Dynamic full-field imaging of rupture radiation: Material contrast governs source mechanism

Aichele Johannes¹, latour soumaya², Catheline Stefan³, and Roux Philippe⁴

¹Swiss Federal Institute of Technology in Zurich ²Université Toulouse 3 - Paul Sabatier ³Lyon 1 University - INSERM ⁴Université Grenoble Alpes & CNRS

November 16, 2022

Abstract

In seismology, the rupture mechanism of an earthquake, a glacier stick-slip and a landslide is not directly observed, but inferred from surface measurements. In contrast, laboratory experiments can illuminate near field effects, which reflect the rupture mechanism but are highly attenuated in the case of real-world surface data. We directly image the elastic wave-field of a nucleating rupture non-invasively in its near-field with ultrasound speckle correlation. Our imaging yields the particle velocity of the full shear wave field at the source location and inside the 3D frictional body. We experimentally show that a strong bimaterial contrast, as encountered in environmental seismology, yields a unidirectional or linear force mechanism for pre-rupture microslips and decelerating supershear ruptures. A weak contrast, characteristic for earthquakes, generates a double-couple source mechanism for sub-Rayleigh ruptures, sometimes preceded by slow deformation at the interface. This deformation is reproduced by the near field of a unidirectional force.

Dynamic full-field imaging of rupture radiation: Material contrast governs source mechanism

1

2

3

4 5

7

Aichele J.^{1,2*}, Latour S.³, Catheline S.¹, and Roux P.²

 $^1 \rm Laboratory$ of Therapeutic Applications of Ultrasound, INSERM & University of Lyon, Lyon, France $^2 \rm ISTerre,$ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, Grenoble, 6

 $3 Institute of Astrophysics and Planetology, IRAP & University of Toulouse III, Toulouse, France$

^{*}currently at Department of Earth Sciences, Institute of Geophysics, Swiss Federal Institute of Technology, Zürich, Switzerland

Corresponding author: Aichele J., johannes.aichele@rwth-aachen.de

8 Abstract

In seismology, the rupture mechanism of an earthquake, a glacier stick-slip and a landslide q is not directly observed, but inferred from surface measurements. In contrast, laboratory 10 experiments can illuminate near field effects, which reflect the rupture mechanism but are 11 highly attenuated in the case of real-world surface data. We directly image the elastic 12 wave-field of a nucleating rupture non-invasively in its near-field with ultrasound speckle 13 correlation. Our imaging yields the particle velocity of the full shear wave field at the 14 source location and inside the 3D frictional body. We experimentally show that a strong 15 bimaterial contrast, as encountered in environmental seismology, yields a unidirectional or 16 linear force mechanism for pre-rupture microslips and decelerating supershear ruptures. A 17 weak contrast, characteristic for earthquakes, generates a double-couple source mechanism 18 for sub-Rayleigh ruptures, sometimes preceded by slow deformation at the interface. This 19 deformation is reproduced by the near field of a unidirectional force. 20

Key Points:

21

22

23

24

25

26

27

- Noninvasive elastic near-field laboratory observations reveal source mechanisms of micro-slips, supershear and sub-Rayleigh ruptures.
- Strong material contrasts as encountered in glacier stick-slip and landslides cause single force micro-slips and supershear ruptures.
- Weak material contrasts lead to a double-couple mechanism, sometimes preceded by the near field radiation of a slowly rising single force.

²⁸ Plain Language Summary

Earthquakes, avalanches, icequakes and landslides originate from a common process: 29 rupture at a material interface. During a rupture, for example when a landslide slips, a 30 characteristic pattern of seismic waves is created. This pattern differs at the earth's surface 31 and the rupture interface, which is the source of the seismic waves inside the earth. Usually 32 scientists only measure the waves arriving at the surface and need to deduce the wave pattern 33 inside the earth from the surface measurement. We build a laboratory experiment which 34 enables us to film wave propagation around the rupture surface, as if we had a camera inside 35 the material. We film waves emitted during and prior to a rupture. For a soft material on 36 a hard surface, such as encountered in icequakes or landslides, a single force model better 37 explains the observed wave pattern than the commonly used model of four distributed forces. 38 The rupture moves faster than shear waves propagate which results in a supershear cone, 30 the elastic equivalent to the acoustic Mach cone created by supersonic aircrafts. For two 40 materials of similar hardness, such as encountered in earthquakes, the classic model of four 41 forces better explains the ruptures, which travel at sub-shear speed. 42

43 **1** Introduction

For most earthquakes, the longstanding discussion on the appropriate force representa-44 tion of the earthquake source has been decided in favor of the double-couple (DC) source. 45 It is the body force equivalent to slip on a fault and consists of two force couples acting at 46 the earthquake source point (Pujol, 2003; Aki & Richards, 2009). However, other rupture 47 observations such as icequakes, landslides, induced seismicity and deep earthquakes are not 48 always well reproduced by a standard double-couple model. For example, Ben-Zion and 49 Ampuero (2009) theoretically show that brittle rupture is associated with a non-double-50 couple damage related source term. Kwiatek et al. (2011); Kwiatek and Ben-Zion (2013) 51 discuss the presence of tensile opening during induced seismicity and aftershocks of a Mw 52

1.9 earthquake. In the case of glacial sliding, Ekström et al. (2003) report that a single force
 centroïd inversion shows a better match than standard moment tensor inversion (Harvard CMT). In the laboratory, Lykotrafitis and Rosakis (2006) found indications for wrinkle-like
 rupture and tensile opening in a Homalite-on-steel friction experiment.

Inversion for earthquake sources is mostly done in the far-field and suffers from ambi-57 guity. With the exception of volcanic seismicity, where hypocenters are shallow (Lokmer 58 & Bean, 2010), the seismic near field suffers strong attenuation and is often concealed by 59 ambient noise. In contrast to real-world seismic data, laboratory rupture experiments allow 60 61 for dense instrumentation and direct imaging of rupture propagation. For example, the first unambiguous proof of supershear rupture was provided by strain imaging through photo-62 elastic experiments of sliding Homalite plates by Rosakis and Coker (1999). Recently, the 63 group retrieved wave motion displacements of supershear ruptures through digital image 64 correlation (Rubino et al., 2020, 2022). Latour et al. (2011, 2013) introduced a new direct 65 rupture imaging method using ultrafast ultrasound imaging that allows for observation of 66 shear wave radiation during rupture propagation in soft materials: the particle velocity of 67 a propagating shear wave is retrieved through speckle tracking of subsequent ultrasound 68 (US) backscatter images. In contrast to photo-elasticity, this method is not restricted to 69 2D setups. Their results show that during hydrogel-on-sandpaper friction the depinning 70 of the gel from the sandpaper is well matched by a singular bell shaped (Gaussian) shear 71 point force. They also directly observed the effects of barriers on rupture propagation on 72 a hydrogel-glass interface with a granular inter-layer. At first glance hydrogels might seem 73 counterintuitive as a material choice in rupture experiments. However, they have been ex-74 tensively used as geological analogues (van Otterloo & Cruden, 2016). An historic example 75 is the jelly experiment of Reid (1910) that led to the elastic rebound theory. More recent ex-76 amples include a subduction-analogue gelatin setup (Corbi et al., 2011), (Corbi et al., 2017) 77 and volcanic modeling (Kavanagh et al., 2018). 78

Here we investigate the source mechanism of the failure of a granular asperity in a
laboratory friction experiment using a new setup based on the methodology introduced by
Latour et al. (2011, 2013). Direct imaging of the near field of a propagating rupture allows
us to compare the laboratory rupture to a kinematic rupture simulation using elastodynamic
Green's functions. We compare the case of weak and strong bimaterial contrast and test
single-force and double-couple source models to find the source mechanism depending on
the elastic contrast and type of slip event.

86 Experimental setup

All results are derived from the dynamic wave field imaging of two experimental sce-87 narios: sliding of an asperity along an interface with a strong or a weak bimaterial contrast 88 (Fig. 1). The strong bimaterial contrast is constituted of a glass - hydrogel (Polyvinyl-alcohol 89 - PVA) interface (Fig. 1(a)-(b)) and the weak bimaterial contrast by a hydrogel-hydrogel 90 interface (Fig. 1(d)). Since the hydrogels are homemade and non-standardized, an elasticity 91 contrast has to be assumed between them. The frictional behaviour is ensured by a sand 92 patch mimicking an asperity on a smooth surface. The glass plate is moved by a Kollmorgen 93 stepper motor, which induces the deformation then subsequent sliding of the partly blocked 94 gel via the frictional contact of the sand asperity. Seismic radiation is emitted upon failure 95 of frictional contacts due to stick-slip ruptures, and is observed by ultrasonic speckle corre-96 lation imaging. The observation plane is centered in the gel, perpendicular to the interface 97 and reaches from the asperity to the gel surface. 98

⁹⁹ The imaging methodology is exemplary shown in Fig. 1(c) with data from the weak ¹⁰⁰ interface experiment. Ultrasound backscatter images show a zone of high reflectivity at the ¹⁰¹ gel-gel interface at 4 cm depth. It is caused by the sand layer and the presence of air in ¹⁰² between the two hydrogels. Imaging below the interface is feasible, but the speckle quality ¹⁰³ is deteriorated due to strong ultrasound backscattering. In both gels, a 1 cm thick layer of intermediate reflectivity is observed next to the sand. It is likely caused by increased deposition of the backscatter agent (graphite). While graphite changes the ultrasonic impedance, shear wave propagation at the frequencies of interest remains unaffected. The phase correlation of successive ultrasound speckle images allows to resolve the shear wave induced vertical particle displacement between two snapshots, which is the apparent particle velocity $\frac{\partial u_z}{\partial t}$ (Pinton et al., 2005).

The dynamic observation is made possible by the high velocity contrast of the shear and 110 compression waves in the hydrogel: while the compressional ultrasound travels at approx-111 imately $1500 \,\mathrm{m \, s^{-1}}$, the rupture induced shear waves propagate at speeds below $10 \,\mathrm{m \, s^{-1}}$. 112 Plane ultrasound pulses at high frame rate allow for the shear wave particle velocity to be 113 temporally well resolved ($\Delta_t = 0.33 \,\mathrm{ms}$). The ultrasound frequency (5 MHz) ensures the 114 spatial resolution ($\lambda_{US} = 0.3 \text{ mm}$). Hence, a shear wave propagating at 7 m s^{-1} and 250 Hz115 is sampled at 25 US-wavelengths per shear wavelength ($\lambda_{shear} = 7 \text{ mm}$). Consequently, 116 the z-component of the entire transverse displacement field, including near-field terms, is 117 observed. 118

¹¹⁹ Kinematic modeling of the radiated wavefield

The observed wavefields radiated by the slip events are compared to direct kinematic wavefield modeling of equivalent body-force models (see section S2.6-S2.8) In each case, we compare the single-force and the douple-couple solutions. The source moves to simulate propagation of rupture fronts, and its velocity as well as the local source time functions are manually adjusted to obtain a good match to the data.

The displacement $u_{ij}(x,t)$ due to a unidirectional force (UF) in the x_j -direction with a source time function $X_0(t)$ at the source position is the convolution of X_0 with the elastodynamic impulse response (Green's function G_{ij}). It is the superposition of the compression and shear wave far-fields and the elastic near-field:

$$u_{i}(\vec{x},t) = X_{0} * G_{ij}$$

= $X_{0} * G_{ij}^{Near} + X_{0} * G_{ij}^{Far-P} + X_{0} * G_{ij}^{Far-S}$ (1)

The full expression is given in Section S2.6 and a thorough derivation can be found in Aki and Richards (2009) Chapter 3-4.

In contrast to the UF-solution in Eq. (1), the Green's function for a double-couple (DC) model can be separated into five physically meaningful terms: Near-field, intermediate S-field and P-field, and far S-field and P-field.

$$G_{DC} = G^{Near} + G^{IP} + G^{IS} + G^{FP} + G^{FS}$$

$$\tag{2}$$

The full analytical solution for the displacement field of a DC source can be found in SectionS2.7.

In the following, we first present the results on the strong and weak contrast bimaterial interface and then discuss their relevance for natural rupture processes.

135 Strong bimaterial contrast

The wavefield observations for the strong bimaterial contrast (movie S1) reveals two types of slip events at the asperity: strongly localized micro-slips, and moving rupture fronts that propagate along the asperity and cause a global stick-slip behaviour (see fig S6). We analyze one event of each type, representative of the overall observations.

For the microslip event, depicted in Fig. 2(a), a spherical wavefront is radiated from one location on the asperity. No rupture propagation is observed and consequently we model the

Figure 1. Experimental setup and imaging methodology. (a) Schematic view of the montage. The gel is free at the interface and blocked above. (b) Imaging methodology: Correlation of successive US reflection images results in retrieval of the vertical component of the shear wave's particle velocity. Blue denotes upwards polarization (negative z) and red denotes downwards polarization (positive z). (b) and (d) Schematic illustration of the imaging plane in the bimaterial setups: (b) A hydrogel - sand asperity - glass interface constitutes the strong bimaterial contrast. (d) A hydrogel - sand asperity - hydrogel constitutes the weak bimaterial contrast. A detailed acquisition and processing workflow is given in Fig. S1.

Figure 2. Strong material contrast: Comparison of an experimental micro-slip and simulation. Particle velocity direction is indicated by the white arrows. (a) Particle velocities $\frac{\delta u_z}{\delta t}$ observed by shear wave imaging. The stepper motor drives the plate in negative x-direction. (b) Complete Green's function for displacement u_z of a singular unidirectional shear force in positive x-direction. A median filter was applied to visually highlight the coherent wavefronts. All images are scaled by their extreme values. The near field lobe (NF) and shear wave front are indicated in panels (b).

event with a local point source. The experimental radiation pattern is well reproduced by a unidirectional single force model, as shown in Fig. 2(b) using a ramp shaped source time function $X_0(t)$. The first lobe represents the near field (NF) lobe of the Green's function and is quickly attenuated. The second lobe is of opposite polarity and represents the farfield shear wave. The top 2 cm are artifacts of a previous event (see Fig. S2 event 2-3). In contrast to the simulation, the experiment undergoes constant charging from the motor. Thus, noise as well as aseismic displacement due to deformation are present in the snapshots.

The gaussian source time function of the force employed by Latour et al. (2011) to model 149 depinning events of hydrogel on sand paper fails to reproduce the here observed wavefield. 150 Our ramp shaped source time function with rise time of 0.1ms (see Fig. S10) results in a 151 better match. The plate displacement deforms the gel and a likely physical explanation is 152 a localized change from a high- to low-stress state, which we model by a ramp function in 153 time of a rightward point force (see Fig. S10). Dynamically, this is equivalent a left-pointing 154 loading force applied to the gel, which drops to zero value, corresponding to a shear friction 155 drop localized on a micro-asperity. In the granular layer it might correspond to a highly 156 localized inelastic dislocation or grain micro-slip. 157

The localized event of Fig. 2 precedes a larger event, in which a rupture front traverses the entire visible interface (see Fig. 3 (a) and Figs. S3-S4 for details). The rupture propagation direction equals the sliding direction of the gel, *i.e.* opposite to the plate movement. This observation agrees with Dedontney et al. (2011), who found that for bimaterial interfaces, ruptures will preferentially propagate in slip direction of the compliant side. The particle velocity $(\frac{\delta u_z}{\delta t})$ measurements in Fig. 3 (a) are compared to two analytic, kinematic simulations: a moving unidirectional force (UF) Fig. 3(b), and a moving double-couple (DC) Fig. 3(c). The simulations result from superposition of point sources along a decelerating speed profile, which is estimated roughly from the experimental data. Through trial and error we qualitatively match the near field lobe, supershear- and rupture arrest front. The source parameters are given in Figs. S10-S14.

Key properties of the unidirectional force model, which are also present in the experi-169 mental observation, are indicated in Fig. 3 (b). The first phase is an upwards polarized non-170 171 planar lobe with a diffuse front. It corresponds to the near-field (NF) of the right-traveling and rightwards pointing shear force. A sharp, downwards polarized large amplitude wave 172 front follows, which is identified as a supershear front in the simulation. It is the result of 173 a rupture that breaks the asperity faster than the medium's shear wave speed. The front 174 angle with the x-axis (β =21.8°) at late observation times in Fig. 3 (a) and the measured 175 shear wave speed (c_s) of $6.9 \,\mathrm{m\,s^{-1}} \pm 1 \,\mathrm{m\,s^{-1}}$ (see Fig. S15) are used to calculate an average rupture propagation speed (c_r) of $\approx 18 \,\mathrm{m\,s^{-1}}$: $c_r = \frac{c_s}{\sin(\beta)}$. However, two front angles can be identified throughout the rupture (see Fig. S17). Furthermore, a time of flight measurement 176 177 178 of the supershear front along the rupture surface (see Fig. S16) suggests a rupture speed 179 above time resolution on 1 cm and below $12 \,\mathrm{m \, s^{-1}}$ afterwards, indicating that the rupture is 180 decelerating. This justifies the use of a decreasing rupture velocity in the kinematic model. 181 A low amplitude, downwards polarized wedge is present above the supershear front. It cor-182 responds to the imprint of the compressional (P) wave, which propagates at $\approx 1500 \,\mathrm{m\,s^{-1}}$. 183 Finally, a leftwards propagating and upwards polarized wavefront can be observed in the 184 last snapshots of Fig. 3 (a). In the simulations it is identified as the rupture arrest front 185 (RAF), emitted at the asperity border. 186

In comparison, the best moving DC solution (Fig. 3 (c)) exhibits a high wavefield com-187 plexity which is absent in the experiment and in the UF force simulation. Furthermore, 188 the experimental data lack the leading, downwards polarized polarity of the DC simulation. 189 However, at late times (7 ms), we can observe an upwards polarized front following the su-190 pershear front, which has a counterpart in the DC solution (Fig. 3 (c)), but is absent in the 191 UF simulation Fig. 3 (b). To conclude, we find that the moving unidirectional force better 192 matches the near field, the supershear front and the rupture arrest front of the experimental 193 194 data than the double couple model, but does not capture every detail of the wavefield.

Figure 3. Strong material contrast: Comparison of an experimental supershear rupture and simulation. a) $\frac{\delta u_z}{\delta t}$ as observed by shear wave imaging. The rupture follows the event of Fig. 2. The first snapshot is located 6 ms after the first snapshot of Fig. 2. The motor drives the plate in negative x-direction. b) $\frac{\delta u_z}{\delta t}$ resulting from the superposition of unidirectional shear forces in x-direction. Near field (NF), supershear front (SSF), P-wave imprint (P) and rupture arrest front (RAF) are indicated. c) $\frac{\delta u_z}{\delta t}$ resulting from the superposition of double-couple point sources. The point sources in b) and c) are shifted in time and space, in order to simulate the horizontal advancement of a rupture front (see Supplementary material Section 2.8). All snapshots are normalized with respect to their time-series. The sources are directed in positive x-direction. A higher time-resolution is given in Figs. S4-S5. The source functions and rupture speed profiles can be found in Figs. S11-S12.

¹⁹⁵ Weak bimaterial contrast

We observe again two types of slip events on the weak bimaterial contrast interface: propagating ruptures and localized wave radiations (see movie S2).

A rupture that appears to propagate below shear and Rayleigh wave speed is shown in 198 Fig. 4 (a). Rupture propagation at sub-Rayleigh speed is expected for homogeneous systems 199 (Shlomai & Fineberg, 2016), but has not been observed by shear wave imaging prior to 200 this observation, which is the first dynamic US observation of a gel-gel rupture (Latour et 201 al., 2011). Fig. 4 (c)-(d) show the corresponding 1D waveforms at specified depth- and 202 time-steps in the upper halfspace. In both displays, the right-traveling front exhibits higher 203 amplitudes than the left-traveling one. This front also exposes a smaller angle to the vertical 204 (inclination difference), indicating a speed difference between the fronts. A straightforward 205

explanation is a right-travelling sub-Rayleigh rupture. A wavefront of continuous polarity
 throughout both half-spaces exists in the rupture propagation direction.

We model the radiation with a double-couple moving to the right at constant sub-208 Rayleigh velocity (Fig. S13). The simulated wavefield (Fig. 4 (b)-(e)-(f)) reproduces the 209 continuous polarity across the interface. In contrast, the radiation pattern of a unidirectional 210 force exhibits alternating polarities in the two halfspaces (Fig. S9). However, similar to the 211 case of a strong bimaterial contrast, the leading near-field lobe predicted by the double-212 couple solution is not identified in the experimental data. Fig. 4 a) reveals that a weak 213 214 upwards polarized zone is present at interface depth, but quickly disappears with depth. This could be an imprint of the near field which gets masked by the continuous deformation of the 215 gel (see movie S2, (Figs. 4 and 5 start at approximately 2396 ms)). Note that the amplitude 216 increase in the rupture direction is reproduced but more pronounced in the simulation than 217 in the experiment. The experiment suffers from shear wave attenuation which is neglected 218 in the kinematic simulation and might mask the amplitude difference between the front in 219 rupture direction and the radiation front in opposite direction. Furthermore, the laboratory 220 rupture might be shorter than the qualitatively simulated rupture of Fig. 4 (b). 221

Situated three milliseconds after Fig. 4, Fig. 5 (a) shows a localized event with a 222 quadripolar radiation pattern (see Fig. S8 for a comprehensive time-series). The radia-223 tion is qualitatively reproduced as the near-field lobe of a unidirectional point force model, 224 which is shown in Fig. 5(b). The source rise time is several ms long (see Fig. S13). Contrary 225 to the localized event on the strong bimaterial contrast interface, the far-field part of the 226 theoretical force radiation is not observed. Instead, the event is followed by a left-going 227 rupture, shown in Fig. 5 (c) (event 3 in Fig. S8). A similar sequence can be observed at 228 2350 ms in movie S2. One hypothesis is that the long rise-time localized event corresponds 229 to the nucleation process of the subsequent rupture. There appears to be an aseismic lateral 230 displacement of the radiation pattern in the lower half space for the experimental data of 231 unclear origin. 232

Figure 4. Weak material contrast: Comparison of an experimental sub-Rayleigh rupture and simulation. (a) Experimental particle velocities for a gel-gel rupture. (b) Right-traveling superposition of DC point sources at sub-Rayleigh speed with a ramp source function. The DCforce directions are indicated. The leading near and intermediate fields are indicated as NF/IF. (c)-(f) Spatial Waveforms (x-direction) at fixed depth and time plotted against the distance to the presumed rupture nucleation point. (c) Experimental waveforms during rupture initiation (0 ms - 0.7 ms) at the gel-gel interface. The waveforms are a mean of 27 depthpoints (\approx 1 mm), just above the sand layer, which was identified from the US reflection images. The relative position of the sand layer to the probe varies about 1.5 mm due to gel deformation and sand thickness. (d) Experimental waveforms of 0.7 to 2 ms \approx 2 mm above the waveforms in (c). (e) - (f) Simulated waveforms corresponding to (c) and (d). (e) is taken 0.2 mm and (f) 3.8 mm above the simulated interface.

Figure 5. Weak bimaterial contrast: Comparison of an a local event and a UF-simulation. a) The interface is identified by the separation of the upper and lower lobes. Note that imaging quality is deteriorated by US diffraction at the sand, visible in the diagonal artifact in t = 3ms and the coarse appearance of the displacement field below the frictional interface. The event happens 3 ms after the rupture shown in Fig. 4. b) Green's function simulation of a localized unidirectional shear force in negative x-direction using a 2.16 ms long rise time for the Gaussian. The near field lobe is indicated as NF. c) Consequent time evolution of (a). The local event is followed or transforms into a rupture (see movie S2 ≈ 2400 ms).

233 Relevance for natural rupture processes

For the strong bimaterial contrast, we find that microslip events as well as propagating ruptures radiations are better described by a unique force model than by a double couple model. This is intuitively understood as due to the strong elastic contrast at the interface: the unidirectional force corresponds to the relaxation of the gel's loading force when friction drops at the interface.

In nature, strong material contrasts are encountered in environmental seismology, i.e. 239 for landslides and glacier stick-slip. Both processes exhibit a wet granular layer and a com-240 pliant mass sliding on a hard bedrock. Our granular asperity is conceptually comparable 241 to the "sticky spot" encountered in alpine glacial stick-slip (Umlauft et al., 2021). Unidi-242 rectional force source models have been proposed for the 1980 Mt. St. Helens eruption 243 (Kanamori & Given, 1982) and the 1975 Kalapana, Hawaii, earthquake, where a large land-244 slide occurred on Kilauea volcano(Eissler & Kanamori, 1987). In a theoretical analysis 245 Dahlen (1993) showed that a lower shear wave velocity in the brecciated sliding block of 246 shallow landslides results in mechanical decoupling of the two fault sides. The decoupling 247 leads to a single-force rupture source, with the force pointing in the direction of the mass 248 movement for decelerating sliding (Julian et al., 1998). Ekström et al. (2003) found that for 249 glacier stick-slip in Greenland, single force inversions perform better than standard moment 250 tensor inversions. Again, this could be explained by the lower shear wave speed in ice. 251 Lastly, Trottet et al. (2022) very recently showed rupture propagation at supershear speed 252 for snow avalanches, another case exposing low shear wave speeds of the sliding mass (<253 $120 \,\mathrm{m\,s^{-1}}$). We confirm through direct experimental observation of the wavefield generation 254 that unique force mechanisms are relevant for describing slip events between two materials 255 with strong wave velocity contrasts. 256

In global seismology, the earthquake source corresponds to slip on a planar fault and is 257 widely modeled by a double couple equivalent body source. Our closest analogue experiment 258 is the case of the propagating rupture on the asperity at the gel-gel interface. We observe 259 radiations best described by a moving double couple, which indicates a symmetry in the 260 strain relaxation process and a coupling between both sides of the fault. However, some 261 ruptures are preceded by localized events which can be described by the near-field radiation 262 of a slowly rising unidirectional force, even though the materials are almost symmetric. We 263 hypothesize that one gel is more deformed than the other during loading. It then begins to 264 relax slowly as a preparatory process before rupture propagation initiation and both gels 265 relax the remaining deformation. This non-symmetric process may be possible thanks to 266 the presence of the sand layer than can locally decouple both sides of the fault through grain 267 rearrangements. The single force source mechanism may be relevant for slow processes on 268 natural faults. Shallow thrust faults for example expose an asymmetry in the fault loading, 269 and fault gouge, damaged layers and fluids can constitute a decoupling mechanism. 270

271 Acknowledgements

We are grateful to Christophe Voisin for discussions on rupture nucleation and Max Solazzo for finishing the friction bench. The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641943 (ITN WAVES) and resulted in the PHD thesis Aichele (2019). ISterre is part of Labex OSUG@2020.

277 Open Research section

- Data archiving is currently underway and will be archived at: https://zenodo.org. Temporary access has been granted via ETH polybox:
- 280 https://polybox.ethz.ch/index.php/s/0r8J638Hs8vlDa0

281 **References**

299

300

301

302

303

304

- Aichele, J. (2019). Elastic waves in complex conditions : From the onset of rupture to
 viscous dispersion in foams (Doctoral dissertation, Université de Lyon). Retrieved
 2022-01-05, from https://tel.archives-ouvertes.fr/tel-02481746
- Aki, K., & Richards, P. G. (2009). Quantitative seismology. In Book (Second ed., p. 700). University Science Books. Retrieved from http://books.google.com/
 books?id=sRhawFG5_EcC&printsec=frontcover%5Cnpapers2://publication/
 uuid/A2074D09-FE3A-4600-9E91-CA393C8AF127
- Ben-Zion, Y., & Ampuero, J.-P. (2009, September). Seismic radiation from regions sustaining material damage. *Geophysical Journal International*, 178(3), 1351–1356. Retrieved 2022-01-05, from 10/d92gs8 doi: 10/d92gs8
- Corbi, F., Funiciello, F., Brizzi, S., Lallemand, S., & Rosenau, M. (2017). Control of
 asperities size and spacing on seismic behavior of subduction megathrusts. *Geophysical Research Letters*, 44(16), 8227–8235. doi: 10.1002/2017GL074182
- Corbi, F., Funiciello, F., Faccenna, C., Ranalli, G., & Heuret, A. (2011, June). Seismic
 variability of subduction thrust faults: Insights from laboratory models. Journal of
 Geophysical Research, 116(B6), B06304. Retrieved from http://doi.wiley.com/
 10.1029/2010JB007993 doi: 10.1029/2010JB007993
 - Dahlen, F. A. (1993, February). Single-force representation of shallow landslide sources.
 Bulletin of the Seismological Society of America, 83(1), 130–143. Retrieved 2022-01-17, from https://doi.org/10.1785/BSSA0830010130 doi: 10/gn47cq
 - Dedontney, N., Templeton-Barrett, E. L., Rice, J. R., & Dmowska, R. (2011). Influence of plastic deformation on bimaterial fault rupture directivity. *Journal of Geophysical Research: Solid Earth*, 116(10). doi: 10.1029/2011JB008417
- Eissler, H. K., & Kanamori, H. (1987). A single-force model for the 1975 Kalapana, Hawaii,
 Earthquake. Journal of Geophysical Research: Solid Earth, 92(B6), 4827–4836.
 Retrieved 2022-07-08, from https://onlinelibrary.wiley.com/doi/abs/10.1029/
 JB092iB06p04827 doi: 10.1029/JB092iB06p04827
- Ekström, G., Nettles, M., & Abers, G. A. (2003, October). Glacial Earthquakes. Science. Retrieved 2022-01-05, from 10.1126/science.1088057 doi: 10/cxjwhc
- Julian, B. R., Miller, A. D., & Foulger, G. R. (1998). Non-double-couple earthquakes 1. Theory. *Reviews of Geophysics*, 36(4), 525–549. Retrieved 2022-01-05, from 10/ dwdfzv doi: 10/dwdfzv
- Kanamori, H., & Given, J. W. (1982). Analysis of long-period seismic waves excited by
 the May 18, 1980, eruption of Mount St. Helens—A terrestrial monopole? Journal of
 Geophysical Research: Solid Earth, 87(B7), 5422–5432. Retrieved 2022-07-08, from
 https://onlinelibrary.wiley.com/doi/abs/10.1029/JB087iB07p05422
 doi: 10
 .1029/JB087iB07p05422
- Kavanagh, J. L., Engwell, S. L., & Martin, S. A. (2018, April). A review of laboratory and numerical modelling in volcanology. Solid Earth, 9(2), 531-571. Retrieved 2022-06-15, from https://se.copernicus.org/articles/9/531/2018/ doi: 10.5194/ se-9-531-2018
- Kwiatek, G., & Ben-Zion, Y. (2013, July). Assessment of P and S wave energy radiated
 from very small shear-tensile seismic events in a deep South African mine. Journal
 of Geophysical Research: Solid Earth, 118(7), 3630–3641. Retrieved from http://
 doi.wiley.com/10.1002/jgrb.50274 doi: 10.1002/jgrb.50274
- Kwiatek, G., Plenkers, K., & Dresen, G. (2011). Source parameters of picoseismicity
 recorded at Mponeng deep gold mine, South Africa: Implications for scaling relations.
 Bulletin of the Seismological Society of America, 101(6), 2592–2608. doi: 10.1785/
 0120110094
- Latour, S., Gallot, T., Catheline, S., Voisin, C., Renard, F., Larose, E., & Campillo, M. (2011). Ultrafast ultrasonic imaging of dynamic sliding friction in soft solids: The slow slip and the super-shear regimes. *EPL* (Europhysics Letters), 96(January 2016), 59003. doi: 10.1209/0295-5075/96/59003
- Latour, S., Voisin, C., Renard, F., Larose, E., Catheline, S., & Campillo, M. (2013). Effect

336	of fault heterogeneity on rupture dynamics : An experimental approach using ultrafast
337	ultrasonic imaging. Journal of Geophysical Research: Solid Earth, 118(11), 5888–5902.
338	Retrieved from http://scitation.aip.org/content/asa/journal/jasa/130/4/10
339	.1121/1.3655012 doi: 10.1002/2013JB010231
340	Lokmer, I., & Bean, C. J. (2010, April). Properties of the near-field term and its effect
341	on polarisation analysis and source locations of long-period (LP) and very-long-period
342	(VLP) seismic events at volcanoes. Journal of Volcanology and Geothermal Research,
343	192(1-2), 35-47. Retrieved 2022-05-09, from https://linkinghub.elsevier.com/
344	retrieve/pii/S0377027310000521 doi: 10.1016/j.jvolgeores.2010.02.008
345	Lykotrafitis, G., & Rosakis, A. J. (2006). Dynamic sliding of frictionally held bimaterial
346	interfaces subjected to impact shear loading. Proceedings of the Royal Society A:
347	Mathematical, Physical and Engineering Sciences, $462(2074)$, $2997-3026$. doi: 10
348	.1098/rspa.2006.1703
349	Pinton, G., Dahl, J., & Trahey, G. (2005, June). Rapid Tracking of Small Displacements with
350	Ultrasound. In IEEE Ultrasonics Symposium, 2005. (Vol. 4, pp. 2062–2065). IEEE.
351	Retrieved from http://ieeexplore.ieee.org/document/1603285/ doi: 10.1109/
352	ULTSYM.2005.1603285
353	Pujol, J. (2003, March). The Body Force Equivalent to an Earthquake: A Tutorial. SRL,
354	74(2), 163-168. Retrieved from https://pubs.geoscienceworld.org/srl/article/
355	74/4/440/142890 doi: 10.1785/gssrl.74.2.163
356	Reid, H. (1910). The California Earthquake of April 18, 1906, Report of the State Earth-
357	quake Investigation Commission, The Mechanism of the Earthquake. Nature, $2(2128)$,
358	165-166. doi: $10.1038/084165a0$
359	Rosakis, A. J., & Coker, D. (1999). Cracks Faster than the Shear Wave Speed. Science,
360	284(May), 1337-1340.
361	Rubino, V., Lapusta, N., & Rosakis, A. J. (2022, June). Intermittent lab earthquakes in
362	dynamically weakening fault gouge. <i>Nature</i> , 1–8. Retrieved 2022-06-07, from https://
363	www.nature.com/articles/s41586-022-04749-3 doi: $10.1038/s41586-022-04749-3$
364	Rubino, V., Rosakis, A. J., & Lapusta, N. (2020). Spatiotemporal Properties of Sub-Rayleigh
365	and Supershear Ruptures Inferred From Full-Field Dynamic Imaging of Laboratory
366	Experiments. Journal of Geophysical Research: Solid Earth, 125(2), 1–25. doi: 10
367	.1029/2019JB018922
368	Shlomai, H., & Fineberg, J. (2016). The structure of slip-pulses and supershear ruptures
369	driving slip in bimaterial friction. nature communications, 7, 1–7. Retrieved from
370	http://dx.doi.org/10.1038/ncomms11787 doi: 10.1038/ncomms11787
371	Trottet, B., Simenhois, R., Bobillier, G., van Herwijnen, A., Jiang, C., & Gaume, J. (2022,
372	January). Transition from sub-Rayleigh anticrack to supershear crack propagation
373	in snow avalanches. Retrieved 2022-01-20, from https://www.researchsquare.com/
374	article/rs-963978/v1 doi: 10.21203/rs.3.rs-963978/v1
375	Umlauft, J., Lindner, F., Roux, P., Mikesell, T. D., Haney, M. M., Korn, M., & Walter,
376	F. T. (2021). Stick-Slip Tremor Beneath an Alpine Glacier. Geophysical Research
377	Letters, 48(2), e2020GL090528. Retrieved 2022-06-17, from https://onlinelibrary
378	.wiley.com/doi/abs/10.1029/2020GL090528 doi: 10.1029/2020GL090528
379	van Otterioo, J., & Cruden, A. R. (2016, June). Rheology of pig skin gelatine: Defining the
380	elastic domain and its thermal and mechanical properties for geological analogue exper-
381	iment applications. <i>Tectonophysics</i> , 683, 86–97. Retrieved 2021-12-29, from https://
382	www.sciencedirect.com/science/article/pii/S0040195116302256 doi: 10/
383	102rbq

³⁸⁴ 2 References from the supplementary material

385 **References**

Aki, K., & Richards, P. G. (2009). Quantitative seismology. In Book (Second ed., p. 700).
 University Science Books.

- Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research: Solid Earth, 102(B1), 553–571. doi: 10.1029/96JB02856
 Dither C. C. (2005, L.). Deside The hearth of C. II Dithered to the formula of the formul
- Pinton, G., Dahl, J., & Trahey, G. (2005, June). Rapid Tracking of Small Displacements
 with Ultrasound. In *IEEE Ultrasonics Symposium*, 2005. (Vol. 4, pp. 2062–2065).
 IEEE. doi: 10.1109/ULTSYM.2005.1603285
- Sandrin, L., Catheline, S., Tanter, M., Hennequin, X., & Fink, M. (1999, October). Time Resolved Pulsed Elastography with Ultrafast Ultrasonic Imaging. Ultrasonic Imaging, 21(4), 259–272. doi: 10.1177/016173469902100402

Supporting Information for "Dynamic full-field imaging of rupture radiation: Material contrast governs source mechanism"

Aichele J.^{1,2}*, Latour S.³, Roux P. ²and Catheline S.¹

4	¹ Laboratory of Therapeutic Applications of Ultrasound, INSERM & University of Lyon, Lyon, France
5	² ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, Grenoble, France
6	³ Institute of Astrophysics and Planetology, IRAP & University of Toulouse III, Toulouse, France

7 Contents of this file

- 8 1. Introduction
- ⁹ 2. Detailed Materials & Methods, Section 2
- ¹⁰ 3. Tables S1, Section 3
- 4. Figures S1 to S17, Section 4
- ¹² Additional Supporting Information (Files uploaded separately)

*currently at Department of Earth Sciences, Institute of Geophysics, Swiss Federal Institute of Technology, Zürich, Switzerland

X - 2

1. Wave propagation video of the strong interface experiment. Contains the whole two
 second long acquisition.

¹⁵ 2. Wave propagation video of the weak interface experiment. Contains the whole two
 ¹⁶ second long acquisition.

¹⁷ 3. Caption for video S1

¹⁸ 4. Captions for video S2

1. Introduction

Section 2 contains a detailed description of the experimental setup, experimental work-19 flow and the imaging methodology used to acquire the data presented in the main article, 20 supplemented by Table S1. A detailed description of the analytic simulations, including 21 the governing Green's functions are given as well. The simulation source parameters are 22 visualized by means of additional plots Figs. S10 to S14. Supporting data is given in 23 Section 4 and the two supplementary videos. The two videos show the particle velocities 24 acquired throughout the entire experiments, from which all figures showing experimental 25 results in the main article are derived. All additional figures showing experimental results are also derived from these two datasets of the strong and weak bimaterial experiment. 27

2. Detailed Materials & Methods

2.1. Samples

We use homemade polyvinyl-alcohol (PVA) hydrogels. These gels are commonly used to mimic biological tissue. In comparison with gelatin and agar-gels they have the advantage of a much longer lifetime if stored in water. The production process consist of the following consecutive steps:

• Solution of PVA-powder in hot water under constant stirring.

• Addition of 0.1-0.5% of graphite powder to introduce the scatterers that assure the ultrasonic ³⁴ speckle.

• Rapid cool-down in an ice-bath of the viscous solution until gelification sets in.

• Freezing at -18 °C until complete gelification is reached.

• Complete thawing of the gel.

The last two steps are repeated until the gel has the desired elasticity. It should be noted, that the homemade gels are not homogeneous. During the production of the large samples required for the setup, incomplete solution of the PVA-powder could not be avoided and the long time needed for complete solidification led to deposition of graphite and PVA-powder at the bottom of the gel.

2.2. Friction bench

The motor is a Kollmorgen[®] AKM[™] stepper motor, depicted in Fig. S1. It is piloted through
a LabVIEW (National Instruments, Austin, TX, USA) interface which ensures synchronization
with the imaging device. The motor drives an endless screw, which in turn drives a glass plate
through a wagon that is sliding on low-resistance bills on two rails. The motor controls the

rotation rate of the screw and thus the driving speed of the wagon. The movement of the glass
plate and the friction of the asperity lead to deformation of a hydrogel, which is hold in a fixed
position on the friction bench.

2.3. Asperity

We focus on a spatially limited sand asperity that gives rise to granular friction. A small patch of fine to medium sand (<0.5 mm), is placed on the glass plate in the center of the hydrogel position. The sand is not completely dry, because PVA hydrogels loose water, especially under stress. This becomes evident in the cohesion of sand grains after the experiment.

2.4. Imaging device

⁵⁴ The imaging probe is a 128-element L7-4 (Philips) ultrasound probe centered at 5 MHz. The ⁵⁵ probe is connected to a high-frame rate ultrasound scanner (Verasonics VantageTM) which works ⁵⁶ at up to 10 000 frames per second. The host computer ensures sequence programming as well as ⁵⁷ registration and treatment of the acquired data through a MatlabTM interface. Each ultrasound ⁵⁸ frame is obtained through emission of plane waves as in Sandrin, Catheline, Tanter, Hennequin, ⁵⁹ and Fink (1999) and beamforming of the backscattered signals.

2.5. Imaging method

In order to visualize the wave propagation, we apply phase-based motion estimation on subsequent beamformed ultrasound frames (Pinton et al., 2005). Similar to ultrasound Doppler techniques, the retrieved US phase difference gives the relative shear wave displacement in the micrometer range.

This phase shift or phase difference can be expressed through the Fourier shift theorem. The theorem states, that a signal x(t) delayed by dt has a Fourier transform that equals the Fourier transform of x(t) multiplied by $e^{-j\omega dt}$. Hence, $x(t - dt) \leftrightarrow e^{-j\omega dt} \hat{x}(\omega)$.

⁶⁷ Because for beamformed ultrasound reflection images (IQ), only displacements in direction of ⁶⁸ the plane ultrasound wave can be recorded, the translation of the ultrasound reflection images ⁶⁹ is one-dimensional. The spatial coordinates along the axis of ultrasound propagation (z) are ⁷⁰ inferred from the ultrasonic travel-time and the central frequency of the probe. With a time ⁷¹ difference dt of snapshots t_1 and t_2 and US travel-time τ $(z \to \tau)$ the theorem reads:

$$IQ(x,\tau,t_2) = IQ(x,\tau - d\tau,t_1) \tag{1}$$

$$\hat{IQ}_2(\xi,\omega,t_2) = e^{-j2\pi(\omega d\tau)} \hat{IQ}(\xi,\omega,t_1)$$
(2)

The phase shift $e^{-j2\pi(\xi d\tau)}$ is calculated by using the normalized cross power spectrum, which is retrieved through multiplication with the complex conjugate in the Fourier domain.

$$e^{-j2\pi(\omega d\tau)} = \frac{\hat{IQ}(\xi,\omega,t_1)\hat{IQ}^*(\xi,\omega,t_2)}{\left|\hat{IQ}(\xi,\omega,t_1)\hat{IQ}(\xi,\omega,t_2)\right|}$$
(3)

The argument of equation 3 gives thus the relative displacement between two images in radians and the particle velocity reads:

$$v_p(x,\tau) = \frac{c_0}{(4\pi f_c)} \arg(e^{-j2\pi(\omega d\tau)})$$
(4)

• with τ being related to the spatial coordinate z by $\lambda = \frac{c_0}{f_c}$ and z being resolved by the maging system at four points per US wavelength.

• with c_0 being the speed of ultrasound, approximately $1480 \,\mathrm{m\,s^{-1}}$ (speed of sound in water) in soft matter, and f_c being the central frequency of the probe.

In the IQ domain, the correlation is thus a simple point by point multiplication in the frequency 80 domain and time-consuming windowing is not required. Due to the very high resolution of the 81 probing ultrasound waves of 3×10^{-5} m and the high frame rate, the retrieved particle velocity can 82 be locally integrated over time to get the total displacement along the ultrasound propagation 83 direction. Furthermore, taking the spatial gradient of the accumulated displacement allows 84 for estimation of one component of the strain tensor. Likewise, time differentiation leads to 85 particle acceleration which is advantageous when continuous deformation masks simultaneous 86 wave propagation. 87

2.6. Unidirectional shear force

The particle displacement in the direction i inside a homogeneous body due to a unidirectional shear force in the direction j is given by the convolution of the source time function $X_0(t)$ with the medium's Green's function G_{ij} :

$$u_{i}(\vec{x},t) = X_{0} * G_{ij}$$

$$= \frac{1}{4\pi\rho} (3\gamma_{i}\gamma_{j} - \delta_{ij}) \frac{1}{r^{3}} \int_{\frac{r}{a}}^{\frac{r}{b}} \tau X_{0}(t-\tau) d\tau$$

$$+ \frac{1}{4\pi\rho\alpha^{2}} \gamma_{i}\gamma_{j} \frac{1}{r} X_{0}(t-\frac{r}{\alpha})$$

$$- \frac{1}{4\pi\rho} \beta^{2} (\gamma_{i}\gamma_{j} - \delta_{ij}) \frac{1}{r} X_{0}(t-\frac{r}{\beta}),$$
(5)

⁹¹ where r is the distance from the source to the receiver, ρ is density, α and β are the compression ⁹² and shear wave speeds, τ is the source time and δ_{ij} is the kronecker symbol. γ_i is defined as ⁹³ $\gamma_i = \frac{x_i}{r}$. A thorough derivation is given in Chapter 3 and 4 of Aki and Richards (2009).

2.7. Double-couple point source

The displacement field induced by a shear dislocation can be described as a convolution of the seismic moment tensor with the Green's function. Using summation convention, the n-th displacement component is expressed as $u_n = M_{pq} * G_{np,q}$, with $M_0(t) = \mu \bar{u}(t)A$, where \bar{u} is the averaged displacement discontinuity from the shear displacement, A is fault area and μ is shear modulus. The time dependant point force function $X_0(t)$ for the unidirectional shear force has thus its equivalent for the DC in the material and slip area dependant displacement function $M_0(t)$. In polar coordinates with the DC location as origin, and vector form, the displacement due to a double-couple source reads:

$$u(\vec{x},t) = \frac{1}{4\pi\rho} \vec{A}^{N} \frac{1}{r^{4}} \int_{\frac{r}{a}}^{\frac{r}{b}} \tau M_{0}(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^{2}} \vec{A}^{IP} \frac{1}{r^{2}} M_{0}(t-\frac{r}{\alpha}) + \frac{1}{4\pi\rho\beta^{2}} \vec{A}^{IS} \frac{1}{r^{2}} M_{0}(t-\frac{r}{\beta}) + \frac{1}{4\pi\rho\alpha^{3}} \vec{A}^{FP} \frac{1}{r} \dot{M}_{0}(t-\frac{r}{\alpha}) + \frac{1}{4\pi\rho\beta^{3}} \vec{A}^{FS} \frac{1}{r} \dot{M}_{0}(t-\frac{r}{\beta}),$$
(6)

⁹⁴ where the notation is equivalent to Eq. (5). The radiation patterns of the near field and the ⁹⁵ far and intermediate compression (P) and shear (S) field terms are described by:

$$\vec{A^{N}} = 9\sin 2\theta \cos \phi \vec{r} - 6(\cos 2\theta \cos \phi \vec{\theta} - \cos \theta \sin \phi \vec{\phi})$$
$$\vec{A^{IP}} = 4\sin 2\theta \cos \phi \vec{r} - 2(\cos 2\theta \cos \phi \vec{\theta} - \cos \theta \sin \phi \vec{\phi})$$
$$\vec{A^{IS}} = -3\sin 2\theta \cos \phi \vec{r} - 3(\cos 2\theta \cos \phi \vec{\theta} - \cos \theta \sin \phi \vec{\phi})$$
$$\vec{A^{FP}} = \sin 2\theta \cos \phi \vec{r}$$
$$\vec{A^{FS}} = \cos 2\theta \cos \phi \vec{\theta} - \cos \theta \sin \phi \vec{\phi},$$

where ϕ, θ and r are the spherical coordinates, with ϕ being the angle to the direction of the ⁹⁷ DC and θ being the angle to the orthogonal of the DC direction.

2.8. Kinematic simulations

The propagating ruptures are modeled by superposing unidrectional shear point forces or 98 double-couple point forces in space and time. The same source function $X_0(t)$ or $M_0(t)$ is therefore 99 shifted in x-direction and time according to the rupture speed profile. Along the prescribed 100 rupture surface, each grid point, which is spaced at 0.3 mm acts thus as a point source, emitting 101 at different times. We assume an axisymmetric setup and homogeneous medium and extract the 102 wavefield in a x - z plane for the simulation. As a consequence, the physical rupture surface of 103 the experiment is reduced to a rupture line in the simulation. The only processing undertaken 104 for visualization of the simulations is a median filter which was applied to the simulations in 105 space in order to visually highlight the coherent wavefronts. This is due to the fact that the 106 simulations were undertaken with an equivalent resolution in x and z while the experiment was 107 acquired at a higher spatial resolution in z. Point source functions for the kinematic simulations 108 and rupture speed profile resulting from the superposition of these point sources in time and 109 space can be found in Figs. S10 to S14. The actual wavefield is retrieved by convolving the 110 derivative with the Green's function and integrating the resulting wavefield to avoid non-smooth 111 or long source functions in the computation. Note that the simulations are qualitative and the 112 source amplitudes are normalized. 113

2.9. Wave and rupture speed measurements

Examples of the manual time of flight measurements from the strong bimaterial interface experiment are given in Figs. S15 and S16. The given uncertainty stems from the time resolution of the data acquisition. An example of the speed estimation from the supershear front, as described in the main article, is shown in Fig. S17.

3. Supplementary table

Experiment	Gel Nr	PRF	Drive speed	Normal load	Duration
Rel.	INT.	$\left\lfloor \frac{s}{s} \right\rfloor$	$\left\lfloor \frac{1}{s} \right\rfloor$	$[\kappa g]$	[S]
Fig. 2-3	Gel 1	3000	1	≈ 4.0	2
Fig. 4-5	Gel $1+2$	3000	2	≈ 2.5	3

Table S1. Experimental parameters for the experiments presented in Fig. 2-5 (main article).

:

4. Supplementary figures

Figure S1. Experimental workflow: Raw-data acquisition, beamforming and post-processing are separate processes. This permits rapid succession of experiments. The length of the experiment is hereby only limited by the frame size of the raw data and the available memory of the host computer. Labview pilots the motor and triggers the ultrafast scanner via a BNC-TTL trigger. Center sketch: Friction bench. From left to right: A stepper motor drives an endless screw which displaces the wagon with the glass plate. A hydrogel is posed on the glass plate with a frictional layer of sand in between. Normal load is applied on top via weights. The gel is blocked in the direction of movement of the plate and a small part at the bottom is left free to deform. An ultrasound imaging probe is placed on the side or top of the gel with a layer of echography gel in-between to ensure coupling and omit stress induced by the probe. In this paper only the vertical probe position is investigated.

Figure S2. Particle velocity snapshots of a 34 ms long extract of the glass-hydrogel experiment (strong bi-material contrast). The direction of the plate movement is indicated by a black arrow in the first snapshot. The schematic experimental setup with the probe position is indicated by the inset in the same snapshot. Note that blue color denotes upwards polarization of the *z*-component of the particle velocity and red denotes downwards polarization of the *z*-component of the particle velocity. Event 3 corresponds to the localized event of figure Fig. 2 (main article) and event 4 to the rupture propagation across the whole asperity of Fig. 3 (main article)

:

Figure S3. The cumulative displacement of the rupture cycle of Fig. S2 relative to -2.3 ms. The blue points in snapshot 2 indicate the approximate locations of the 1D displacement curves in Figs. S6 and S7. The three precursory events (1, 2 and 3) nucleate at the point of stress concentration, where the fault normal displacement changes sign. The supershear rupture however nucleates outside the imaging region and possibly not at a visible point of stress concentration. Note how the displacement field from 23 ms resembles a propagating slip pulse as computed by Andrews and Ben-Zion (1997).

:

Figure S4. High temporal resolution particle velocity snapshots of the event in Fig. 3 (a) (main article). In contrast to Fig. 3 (a) (main article), the displayed snapshots are shown at the experimentally acquired temporal resolution.

Figure S5. High temporal resolution particle velocity snapshots of the simulation in Fig. 3 (b) (main article). In contrast to Fig. 3 (a) and (b) (main article), the displayed snapshots are shown at the experimentally acquired temporal resolution.

:

Figure S6. Displacement curves of the entire experimental time during the glass-hydrogel experiments for selected points on the rupture surface. Positive is downwards displacement, away from the probe as in Fig. S3. The overall trend is continuous deformation of the gel. The black dashed lines indicate successful supershear front detections by image segmentation and the Hough transform. Each sawtooth in the displacement curves thus represents a rupture as the one zoomed in on Fig. S7.

Figure S7. Cumulative z-displacement, calculated as the cumulative sum of the z-component of the measured particle velocity. All curves are taken at a specified x-location and plotted against time. Displacement against time for several points along x on the rupture surface. The points are as close as possible to the fault, possibly partly inside the granular material. Positive is downwards displacement, away from the probe as in Fig. S3. The cycle from Fig. S3 is shown. In the displacement, the time-space evolution of the slip, whose dynamics are shown in Fig. S4, becomes evident. Note the event at x=2.06 cm x=3.78 cm and 6 ms. It represents Event 2 of Figs. S2 and S3.

:

Figure S8. Particle velocity snapshots during an extract of the gel-gel rupture experiment (weak material contrast). Event 1 corresponds to the rupture propagation that is studied in Fig. 5 (main article) and event 2 to the localized event of figure Fig. 4 (main article).

Figure S9. Radiation patterns for the z-component of the Green's functions for a rightpointing unidirectional shear force and a right-pointing double-couple. a) Displacement field of a point source resulting from the convolution of a Gaussian force in time with the Green's function of a unidirectional shear force (Eq. (5)). b) Particle velocity field of a point source resulting from the convolution of a ramp displacement in time with the Green's function of a double couple of forces (Eq. (6)).

Figure S10. Source function for Fig. 2 (b) (main article).

:

Figure S11. Top: Source function for Fig. 3 (b) (main article) and Fig. S5 (left) and its derivative (right). Bottom: Rupture speed profile in space. The rupture starts before the x-extension of the imaging plane.

Figure S12. Source function for Fig. 3 (c) (main article) (left) and its derivative (right). Bottom: Rupture speed profile in space. The rupture starts before the x-extension of the imaging plane.

Figure S13. Source function for Fig. 4 (b) (main article).

Figure S14. Source function for Fig. 5 (b) and (e)-(f) (main article).

Figure S15. Shear wave time of flight on a composite image of two snapshots. The part below the white line shows a snapshot at t_1 and the upper part shows a snapshot at t_2 . The shear wave speed is calculated from $v_s = \frac{dr}{t_2 - t_1}$ as $6.9 \pm 1 \,\mathrm{m \, s^{-1}}$.

:

Figure S16. Example of the time of flight measurement of the rupture speed. The speed along the profile is not constant and the estimation by eye can only be tentative. The rupture speed equivalent to the black line on the indicated segment between 1.3 cm and 3 cm is calculated from: $v_r = \frac{dx}{t_2 - t_1}$, as 10.6 $\pm 1 \text{ m s}^{-1}$.

Figure S17. Example of the supershear front. Two slopes can clearly be identified, indicating a decelerating rupture. The rupture speed is calculated from the shear wave speed c_s and the angle to the horizontal β : $v_r = \frac{c_s}{\sin(\beta)}$. The rupture speed corresponding to each segment of the supershear fron is indicated.

5. Additional Supporting Information Captions (Files uploaded separately)

:

5.1. Caption for video S1

¹¹⁸ Wave propagation video of the particle velocities of the entire strong bi-material experiment. ¹¹⁹ Blue color is upwards pointing and red color is downwards pointing particle velocity. The imaging ¹²⁰ plane is x - z as described in the main article. Note how the main ruptures resemble each other ¹²¹ indicating a stick-slip behaviour. The video extract corresponding to Figs. 2-3 of the main article ¹²² can be found from 770 - 800 ms.

5.2. Caption for video S2

¹²³ Wave propagation video of the particle velocities of the entire weak bimaterial experiment. Blue ¹²⁴ color is upwards pointing and red color is downwards pointing particle velocity. The imaging ¹²⁵ plane is x - z as described in the main article. Here, both halfspace are imaged, albeit imaging ¹²⁶ quality is superior above the interface. The video extract corresponding to Figs. 4-5 of the main ¹²⁷ article starts at approximately 2396 ms.

6. References

References

Aki, K., & Richards, P. G. (2009). Quantitative seismology. In Book (Second ed., p. 700).
 University Science Books.

:

- Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a fault between different
 materials. Journal of Geophysical Research: Solid Earth, 102(B1), 553–571. doi: 10.1029/
 96JB02856
- Pinton, G., Dahl, J., & Trahey, G. (2005, June). Rapid Tracking of Small Displacements with
 ¹³⁴ Ultrasound. In *IEEE Ultrasonics Symposium*, 2005. (Vol. 4, pp. 2062–2065). IEEE. doi:
 ¹³⁵ 10.1109/ULTSYM.2005.1603285
- Sandrin, L., Catheline, S., Tanter, M., Hennequin, X., & Fink, M. (1999, October). Time Resolved Pulsed Elastography with Ultrafast Ultrasonic Imaging. Ultrasonic Imaging, 21(4),
 259–272. doi: 10.1177/016173469902100402