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Abstract

Soil biogeochemical models (SBMs) simulate element transfer processes between organic soil pools. These models can be used to

specify falsifiable quantitative assertions about soil system dynamics and their responses to global surface temperature warming.

To determine whether SBMs are useful for representing and forecasting data-generating processes in soils, it is important to

conduct data assimilation and fitting of SBMs conditioned on soil pool and flux measurements to validate model predictive

accuracy. SBM data assimilation has previously been carried out in approaches ranging from visual qualitative tuning of model

output against data to more statistically rigorous Bayesian inferences that estimate posterior parameter distributions with

Markov chain Monte Carlo (MCMC) methods. MCMC inference is better able to account for data and parameter uncertainty,

but the computational inefficiency of MCMC methods limits their ability to scale assimilations to larger data sets. With

formulation of efficient and statistically rigorous SBM inference frameworks remaining an open problem, we demonstrate the

novel application of a variational inference framework that uses a method called normalizing flows to approximate SBMs that

have been discretized into state space models. We fit the approximated SBMs to synthetic data sourced from known data-

generating processes to identify discrepancies between the inference results and true parameter values and ensure functionality

of our method. Our approach trades estimation accuracy for algorithmic efficiency gains that make SBM data assimilation

more tractable and achievable under computational time and resource limitations.
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Abstract19

Soil biogeochemical models (SBMs) simulate element transfer processes between organic20

soil pools. These models can be used to specify falsifiable quantitative assertions about21

soil system dynamics and their responses to global surface temperature warming.22

To determine whether SBMs are useful for representing and forecasting data-generating23

processes in soils, it is important to conduct data assimilation and fitting of SBMs con-24

ditioned on soil pool and flux measurements to validate model predictive accuracy. SBM25

data assimilation has previously been carried out in approaches ranging from visual qual-26

itative tuning of model output against data to more statistically rigorous Bayesian in-27

ferences that estimate posterior parameter distributions with Markov chain Monte Carlo28

(MCMC) methods. MCMC inference is better able to account for data and parameter29

uncertainty, but the computational inefficiency of MCMC methods limits their ability30

to scale assimilations to larger data sets.31

With formulation of efficient and statistically rigorous SBM inference frameworks32

remaining an open problem, we demonstrate the novel application of a variational in-33

ference framework that uses a method called normalizing flows to approximate SBMs34

that have been discretized into state space models. We fit the approximated SBMs to35

synthetic data sourced from known data-generating processes to identify discrepancies36

between the inference results and true parameter values and ensure functionality of our37

method. Our approach trades estimation accuracy for algorithmic efficiency gains that38

make SBM data assimilation more tractable and achievable under computational time39

and resource limitations.40

Plain Language Summary41

Soil biogeochemical models (SBMs) simulate soil systems in a quantifiable and fal-42

sifiable manner. Climate researchers rely on SBMs to predict how soil systems could be43

globally affected by climate change. However, SBMs differ widely in their predictions of44

changes in soil measurements including rates of soil carbon dioxide emissions. It is un-45

clear which SBMs offer more realistic climate projections, and the establishment of sta-46

tistical techniques to rigorously compare the predictive performance of SBMs is still a47

work in progress. We make a contribution to SBM comparison efforts by developing a48

statistical framework to assess SBM accuracy that leverages deep learning for compu-49

tational efficiency gains. Results of our case study demonstrate that we can fit two SBMs50

to soil observation data and estimate ranges of SBM parameter values compatible with51

those observations. Our modular framework is flexible and stimulates future work to im-52

prove on our procedure with modifications of our existing methods.53

1 Introduction54

Soil biogeochemical models (SBMs) are differential equation systems that repre-55

sent dynamics of organic matter transfer between soil pools, including the soil organic56

(SOC), dissolved organic (DOC), and microbial biomass carbon (MBC) pools. The state57

variables of SBMs typically are densities or masses of elements in those pools (Manzoni58

& Porporato, 2009), and heterotrophic soil CO2 emissions can be estimated from those59

state values and microbial parameters (Allison et al., 2010). As soil microbe communi-60

ties influencing organic mass transfer dynamics evolve and shift under the selection pres-61

sures of terrestrial warming, SBMs have become an important tool for soil scientists and62

biogeochemists to quantify changes in soil system activity and predict future heterotrophic63

soil respiration levels (Sulman et al., 2018; Saifuddin et al., 2021).64

SBMs offer falsifiability of their dynamics through their depiction of biological soil65

processes as interpretable mathematical equations governed by model parameters θ. How-66
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ever, the formulation of statistically sound frameworks to assess the dynamical validity67

and predictive accuracy of SBMs remains an open problem in soil biogeochemistry (Luo68

et al., 2016; Xie et al., 2020; Bradford et al., 2021; Georgiou et al., 2021; Raczka et al.,69

2021). One approach for assessing SBM utility involves comparing models by their abil-70

ity to assimilate soil observation data with suitable θ values, assuming that models that71

can more accurately describe the past will also be better at predicting the future (Wieder72

et al., 2014; Bradford et al., 2021). Past SBM fit evaluations have ranged from visual73

juxtapositions of manually calibrated model outputs against empirical observations (Sulman74

et al., 2014; Wieder et al., 2015) to quantitative frequentist comparisons involving cor-75

relation coefficients and root-mean-square errors (Todd-Brown et al., 2013, 2014; Wieder76

et al., 2014). In an effort to account for uncertainty in θ values and data observations77

and encode expert domain beliefs, other comparisons have involved the use of Bayesian78

Markov chain Monte Carlo (MCMC) inference methods and goodness-of-fit metrics with79

some success (Hararuk et al., 2014; Hararuk & Luo, 2014; J. Li et al., 2019; Xie et al.,80

2020; Saifuddin et al., 2021; Wang et al., 2022).81

MCMC transition sampling methods, such as the Gibbs (Geman & Geman, 1987)82

and No-U-Turn (NUTS) (Hoffman & Gelman, 2014) samplers deployed in widely-used83

probabilistic programming platforms like JAGS (Plummer, 2003), Stan (Carpenter et84

al., 2017), and PyMC (Salvatier et al., 2016), are powerful algorithms for inference, but85

their relative computational cost presently limits their ability to scale for use on model86

comparisons involving more complex SBM systems conditioned on larger data sets span-87

ning decades (Kucukelbir et al., 2017). Stochastic gradient optimization variational in-88

ference (VI) is an alternative approach to Bayesian inference and model-fitting that trades89

asymptotic exactness and the ability to estimate non-parametric posterior distributions90

for increased computational efficiency and simplicity (Blei et al., 2017). It does so by re-91

framing Bayesian inference from a transition sampling problem to an optimization ob-92

jective of maximizing a metric called the evidence lower bound (ELBO), which corre-93

sponds to minimizing the discrepancy between an approximate parametric posterior and94

true posterior distribution (Salimans et al., 2015).95

VI on differential equation models benefits from the use of stochastic differential96

equation (SDE) over ordinary differential equation (ODE) systems. SDE noise provides97

a means of adjusting and correcting for proposals of system initial conditions and un-98

derlying dynamics that are inconsistent with the true data-generating process sourcing99

the data observations (Whitaker, 2016; Särkkä & Solin, 2019; Wiqvist et al., 2021). Ad-100

ditionally, noise-driven fluctuation and variation in state trajectories can account for out-101

lier data measurements during inference to reduce optimization pressures that can drive102

rigid deterministic models into unstable θ regimes. SDE noise thereby improves infer-103

ence flexibility, stability, and efficiency through the acommodation and mitigation of dis-104

crepancies between model outputs and data generation or observation. Furthermore, SDEs105

offer a more realistic and accurate representation of the stochasticity that is inherent to106

biological processes across all scales (Golightly & Wilkinson, 2011; Abs et al., 2020; Brown-107

ing et al., 2020). The ability to effectively fit SDEs is an advantage of VI over many es-108

tablished MCMC methods; off-the-shelf MCMC implementations are frequently not ef-109

ficient for confronting the noisy likelihood estimates of SDEs (Golightly & Wilkinson,110

2010; Fuchs, 2013; Chen et al., 2014).111

With the goal of applying VI to SBMs in mind, we formulated SDE versions of the112

linear deterministic “conventional” (CON) SBM system (Allison et al., 2010; J. Li et al.,113

2014) to establish an SCON family of models and leverage the versatility of stochastic114

optimization. As is the case for CON, SCON models have three state variables repre-115

senting SOC, DOC, and MBC densities in a soil system. We parameterized two SCON116

variants, “constant diffusion” SCON (SCON-C) and “state-scaling diffusion” SCON (SCON-117

SS). Diffusion coefficients are model parameters that govern the noise dynamics of an118
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Figure 1. In our study, we use normalizing flows to approximate SCON soil biogeochemical

model solution trajectories x over time t. The flow operates in a generative direction, mapping a

simpler base distribution to a more complex one representing SCON output.

SDE system. In SCON-C, diffusion, or noise, was set to be independent of time and states,119

while in SCON-SS, noise was made to depend on and scale with state values.120

We used a class of methods called normalizing flows to approximate SCON mod-121

els in our inference approach. In simple terms, flows can be thought of as one or more122

layers of random variable mappings that transform an initial base probability distribu-123

tion to a new distribution (Papamakarios et al., 2021). When we deploy flows to trans-124

form a simpler probability density into a more complex one (Figure 1), as we do in our125

study, it is classified as a generative normalizing flow (Kobyzev et al., 2020). The flow126

approximation refashions SCON from an SDE that depicts state variable dynamics dx
dt127

in continuous time to a probabilistic state space model that specifies distributions of state128

measurements yt noisily observed from underlying states xt in discrete time (Särkkä &129

Solin, 2019).130

The replacement of differential equation solver integration with state space mod-131

els to approximate dynamical systems offers substantial computational efficiency gains132

in inference (Ryder et al., 2018; Särkkä & Solin, 2019). At each inference iteration or133

epoch, rather than sequentially computing state trajectories x one time step at a time134

with solvers including Euler, Runge-Kutta, and Adams’ schemes, as was demonstrated135

in studies like Xie et al. (2020), we can instead simultaneously sample multiple x in one136

vectorized draw from a flow-transformed state space distribution object. This increased137

efficiency allows us to more capably assimilate SBMs with time series data sets spanning138

longer periods under computing resource limitations, especially when highly paralleliz-139

able graphical processing units (GPUs) can be leveraged.140

Drawing from the methodologies of previous work that test various inference ap-141

proaches (Golightly & Wilkinson, 2006; Whitaker et al., 2017; Ryder et al., 2018, 2021),142

our study demonstrates functional stochastic VI of flow-approximated SBMs conditioned143

on soil observations data y that includes various soil pool and respiration measurements.144

To support the notion that our VI approach is operational, we show that it can fit model145

output to y sourced from a known data-generating process and estimate model θ pos-146

teriors in line with the true θ values used by that process.147

Hence, to begin our study workflow, we generated synthetic y consisting of SOC,148

DOC, and MBC state and heterotrophic CO2 respiration rate observations correspond-149

ing to SCON-C and SCON-SS data-generating processes. The processes used “true” θ150

values randomly sampled from constrained data-generating distributions that were cho-151

sen to produce faster and more dramatic SOC decay dynamics reminiscent of organic152

matter decomposition at soil surface, which contrasts with the slower and deeper soil de-153

composition depicted in J. Li et al. (2014) and Xie et al. (2020). Faster decay provided154

our inference approach with substantive dynamical information in shorter time series to155

operate and optimize on. We then conditioned our state space model VI on those syn-156
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Figure 2. A workflow diagram summarizing the steps involved in our study’s stochastic vari-

ational Bayesian framework. Our workflow efficiently conducts inference and data assimilation

on stochastic differential equation (SDE) soil biogeochemical models (SBMs) with their approx-

imation into state space models (SSMs). Our modular workflow is designed to serve as a basis

for building future soil biogeochemical model inferences, as the “black box” inference method

used can be modified or substituted. Our “black box” inference method of choice was stochastic

gradient descent mean-field variational inference. Within the nodes of the diagram, blue lines

and shading correspond to prior means and distributions, while orange lines and shading corre-

spond to posterior means and distributions. Orange dots represent observations upon which the

inference is conditioned.

thetic y for estimation of approximate posterior densities q(θ) that were compared with157

prior densities p(θ). Priors were made to be equivalent to our data-generating distribu-158

tions.159

Ultimately, we found that our VI approach allowed us to reasonably fit y. When160

possible, our fits were checked against solutions from a Kalman smoother algorithm, and161

we observed that the flow fits were mostly consistent with the Kalman solutions. Cru-162

cially, we were also able to recover some of the true θ values used by our data-generating163

processes against model identifiability limitations that could not be resolved by the ex-164

tent of information contained in our synthetic data. Model identifiability can be sum-165

marized as the ability to update prior beliefs about θ and align model to true θ based166

on available data. Our identifiability issues related to the presence of ambiguous SCON167

equation terms involving the multiplication of more than two parameters. Our work of-168

fers insights and suggestions for improving the identification of θ, which is of interest for169

experimentalists and biogeochemists who are interested in building effective data sets170

for SBM inference.171
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2 Materials and Methods172

2.1 Inference workflow overview173

The general steps constituting our study’s SBM data assimilation workflow are out-174

lined in Figure 2. We established SCON-C and SCON-SS to serve as known data-generating175

processes whose true θ values can be compared with the inferred posteriors to test our176

flow VI method. Discrepancies between the true θ and posterior means inform on the177

effectiveness of our selected inference algorithm. Differences between the priors and pos-178

terior densities further indicate algorithm efficacy and additionally point to the infor-179

mativeness of the data y for identifying and constraining posteriors.180

True SCON-C and SCON-SS θ were sampled from data-generating distributions181

truncated between lower and upper support bounds to ensure that data-generating pro-182

cesses would remain in parameter regimes with faster state decay corresponding to soil183

surface decomposition occurring on the order of thousands of hours, rather than tens or184

hundreds of thousands. This allows us to generate shorter data sets y that enable reduced185

computational loads and faster turnaround times for testing our inference algorithm while186

retaining dynamical richness that can inform the algorithm to estimate more certain pos-187

teriors. We used logit-normal distributions to handle truncation in our data-generating,188

prior, and posterior distributions, which we will describe in section 2.3. Our inference189

priors matched our data-generating distributions.190

Synthetic data y were observed and processed from our data-generating SDE so-191

lution trajectories. We parameterized our SCON models based in time units of hours,192

so observations were collected every 5 hours by default. State space approximation of193

SDE output, which we will describe in section 2.4, requires regular time series discretiza-194

tion (Kalman, 1960), so in an empirical setting, all existing, imputed, or missing obser-195

vations must coincide with discrete time steps of the state space model in our approach196

and cannot transpire in between. Different SDE approximation methods would be needed197

for irregular time discretization.198

We selected mean-field stochastic VI as our black box inference method for its math-199

ematical simplicity and efficiency. Mean-field inference makes the simplifying assump-200

tion that model parameters are independently distributed. This aligns with our synthetic201

data-generating processes, in which our true θ values are sampled from independent logit-202

normal distributions. VI frames Bayesian inference as an optimization goal of finding203

the set of mean-field posterior distributions that best describes y. The optimization pro-204

cess takes place over a number of training iterations in which θ values are sampled at205

each iteration and the likelihood of the resultant model output conditioned on y and θ206

is evaluated in fulfillment of the objective of the VI algorithm to locate θ correspond-207

ing to higher model likelihood. We present an overview of our VI implementation and208

key algorithm steps in section 2.5.209

We used normalizing flows to approximate SCON-C and SCON-SS from continuous-210

time SDEs to time-discretized state space models. These state space approximations then211

served as our bases for VI optimization. A brief treatment on state space models is given212

in section 2.4. Flow state space approximation increased the computational efficiency213

of sampling SCON solution trajectories (also referred to as latent variables, states, or paths214

in machine learning literature) such that multiple trajectories would be simultaneously215

collected from a flow distribution object rather than sequentially simulated from a dif-216

ferential equation solver at each training iteration. The flow is assembled through deep217

neural network layers that transform simpler random input into more complex approx-218

imated SCON output. The constituent pieces of the machine learning architecture un-219

derlying our flow are detailed in section 2.6.220

Per equations (3) and (4), SCON-C is a completely linear SDE. Consequently, SCON-221

C flow-approximated x and its fit of y can be visually benchmarked against output from222
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an instance of the Kalman smoother algorithm summarized in section 2.7. Given a known223

data-generating process and observation error, a Kalman smoother exactly solves the true224

mean latent path x of the SDE data-generating process sourcing y. We successfully com-225

pared SCON-C flow x to the true x solution computed by the smoother, which we de-226

scribe in section 3.1. The smoother algorithm cannot resolve the non-linear diffusion de-227

picted in equation (5), so SCON-SS flow output could not be validated in the same man-228

ner.229

2.2 SCON SDE parameterization and data generation230

SDE system equations are frequently written with the state value derivatives dx
on the left-hand side, and consist of a drift coefficient vector, frequently notated as α,
and a diffusion coefficient matrix, notated as β, on the right-hand side. For biological
SDE models, a square-root diffusion structure is frequently used such that these systems
follow the form

dxt = α(xt, t, θ)dt+
√
β(xt, t, θ)dWt (1)

where dWt denotes a continuous stochastic Wiener process. Evolution of SDE trajec-231

tories x across a simulation duration T in time increments dt can be interpreted as a se-232

ries of small steps whose values are independently drawn from a normal distribution with233

mean α(xt, t)dt and variance β(xt, t)dt (Särkkä & Solin, 2019).234

Like the CON model introduced in Allison et al. (2010), SCON has three state di-
mensions made up of soil organic C (SOC), dissolved organic C (DOC), and microbial
biomass C (MBC) densities. We notate total state dimensions with D, so D = 3 for all
systems in the SCON family. SOC, DOC, and MBC are respectively notated in the sys-
tem equations as S, D, and M . Thus, xt, the solutions of the continuous SCON system
at time t, expand to the vector,

xt =

St

Dt

Mt

 (2)

and observations of the system yt are similarly three-dimensional.235

We established two SCON versions for inference and data generation use, SCON-
C and SCON-SS. SCON-C and SCON-SS share the same underlying α drift vector, equiv-
alent to the deterministic CON dynamics and following the form: dS
dD
dM

 =

 IS + aDS · kD ·D + aM · aMSC · kM ·M − kS · S
ID + aSD · kS · S + aM · (1− aMSC) · kM ·M − (uM + kD) ·D

uM ·D − kM ·M

 dt+ β0.5

dWS

dWD

dWM


(3)

where β now refers to the diffusion matrix component of the SDE and the WS , WD, and236

WM elements of the Wiener process vector represent random draws from the distribu-237

tion N (0,
√
dt).238

For simplification purposes, the β diffusion matrices of both systems were made
to be diagonal only and free of covariance diffusion terms. SCON-C diffusion dynam-
ics are given by

β =

cS 0 0
0 cD 0
0 0 cM

 (4)

while SCON-SS diffusion dynamics are

β =

sS · S 0 0
0 sD ·D 0
0 0 sM ·M

 (5)

–7–
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Thus, SCON-C diffusion noise is additive, meaning it is independent of the values of states239

S, D, and M , and also stationary, meaning that is not a function of t. Meanwhile, SCON-240

SS noise is multiplicative, meaning it is dependent on the states. As such, SCON-C is241

linear in drift and diffusion, while SCON-SS is linear in drift but non-linear in diffusion.242

IS and ID respectively represent the exogenous input of C mass in units of mgCg−1 soil h−1

into the SOC and DOC soil pools from litter decay and can be modeled as constants or
functions. We used sinusoidal litter input functions with annual periods that assumed
litterfall peaking through late summer and early fall in a pattern resembling those ob-
served in tropical forest ecosystems (Giweta, 2020). The functions are given by

IS,t = 0.001 + 0.0005 · sin
(

2π

365 · 24 t
)

(6)

ID,t = 0.0001 + 0.00005 · sin
(

2π

365 · 24 t
)

(7)

As was previously instituted for CON (Allison et al., 2010; J. Li et al., 2014), the
SCON linear first-order decay parameters ki∈{S,D,M} remain dependent on temperature.
Temperature sensitivity of the ki∈{S,D,M} linear first-order decay parameters is enforced
by a function derived from the original Arrhenius equation (Arrhenius, 1889),

ki,t = ki, ref exp

[
−Eaki

R

(
1

tempt
− 1

tempref

)]
(8)

where R is the ideal gas constant 8.314 JK−1 mol−1 and tempref specifies a “reference”243

equilibrium temperature which we set at 283 K.244

Through changing values of ki∈{S,D,M}, SCON systems respond to day-night and
seasonal temperature cycles through the composite sinusoid forcing function,

tempt = tempref +
5t

80 · 365 · 24 + 10 · sin
(
2π

24
t

)
+ 10 · sin

(
2π

365 · 24 t
)

(9)

The function assumes a gradual linear increase in mean soil surface temperature by 5245

°C over 80 years from the start of the simulation, in line with the upper bound of mean246

surface temperature increases predicted in emissions scenarios by 2100 (O’Neill et al.,247

2017).248

SDE systems rarely admit tractable analytic solutions. To sample state trajecto-249

ries accurately approximating SCON-C and SCON-SS dynamics and construct our syn-250

thetic time series data y, we used the long-established and reliable Euler-Maruyama SDE251

solver (Maruyama, 1955) to numerically integrate solution paths x corresponding to θ252

randomly sampled from logit-normal distributions. Our solver step size was set to dt =253

0.1 hour. We note that we recover the exact SCON-C and SCON-SS processes in con-254

tinuous time as dt is decreased to 0.255

If inference involved conditioning with CO2 observations in y in addition to state
measurements, model CO2 respiration rate would be computed from the time-corresponding
x state values with the equation

CO2, t = (1− aSD) · kS, t · St + (1− aDS) · kD, t ·Dt + (1− aM ) · kM, t ·Mt (10)

where CO2, t is in units of µg g−1 soil h−1. We then sliced x and CO2 time series at some
regular interval, i.e. every 1 hour or 5 hours, and normally sampled about the sliced val-
ues with an observation error vector σobs in the manner of

yt ∼ N (xt, ηobs) (11)

–8–
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to arrive at y. We lower bounded y such that y ∈ R≥0 to preclude nonsense negative
state measurements. We used constant ηobs that was 10% of the overall state mean such
that

ηobs = 0.1⊙

 S̄
D̄
M̄

 (12)

where ⊙ indicates elementwise multiplication. This corresponds to an empirical scenario256

where measurement instruments and processes introduce a stable level of observation noise.257

CO2 was similarly observed with noise standard deviation that was 10% of the overall258

CO2 mean across the total time span in the sampling of y including CO2.259

We generated and conditioned inferences on synthetic y of up to 5000 hours in to-260

tal timespan T . Data-generating θ distribution hyperparameters were chosen to produce261

stable and informative state dynamics in a shorter span of time and minimize the mem-262

ory footprint of the data set under available computing resources. We used elevated ki, ref263

means compared to previous literature values (Allison et al., 2010; J. Li et al., 2014; Xie264

et al., 2020). Sampled θ values and T scale are thereby reminiscent of an organic decay265

process occurring at the soil surface, rather than a slower subterranean decomposition.266

θ data-generating distribution hyperparameters, equivalent to the prior distribution p(θ)267

hyperparameters, along with the biogeochemical interpretations associated with each θ,268

are detailed in Table S1.269

2.3 The generalized univariate logit-normal distribution270

We used a univariate logit-normal distribution family for our data-generating, in-271

formed prior p(θ), and mean-field variational posterior q(θ|y) probability density func-272

tions. To avoid being restricted to the standard [0, 1] distribution support that the logit-273

normal density is typically associated with in statistics, we defined a generalized form274

of the family whose supports could be enclosed between an arbitrary positive [a, b], where275

a, b ∈ R≥0 and b > a. Generalized logit-normal distributions provide similar utility276

to truncated normal distributions used previously in SBM inference projects for constrain-277

ing θ values to finite supports (Xie et al., 2020), but are more stable for backpropaga-278

tion, as the inverse cumulative distribution function of the truncated normal distribu-279

tion has inherent stability issues close to support boundaries.280

We notate logit-normal distribution parameters in order of desired “target” mean
µ, standard deviation σ, support lower bound a, and upper bound b akin to

θ ∼ L N (µ, σ, a, b) (13)

Via passage through a sigmoid function, logit-normal distributions are transformed from
normal distributions N (µ̌, σ̌), where µ̌ and σ̌ are respectively the “parent” mean and
standard deviation distribution parameters:

θ̌ ∼ N (µ̌, σ̌) (14)

θmid =
1

1 + exp(−θ̌)
(15)

θ = (b− a) · θmid + a (16)

The logit-normal distribution has no closed form probability density function and281

its probability moments are not analytically resolvable, so no formula can be deduced282

that allows us to make random variable transformations between logit-normal and nor-283

mal distributions. Hence, to arrive at a particular logit-normal density with target µ and284

σ in each VI optimization iteration to sample from, we must first numerically solve for285

the parent µ̌ and σ̌ of a normal distribution that corresponds to the desired logit-normal286
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properties following the transformations from equations (14) to (16). We can do this with287

root-finding algorithms like the bisection method that search for an appropriate µ̌ in the288

truncated support interval between a and b and σ̌ within a provided range of tolerated289

standard deviation values (Daunizeau, 2017).290

2.4 State space model approximation of the SDE291

Instead of optimizing SCON θ via an iterative SDE solver, we optimized time-discretized
state space models approximating the SCON-C and SCON-SS SDEs. State space mod-
els describe the distribution of a discrete sequence of observations y sourced from dis-
crete latent states x. They can take the general form

xt ∼ p(xt|xt−1, θ) (17)

yt ∼ p(yt|xt, θ) (18)

Equation (17) indicates that the transition from xt−1 to xt occurs at a probability den-292

sity of p(xt|xt−1, θ) and that subsequent states of a state space model depend on pre-293

vious ones, thus indicating that x constitutes a Markov chain. Equation (18) specifies294

that yt is observed from xt at a density of p(yt|xt, θ). An initial state x0 must be nom-295

inated to compute x and it can be set as a constant, or informed as a density, p(x0), which296

we do in our case.297

The state space model θ are the same model parameters as in the SDE counter-
part. When accounting for the SDE α drift and β diffusion dynamics, xt, the latent states
of the state space model at time t can be written as

xt = xt−1 + α(xt−1, θ)∆t+ ϵt
√

β(xt−1, θ)∆t (19)

with the same α and β as in (1). ϵt is a random noise vector of length D independently298

sampled via ϵt ∼ N (0, ID). ID is an identity matrix with number of diagonal elements299

equal to D. ∆t is the state space model time step, not to be confused with SDE solver300

time step dt. We used ∆t = 1.0 hour for our state space model approximations in con-301

trast to the aforementioned dt = 0.1 for Euler-Maruyama solving of our data gener-302

ating processes.303

There is overlap between SDEs and state space models. Both depict the evolution304

of state values in a series of steps where future values depend on past ones. Both require305

the specification of initial conditions x0 to compute state trajectories.306

However, SDEs and state space models treat time differently. A key distinction that307

makes state space model approximation helpful for inference efficiency is that ∆t can be308

made relatively large versus SDE solver dt. This is helpful for common biological infer-309

ence and data assimilation situations where y is sparsely observed due to the expense310

and difficulty of collecting measurements.311

Differential equation systems are instead typically numerically integrated and like312

state space models, are solved in discrete steps, as only smooth analytic solutions can313

only be obtained from the simplest systems. But, the differential equation integration314

procedures still assume that states are evolving in continuous time. The integrating solvers315

almost always require relatively small integration time steps dt that are as close to 0 as316

possible; the solvers tend to fail at higher dt.317

The divergent handling of time in state space models and SDEs renders them more318

apt for different objectives. State space models are better suited for estimating obser-319

vations over long T , whereas SDEs are required for precise analyses of accurately sim-320

ulated system dynamics. With their differing but related purposes, we can ultimately321

use state space models to represent discrete observations from continuous SDEs.322
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2.5 VI optimization323

Under a Bayesian statistics framework, the goal of statistical inference broadly con-
sists of estimation of the θ posterior density function for some model, p(θ|y), conditioned
on some data set y via Bayes’ rule,

p(θ|y) = p(y|θ)p(θ)
p(y)

(20)

p(y|θ), also notated as ℓ(θ|y), is the likelihood function, which indicates model goodness-324

of-fit across various values of individual parameters comprising θ. p(θ) is the prior prob-325

ability representing beliefs about θ uncertainty. p(y) is the probability density of the ob-326

served data.327

The prior density p(θ) can be specified in an informed fashion, as we did in our work-
flow with distributions that matched our known data-generating distributions, or with
less certainty in the absence of empirical information or domain experience. In most cases,
p(y|θ) is not obtainable in closed analytic form and has to be numerically estimated with
methods including Monte Carlo sampling and Laplace approximation (Reid, 2015). Ad-
ditionally, p(y), sometimes known as the marginal evidence, tends to be unresolvable (Gelman
et al., 2013; McElreath, 2020). Thus, we take advantage of the proportionality relation-
ship based on (20),

p(θ|y) ∝ p(y|θ)p(θ) = p(y, θ) (21)

to estimate p(θ|y) and practically conduct inference.328

For Bayesian inference on state space models, we additionally need to account for
the transition and observation densities generalized in equations (17) and (18), which
influence the θ posterior. Estimation of the posterior of θ in state space model inference
must occur along with estimation of the posterior of x, whether in a joint or marginal
fashion, in a case such as ours where the transition and observation distributions are not
known. We opted for joint estimation. The joint posterior density of θ and x is notated
as p(θ, x|y). We arrive at an expression for p(θ, x|y) by substituting (17) and (18) into
(21):

p(θ, x|y) ∝ p(y, θ, x) (22)

= p(y|θ, x)p(θ, x) (23)

= p(y|θ, x)p(θ)p(x|θ) (24)

= p(θ)
∏
i∈N

p(yi|xi, θ)

T∏
t=1

p(xt|xt−1, θ) (25)

T denotes the final discretized integer time index of x. Since we set state space model329

∆t = 1.0 hour, our final time index matches total synthetic experiment hours and T330

can signify both. We also use T to represent the set of x state space model discretiza-331

tion indices not including the initial state at t = 0. We can then adopt a T ⊆ T to332

indicate the set of y observation time indices not including an initial observation at t =333

0, which is required in our VI procedure. The total number of x discretizations is N =334

T + 1 when including the t = 0 index. N = {0} ∪ T notates the full set of y indices.335

In stochastic VI on state space models, we optimize a parametric density q(θ, x)
to match the true joint posterior p(θ, x|y) as closely as possible. Per the probability chain
rule, q(θ, x) expands to,

q(θ, x) = q(x|θ)q(θ) (26)

The density functions we select for our marginalized q(θ) and q(x|θ) are known as our
variational families. As mentioned in section 2.3, we chose a mean-field logit-normal vari-
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ational family for q(θ) that assumed independent univariate distributions per θ such that

q(θ) = q(θ1, θ2, . . . , θP) =
P∏

j=1

qj(θj) (27)

where P is the total number of individual SBM θ and P = 14 for SCON-C and SCON-336

SS (Table S1). We chose a class of normalizing flow called a neural moving average flow337

in Ryder et al. (2021) for our q(x|θ) variational family, which we will describe subsequently338

in section 2.6.339

We can index individual representatives of our joint variational family by the prop-340

erties and hyperparameters of the distribution symbolized in aggregate by ϕ(θ,x) such341

that an instance of q(θ, x) is notated as q(θ, x;ϕ(θ,x)). q(θ, x;ϕ(θ,x)) can be decomposed342

into q(θ;ϕθ)q(x|θ;ϕx) since ϕ(θ,x) = (ϕθ, ϕx). ϕ are termed variational parameters, as343

they represent the distribution settings that can be varied and tuned to adjust the ap-344

proximation. For neural network models like flows, variational parameters would include345

the hidden neural network parameters and weights. A particular distribution can be re-346

ferred to by its variational parameter index in shorthand.347

Our VI framework seeks a set of variational parameters ϕ that minimizes discrep-
ancies between q(θ, x;ϕ(θ,x)) and p(θ, x|y), the approximate and true posteriors. One mea-
sure of distance between distributions customarily employed in statistics and machine
learning literature is called the Kullback-Leibler (KL) divergence, notated as DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)]
(Kullback & Leibler, 1951; Perez-Cruz, 2008; Joyce, 2011). Targeting the KL divergence
for minimization, our optimization objective can then be mathematically stated as,

q(θ, x;ϕ∗
(θ,x)) = argminq(θ,x;ϕ(θ,x))

(DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)]) (28)

where ϕ∗
(θ,x) indexes the set of variational parameters that corresponds to the idealized

global KL divergence minimum. After several omitted steps that can be referenced in
greater detail from Blei et al. (2017), we proceed from (28) to

DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)] = Eq(θ,x;ϕ(θ,x))[log q(θ, x;ϕ(θ,x))]− Eq(θ,x;ϕ(θ,x))[log p(y|θ, x)]
(29)

= Eq(θ,x;ϕ(θ,x))[log q(θ, x;ϕ(θ,x))]− Eq(θ,x;ϕ(θ,x))[log p(y, θ, x)] + log p(y) (30)

where the expectations E subscripted with q(θ, x;ϕ(θ,x)) are taken with respect to the348

density q(θ, x;ϕ(θ,x)).349

Reviewing the notion that p(y) and in turn, the log marginal evidence, are typi-
cally unavailable (Christensen et al., 2010), we then rely on a reduced and rearranged
expression that constitutes the ELBO function, notated as L,

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))[log p(y, θ, x)]− Eq(θ,x;ϕ(θ,x))[log q(θ, x;ϕ(θ,x))] (31)

= Eq(θ,x;ϕ(θ,x))[log p(y, θ, x)− log q(θ, x;ϕ(θ,x))] (32)

= Eq(θ,x;ϕ(θ,x)) ⟨log p(y, θ, x)− log[q(x|θ;ϕx)q(θ;ϕθ)]⟩ (33)

= Eq(θ,x;ϕ(θ,x)) ⟨log p(y, θ, x)− log q(x|θ;ϕx)− log q(θ;ϕθ)⟩ (34)

Substituting in (25) for p(y, θ, x) results in

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))⟨log
[
p(θ)

∏
i∈N

p(yi|xi, θ)

T∏
t=1

p(xt|xt−1, θ)

]
− log q(x|θ;ϕx)− log q(θ;ϕθ)⟩ (35)

which, recalling that the set of total y indices N = {0} ∪ T, expands into

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))⟨log p(θ) + log p(y0|x0, θ) +
∑
i∈T

log p(yi|xi, θ) +

T∑
t=1

log p(xt|xt−1, θ)

− log q(x|θ;ϕx)− log q(θ;ϕθ)⟩ (36)
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We will decompose the marginal variational log-density of x, log q(x|θ;ϕx), in more gran-350

ular detail when we describe the architecture of the neural moving average flow in sec-351

tion 2.6.352

The ELBO function is called as such because it is the lower bound of the log marginal
evidence:

log p(y) = L[ϕ(θ,x)] +DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)] (37)

≥ L[ϕ(θ,x)] (38)

Maximizing L[ϕ(θ,x)], or minimizing the negative ELBO −L, as we need to do in ma-353

chine learning libraries like PyTorch that implement gradient descent rather than ascent,354

is commensurate to minimizing DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)]. Hence, L[ϕ(θ,x)] is our op-355

timization objective function.356

For pithier description of the ELBO gradient, ∇L, used to update ϕ(θ,x) via au-
tomatic differentiation, we set log p(y, θ, x)−log q(θ, x;ϕ(θ,x)) in (32) equal to R(θ, x, y, ϕ),
where R is a log-density ratio function. This reduces the ELBO equation to

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))

[
R(θ, x, y, ϕ(θ,x))

]
(39)

and the ELBO gradient is

∇L[ϕ(θ,x)] = ∇ϕ

〈
Eq(θ,x;ϕ(θ,x))

[
R(θ, x, y, ϕ(θ,x))

]〉
(40)

= ∇ϕ

[∫
θ

∫
x

q(θ, x;ϕ(θ,x))R(θ, x, y, ϕ(θ,x))dxdθ

]
(41)

=

∫
θ

∫
x

∇ϕ

[
q(θ, x;ϕ(θ,x))R(θ, x, y, ϕ(θ,x))

]
dxdθ (42)

which decomposes to

∇L[ϕ(θ,x))] =

∫
θ

∫
x

q(θ, x;ϕ(θ,x))∇ϕ

[
R(θ, x, y, ϕ(θ,x))

]
dxdθ

+

∫
θ

∫
x

R(θ, x, y, ϕ(θ,x))∇ϕ

[
q(θ, x;ϕ(θ,x))

]
dxdθ (43)

Note that the gradients ∇ϕ are taken with respect to the variational parameters. This357

presents a complication, as examining the second term of (43), we are left with the sit-358

uation that ∇ϕ

[
q(θ, x;ϕ(θ,x))

]
is by and large unavailable, as q can be sampled from, but359

is usually not analytically differentiable. Our joint variational family q is no exception360

to that pattern; our marginal mean-field q(θ;ϕθ) has the straightforward analytic form361

given in (27), but use of the neural moving average flow as the variational family for q(x|θ;ϕx)362

precludes the overall joint density q(θ, x;ϕ(θ,x)) from having an orderly closed form.363

To ultimately compute the gradient of an expectation as in (40) in numerical fash-364

ion, we thereby turn to the reparameterization trick set forth in Salimans and Knowles365

(2013) and Kingma and Welling (2014). The reparameterization trick involves setting366

(θ, x) as an output of an invertible, deterministic, and differentiable function g(z, ϕ(θ,x)),367

where z is a random vector sampled from some fixed density q(z). This enables us to tractably368

take a gradient of a simpler fixed distribution whose probability density function is eas-369

ier to differentiate and not dependent on the variational parameters ϕ (Ruiz et al., 2016).370

In our case, z elements are sampled from standard normal distributions and un-
dergo invertible transformations to proceed to x. θ is still directly sampled from its mean-
field logit-normal family described in section 2.5 as part of the operations of g. Hence,
L can be estimated with each VI training iteration with Monte Carlo sampling of z and
θ entries starting with the steps

z(s) ∼ N (0, IN ) (44)

θ(s), x(s) = g(z(s), ϕ(θ,x)) (45)
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where IN is an identity matrix with number of diagonal entries matching the total x dis-
cretization indices N . The superscript (s) indexes an individual draw from a distribu-
tion. We can then re-frame (40) from an analytically intractable gradient of an expec-
tation to a numerically assessable expectation of a gradient with

∇L[ϕ(θ,x)] = ∇ϕ

〈
Eq(z)

[
R(θ, x, y, ϕ(θ,x))

]〉
(46)

= Eq(z)

[
∇ϕ

〈
R(θ, x, y, ϕ(θ,x))

〉]
(47)

≈ 1

S
S∑

s=1

∇ϕ

〈
R(θ(s), x(s), y, ϕ(θ,x))

〉
(48)

̂∇L[ϕ(θ,x)] =
1

S
S∑

s=1

∇ϕ

〈
R

[
g(z(s), ϕ(θ,x)), y, ϕ(θ,x))

]〉
(49)

S denotes the total number of independent θ and z samples drawn per training itera-371

tion. ̂∇L[ϕ(θ,x)] specifies the Monte Carlo estimate of ∇L[ϕ(θ,x)].372

2.6 Masked neural moving average flow architecture373

Delineating a normalizing flow more formally than in section 1, a general flow is
a chain of bijections, or invertible transformation functions mapping an object in a set
one-to-one to an object in another set. Flows can be decomposed into

x = g(z) = gM ◦ gM−1 ◦ · · · ◦ gm ◦ · · · ◦ g1(z) (50)

where ◦ notates function composition operations and M marks the total number of bi-374

jections. In the generative direction, our flow takes us from a random object z to a ran-375

dom object x corresponding to a set of approximated SCON state trajectories.376

A generative flow is constructed such that computation of log q(x|θ;ϕx) in (36) is
available to facilitate the optimization of q(x|θ;ϕx). The log-density of x is available through
the change of variables formula:

log q(x) =

T∑
t=1

φ(zt)− log |det J | (51)

log q(x) =

T∑
t=1

φ(zt)− log

M∏
m=1

|det Jm| (52)

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

log |det Jm| (53)

where J is the Jacobian matrix of the overall transformation and Jm is the Jacobian of377

bijection gm with respect to the intermediate transformed variable gm−1 ◦gm−2 ◦ · · · ◦378

g1(z). We use φ(zt) to indicate the log-density of each element of z, zt. We establish that379

z here is equivalent to the z introduced in section 2.5, so each φ(zt) is then a unit stan-380

dard normal log-density in our framework. We notate the density function of z with q(z).381

Since q(z) is the starting distribution before transformations are layered, it is also termed382

the base distribution.383

The particular flow we implemented as the marginal variational family for q(x|θ)
was patterned after the original neural moving average flow introduced in Ryder et al.
(2021). Neural moving average flows include affine bijections (Dinh et al., 2015; Kingma
et al., 2016; Dinh et al., 2017; Papamakarios et al., 2017) among the functions consti-
tuting g in which an xout is transformed from an xin in the general form of

xout = µ+ σ ⊙ xin (54)
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where ⊙ represents elementwise multiplication to denote that µ, σ, and xin can be ma-384

trices and vectors in addition to scalars, though our explicit situation involves scalars.385

µ and σ are respectively known as shift and scale values of the bijection and it is required386

that σ ∈ R+. Cumulative µ and σ values of a flow are usually implemented as trained387

outputs of a neural network and are super- and subscripted to identify the transforma-388

tion layer and input elements they correspond to. They are notated as such by conven-389

tion and not to be confused with the similarly notated target logit-normal mean and stan-390

dard deviation parameters in section 2.3.391

These linear affine transformations are basic in structure and consequently are in-392

dividually not so expressive, or able to flexibly transition a base distribution into sub-393

stantially different distributions of varying complexity. However, when layered repeat-394

edly and stacked, their cumulative expressivity increases and with sufficient layers, com-395

posite affine functions can come to embody any distribution that is log-concave and book-396

ended by declining density tails (Lee et al., 2021), which represents a large swath of prob-397

ability distributions.398

Neural moving average flows are specifically distinguished from other flows contain-399

ing affine layers through their execution of affine bijections with 1-dimensional convo-400

lutional neural networks (CNNs). To apply 1-dimensional CNNs rather than 2-dimensional401

CNNs, we note that for systems with D > 1, like SCON family instances, we must be-402

gin with z in a 1-dimensional “melted” form that is D·T elements in length before re-403

shaping the final transformed x to a D × T matrix matching the SDE solution struc-404

ture demonstrated in (2) following the conclusion of g. Thus, in equations (44) and (53),405

we replace T with D · T in our implementation.406

Through masking, in which inputs to the convolution patch are zeroed out through
multiplication by weights, the flow is imbued with an autoregression property in which
the σi and µi values producing an ith element of an output vector x does not depend
and convolve on any element zj≥i in the base input vector. This autoregression is crit-

ical for the intent of arranging the computation of
∑M

m=1 log |det Jm| in (53) to be man-
ageable. The autoregression ensures that J is a diagonal matrix whose non-zero elements
are the σ scale parameters underlying the overall transformation, which simplifies cal-
culation of detJ and log q(x) to

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

log σm
t (55)

where σm
t is the shift parameter of the bijection producing the tth term of the mth affine407

layer output of length T .408

Figure 3b portrays a schematic of the autoregressive convolutions and affine bijec-409

tions used in our specific neural moving average flow implementation. The operations410

occur within residual blocks, component pieces of deep learning networks consisting of411

organizations of layers oriented toward the mitigation of training and approximation er-412

ror that can otherwise snowball with greater network depth. Residual blocks do this with413

the use of skip connections, which preserve and carry over output from previous layers414

to serve as input to subsequent layers and in doing so prevent noisy degradation of in-415

formation cascading through the network (He et al., 2016).416

In each residual block, we perform two masked 1-dimensional convolutions, Con-
volution A and Convolution B, that each have a kernel length of 3 elements and a stride
length of 1. To enshrine autoregressiveness of the flow, Convolution A applies a kernel
masked as [1, 0, 0] that outputs a shift and scale value pair. The Convolution A oper-
ation and associated affine bijection can be generally expressed as

(µi, σi) = fA
i (xin

i−1) (56)

xout
i = µi + σi · xin

i (57)
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(b)

(a)

Figure 3. Architecture blueprint of the neural moving average flow used as the marginal vari-

ational family for q(x|θ). (a) outlines the sequence of layers and operations. The affine block

is a residual block in which the autoregressive convolution operations that distinguish neural

moving average flows occur. (b) illustrates the two bijections, Convolution A and Convolution

B, that link three hypothetical layers xin, xmid, and xout together in each instance of an affine

layer in our particular flow. Convolution A applies a [1, 0, 0] mask, while Convolution B applies a

[1, 1, 0] mask. The example affine µ and σ parameters are indexed by superscripts and subscripts

respectively identifying the layer and element they are associated with.
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where µi, σi, x
in
i , and xout

i are scalar elements of vectors and fA
i is the Convolution A

operation. The subsequent Convolution B involves a single stride kernel masked as [1, 1, 0]
and it can be expressed together with its associated bijection as

(µi, σi) = fB
i (xin

i−1, x
in
i ) (58)

xout
i = µi + σi · xin

i (59)

Combined, the two convolutions in sequence have a total receptive field length of 2.417

To be able to produce the µ and σ parameters associated with the affine transfor-418

mation of vector endpoint elements under autoregressive alignment, both convolutions419

require zero padding, in which zero elements are added to either end of the vector. As420

can be gleaned from Figure 3b, without zero padding, the kernels producing (µmid
1 , σmid

1 )421

and (µout
1 , σout

1 ) would lack 1 element to convolve on, and the kernels sourcing (µmid
N , σmid

N )422

and (µout
N , σout

N ) would by overhang their vectors by 1. A zero pad of length 1 was thereby423

sufficient for our purposes.424

Simplified from our actual implementation and not pictured in Figure 3b is our ex-425

pansion of input into many channels, which are duplicates of the input vector that are426

stacked on top of each other in a matrix. At each convolution stage, the same kernel is427

applied in parallel across all the channels. Enlarging channel depth broadens the space428

of neural network weight values constituting fA
i and fB

i that can be explored per train-429

ing iteration. We set the number of channels at 96 for both convolutions and did not ex-430

periment further with channel depth. Also not pictured in Figure 3b, but implied in Fig-431

ure 3a, is the injection of auxiliary features extracted from y and observation indices N432

in the form of vectors stacked on top of the input channels to inform training of the neu-433

ral network weights associated with the shift and scale values. Further elaboration on434

the incorporation of auxiliary information is available in the supplement of Ryder et al.435

(2021).436

In the overall flow procedure, the convolutions and affine bijections in the affine437

residual block are linked with other transformations that we organize into repeatable sets438

of layers. The order of transformations for each layer set is outlined in Figure 3a. Pre-439

ceding the affine blocks are order-reversing permutations, in which element order of a440

vector input is flipped such that a vector [xin
1 , xin

2 , ..., xin
N ] becomes [xout

1 , xout
2 , ..., xout

N ] =441

[xin
N , xin

N−1, ..., x
in
1 ]. Order-reversing permutations are a method of extending the expres-442

sivity and stability of a flow by enabling more complex dependency structures while pre-443

serving flow autoregression (Papamakarios et al., 2021). We found that adding order re-444

versals allowed us to modestly boost our ELBO learning rates. The permutations can445

be seamlessly interspersed between other transformations since their absolute Jacobian446

determinant is valued at 1, so they do not affect the computation of log q(x).447

Differing from the neural moving average flow of Ryder et al. (2021), our flow fol-448

lows affine blocks with batch renormalization transformations. Batch renormalization449

is a simple extension of batch normalization, which is a means of normalizing and reg-450

ularizing our variational samples such that our optimization is less influenced by ran-451

dom fluctuations in neural network weights and sample characteristics from one train-452

ing iteration to the next (Ioffe & Szegedy, 2015). Similar in intent but not operation to453

permutations, batch normalization and renormalization are applied to bolster algorithm454

stability and flexibility with increasing layer depth. They empirically allow VI algorithms455

to tolerate higher learning rates (Bjorck et al., 2018), poor initialization of variational456

parameters ϕ (Zhu et al., 2020), and erratic base distribution z(s) draws.457

Batch normalization and renormalization overlap in the following steps that com-
pute a batch mean µS and batch standard deviation σS from input xin samples, not to
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be confused with the affine bijection and logit-normal µ and σ:

µS =
1

S
S∑

s=1

xin
s (60)

σS =

√√√√ε+
1

S
S∑

s=1

(xin
s − µS)2 (61)

where ε is a small constant added for stability. µS and σS are involved in computation458

of the optimization objective—again, L[ϕ(θ,x)] for our purposes—during the model train-459

ing phase. They also update a lagging running average µR and running mean σR that460

are less sensitive to change. µR and σR are used after training of the model—the joint461

variational family q(θ, x;ϕ(θ,x)) in this setting—has been halted to estimate the objec-462

tive metric at the testing stage.463

In the testing phase, batch renormalization and normalization are equivalent in trans-
forming input to output:

xmid =
xin − µR

σR
(62)

xout = γ · xmid +Υ (63)

The collection of γm
t and Υm

t parameters in each flow layer set are learned neural net-
work outputs. Batch renormalization diverges from batch normalization during train-
ing with the steps

r =
σS
σR

(64)

d =
µS − µR

σR
(65)

xmid =
xin − µS

σS
· r + d (66)

xout = γ · xmid +Υ (67)

where r and d are variable correction factors. r and d are intended to limit the diver-464

gence between batch and running sample characteristics. r is clipped between the inter-465

val [1/rmax, rmax], where rmax is gradually increased to 3 over the course of inference,466

and d is clipped between the interval [−dmax, dmax], where dmax is gradually increased467

to 5. These intervals were established based on guidelines from previous empirical work468

(Ioffe, 2017). Batch normalization is a special case of batch renormalization where r =469

1 and d = 0.470

Batch renormalization’s changes more tightly correlate the batch and running sam-471

ple characteristics and have been documented to minimize discrepancy between train and472

test objectives (Ioffe, 2017). We observed this with our ELBO results, where consistent473

gaps remained between the train and test L[ϕ(θ,x)] until we swapped batch normaliza-474

tion for renormalization. Batch renormalization also improves training on low batch sizes475

(Ioffe, 2017; Summers & Dinneen, 2020), and in our position where variational path sam-476

ples were limited by GPU video memory constraints, renormalization was helpful for de-477

creasing the total number of training iterations we needed for algorithm convergence.478

With batch (re)normalization layers, log q(x) accrues log determinant Jacobian sum-
mation terms corresponding to those transformations and develops from (55) to become,
in the training phase,

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

[
log σm

t − log rmt − log γm
t + log σm

S,t

]
(68)

–18–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

or in the testing phase,

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

[
log σm

t − log γm
t + log σm

R,t

]
(69)

where we now take M to mark the total number of layer sets rather than layers as we
did before in (55). This assumes that each layer set always includes 1 single affine block
and 1 batch renormalization layer. Substituting (68) or (69) into (36) for log q(x|θ;ϕx)
leads respectively to our fully decomposed train or test L[ϕ(θ,x)] calculation unless an
optional single softplus transformation is used to ensure constraint of flow output to R≥0.
In that case, the resulting train log q(x) is

log q(x) =

T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

[
log σm

t − log rmt − log γm
t + log σm

S,t

]
−

T∑
t=1

log(−e−xt + 1) (70)

where x is our terminally transformed random variable following softplus constraint. Set-
ting

λt = φ(zt)− log(−e−xt + 1)−
M∑

m=1

(
log σm

t − log rmt − log γm
t + log σm

S,t

)
(71)

log q(x) =

T∑
t=1

λt (72)

our fully decomposed train L[ϕ(θ,x)] calculation that we use in each iteration of VI op-
timization (Algorithm 1) then consolidates from (36) into

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))⟨log p(θ) + log p(y0|x0, θ)− log q(θ;ϕθ)

+
∑
i∈T

log p(yi|xi, θ) +

T∑
t=1

[log p(xt|xt−1, θ)− λt]⟩ (73)

with softplus flow termination. The test ELBO equation is equivalent except for use of479

a different λt assignment that lacks the log rmt term and swaps σm
S,t for σ

m
R,t.480

We note that it is not required for the total permutation layers, affine blocks, and481

batch renormalization layers constituting a neural moving average flow architecture to482

match in count; we can choose to omit certain layers in a layer set. To slightly reduce483

the neural network size, we would frequently use 1 less batch renormalization layer than484

total affine blocks or permutation layers, omitting batch renormalization in the first layer485

set since we empirically observed little qualitative difference in visual fit quality between486

running with 3, 4, or 5 batch renormalizations. If the numbers of affine blocks and batch487

renormalization layers do not match, then the log Jacobian determinant summations in488

(68) to (71) need to be adjusted accordingly.489

It is apparent that each layer set of our neural moving average flow corresponds490

to a matrix of hidden parameters, including affine and batch renormalization parame-491

ters, of dimensions [T, h], where h is the count of hidden parameters per layer set. Thus,492

when conditioning on long, dense T data that is complex in such a manner that would493

require many layer sets for flow representation, we note that a different choice of marginal494

variational family for q(x|θ) aside from the neural moving average flow may be appro-495

priate for minimizing computational expense.496
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Algorithm 1: Synopsis of the operations occuring in each iteration of our soil
biogeochemical state space model VI framework

Data: Time series matrix y of soil pool state and other observations, including
CO2 respiration measurements

Result: q(θ, x;ϕ(θ,x)) corresponding to the L[ϕ(θ,x)] value at the stoppage of
stochastic gradient optimization

Define q(θ;ϕθ) and q(x|θ;ϕx);
Initialize (ϕθ, ϕx);
n← total desired training iterations;
for i← 1 to n do

for s← 1 to S do
Draw θ(s) ∼ q(θ;ϕθ);

Draw x(s) ∼ q(x|θ;ϕx) transformed from z(s);

end
Compute L[ϕ(θ,x)] (or −L[ϕ(θ,x)] for gradient descent) as per (73);

Compute the gradient ̂∇L[ϕ(θ,x)] from (49) with automatic differentiation;
Update variational parameters ϕ(θ,x) based on the gradient;

end

2.7 Kalman smoother validation497

When a state space model is linear in drift and its diffusion is stationary and ad-498

ditive, as is the state space model approximation of SCON-C, the posterior density p(x|y)499

can be determined analytically and precisely in closed form with the Kalman smoother500

algorithm, provided the algorithm is fed the true θ and observation noise (Kalman, 1960;501

Rauch et al., 1965). Flow VI in contrast can only numerically estimate p(x|y) through502

a variational approximation, but has the critical advantage of being capable of function-503

ing without exact knowledge of θ given uninformed prior distributions and is able to es-504

timate the joint density p(x, θ|y) via variational approximations. Thus, comparing a Kalman-505

derived true p(x|y) to a post-optimization q(x|θ;ϕx) can be a revealing means of bench-506

marking flow approximation performance and accuracy before applying an architecture507

with confidence to approximation, optimization, and θ inference of models like SCON-508

SS that cannot be resolved by the smoother.509

The Kalman smoother procedure is a two part process consisting of a forward pass510

followed by a backward pass. The forward pass computes a “filtering” posterior p(xt|y0:t),511

which notates the posterior of xt given observations up to the time indexed by t, going512

forward in time from t = {0, . . . , T}. The backward pass computes a “smoothing” pos-513

terior p(xt|y), which notates the posterior of xt given all observations, going backward514

in time from t = {T, . . . , 0}. Reconciling the “filtering” and “smoothing” posteriors pro-515

duces the true p(x|y). A comprehensive explication of Kalman smoothing is available516

in Särkkä (2013).517

2.8 Flow neural network training tuning choices518

We settled on using 5 layer sets of permutation, affine, and batch renormalization519

layers for our neural moving average flow. This offered qualitatively superior fits over520

flow architectures with lower layer set counts. For inferences of duration T = 5000 with521

∆t = 1.0 with 5 layers, maximum training batch size S at 16 GB of VRAM was 31,522

so we set S = 31. For T = 1000, we used S = 150, though use of smaller S also ap-523

peared functional. For T = 5000 inferences we used 120000 non-warmup ELBO train-524
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ing iterations. For T = 1000 inferences we used 60000 non-warmup ELBO training it-525

erations.526

With respect to gradient optimizers including AdaMax (Kingma & Ba, 2015), which527

was the particular optimizer we selected to carry out gradient descent, the learning rate528

is a hyperparameter that scales the objective gradient and in doing so regulates the ex-529

tent to which neural network weights can updated with each training iteration. The learn-530

ing rate can be adjusted over the course of training based on a schedule. It is frequently531

decayed over the course of training to promote convergence of our objective function to-532

ward a maximum (for gradient ascent) or minimum (for gradient descent) ((You et al.,533

2019)). We chose a step decline schedule for learning rate decay. For our T = 5000 in-534

ferences, we started with a pre-decay ELBO learning rate of 1 × 10−2 and decayed it535

by a factor of 0.6 every 10000 iterations. For our T = 1000 inferences, we started with536

a pre-decay learning rate of 4×10−3 and decayed it by a factor of 0.6 every 5000 iter-537

ations.538

We employed training warmup, in which we began optimization with a phase of low539

learning rate at 1×10−6 before increasing the rate to its initial pre-decay levels. As has540

been demonstrated previously (Goyal et al., 2017), we found warmup allowed us to use541

higher pre-decay learning rates, experience more stable ELBO loss trajectories, and con-542

verge to lower average ELBO values over training (Figure S1). We found 5000 warmup543

iterations to be sufficient for those purposes.544

2.9 Software and hardware545

With respect to the computational software and hardware powering the inference546

operations, our DGP and inference code was developed for a Python 3.9.7 environment547

distributed by Anaconda (Anaconda Software Distribution, 2020) and used the Numpy548

1.20.3 (Harris et al., 2020) and PyTorch 1.10.2 (Paszke et al., 2019) software libraries.549

PyTorch 1.10.2 was compiled with the Nvidia CUDA 10.2 toolkit. The inferences were550

run on one Nvidia Tesla V100 GPU at a time updated to CUDA version 11.4.0 with a551

maximum of 16 GB of video random access memory and two Intel Xeon Gold 6148 CPU552

cores clocked at 2.40 GHz on the University of California, Irvine HPC3 cluster. Our flow553

VI framework code modules, data-generating notebooks, and synthetic data are avail-554

able via the address https://doi.org/10.5281/zenodo.6969782.555

The deterministic CON p(θ|y) posteriors compared with flow VI q(θ;ϕθ) in Fig-556

ure 5 were estimated using Stan’s NUTS algorithm, which is an extension of the Hamil-557

tonian Monte Carlo inference algorithm (Hoffman & Gelman, 2014). Application of Hamil-558

tonian Monte Carlo for data assimilation and inference of SBMs is further described in559

Xie et al. (2020) and intuition behind the algorithm can be found in Betancourt (2017).560

The Stan inference was conducted on a 2017 Intel MacBook Pro in an R 4.0.4 environ-561

ment using Stan 2.29.1 (Carpenter et al., 2017) through the CmdStanR interface (Gabry562

& Češnovar, 2021). The NUTS simulation ran with 2 chains of 1000 warmup iterations563

and 5000 sampling iterations each. In our experience, 1000 warmup iterations were suf-564

ficient for locating the bulk of the posterior density.565

3 Results566

We generated synthetic y of various lengths, dimensions (i.e. whether CO2 obser-567

vations were included in addition to state information), and regular observation densi-568

ties (i.e. whether we observed measurements from our SCON family data generating pro-569

cesses every 1 or 5 hours). We explored the validity of our state space model VI approach570

for data assimilation and posterior identification of model θ with inferences conditioned571

on those y. Below, our results suggest the neural moving average flow framework was572

functional for approximating the SCON family of SDE systems as state space models,573
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fitting y, constraining posteriors, and recovering some true θ values. We also demonstrate574

subsequently that stochastic gradient optimization in our case was more stable, efficient,575

and capable at θ identification than an MCMC procedure involving deterministic ODE576

models adapted from Xie et al. (2020) conditioned on the same y.577

3.1 Flow-approximated SCON-C converges to fit synthetic data578

Following optimization, an SCON-C state space model approximated by our neu-579

ral moving average flow implementation reasonably assimilated a T = 5000 hour y pro-580

duced by an SCON-C data-generating process that included CO2 observations (Figure581

4a). The relatively flat −L[ϕ(θ,x)] trajectory steadily hovering between −1550 and −1600582

in the latter half of variational training iterations indicates that our flow VI algorithm583

converged to a local ELBO minimum (Figure S2).584

The mean of the marginal posterior density of latent states q(x|θ;ϕx) was estimated585

from 250 x samples drawn from the joint variational density after ELBO training. The586

mean latent SOC, DOC, and MBC paths and state-derived CO2 measurements corre-587

sponding to the SCON-C flow sit centrally between the y data points and observation588

noise across the entire time series (Figure 4a). The latent means are able to adhere to589

many of the sharp peaks and valleys in the dynamics of the data and the flow CO2 mean590

was able to reproduce the rapid oscillatory behavior of the observed CO2 time series.591

Upon closer qualitative inspection and comparison to the true latent distribution592

computed by a Kalman smoother (Figure 4b), we note the presence of visual discrep-593

ancies between the Kalman and flow means and 95% q(x) diffusion distribution inter-594

vals. Firstly, the extent of SOC diffusion noise is substantially underestimated by the595

flow, which is line with documentation in literature that a mean-field VI approach tends596

to underestimate posterior uncertainty compared to more complex full-rank approaches597

(Kucukelbir et al., 2017). For the other two states, DOC and MBC, the extent of dif-598

fusion noise is more consistent to that which is observed in the Kalman output, but the599

flow DOC and MBC densities and means appear noisier and more uneven than the Kalman600

means.601

Still, the flow encouragingly is generally congruous with the true Kalman solution602

in dynamics. The flow means fall entirely within the bounds of the 95% Kalman diffu-603

sion interval from t = 0 to 500 as can be seen in Figure 4b and we observed for this par-604

ticular optimization that they almost always remain within those Kalman diffusion bounds605

through the rest of the time series. Also, we see that the CO2 mean and distribution cal-606

culated from the 250 SCON-C state space model x draws closely matches their Kalman607

counterparts. The ability of the flow to align with the Kalman smoother in latent state608

densities improves our confidence in the ability of the neural moving average flow to ap-609

proximate systems that are non-linear in diffusion, like SCON-SS.610

3.2 SCON-C flow VI marginal θ posteriors indicate appropriate opti-611

mization612

Beyond fitting data, we needed to ascertain that proper posterior optimization was613

occurring for confidence in inference algorithm function. In our setting, we would expect614

our posterior densities to at least always be as informed and certain about θ values as615

our prior densities, not less. With a mean-field logit-normal variational family for q(θ;ϕθ),616

evidence of suitable optimization would come in the form of marginal posterior densi-617

ties being narrower than priors to indicate greater certainty after the introduction of in-618

formation from y along with posterior means separating from prior means and approach-619

ing the true θ used by the data-generating process.620

Figure 5 indicates that valid posterior optimization indeed occurred in our SCON-621

C state space model inference to support the notion that our flow VI framework was func-622
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(b)

(a)

Figure 4. Marginal posterior q(x|θ;ϕx) soil pool state means (orange lines) of the SCON-

C state space model approximated by the neural moving average flow following VI optimiza-

tion. The means are estimated from 250 x samples drawn from the optimized joint den-

sity q(θ, x;ϕ(θ,x)). The states are in units of mgCg−1 soil. In (a), the trajectories of flow-

approximated state means are compared to the synthetic observations an SCON-C T = 5000

hour y backgrounded by the 95% interval of the observation noise (blue dots over blue shading).

In (b), we zoom into a subset of the above plot from t = 0 to 500 hour and additionally compare

the state means and 95% interval of the diffusion distribution of the optimized model to the true

posterior means and 95% diffusion noise computed by a Kalman smoother with knowledge of the

true θ values.
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Figure 5. SCON-C state space model marginal q(θ;ϕθ) posterior densities following flow VI

optimization (orange) compared to mean-field prior p(θ) densities (blue) and non-parametric

CON ODE marginal p(θ|y) posterior densities estimated with Stan’s NUTS algorithm (green).

Flow VI and NUTS were conditioned on the same T = 5000 hour y generated by an SCON-C

SDE. The true θ values sampled during data generation are marked by vertical dashed gray lines.

Being a deterministic ODE system, CON does not have β diffusion θ, so subplots portraying the

marginal q(θ;ϕθ) densities for the SCON-C state space model cS , cD, and cM θ were not included

in this figure due to a lack of comparison.
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tional. Almost all the marginal posterior densities narrowed compared to the priors with623

the information learned from y by the algorithm. Moreover, many of the marginal q(θ;ϕθ)624

means drifted closer to the true θ, including the means of uM , aSD, and kS, ref.625

We contrasted the flow VI parametric q(θ;ϕθ) posterior densities to the non-parametric626

p(θ|y) posterior densities estimated with an SBM inference framework conditioned on627

the same T = 5000 SCON-C y that was previously applied in Xie et al. (2020). This prior628

framework involves Stan’s NUTS algorithm and can only infer θ of deterministic mod-629

els, so the CON system that the SCON family was parameterized from served as the ba-630

sis for inference in this approach. With the flexibility and stability afforded by the abil-631

ity of stochastic optimization to adjust for poor initial condition proposals, noisy state632

path fluctuations, and outlier observations, the flow VI framework expectedly outper-633

formed the deterministic NUTS workflow. The flow VI marginal q(θ;ϕθ) densities were634

all-around better informed and identified, exemplified by the subplots corresponding to635

the uM , aSD, aM , kS, ref, kD, ref, EaS , and EaM θ (Figure 5). Moreover, some NUTS pos-636

terior densities, including those corresponding to the aMSC , aM , and EaS θ, consolidated637

near their lower or upper support bounds, which points to the deterministic model in-638

ference method compensating for its lack of versatility with more extreme θ proposals.639

Scrutiny of the posterior for the transfer fraction parameter aMSC brings the is-640

sue of θ identifiability limitations to our attention. We see that the SCON-C flow VI marginal641

aMSC posterior density barely budged from the aMSC p(θ) density post-optimization (Fig-642

ure 5). For good posterior identifiability, the aMSC posterior should both narrow sub-643

stantially to signal reduced uncertainty and shift its density peak toward the true aMSC644

value.645

3.3 Flow VI can effectively assimilate both full and reduced SCON-SS646

state space approximations647

After visually demonstrating the ability of the flow VI framework to optimize q(θ, x;ϕ(θ,x))648

through the fitting of the approximated SCON-C state space model to synthetic SCON-649

C y and the informing and identification of some marginal q(θ;ϕθ) densities, we proceeded650

to test if the flow VI approach could similarly function with a moderately more complex651

model in SCON-SS that is non-linear in diffusion.652

Reviewing the fact that the SCON-SS state space model diffusion is not station-653

ary or additive, it was no longer possible for us to validate SCON-SS q(x|θ;ϕx) estimated654

from post-optimization x samples against a true p(x|y) determined by a Kalman smoother.655

Nonetheless, we observed that flow VI was able to optimize q(θ, x;ϕ(θ,x)) adequately enough656

to fit the approximated SCON-SS state space model q(x|θ;ϕx) means to T = 5000 y gen-657

erated by an SCON-SS SDE. As was the case for the SCON-C flow, the mean latent SOC,658

DOC, and MBC trajectories of the trained SCON-SS flow traced a central route through659

the observed state values and diffusion noise (Figure S3). The trajectories were able to660

follow the peaks and valleys of the state dynamics recorded in y, and the flow CO2 mean661

derived from the sampled states tightly replicated the y CO2 oscillations.662

SCON-SS q(θ;ϕθ) posterior densities were consistent with proper optimization from663

information learned in y. Juxtaposed with priors p(θ), marginal q(θ;ϕθ) densities mostly664

narrowed and did not move drastically away from their corresponding true θ to inhibit665

identifiability (Figure S4). There were clear exceptions for the state-scaling diffusion θ666

posteriors due to reasonable flow neural network approximation error that prompts an667

overestimate of diffusion noise and, again, for the aMSC posterior. The modest shift of668

some θ posterior means away from the true θ is counterbalanced by movement of other669

related θ, like in the circumstance of the EaD posterior mean being counterbalanced by670

EaM to satisfy equation (10).671
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Figure 6. Optimized marginal posterior q(θ;ϕθ) densities (orange) of a reduced SCON-SS

model with all but the ki∈S,D,M, ref decay and state-scaling diffusion θ fixed compared to mean-

field priors p(θ) (blue).

For one more test to corroborate proper functioning of our flow VI framework, we672

established a reduced SCON-SS model with all θ fixed in value except for the ki∈S,D,M, ref673

linear decay and state-scaling β diffusion parameters. Mirroring above procedures, a syn-674

thetic T = 5000 y was produced by a reduced SCON-SS data-generating process to con-675

dition an SCON-SS state space model optimization. For an appropriately behaving in-676

ference algorithm, we would expect that removing degrees of freedom should bolster θ677

identifiability.678

We verified that identifiability was indeed clarified and improved in the remaining679

drift θ (Figure 6). The marginal kS, ref q(θ;ϕθ) posterior density was tightly constrained680

right about the true kS, ref value. The kD, ref and kM, ref posterior means did not align681

exactly with their true θ, but unambiguously offset each other in a manner that plainly682

fulfilled (3) and (10).683

We were unable to fix the state-scaling diffusion θ without breaking the flow VI frame-684

work, as it became apparent that the algorithm needed to maintain the ability to over-685

estimate diffusion noise to work. This makes intuitive sense as the flow neural network686

approximation process will always come with some amount of noisy approximation er-687

ror that adds to the base diffusion of the unapproximated system. The algorithm can688

no longer work if the flow diffusion noise needs to be fixed at about the same level as it689

is in the unapproximated system, as it leaves no room for the approximation error to over-690

flow into. So, with the diffusion θ left unfixed during VI training, the algorithm once more691

overestimated their q(θ;ϕθ) means, but this is not a cause for concern since the discrep-692

ancy can be explained by neural network approximation error.693

3.4 Increasing information in y alters SCON posterior certainty and iden-694

tifiability695

The preceding results all involved y that had CO2 respiration observations included.696

Inference conditioned on just state observations is also possible and in our experience697

was able to fit the data well, but it was much less effective for constraining posteriors698

and identifying θ (Figure S5). Without CO2 information, marginal q(θ;ϕθ) posterior den-699
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sities tended to be wider and less informed and density means were frequently farther700

away from true θ, as exemplified by panels corresponding to the aSD and EaS SCON-701

C θ in Figure S5.702

We separately observed that increasing the amount of information in y by length-703

ening duration T of the time series greatly benefitted posterior identifiability (Figure S6).704

Alternatively, θ identifiability was boosted without elongating T by bolstering observa-705

tion density. Individually, the two actions trade off between improvements. In compar-706

ison to densifying observations across T = 1000 such that the set of observation indices707

N matches the set of state space model discretization indices N , extending T to 5000708

more tightly constrained q(θ;ϕθ) posterior densities for all θ and concentrated aSD, kS, ref,709

kD, ref, EaS , and EaM posterior means closer to the true θ.710

However, increasing observation density for T = 1000 data had the benefit of fur-711

ther constraining posterior densities without also enlarging the divergence in identifica-712

tion of the true SCON-C β diffusion θ, cS , cD, and cM by the means of their correspond-713

ing q(θ;ϕθ) densities. The enlarged divergence and uncertainty of the diffusion θ in the714

T = 5000 hour inference compared to the T = 1000 inferences is not unexpected. Cu-715

mulative approximation error of state space x trajectories compounds for the flow with716

greater T in a manner typical to approximation methods. Larger accrued approxima-717

tion error then corresponds to estimation of greater diffusion noise during inference.718

4 Discussion719

We developed a stochastic SBM data assimilation and inference framework that720

is a versatile, stable, and computationally efficient alternative to MCMC approaches as-721

similating deterministic ODE systems, especially when GPU hardware is available. The722

framework involves approximation of SBMs as state space models whose state trajec-723

tories can be sampled at reduced computational and temporal cost in comparison to SDEs.724

In our demonstration, we carried out state space model approximation with a class725

of normalizing flows called neural moving average flows that successively transition ran-726

dom variables from simpler to more complex distributions with the stacking of neural727

network layers. We applied this framework to fit approximated representatives of the SCON728

family of SBMs to synthetic data. Conditioning with synthetic rather than empirical data729

allowed us to visualize discrepancies between estimated posterior densities, data-generating730

densities, and true θ values used by the data-generating process for an assessment of frame-731

work performance.732

Flow-approximated SCON-C state trajectories were able to effectively track state733

and CO2 observations after variational optimization and graphically align with the true734

latent state distributions determined by a Kalman smoother. Following Kalman valida-735

tion of our SCON-C inference, we then successfully assimilated synthetic observations736

and estimated posteriors with SCON-SS, which is non-linear in diffusion and modestly737

more complex than SCON-C.738

4.1 More data promotes model θ identifiability and constraining of pos-739

teriors740

In terms of implications for experimental work focused on producing data sets suit-741

able for SBM inference and data assimilation, we firstly recommend that CO2 respira-742

tion measurements be collected and included in y. CO2 information is highly beneficial743

for informing the posteriors of SBMs like SCON for which CO2 efflux equations have been744

established (Figure S5). Additionally, the collection of supplemental measurements, such745

as radiolabeled C densities linked to SBM pool transfer fraction θ, should further con-746

strain and identify θ posteriors. Our results indicate that just the CO2 and state obser-747
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vations were not enough to effectively identify the marginal posterior of the SCON MBC-748

to-SOC transfer θ, aMSC (Figure 5, S4, S5, S6).749

With respect to aMSC posterior identifiability or lack thereof, inspection of the SCON750

system drift in (3) and CO2 efflux rate equation in (10) suggests that the consistent lack751

of identifiability is not the consequence of a general algorithm issue but instead stems752

from a dearth of information in y to further constrain the marginal aMSC q(θ;ϕθ) den-753

sity. The aMSC parameter appears in two terms of (3) that are each the product of four754

elements, the aM · aMSC · kM ·M term in the dS equation denoting C mass transfer755

from the MBC to SOC soil pool and the aM ·(1−aMSC)·kM ·M term in the dD equa-756

tion denoting C transfer from the MBC to DOC soil pool. The posterior densities of the757

aM and kM θ in those terms appear in (10) and are accordingly better constrained and758

identified with CO2 measurements in y. This is not the case for aMSC , which is not present759

in (10). Informing of aMSC can thereby only occur through the state measurements in760

y, and as only one element in the drift product terms, aMSC can take many values be-761

tween its [0, 1] support bounds without greatly affecting the products.762

Furthermore, our results suggests that raising both study time or data collection763

frequency would improve posterior estimation accuracy and identifiability in our frame-764

work (Figure S6). But, under budget and personnel limitations, empiricists creating in-765

ference data sets should prioritize one or the other depending on the specific SBMs tar-766

geted for data assimilation and their research objectives. For model comparison of naive767

stochastic SBM parameterizations where the conceived diffusion θ are less biologically768

meaningful, accumulating approximation error is less of a concern and prioritizing the769

maximization of T would be reasonable. In scenarios involving SBMs parameterized with770

more biogeochemically sophisticated β matrices where accurate estimation of system dif-771

fusion θ takes precedence and falsification of specific dynamics is the goal, it would be772

more important to minimize approximation error with denser observations.773

4.2 Future work and research directions774

Having demonstrated functional flow VI on more compact synthetic data sets, we775

highlight some engineering expansions and modifications to our existing framework that776

would facilitate efficient SBM inferences conditioned on empirical data sourced from long-777

term ecological (LTER) experiments like those documented in Melillo et al. (2017) and778

Wood et al. (2019). Efficiently scaling to these data sets is a key priority to assimilate779

them into SBMs on the scale of hours rather than weeks, as experienced in Xie et al. (2020),780

for statistically rigorous head-to-head model comparison and selection.781

The T of data sets sourced from LTER experiments can be on the order of 100,000782

to 200,000 hours, much larger than the peak T = 5000 hour timespan we explored in our783

study. With the ability of our framework to leverage GPU hardware, our T = 5000 in-784

ferences typically ran between one to two days to ensure convergence, but even more lim-785

iting than time were GPU memory thresholds preventing adequate variational sample786

sizes with T much longer than 5000. A way forward for conditioning inferences on y with787

longer T is to avoid simulating state space model x for the entire T at each training it-788

eration, and this can be done in stochastic gradient optimization with the leveraging of789

the mini-batching technique. Under a mini-batching scheme, a y is partitioned into smaller790

subsections yτi during training, where τ merely distinguishes a subsection from the en-791

tire sequence and i ∈ B where B ∈ N is the set of integers counting total subsections792

in natural order. In each training iteration, a yτi can then be randomly selected for like-793

lihood evaluation such that the SBM only needs to simulate an xτi subsection for cal-794

culation of the optimization objective. Mini-batching is targeted for future incorpora-795

tion in our framework, having been demonstrated in recent flow-related machine learn-796

ing literature including Papamakarios et al. (2021) and Ryder et al. (2021).797
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LTER data sets tend to have constituent observation vectors whose elements greatly798

vary in information density and measurement intervals due in part to the varying phys-799

ical practicality associated with the sampling and measurement of different observations.800

Hence, it would also be helpful to engineer our flow to handle irregular and “ragged” ob-801

servations. Moreover, alterations can be made to the flow network architecture to en-802

able more efficient conditioning on SBM θ values and allow for feature extraction from803

additional auxiliary information, such as the time elapsed between observations.804

Beyond flow engineering and architecture, other relevant research priorities include805

the study of less naive SCON treatments for inference use. SCON family representatives806

that explicitly and mechanistically model system diffusion as a function of the under-807

lying system reaction stoichiometry can be formulated (Golightly & Wilkinson, 2011; Fuchs,808

2013) and the stability and predictive accuracy associated with different diffusion covari-809

ance structures can be compared. Moreover, stochastic parameterizations of SBMs that810

simulate mass transfer with Michaelis-Menten dynamics and would be non-linear in drift811

should be investigated so that their predictive accuracy can be compared to those of lin-812

ear drift models under our VI framework. This would go toward an existing priority in813

biogeochemistry to examine whether explicit representation of enzyme catalysis in SBMs814

improves model performance (J. Li et al., 2014; Sulman et al., 2014; Wieder et al., 2015;815

J. Li et al., 2019; Xie et al., 2020).816

Application of our VI approach to head-to-head model comparison and selection817

begets a need for incorporation of goodness-of-fit quantification into our framework. MCMC818

has access to metrics like the widely application information criterion (Vehtari et al., 2017),819

leave-one-out cross-validation, and leave-future-out cross-validation (Bürkner et al., 2020)820

for Bayesian predictive accuracy quantification, but with their established formulations,821

these metrics cannot be computed under a VI procedure without prohibitive computa-822

tional expense (Dao et al., 2022). The development of Bayesian goodness-of-fit metrics823

for VI is still an open area (Yao et al., 2018; Giordano et al., 2018), but there has been824

recent work adapting cross-validation for VI that is promising for integration with a state825

space model inference pipeline (Magnusson et al., 2019; Dao et al., 2022).826

4.3 Conclusion827

Going forward, we recommend that inference approaches involving state space model828

approximation of stochastic SBMs be used in future biogeochemical data assimilation,829

fitting, and model comparison research in pursuit of superior computational stability,830

flexibility, and efficiency. SDE systems are far more robust than ODE systems at accom-831

modating prior density, initial condition, and model structure proposals that are incon-832

sistent with the true data generating process (Whitaker, 2016; Wiqvist et al., 2021). Then,833

state space approximation greatly reduces the burden of sampling SDE model state tra-834

jectories for likelihood evaluation. Rather than integrating an SDE solver S times at great835

computational cost with each algorithm training iteration, we can efficiently sample S836

paths from the variational approximation in one pass. Additionally, the discrete nature837

of state space models integrates well with likelihood estimation conditioned on sparsely838

observed data sets from long term ecological research where fine-grained knowledge of839

continuous state dynamics of a model are not necessary or useful for the inference al-840

gorithm. State space model discretization can be handled much more coarsely, which fa-841

cilitates more efficient scaling to larger T .842

Many of the steps of our data assimilation framework are common to those of other843

Bayesian inference approaches and hence, a wealth of options exist for modification of844

this approximated SBM inference framework depending on computational resources and845

desired posterior estimation accuracy. Different non-variational black box inference meth-846

ods that are compatible with state space approximation of SDEs can be substituted, such847

as sequential Monte Carlo algorithms (Golightly & Kypraios, 2018), stochastic gradient848
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Hamiltonian Monte Carlo (Chen et al., 2014), stochastic gradient langevin dynamics (Brosse849

et al., 2018), and stochastic gradient Markov chain Monte Carlo (Aicher et al., 2019; Nemeth850

& Fearnhead, 2021).851

Resesarchers using variational Bayesian methods for their black box can opt for q(θ)852

variational approximations that are more complex than mean-field representation. These853

include full-rank multivariate logit-normal families in which θ are not assumed to be in-854

dependent and covariance is established. The full-rank modeling of covariance mitigates855

underestimation of q(θ) uncertainty, which is prevalent in mean-field inference, to cor-856

respond to wider marginal q(θ) densities (Kucukelbir et al., 2017; Sujono et al., 2022).857

Additionally, when memory availability inhibits the establishment of larger neu-858

ral networks to train affine shift and scale values for long T or when another method is859

known to be faster and more convenient for approximating a particular SBM class, dif-860

ferent variational families can be used in place of neural moving average flows for rep-861

resentation and optimization of q(x|θ). These include multivariate normal distributions862

with specialized covariance structures (Archer et al., 2015), automatic differention VI863

(Kucukelbir et al., 2017) with Gauss-Markov distributions (Sujono et al., 2022), neural864

stochastic differential equations (Tzen & Raginsky, 2019; Jia & Benson, 2019; X. Li et865

al., 2020), and recurrent neural networks (Krishnan et al., 2017; Ryder et al., 2018), among866

others. Thus, our framework is flexible and can be repurposed as needed for assimila-867

tion of different SBMs or Earth system models that vary in complexity and simulation868

requirements.869

5 Open Research870

A repository containing synthetic time series data of soil pool state and CO2 ob-871

servations, Python notebooks containing the code for SCON-C and SCON-SS data-generating872

processes, and Python modules scaffolding the neural moving average flow VI algorithm873

are available at https://doi.org/10.5281/zenodo.6969782. Stan code for the deter-874

ministic CON inference whose results were compared to in Figure 5 is available at https://875

doi.org/10.5281/zenodo.6969769.876
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1. Figures S1 to S6

2. Table S1

Introduction

This document contains figures supporting the validity and functionality of our neural

moving average flow VI framework. Figure S1 illustrates the benefit of initiating VI with

an ELBO training warmup phase at low learning rates. Figure S2 demonstrates with an

example −L trajectory from an SCON-C approximation inference that our VI algorithm

is able to stably converge in ELBO. Figures S3 and S4 indicate that the neural moving
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X - 2 :

average flow VI approach remains viable for inference on approximated SCON-SS, and by

extension, state space models that are linear in drift but non-linear in diffusion. Figure

S5 depicts the importance of including CO2 information in the data y for subtantial

improvement of posterior identifiability and certainty. Figure S6 contrasts the effects of

lengthening experiment time span T versus thickening observations in y to better inform

and identify posteriors. Finally, Table S1 details the hyperparameters corresponding to

our informed and independent univariate logit-normal priors.
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Figure S1. Comparison of −L trajectories from the latter halves of T = 5000 hour SCON-C

flow trainings without (blue) and with (orange) warmup indicates that warmup helps stabilize

training and speed up convergence. The trajectory corresponding to warmup displays much less

prominent instability spiking and has flattened more quickly in contrast to the that of the no

warmup counterpart.
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T = 5000 SCON-C inference −L trajectory

Figure S2. The stabilizing of the −L trajectory between -1550 and -1600 in the latter half

of T = 5000 SCON-C flow VI training indicates convergence to an approximate local minimum

−L and thereby proper algorithm function of the q(θ, x;ϕθ,x) joint optimization.

Similarly stabilizing −L trajectories were observed for inferences on SCON-SS state space model

approximations.
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Figure S3. Flow-approximated SCON-SS q(x|θ;ϕx) latent state and observed CO2 means

conditioned on T = 5000 SCON-SS data-generating process y estimated from 250 x paths sampled

from the optimized joint variational q(θ, x;ϕ(θ,x)) density.
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Figure S4. Full SCON-SS state space model marginal q(θ;ϕθ) posterior densities (orange)

conditioned on T = 5000 SCON-SS data-generating process y compared to the prior densities

p(θ) (blue). The true θ values sampled during data generation are marked by vertical dashed

gray lines.

October 29, 2022, 9:58pm



: X - 7

0 1 2 3

uM ×10−3

0

250

500

750

1000

1250

1500

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

aSD

0

25

50

75

100

125

150

175

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

aDS

0

5

10

15

20

25

30

35

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

aM

0

10

20

30

40

50

60

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

aMSC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

kS, ref ×10−3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
ty

×105

0.0 0.5 1.0 1.5

kD, ref ×10−3

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

×104

0.00 0.25 0.50 0.75 1.00 1.25 1.50

kM, ref ×10−3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

si
ty

×104

10 20 30 40

EaS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

10 20 30 40

EaD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

10 20 30 40

EaM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

0 1 2 3

cS ×10−2

0

100

200

300

400

500

600

700

D
en

si
ty

0 1 2 3 4 5

cD ×10−3

0

1000

2000

3000

4000

D
en

si
ty

0 2 4 6 8

cM ×10−3

0

500

1000

1500

2000

2500

D
en

si
ty

p(θ)

CO2 q(θ)

No CO2 q(θ)

Figure S5. Approximate SCON-C state space model marginal q(θ;ϕθ) posterior densities

conditioned with (orange) and without (green) CO2 information in y produced by the same

SCON-C data-generating process compared to mean-field prior densities p(θ) (blue). The true θ

values sampled during data generation are marked by vertical dashed gray lines.
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Figure S6. Approximate SCON-C state space model marginal q(θ;ϕθ) posterior densities

conditioned with T = 1000 data observed every 5 hours (blue), T = 5000 data observed every

5 hours (orange), and T = 1000 data observed every hour (green). All three y share the same

SCON-C data-generating process and include CO2 information. The true θ values sampled during

data generation are marked by vertical dashed gray lines.
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θ Biogeochemical interpretation Target hyperparameters Units
uM MBC uptake rate L N (0.0016, 0.0004, 0, 1) mgCg−1Ch−1

aDS DOC to SOC transfer fraction L N (0.5, 0.125, 0, 1) NA
aSD SOC to DOC transfer fraction L N (0.5, 0.125, 0, 1) NA
aM MBC to organic C transfer fraction L N (0.5, 0.125, 0, 1) NA

aMSC MBC to SOC transfer fraction L N (0.5, 0.125, 0, 1) NA
kS, ref SOC decomposition rate L N (0.0005, 0.000125, 0, 0.1) mgCmg−1Ch−1

kD, ref DOC decomposition rate L N (0.0008, 0.0002, 0, 0.1) mgCmg−1Ch−1

kM, ref MBC decomposition rate L N (0.0007, 0.000175, 0, 0.1) mgCmg−1Ch−1

EaS SOC decomposition activation energy L N (20, 5, 5, 80) kJmol−1

EaD DOC decomposition activation energy L N (20, 5, 5, 80) kJmol−1

EaM MBC decomposition activation energy L N (20, 5, 5, 80) kJmol−1

cS SCON-C SOC β constant L N (0.1, 0.025, 0, 0.1) mgCg−1 soil
cD SCON-C DOC β constant L N (0.002, 0.0005, 0, 0.1) mgCg−1 soil
cM SCON-C MBC β constant L N (0.002, 0.0005, 0, 0.1) mgCg−1 soil
sS SCON-SS SOC β factor L N (0.0005, 0.000125, 0, 0.1) NA
sD SCON-SS DOC β factor L N (0.0005, 0.000125, 0, 0.1) NA
sM SCON-SS MBC β factor L N (0.0005, 0.000125, 0, 0.1) NA

Table S1. List of SCON-C and SCON-SS θ and their corresponding marginal data-generating

and informed prior hyperparameters. The marginal densities are formatted as L N (µ, σ, a, b),

where µ and σ are the desired target density mean and standard deviation and a and b are the

truncated distribution support lower and upper bounds.
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