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Abstract

NTCM is a simple and relatively faster global climatological model that is developed, using ionospheric VTEC measurements

from unevenly globally distributed GNSS receivers, to mitigate ionospheric effects on GNSS applications. As it is climatological,

its ionospheric weather characteristic specification capability is limited. Also, its nowcasting and forecasting performance of the

East-African equatorial ionosphere has not yet been tested. Therefore, this paper demonstrates techniques to change NTCM

to ionospheric weather model to nowcast and forecast VTEC for East-Africa. NTCM has been changed to ionospheric weather

model through adapting it to quiet days VTEC from nineteen GNSS receivers in East-Africa in 2013 and 2014. Adaptation has

been done by calculating its driver, effective ionization level, when NTCM modeled VTEC fits the best with observed VTEC.

Then, performances of the model in nowcasting and forecasting VTEC, before and after adaption, have been investigated

compared to observed VTEC. It is found that NTCM, after adaptation, represents observed features of diurnal variations of

VTEC and equatorial ionization anomaly (EIA) much better than before adaptation. After adaptation, the mean and standard

deviation of daily mismodelings are found comparable with the mean and standard deviation of yearly mismodelings. It is

demonstrated also that NTCM after adaptation to a reference station performs better than before adaptation at the stations

nearby the reference station; however, its performance decreases at the locations far away from the reference station. In addition,

after adaptation, one hour ahead prediction of NTCM is found to be the best compared to its longer hours prediction.
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Abstract 6 

NTCM is a simple and relatively faster global climatological model that is developed, using 7 

ionospheric VTEC measurements from unevenly globally distributed GNSS receivers, to 8 

mitigate ionospheric effects on GNSS applications. As it is climatological, its ionospheric 9 

weather characteristic specification capability is limited. Also, its nowcasting and forecasting 10 

performance in the East-African equatorial ionosphere has not yet been tested. Therefore, this 11 

paper demonstrates techniques to change NTCM to ionospheric weather model to nowcast 12 

and forecast VTEC for East-Africa. NTCM has been changed to ionospheric weather model 13 

through adapting it to quiet days VTEC from nineteen GNSS receivers in East-Africa in 2013 14 

and 2014. Adaptation has been done by calculating its driver, effective ionization level, when 15 

NTCM modeled VTEC fits the best with observed VTEC. Then, performances of the model 16 

in nowcasting and forecasting VTEC, before and after adaption, have been investigated 17 

compared to observed VTEC. It is found that NTCM, after adaptation, represents observed 18 

features of diurnal variations of VTEC and equatorial ionization anomaly (EIA) much better 19 

than before adaptation. After adaptation, the mean and standard deviation of daily 20 

mismodelings are found comparable with the mean and standard deviation of yearly 21 

mismodelings. It is demonstrated also that NTCM after adaptation to a reference station 22 

performs better than before adaptation at the stations nearby the reference station; however, 23 

its performance decreases at the locations far away from the reference station. In addition, 24 

after adaptation, one hour ahead prediction of NTCM is found to be the best compared to its 25 

longer hours prediction.  26 

Key words: data ingestion, NTCM-model, model performance. 27 

Key points: 1) The diurnal performance of NTCM is found to be improved by data ingestion.   28 

2) Spatial performance of NTCM has become better after adaptation.3) Model VTEC map 29 

run by Az reflects the observations such as EIA. 30 
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Introduction  33 

Ionosphere is the region of Earth’s atmosphere which contains significant amount of free 34 

electrons and ions (Schunk and Nagey, 2009). The primarily source of the ions and free 35 

electrons is photoionization of solar radiation. Ionosphere is approximately located in altitude 36 

range between 50 kms and higher than 2000 kms above sea level. The level of significance of 37 

number of ions and electrons found in the atmosphere is determined by the effect that the 38 

atmosphere acts on the radio signals when it attempts to pass through (Davies, 1990, Zolesi. 39 

et al., 2014). Ionosphere is mainly characterized by its electron density (Ne) or total electron 40 

content (TEC) of a column of unit base area extended between the Global Positioning System 41 

(GPS) satellite and receiver along the signal path. Ionosphere is taken as both resource and 42 

setback for some of the modern technologies. In case of satellite based navigation, it degrades 43 

performance by introducing extra delay (slowing down and bending propagation) and/or 44 

scintillation of radio signals used by GPS. Error in GPS navigation caused by ionosphere is 45 

the most significant (Tiwari et al., 2013, Davies, 1990).  However, in radio communication, 46 

radio signals are reflected by the bottom side of the ionosphere thus ionosphere helps radio 47 

transmission over the horizon (Rawer, 1993).  48 

After extensive studies for more than five decades, it is well known that the “climate” change 49 

and “weather” disturbance of ionosphere are caused by processes extended from ionosphere-50 

thermosphere system to mesosphere, solar, interplanetary and magnetosphere dynamics 51 

(Schunk et al., 2004). The ionosphere characteristics depend on location, season, time of the 52 

day, and solar activity level (Jakowski et al., 2011; Scherliess et al., 2008). 53 

The ionosphere variability affects radio signal propagation adversely. However, it is possible 54 

to mitigate this effect if we specify and predict spatiotemporal dynamics of the ionosphere. 55 

This can be possible through developing a model that characterizes ionosphere. Empirical 56 

models such as International Reference Ionosphere (IRI) (Bilitza et al., 2018), NeQuick-2 57 

(Nava et al., 2008), and Neustrelitz TEC model (NTCM) (Jakowski et al., 2011) have been 58 

developed to specify the climatological ionosphere behavior. 59 

In specifying peak electron density, IRI and NeQuick models perform well, however they 60 

take longer time and lack accuracy in estimating TEC. Measuring their shape parameters is 61 

difficult, and inaccuracy of modeling the topside ionosphere and plasmasphere morphology 62 

results in crucial errors in estimating TEC (Jakowski et al., 2011). To calculate TEC, IRI and 63 

NeQuick models integrate Ne numerically along the line joining two points in space.  64 



However, NTCM model is another empirical model which estimates VTEC directly. It takes 65 

shorter time to compute TEC since it doesn’t need to integrate Ne.  NTCM works for all solar 66 

activity levels taking F10.7 as the main driving parameter and it uses only 12 model 67 

coefficients (Jakowski et al., 2011). These empirical models represent the monthly median 68 

value of the ionosphere Ne or TEC. They lack capability of reproducing the current 69 

ionosphere conditions (Bilitza et al., 2008; Nava et al., 2011; Jakowski et al., 2011).   70 

In order to  a model can capture short-time variations, we use either data assimilation or data 71 

ingestion technique (Ercha et al., 2018; Nava et al., 2011; Brunini et al.,2011). In case of data 72 

assimilation, we use measurements and optimization algorithms like Kalman filter to 73 

determine the initial and boundary conditions of ionosphere physical models. Global 74 

Assimilation Ionosphere models (GAIM), for example, used different sources of ionosphere 75 

data like ground and space based GPS measurements, Ionosonde-derived electron density 76 

profiles, UV airglow, in situ electron and neutral densities, plasma drift, neutral wind 77 

measurements   to create “weather” prediction model (Wang et al., 2004). Another example 78 

of data assimilative model is Electron Density Assimilative Model (EDAM) (Angling and 79 

Jackson‐Booth, 2011). EDAM used different ionosphere data sources such as TEC-data taken 80 

from both ground and space based GNSS receivers and electron density profiles obtained 81 

from ionosondes, incoherent scattering radars, and in situ measurements in order to 82 

effectively specify nearly real–time characteristics of the ionosphere with minimal errors in 83 

both TEC and foF2. However, due to its simplicity and less computation time, data ingestion 84 

into empirical models attracts more of space weather communities (Ercha et al., 2018). Data 85 

ingestion uses the application of simple minimization algorithms like least square to force a 86 

parameterized empirical model to capture nearly the current behavior of the ionosphere. One 87 

of the parameters of the model represents level of ionization which is known as effective 88 

ionization level (Az). The purpose of data ingestion is to determine Az that minimizes the 89 

deviation of the model from the observation. 90 

Number of studies showed that data ingestion into NeQuick model has improved its 91 

performance. Nava et al. (2006) has applied data ingestion to NeQuick model using single 92 

and multiple GPS receivers and showed that in both cases near real-time ionosphere 93 

characteristics are retrieved. Moreover, the capability of TEC reconstruction in case of 94 

multiple stations is more remarkable than single station due to higher data density.  Brunini et 95 

al. (2011) have applied data ingestion into NeQuick2 model and found that the model error 96 

could be reduced to 25-30% for slant TEC (STEC) and Ne. Olwendo et al. (2016) applied the 97 



ingestion for NeQuick2 model using GPS data over the Kenyan regions and was able to show 98 

that the difference between the measured and model TEC is minimized to the value of 0.5 99 

TECU. Nigussie et al. (2012) also used data ingestion into NeQuick2 model using GPS data 100 

over Easter Africa ionosphere and showed that the performance of the model after data 101 

ingestion at a reference station is substantially improved for stations located up to 620 kms 102 

from the reference station. Ercha et al. (2018) used data ingestion for NeQuick2 model in 103 

combination with Empirical Orthogonal Function (EOF) analysis and reached to a result 10–104 

15% improvement of accuracy over the standard ionosphere correction algorithm in the 105 

Galileo navigation system.   106 

IRI and NeQuick models use smoothed monthly mean sun spot number (𝑅𝑧12) or F10.7 107 

which are related by (M. G. Deminov and G.F Deminova, 2018, Rec. ITU-R P.371-8) 108 

                𝐹12 = 63.7 + 0.78𝑅𝑧12 + 8.9𝑥10−4𝑅𝑧12
2   ,                                                            (1) 109 

where  𝐹12 is monthly mean of F10.7. 110 

Equation 1 implies that to get positive sun spot number, there is a constraint on values of 111 

F10.7 flux that it has to be greater than 63.7 Solar Flux Unite (SFU) as recommended by 112 

ITUR (1997). The mathematical function used in NTCM and IRI (NeQuick) are different and 113 

hence it will have difference on application of data ingestion in these families of empirical 114 

models. When we apply data ingestion into IRI and NeQuick models, the Az value might be 115 

less than 63.7 SFU, as shown for example in Nigussie et al.(2016) against ITUR (ITU-R 116 

P.371-8) recommendation, and that will be used in the models internally to compute negative 117 

sunspot number which is unrealistic. This might be resolved when we apply data ingestion to 118 

NTCM model, since the mathematical formulation for NTCM is different from IRI and 119 

NeQuick2.   120 

In this study, we focus on the investigation of NTCM model performance in the East African 121 

equatorial ionosphere by assisting it with GPS vertical TEC (VTEC) data applying ingestion 122 

technique. First GPS-VTEC data is ingested to the model to determine the optimal Az then 123 

the performance of the model in reconstructing VTEC using Az is tested.  To test the spatial 124 

performance of adapted model, the Az computed at one particular (reference) station is used 125 

for different stations. Some statistical analysis is also made for the comparison of the mis-126 

modeling level in reproducing VTEC before and after ingestion.  127 

 128 



2. Data and the Analysis Method  129 

2.1 Model 130 

NTCM model has been developed by Jakowski et al. (2011) at DLR Neustrelitz Germany. It 131 

is an empirical model with few model coefficients (only 12). The model consists of five 132 

major independent functions. The functions depend on location (latitude and longitude), time 133 

(diurnal and seasonal) and solar activity. The solar activity is represented by the daily solar 134 

flux index F10.7.  The output of NTCM is VTEC of ionosphere of region of interest.  The 135 

details and full mathematical expressions of the model are found in Jakowski et al. (2011). 136 

NTCM model is simplified but it doesn’t capture the real-time variation of VTEC. To use the 137 

model for weather variation, we have to adapt it to ionosphere sector of interest at a given 138 

time (local time, day, month or season).  139 

2.2 Data ingestion  140 

As NTCM is regarded a monotonic function of F10.7, it is assumed that NTCM is a local 141 

ionization driven model. The local ionization level that plays the role of effective solar flux 142 

index in estimating VTEC of the model at a given Ionosphere pierce point ( IPP ) and in an 143 

epoch of time is Az. As many literatures reviewed (Nigussie et al., 2012, Ercha et al., 2018, 144 

Nava et al., 2006),  Az is determined by minimizing the root mean square error ( RMSE) 145 

defined in equation 2. 146 

RMSE(Az) = √∑ (VTECmi(Az)−VTECoi)2N
i

N
,                                                                                  (2) 147 

where, VTECmi(Az)  is the model VTEC computed as function of Az , VTECoi is measured 148 

VTEC, and N is the number of satellites visible in  an  epoch  of time. 149 

To determine Az, NTCM is driven by a range of F10.7 values then the one which minimizes 150 

equation (2) for each hour of measurements is chosen. The chosen values will be Az in the 151 

hours of the day. Then the model VTEC after data ingestion is calculated using Az whereas 152 

before ingestion VTEC is computed using daily average F10.7. To test the spatial 153 

performance of the model after adaptation, we run the model using Az computed at one 154 

(reference) station to other stations.  155 



2.3 Vertical TEC mapping Techniques 156 

NTCM has been also used to develop map of VTEC before and after data ingestion for East 157 

African region. Nineteen GPS stations (see Table 1 for their coordinates) have been used to 158 

develop VTEC maps after data ingestion. First Az values have been estimated at each IPP for 159 

every hour using equation (2), then Az values in IPP plan is represented by the quadratic 160 

function that varies in latitude and longitude. The polynomial used is formulated from linear 161 

variation in longitude (λ) and quadratic variation in latitude (θ), and it is expressed by 162 

𝐴𝑧 (𝜗, 𝜆) = 𝑎0 + 𝑎1𝜗 + 𝑎2𝜆 + 𝑎3𝜆𝜗 + 𝑎4𝜗2                    (3) 163 

where, the a’s are coefficients of the polynomial and they are estimated from the Az values 164 

applying the least-square fitting technique. Once the coefficients are estimated, equation (3) 165 

has been used to estimate the map of Az that has been used to drive NTCM to estimate the 166 

map of VTEC after data ingestion. Similarly, equation (2) has been also fitted directly to 167 

VTEC observation and then the equation has been used to estimate VTEC at any latitude and 168 

longitude to produce VTEC map. The corresponding map of VTEC before adaption has been 169 

estimated by running NTCM in the same region using daily F10.7 values as model driver.  170 

The performance of the model in estimating VTEC map before and after adaptation has been 171 

compared with the VTEC maps estimated directly from the quadratic equation (3) and 172 

observed VTEC. 173 

2.4 Data  174 

These days GPS data over African sector are easily accessible due to ground based receivers 175 

deployed in the continent.  For example in Ethiopia there are numbers of GPS receiver 176 

stations (www.unavco.org). These opportunities have laid a good platform for studying the 177 

region’s ionosphere dynamics. Using these data many global models are under investigation 178 

for their validity of performance (Nigussie et al., 2012; Nigusie et al., 2016; Tariku et al., 179 

2015; Olwendo et al., 2016).   180 

For this particular study, we chose nineteen sample sites in East Africa. The geographic and 181 

geomagnetic locations of the sites are shown in Table 1. We considered data of magnetic 182 

quiet time in the years 2014 and 2013 so the study is limited for quiet conditions. Days of 183 

year (DOYs) with Ap greater than 20 are excluded. The reason taken to choose the sites is 184 

http://www.unavco.org/


availability of relatively full data for the four seasons of the year (Jun solstice, September 185 

equinox, December solstice and March equinox).  186 

Table 1: geographic and geomagnetic location of the GPS stations  187 

 

Stations  

 

Code  

Geographic  Geomagnetic Dip –latitude  

Latitude 

(
o
N) 

Longitude 

(
o
E) 

Latitude 

(
o
N) 

Longitude 

(
o
E) 

Bahir Dar BDMT 11.60 37.36 8.07 111.48 3.63 

Ambo  ABOO 8.99 37.81 5.44 111.50 0.78 

Assosa  ASOS 10.05 34.55 7.00 108.48 1.50 

Addis Ababa ADIS 9.05 38.77 5.39 112.44 0.98 

Arba Minch ARMI 6.06 37.56 2.63 110.78 -2.53 

Asab ASAB 13.06 42.65 8.75 116.86 5.93 

Asum ASUM -0.62 34.62 -3.49 106.82 -10.34 

Debark  DEBK 13.15 37.89 9.58 112.24 5.44 

Ginir GINR 7.15 40.71 3.21 114.05 -0.88 

Malindi  MAL2 -3.00 40.19 -6.74 111.96 -12.16 

Mbarara MBRA -0.60 30.74 -2.83 102.99 -10.89 

Eldoret  MOIU 0.29 35.29 -2.70 107.63 -9.24 

Nazret  NAZR 8.57 39.29 5.01 112.9 -0.51 

Negele  NEGE 5.33 39.59 1.59 12.66 -3.06 

Nirobi RCMN -1.22 36.89 -4.45 108.97 -10.67 

Robe  ROBE 7.11 40.03 3.7 113.37 -1.02 

Seraba SERB 12.51 37.02 9.08 111.28 4.61 

Shimsheha SHIS 11.99 38.99 8.26 113.12 4.29 

Sheb SHEB 15.85 39.05 12.06 113.81 8.60 

 188 

The GPS RINEX data taken from UNAVCO website have been calibrated according to the 189 

techniques discussed in Ciraolo et al. (2007). The VTEC has been computed from calibrated 190 

STEC using the mapping function described in Mannucci et al. (1998). VTEC data of 191 

elevation angle less than 20
o   

were not included   in order to reduce multipath effects.  192 



The performances of the model (before and after ingestion) are determined by taking the 193 

difference of observed and modeled VTECs. Mis-modeling of the model is defined to be the 194 

difference between the measured and modeled value of ionosphere parameter at a location 195 

and in an epoch where data was taken. The level of mis-modeling determines the 196 

performance of the model. If the mis-modeling is high the performance of the model is low. 197 

If the mis-modeling is low the performance of the model becomes high. So to evaluate the 198 

effectiveness of the method we make a comparison of the model performance before and 199 

after data ingestion into the model. 200 

3. Results and discussion  201 

3.1 Day -to -day variation of performance of NTCM 202 

Panels (a-d) of Figure 1 show the diurnal variations of observed (*red) and modeled VTEC 203 

before (black) and after (blue) adaptation at Ambo station for the DOYs 79, 171, 263 and, 204 

355 in the year 2014. As we can see from the graphs, the model (before and after adaptation) 205 

generally captures the pattern of diurnal variation of observed VTEC throughout hours of the 206 

days.  However, the model before adaptation reproduces observation VTEC for only small 207 

portion of the hours of the days. For larger portion of hours of the days, it generally 208 

overestimates VTEC as compared to the observation.  For example, panel ‘a’ (DOY 79) , 209 

Panel ‘b’ (DOY 171) and panel ‘c’ (DOY 263)  show that the model before adaptation 210 

captures observed VTEC from about 5 to 10 UTCs and for the rest  hours of the days it 211 

overestimates. As shown in panel ‘d’ (DOY 355), the model before adaptation reproduces the 212 

observed VTEC approximately from about 5 to 8 UTCs.  However, after adaptation the 213 

capability of the model to capture diurnal variations of VTEC is greatly improved. It retrieves 214 

the observation VTEC for almost all hours of the days considered. 215 

The frequency distribution of mismodeling after and before adaptation for Ambo station is 216 

depicted in the middle and right panels of Figure 1, respectively. Each row panel depicts for 217 

different DOYs. The means (μ) and standard deviations (δ) are also included in the 218 

corresponding panels.  The means of mismodeling before data ingestion in general are larger 219 

than their corresponding means of mismodeling after data ingestion. As seen from Figure 1, 220 

the mean before adaptation ranges from -5 to -26 TECU.  However, the means after ingestion 221 

are from -0.030 to 0.04 TECU. The negative sign of means indicates that the model averagely 222 

overestimated the observation. The standard deviations of mismodeling after ingestion have 223 



also decreased as compare to their values before ingestion.  The standard deviations after 224 

ingestion for the DOY 79,171,263 and 355 are 3.92, 1.56, 3.51 and 3.91 TECU, respectively. 225 

The corresponding mismodeling standard deviations before adaptation are 14.54, 5.29, 11.23 226 

and 17.85 TECU.   227 

Figure 2 shows the same results as in Figure 1 but for Bahir Dar Station.  Panels (a-d) in 228 

Figure 2 present the graphs of the modeled VTEC before (black) & after (blue) adaptation, 229 

and the observed (*red) VTEC versus hours of the selected days. Before adaptation, the 230 

capability of the model in retrieving VTEC seems poor. It only captures the trend of diurnal 231 

variation.  However after adaptation, its capability is improved. In Figure 2, it is seen that the 232 

model (after adaptation) VTEC is more approximated to the observation VTEC. The middle 233 

and the right panels of Figure 2 present the frequency distributions of mismodeling before 234 

and after ingestion, respectively. The means and standard deviations of the mismodeling are 235 

included in the corresponding histograms of the distributions. Generally the means of 236 

mismodeling after adaptation are lower than that of before adaptation.  237 

The mean after adaptation ranges from -0.02 to 0.02 TECU but it ranges from -5.66 to -21.42 238 

TECU before adaptation. The standard deviations of mismodeling after adaptation are 239 

significantly decreased as compared to their corresponding values before ingestion. The range 240 

of standard deviations after adaptation is 1.57 to 5.78 TECU. But the standard deviation 241 

before adaptation varies from 5.11 to15.83 TECU. The reduction of means and standard 242 

deviations of mismodeling after adaptation indicates that the technique of ingestion has 243 

assisted the model to retrieve the observation better. 244 

The same data ingestion technique has been applied for GPS data taken from Addis Ababa 245 

(Ethiopia), Malindi (Kenya), Mbarara (Uganda) and Asab (Eretria) stations. Figure 3-6 show 246 

results for these stations, respectively. Panels (a-b) in these figures indicate that the modeled 247 

VTEC after adaptation are in better agreement to experimental than the modeled VTEC 248 

before adaptation.  The frequency distribution of mismodeling after ingestion is almost 249 

symmetric about 0 TECU. But in case of model before adaptation, the frequency distributions 250 

of the mismodeling are not as such much Gaussian.  The means and standard deviations 251 

presented in Figure 3-6 panels (middle after adaptation and right before adaptation) quantify 252 

the performance of the model. The means and standard deviations of mismodeling have been 253 

significantly reduced by data ingestion as compared to their values of standard model. The 254 



model before adaptation, in all the mentioned stations averagely overestimated the 255 

experimental VTEC.  256 

 In order to complement the results shown in Figures 1-6, we applied data ingestion for quiet 257 

354 days in 2014 at Ambo station. Figure 7 presents frequency distribution of mismodelings 258 

before and after adaptation. As seen from the plots, the mean value before adaptation   is -259 

6.71 TECU but it is approximated to 0.01 TECU after adaptation.  On average the model 260 

before adaptation overestimated the experimental values. The standard deviation is decreased 261 

from 14.56 to 3.34 TECU due to ingestion. In addition, the frequency distribution becomes 262 

more symmetric to 0 TECU after adaptation than before adaptation. In general, yearly mean 263 

and standard deviation of the mismodeling shown in Figure 7 are similar to the daily mean 264 

and standard deviations shown in the Figures 1-6. Therefore, the results shown above indicate 265 

that data ingestion assists NTCM model to capture the daily variability of VTEC. 266 

3.2 Spatial Performance of NTCM after and before 267 

adaptation 268 

To validate spatial performance of NTCM model after ingestion, we first ingested VTEC at   269 

Addis Ababa (reference) station to compute Az’s. Then we tested its performance at stations 270 

Ambo, Bahir Dar, Assab and Nazret.  The diurnal variations of both modeled and observed 271 

VTEC and mismodelings after and before ingestions for these stations respectively are shown 272 

in Figures 8, 9, 10, 11 for the DOY 79,171,263, and 355 in the year 2014. Figures 8-11, (a-b) 273 

panels present the diurnal variation observed (red) and modeled VTEC,- after (blue) and 274 

before (black) ingestion.  The trends of retrieving the observed VTEC before and after 275 

adaptation are similar to results discussed in section 3.1. The modeled VTEC after adaptation 276 

is in better agreement with the observed VTEC than before adaptation.  In the above 277 

mentioned figures, the mismodeling frequency distributions (the middle panels are after, and 278 

right are before adaptation) are included with their corresponding means and standard 279 

deviations. As seen, the means and standard deviations after adaptation have   significantly 280 

decreased as compared to the corresponding values before adaptation. For example, the mean 281 

of mismodeling after adaptation for DOY 79 at Ambo is -5.79 TECU, whereas before 282 

adaptation, it is -20.29 TECU, and the standard deviation after adaptation is 5.07 TECU and 283 

before adaptation is 14.54 TECU. Similar improvement in the performance of NTCM has 284 

been observed at the other stations using Az from reference station as NTCM driver (see 285 



Figures 9, 10, and 11).   These indicate that NTCM adapted to a reference station performs 286 

better at other nearby stations compared to its performance before adaptation. However, the 287 

spatial performance decreases as the distance between a station and a reference (Addis 288 

Ababa) increases. The air distances between Addis Ababa, and Bahir Dar, Nazret, Ambo and 289 

Assab are around 324, 79, 98, and 620 km, respectively. For example, the performance of the 290 

model at Nazerte (nearest) station (see Figure 11) is by far better than at Assab (farthest) 291 

station (see Figure 10). 292 

3.3 Prediction capability of NTCM after adaptation 293 

For operational application, a model performance ahead of time is very essential. As a test 294 

study, 1hr, 2hrs, 3hrs and 4hrs prediction capability of NTCM have been investigated. For 295 

example, Az obtained at previous hour has been used to drive NTCM to predict VTEC at the 296 

present hour; and the comparison between predicted and observed VTEC at the present hour 297 

indicates one hour ahead prediction capability of the model. Figure 12 shows the diurnal 298 

variation of measured, modeled (before & after ingestion) and predicted VTEC at Ambo 299 

station for DOY 355 in 2014. As seen in the figure, the prediction capability of the model 300 

decreases, as the length duration of computing Az increases.  The gap between the predicted 301 

VTEC and measured VTEC for 1hr ahead prediction is small as compared to for 4hrs ahead 302 

prediction. So the performance of the model gets weaker when the prediction time is 303 

elongated. 304 

3.4 Vertical TEC map after and before adapting NTCM 305 

Data taken from 19 stations on DOY 110 in the year 2013 have been used to develop VTEC 306 

maps. NTCM modeled VTEC maps before and after adaptation have been developed by 307 

driving the model using F10.7 and Az maps, respectively. Also, VTEC maps have been 308 

developed by representing observed VTEC using quadratic polynomial function. Samples 309 

maps were developed on DOY 110 in 2013 at 2, 4, 6,8,10,12,14,16 and 18 UTCs. Figures 13 310 

and 14 show the scatter (left column) and contour map (2
nd

, 3
rd

 and 4
th

 column from the left) 311 

plots of observed and modeled VTEC, respectively. Each row panels, from top to bottom, in 312 

these figures respectively indicates the observed and the map VTEC for 2, 4, 6,8,10,12,14,16 313 

and 18 UTCs. The 2
nd

,3
rd

 , and 4
th

 columns, from the left, in these figures show the VTEC 314 

maps obtained from quadratic polynomial, NTCM driven by Az maps and daily F10.7, 315 

respectively. As seen in both figures, spatial variations of observed VTEC (left panels) are 316 



similar with the spatial variations of VTEC maps obtained from polynomial and NTCM 317 

driven by Az maps compared to VTEC maps of NTCM driven by F10.7. More importantly ,  318 

the equatorial ionization anomaly (EIA) shown by observations are captured by the VTEC 319 

maps obtained by polynomial fit and NTCM after adaptation; whereas the NTCM map of 320 

VTEC before adaptation (right column) portrayed smooth latitude variations of VTEC that 321 

don’t agree with observations. These plots also show that polynomial fit and NTCM driven 322 

by Az map captures the diurnal variation of VTEC maps much better than the NTCM model 323 

driven its standard input (F10.7). Therefore, the model VTEC after adaptation is in good 324 

agreement with the experimental VTEC as compared to model VTEC before adaptation. This 325 

means that the local ionization level, Az drives NTCM model by far better than the solar flux, 326 

F10.7.  327 

Conclusion 328 

Data ingestion into NTCM model has been carried out to validate the performance of the 329 

model in estimating VTEC of the East-African Ionosphere sector. This has been done by 330 

determining the optimum value of the input effective ionization level Az and by running the 331 

model using Az.  We found that data ingestion into NTCM enables it to estimate diurnal 332 

observed TEC in a better way than it estimates before ingestion. The model driven by Az’s of 333 

a reference station, in regions around it, estimates the observed VTEC better than the model 334 

driven by F10.7. After adaptation the mismodeling means and standard deviations have 335 

significantly decreased in comparison to the mismodeling means and standard deviations 336 

before adaptation. This reduction of means and standard deviations quantifies the 337 

improvement of the performance of the model after ingestion.  The model driven by Az 338 

computed at 1hr ahead can estimate the measured VTEC better than it is driven by Az 339 

computed at 4 hrs ahead.  Moreover, NTCM VTEC maps reproduced from updated Az maps 340 

by polynomial fitting reflect the VTEC maps developed by polynomial fitting of the observed 341 

VTEC including the EIA which are not seen by the NTCM VTEC maps using the standard 342 

input F10.7.  These findings suggest that the proposed ingestion technique can bring a 343 

performance improvement to NTCM model and it is effective to progress from climatology 344 

model to a model that describes the near-real-time weather conditions of the ionosphere.  345 
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Figure 1:  Diurnal variation of experimental and modeled (before & after data ingestion) 411 

VTEC (left); frequency distribution of mismodeling of VTEC after (middle), and before 412 

(right) data ingestion at Ambo station for DOY 79,171,263 and 355 in 2014. 413 

Figure 2: Diurnal variation of experimental and modeled (before & after data ingestion) 414 

VTEC (left); frequency distribution of mismodeling of VTEC after (middle), and before 415 

(right) data ingestion at Bahir Dar station for DOY 79,171,263 and 355 in 2014. 416 

Figure 3: Diurnal variation of experimental and modeled (before & after data ingestion) 417 

VTEC (left); frequency distribution of mismodeling of VTEC after (middle), and before 418 

(right) data ingestion at Addis Ababa station for DOY 79,171,263 and 355 in 2014. 419 

Figure 4: Diurnal variation of experimental and modeled (before & after data ingestion) 420 

VTEC (left); frequency distribution of mismodeling of VTEC after (middle), and before 421 

(right) data ingestion at Malindi station for DOY 79,171,263 and 355 in 2014. 422 

Figure 5: Diurnal variation of experimental and modeled (before & after data ingestion) 423 

VTEC (left); frequency distribution of mismodeling of VTEC after (middle), and before 424 

(right) data ingestion at Mbarara station for DOY 79,171,263 and 355 in 2014. 425 

Figure 6: Diurnal variation of experimental and modeled (before & after data ingestion) 426 

VTEC (left); frequency distribution of mismodeling of VTEC after (middle), and before 427 

(right) data ingestion at Assab station for DOY 79,171,263 and 355 in 2014. 428 

Figure 7: Frequency distribution of VTEC mismodeling after (left) and before (right) 429 

ingestion for 354 quiet days in 2014 at Ambo station. 430 

Figure 8: Diurnal variation of experimental and modeled (using F10.7 & Az computed at 431 

Addis Ababa) VTEC (left); frequency distribution of mismodeling of VTEC  using F10.7 432 

(middle), and Az (right) at  Ambo station for DOY 79,171,263 and 355 in 2014.  433 

Figure 9: Diurnal variation of experimental and modeled (using F10.7 & Az computed at 434 

Addis Ababa) VTEC (left); frequency distribution of mismodeling of VTEC  using F10.7 435 

(middle), and Az (right) at  Bahir Dar station for DOY 79,171,263 and 355 in 2014.  436 

Figure 10: Diurnal variation of experimental and modeled (using F10.7 & Az computed at 437 

Addis Ababa) VTEC (left); frequency distribution of mismodeling of VTEC  using F10.7 438 

(middle), and Az (right) at  Assab  station for DOY 79,171,263 and 355 in 2014.  439 



Figure 11: Diurnal variation of experimental and modeled (using F10.7 & Az computed at 440 

Addis Ababa) VTEC (left); frequency distribution of mismodeling of VTEC  using F10.7 441 

(middle), and Az (right) at  Nazret station for DOY 79,171,263 and 355 in 2014.  442 

Figure 12:  Diurnal variation of experimental modeled (before & after data ingestion) and 443 

predicted VTEC at Ambo station for DOY 355 in 2014. Panels a,b,c and d are 1hr,2hrs,3hrs 444 

and 4hrs time of prediction respectively.   445 

Figure 13:  Scatter plot of  experimental  VTEC  versus latitude and longitude , from top  to 446 

bottom  at 2,4,6,8 & 10 UT ( left ) , and the corresponding  VTEC  map  from  polynomial  447 

function (2
nd

  column from  left ), NTCM  derived by Az map (3
rd

  column from left ) and  448 

F10.7(  4
th

 column from left ) on DOY 110 of 2013.  449 

Figure 14:   Scatter plot of  experimental  VTEC  versus latitude and longitude , from top  to 450 

bottom  at 12,14,16 & 18 UT ( left ) , and the corresponding  VTEC  map  from  polynomial  451 

function (2
nd

  column from left ), NTCM  derived by Az map (3
rd

  column  from left) and   by 452 

F10.7(  4
th

 column from left) on DOY 110 of 2013. 453 
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