of posterior identifiability and certainty. Figure S6 contrasts the effects of

lengthening experiment time span T versus thickening observations in y to better inform

and identify posteriors. Finally, Table S1 details the hyperparameters corresponding to

our informed and independent univariate logit-normal priors.
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Figure S1. Comparison of −L trajectories from the latter halves of T = 5000 hour SCON-C

flow trainings without (blue) and with (orange) warmup indicates that warmup helps stabilize

training and speed up convergence. The trajectory corresponding to warmup displays much less

prominent instability spiking and has flattened more quickly in contrast to the that of the no

warmup counterpart.
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T = 5000 SCON-C inference −L trajectory

Figure S2. The stabilizing of the −L trajectory between -1550 and -1600 in the latter half

of T = 5000 SCON-C flow VI training indicates convergence to an approximate local minimum

−L and thereby proper algorithm function of the q(θ, x;ϕθ,x) joint optimization.

Similarly stabilizing −L trajectories were observed for inferences on SCON-SS state space model

approximations.
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Figure S3. Flow-approximated SCON-SS q(x|θ;ϕx) latent state and observed CO2 means

conditioned on T = 5000 SCON-SS data-generating process y estimated from 250 x paths sampled

from the optimized joint variational q(θ, x;ϕ(θ,x)) density.
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Figure S4. Full SCON-SS state space model marginal q(θ;ϕθ) posterior densities (orange)

conditioned on T = 5000 SCON-SS data-generating process y compared to the prior densities

p(θ) (blue). The true θ values sampled during data generation are marked by vertical dashed

gray lines.
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Figure S5. Approximate SCON-C state space model marginal q(θ;ϕθ) posterior densities

conditioned with (orange) and without (green) CO2 information in y produced by the same

SCON-C data-generating process compared to mean-field prior densities p(θ) (blue). The true θ

values sampled during data generation are marked by vertical dashed gray lines.
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Figure S6. Approximate SCON-C state space model marginal q(θ;ϕθ) posterior densities

conditioned with T = 1000 data observed every 5 hours (blue), T = 5000 data observed every

5 hours (orange), and T = 1000 data observed every hour (green). All three y share the same

SCON-C data-generating process and include CO2 information. The true θ values sampled during

data generation are marked by vertical dashed gray lines.
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θ Biogeochemical interpretation Target hyperparameters Units
uM MBC uptake rate L N (0.0016, 0.0004, 0, 1) mgCg−1Ch−1

aDS DOC to SOC transfer fraction L N (0.5, 0.125, 0, 1) NA
aSD SOC to DOC transfer fraction L N (0.5, 0.125, 0, 1) NA
aM MBC to organic C transfer fraction L N (0.5, 0.125, 0, 1) NA

aMSC MBC to SOC transfer fraction L N (0.5, 0.125, 0, 1) NA
kS,ref SOC decomposition rate L N (0.0005, 0.000125, 0, 0.1) mgCmg−1Ch−1

kD,ref DOC decomposition rate L N (0.0008, 0.0002, 0, 0.1) mgCmg−1Ch−1

kM,ref MBC decomposition rate L N (0.0007, 0.000175, 0, 0.1) mgCmg−1Ch−1

EaS SOC decomposition activation energy L N (20, 5, 5, 80) kJmol−1

EaD DOC decomposition activation energy L N (20, 5, 5, 80) kJmol−1

EaM MBC decomposition activation energy L N (20, 5, 5, 80) kJmol−1

cS SCON-C SOC β constant L N (0.1, 0.025, 0, 0.1) mgCg−1 soil
cD SCON-C DOC β constant L N (0.002, 0.0005, 0, 0.1) mgCg−1 soil
cM SCON-C MBC β constant L N (0.002, 0.0005, 0, 0.1) mgCg−1 soil
sS SCON-SS SOC β factor L N (0.0005, 0.000125, 0, 0.1) NA
sD SCON-SS DOC β factor L N (0.0005, 0.000125, 0, 0.1) NA
sM SCON-SS MBC β factor L N (0.0005, 0.000125, 0, 0.1) NA

Table S1. List of SCON-C and SCON-SS θ and their corresponding marginal data-generating

and informed prior hyperparameters. The marginal densities are formatted as L N (µ, σ, a, b),

where µ and σ are the desired target density mean and standard deviation and a and b are the

truncated distribution support lower and upper bounds.
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