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Key Points:

• Estimates of recent global air pollution-associated mortality are sensitive
to the choice of observation dataset.

• Uncertainties in projected global avoided mortality under reduced emis-
sions are smaller than uncertainties in recent estimates.

• If global emissions are aggressively reduced, avoided cumulative deaths
could exceed a quarter-billion by 2100.

Abstract

Exposure to fine particulate matter (PM2.5) air pollution is associated with
large-scale health consequences, but the uncertainties in estimates of PM2.5-
related global premature mortality remain understudied. Using four observation-
based PM2.5 datasets and six Coupled Model Intercomparison Project Phase 6
(CMIP6) climate models, we compare uncertainties in current PM2.5-related
mortality estimates to the impacts of emissions reductions on global health.
Although estimates of current mortality are sensitive to the PM2.5 dataset (6.54
to 8.27 million/year using the Global Exposure Mortality Model), the projected
near-term and long-term benefits of emissions reductions for reduced mortality
are much more certain. Specifically, uncertainties in projected avoided deaths
are consistently less than half the magnitude of uncertainties in recent mortality
estimates. Under a low-emissions scenario, avoided cumulative deaths would
exceed a quarter-billion by 2100.

Plain Language Summary

Most people on Earth are exposed to unsafe levels of fine particulate matter air
pollution (PM2.5). This outdoor PM2.5 exposure is associated with a variety of
health consequences, including premature mortality. Despite the importance of
PM2.5 exposure, global estimates of premature mortality associated with air pol-
lution exposure are often based on one observation-based dataset of air pollution.
Here we examine the uncertainties in estimates of global air pollution-associated
mortality due to choice of observation dataset and compare these uncertainties
to the projected future impacts of emissions reductions on global health. We
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find that estimates of global mortality in recent years are sensitive to the obser-
vation PM2.5 dataset (6.54 to 8.27 million/year, depending on dataset). We also
use the latest climate model simulations to estimate how air pollution exposure
and associated mortality would change in the future under a high emissions
scenario and a low emissions scenario. We find that climate models agree that
reducing emissions would lead to rapid, large-scale reductions in air pollution
exposure and associated premature mortality. Specifically, if emissions reduc-
tions are aggressively implemented, avoided cumulative deaths would exceed a
quarter-billion by the end of the century.

1 Introduction

Exposure to ambient fine particulate matter (PM2.5) is a major global health
issue (Murray et al., 2020). Specifically, exposure to elevated levels of PM2.5
is associated with an increased risk of childhood respiratory infections, chronic
obstructive pulmonary disease (COPD), ischaemic heart disease, lung cancer,
and stroke, among other outcomes (Murray et al., 2020; Thurston et al., 2017).
Due to the negative impact of poor air quality on global health, in September
of 2021 the World Health Organization (WHO) updated its Global Air Quality
Guidelines (AQG) from annual mean PM2.5 concentrations of 10 µg/m3 to con-
centrations of 5 µg/m3. Previous work has suggested that 95% of the world’s
population is exposed to outdoor ambient PM2.5 concentrations of at least 10
µg/m3 (Shaddick et al., 2018). PM2.5-associated premature deaths could be as
high as ~9-10 million/year (Burnett et al., 2018; Lelieveld et al., 2019; Vohra et
al., 2021), and air pollution-associated global welfare losses are estimated to be
US$4.6 trillion per year (Landrigan et al., 2018).

Despite the negative impacts of ambient PM2.5 exposure on human health and
well-being, a comparison of global PM2.5 exposure and its consequences (e.g.,
(Farrow, 2020)) using the latest global observation-based estimates (e.g., (Al-
varado et al., 2019)) has not been conducted. Furthermore, although air quality
outcomes across Shared Socioeconomic Pathways (SSPs) have been examined
using a simplified global air quality model (Rao et al., 2017), future global air
pollution exposure and associated consequences (Allen et al., 2021; Shindell et
al., 2021; Vandyck et al., 2018) under higher and low emissions scenarios in a
suite of the latest climate models have not been addressed.

Here, we use four observation-based datasets to compare current estimates
of global, annual-mean ambient PM2.5 exposure. We also estimate PM2.5-
associated premature mortality using the Global Exposure Mortality Model
(GEMM), which draws on studies covering a wide range of PM2.5 exposure
across multiple countries, including high (>35 µg/m3) concentrations (Burnett
et al., 2018). We then compare observation-based estimates of global mortality
to estimates from six Coupled Model Intercomparison Project, Phase 6 (CMIP6)
models (Eyring et al., 2016; Turnock et al., 2020) adjusted to better repre-
sent all aerosol components at a higher spatial resolution (Shindell et al., 2022;
Shindell et al., 2021). Specifically, we contrast global PM2.5 exposure under a
low-emissions ‘sustainability’ scenario (SSP1-2.6) with exposure under a higher
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emissions ‘regional rivalry’ scenario (SSP3-7.0) in which emissions are gener-
ally not curtailed (O’Neill et al., 2016). We show that there is a large range
in observation-based estimates of global exposure and mortality, and adjusted
CMIP6 models simulate global PM2.5 exposure that generally falls within this
observational estimated range. The projected uncertainties in the health bene-
fits of emissions reductions using the GEMM remain substantially smaller than
the uncertainties in observation- and model-based estimates of near present-day
premature mortality.

2 Data and Methods

2.1 PM2.5 air pollution in observation-based gridded data products

We compare PM2.5 exposure and associated health impacts in four observation-
based PM2.5 datasets that use models to relate satellite column Aerosol Optical
Depth (AOD) with surface PM2.5 and include model calibration against station
data. Specifically, we compare globally gridded, annual mean ambient PM2.5
from: (1) Shaddick et al. (2018) (hereafter ‘Shaddick’), Modern-Era Retrospec-
tive analysis for Research and Applications, Version 2 (hereafter ‘MERRA-2’;
(Gelaro et al., 2017)), the 2019 Global Burden of Disease ((Network, 2021);
hereafter ‘GBD2019’), and van Donkelaar et al. (2021) (hereafter ‘van Donke-
laar’). We use mean annual ambient PM2.5 over years 2015-2019 for all of these
datasets, except the Shaddick dataset, for which we use the mean 2014-2016
values. For each data product, we interpolate to a common spatial grid struc-
ture (~0.3°x0.3°), overlay the spatial PM2.5 estimates on ~0.3°x0.3° Gridded
Population of the World, version 4 (GPWv4) population data (Center for Inter-
national Earth Science Information Network - CIESIN - Columbia University,
2016) for the year 2015, and average population-weighted PM2.5 over the globe
to estimate current global-mean air pollution exposure (Figure 1).

2.2 PM2.5 air pollution in CMIP6 models

We use atmospheric concentrations of PM2.5 from CMIP6 models published by
Turnock et al. (2020). The six CMIP6 models analyzed here are shown in Table
S1. PM2.5 is defined as:

PM2.5 = BC + OA + SO4 + (0.25 * Sea Salt) + (0.1 * Dust)

where BC is black carbon, OA is organic aerosols, and SO4 is sulfate, and nitrate
is excluded because few models provided nitrate data. In Turnock et al. (2020),
a uniform fraction of sea salt and mineral dust are less than or equal to the 2.5-
micron cutoff because size-resolved information of these species is not provided
in the CMIP6 models analyzed here.

We adjusted the CMIP6 PM2.5 data described above using output from the
GISS model, which simulates both nitrate and size-resolved dust (and uses a
smaller fixed portion of sea-salt, 0.1, as PM2.5). Specifically, we calculated the
ratio of the GISS PM2.5, including the model’s nitrate and size-resolved local
dust fraction � 2.5 microns, to its PM2.5, using the definition given above, then
multiplied the standard PM2.5 for each model by that ratio. Furthermore, we
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used a previously developed method to simulate PM2.5 in the GISS model at
higher resolution that uses higher-resolution emissions data and the first-order
horizontal moments of the native grid box resolution tracers. Use of this method
has been shown to improve the realism of the model’s PM2.5, especially in urban
areas (Shindell et al., 2018). We therefore reran segments of the 2015-2100
period for SSP3-7.0 and SSP1-2.6 using the same GISS-E2-1-G model used for
CMIP6 but this time including the high-resolution PM2.5 method, calculated
the ratio of simulated PM2.5 in each 0.5° × 0.5° grid box to that in the native
2° × 2.5° box, and then multiplied all models’ PM2.5 by that ratio during the
transformation to a common 0.5° × 0.5° grid. These adjustments are dependent
upon the realism of the GISS model used to create the gridded scalings applied
to all other models, but Shindell et al. (2018) have found the high-resolution
GISS PM2.5, including the model’s nitrate and internally-defined fine-mode dust
loading, generally agrees well with observations.

Figure S1 shows global maps of CMIP6 multi-model median, annual mean PM2.5
in the SSP1-2.6 and SSP3-7.0 simulations and in observations. Figure S2 shows
the difference among observations and CMIP6 multi-model median PM2.5 in
the SSP1-2.6 and SSP3-7.0 simulations.

2.3 Sensitivity of PM2.5 air pollution exposure estimates in observation-based
data

We tested the sensitivity of estimates of global-mean, population-weighted
PM2.5 exposure to the choice of spatial resolution of population data (~5km,
~30km, ~55km spatial resolution), year of population data (i.e., 2015 vs 2020
GPWv4 data) and use of mean PM2.5 exposure over the 2015-2019 time
period as opposed to an individual year of data in this time period. First, we
reassessed global exposure using population and air pollution data on a ~5km,
~30km, and a ~55km spatial grid. We found this change in spatial resolution
(from ~5km to ~55km) of data increases global mean, population-weighted
exposure by between 1 and 5%, depending on dataset (Table S2). Second, if we
use GPWv4 population data for the year 2020 in place of the year 2015, global
mean exposure changes by ~0.3-0.6 µg/m3 (2020 GPWv4 mean exposure: 40.2
µg/m3, range: 28.1 - 53.63 µg/m3), or less than 1% relative to the results
obtained using the GPWv4 2015 data. Third, we tested the sensitivity of the
results to interannual variability in PM2.5. Our main results use multi-year
(2015-2019) averages of PM2.5 (with the exception of the Shaddick data,
which includes data from 2014-2016), but we find that global exposure varies
by less than 3%/year (relative to the 5-year average) over this time period
in the van Donkelaar, MERRA-2, and GBD 2019 datasets. Therefore, the
disagreement among observation-based PM2.5 exposure estimates presented
in the Results section is much larger (~30% in spread relative to the global
mean exposure across all datasets) than choice of spatial resolution of data,
interannual variability in global, annual mean PM2.5 exposure, or choice of
year of population data 2015-2019.

2.4 Calculating premature deaths associated with ambient air pollution exposure
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Following previously published methods from Shindell et al. (2021), we eval-
uate premature mortality associated with ambient PM2.5 exposure using the
exposure-response functions produced by the Global Exposure Mortality Model
(GEMM), which was created from a meta-analysis including 41 cohort studies
from around the world (Burnett et al., 2018). All-cause risk of premature death
increases by about 1% per �g/m3 additional exposure for low exposures (<~20
�g/m3), but for higher exposures (>~60 �g/m3) the increase drops to about half
this value. Deaths are evaluated for adults older than 25 using separate risk
functions for each 5-year age bin, with a low exposure threshold for impacts
set at 2.4 �g/m3. Premature mortalities associated with PM2.5 exposure are
estimated using the equation:

���� = �� × �0 × ����������

where the attributable fraction (AF) is defined using the hazard ratio (HR) as
(HR-1)/1, y0 is the all-cause baseline mortality rate, and Population is the local
population over 25 years of age. The hazard ratio ��=exp(�T(z)) incorporates the
regression coefficient � from the meta-analysis from Burnett et al. (2018) and
a set of non-linear functions of PM2.5 exposure T(z). The uncertainties in this
exposure-response function are approximately ±16% (Burnett et al., 2018) and
are omitted from our analysis to make it clear when the CMIP6 scenarios’ health
impacts are statistically different based on the multi-model analysis. Mortalities
are evaluated at the grid cell level (0.5° × 0.5°) then summed within a country’s
borders or across all grid points for global totals. Grid-level baseline mortality
rates are from the 2015 Global Burden of Disease (Stanaway et al., 2018).

3 Results

3.1 Global air pollution exposure in observations and CMIP6 models

We first examine global-mean, population-weighted PM2.5 exposure using four
observation-based PM2.5 datasets (Figure 1). The global-mean observation-
based estimates of global PM2.5 exposure is 39.9 µg/m3 (range: 27.8 - 53
µg/m3). Notably, all of the observation-based estimates are well above the
WHO global AQG of 5-10 µg/m3, and also generally exceed the WHO Interim-
Target 1 guideline of 35 µg/m3, indicating that regardless of dataset, the average
person is exposed to high levels of mean annual ambient PM2.5. These estimates
of global-mean, population-weighted PM2.5 exposure change by <3-5% if differ-
ent spatial resolution population data, year of population data, or year of air
pollution data are chosen 2014-2019 (Section 2.3).
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Figure
1. Global-mean PM2.5 exposure in observations and climate models. (A) Global,
population-weighted annual mean ambient surface PM2.5 exposure in Coupled
Model Intercomparison Project, Phase 6 (CMIP6) simulations (colored lines
and shading) and in observation-based PM2.5 estimates (black symbols). (B)
Avoided PM2.5 exposure in a high (SSP3-7.0) vs low (SSP1-2.6) emissions
scenarios. Population is fixed at 2015 levels for all calculations to highlight
differences in global average PM2.5 exposure in the two emissions scenarios and
among observation-based datasets.

We find that the range of PM2.5 exposure simulated by CMIP6 models, after
adjustment (Section 2.2), generally falls within the range of observation-based
estimates (SSP1-2.6 multi-model median global exposure: 41.7, range: 30.5 -
57.5 µg/m3), with the exception of two SSP3-7.0 CMIP6 simulations, which
show higher PM2.5 exposure than the observation-based estimates (SSP3-7.0
multi-model median: 46.3, range: 33.7 - 64.0 µg/m3). Despite the differences
among observations and two of these CMIP6 models, the CMIP6 multi-model
median SSP3-7.0 global PM2.5 exposure aligns well with the observation-based
Shaddick global exposure, and the CMIP6 multi-model median SSP1-2.6 global
PM2.5 exposure aligns well with the van Donkelaar observation-based global
exposure. Spatially, the adjusted CMIP6 models tend to simulate near-surface
PM2.5 concentrations that are higher than observations over eastern China and
slightly lower than observation-based estimates over most other regions (Figures
S1, S2), suggesting that the CMIP6 multi-model median estimates used here are
likely conservative in most locations.

3.2 Global population exposure to WHO Air Quality Guidelines

Following on the recently updated WHO AQGs for annual mean, ambient PM2.5
exposure, we also compare CMIP6 and observation-based estimates of global
population exposure to annual mean PM2.5 exceeding the updated WHO AQG
of 5 µg/m3, the older WHO AQG of 10 µg/m3, and the WHO Interim-Target
1 guideline of 35 µg/m3 (Figure 2). All of the observation-based gridded PM2.5
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data agree that at least 91% of the global population is exposed to PM2.5 exceed-
ing annual mean concentrations of 5 µg/m3 (mean: 95%, range: 91% - 99%), at
least 84% of global population is exposed to PM2.5 exceeding 10 µg/m3 (mean:
86%, range: 84% - 88%), and at least 32% of global population is exposed to
PM2.5 exceeding 35 µg/m3 (mean: 44%, range: 32% - 54%). These results
do not noticeably change if GWPv4 2020 population data are used in place
of GPWv4 2015 data, and results change by <5% if higher spatial resolution
population data (~0.05°) are chosen (Section 2.3).
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Figure 2. Fraction of global population exposed to PM2.5 concentration thresh-
olds. Fraction of global population exposed to PM2.5 concentrations above 5
µg/m3, (A) 10 µg/m3 (C), and 35 µg/m3 (E) in Coupled Model Intercompar-
ison Project, Phase 6 (CMIP6) simulations (colored lines and shading) as well
as in observation-based estimates (black symbols). Avoided exposure in high
vs low CMIP6 emissions scenarios (B, D, F). Population is fixed at 2015 levels
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for all calculations to highlight differences in global PM2.5 exposure in the two
emissions scenarios and among observation-based datasets.

This wide range in observation-based estimates suggests caution should be used
when reporting values from only one dataset to estimate global exposure to
ambient PM2.5 exceeding certain concentration thresholds, or for determining if
climate models are accurately simulating PM2.5 exposure, particularly in regions
with relatively few in-situ monitoring stations (e.g., (Alvarado et al., 2019)). The
adjusted CMIP6 simulated global PM2.5 population exposure to these three con-
centration thresholds generally falls in the range of observation-based estimates,
with the exception of the 10 µg/m3 concentration threshold; all of the CMIP6
simulations slightly underestimate global population exposure to this threshold
(Figure 2).

Although there is a large spread in estimates of current global PM2.5 exposure in
observations and climate models, CMIP6 models agree that emissions reductions
produce significant changes in future PM2.5 exposure. Under the SSP3-7.0 path-
way, global PM2.5 exposure remains high for the remainder of the century. By
contrast, under SSP1-2.6, global air pollution exposure rapidly declines, with
the largest reductions for air pollution exposure for PM2.5 concentrations ex-
ceeding 35 µg/m3, and more modest declines for the lower exposure thresholds
(Figure 3). By mid century (2050-2055), assuming no population growth, the
differences in the SSP1-2.6 vs SSP3-.70 PM2.5 exposure indicate that emissions
reductions would lead to a 13% (range: 8 - 17%) reduction in global population
exposure to annual PM2.5 concentrations exceeding 5 µg/m3, a 14% (range: 10 -
22%) reduction for PM2.5 concentrations exceeding 10 µg/m3, and a 35% (range:
27 - 42%) reduction for PM2.5 concentrations exceeding 35 µg/m3. The rate of
increased avoided air pollution exposure slows after mid-century (Figure 2) due
to lower late-century emissions in SSP3-7.0.

3.3 Global premature mortality associated with PM2.5 exposure

As we have shown, almost all (91-99%) of the globe’s population is exposed to
PM2.5 exceeding the new WHO AQG annual mean concentrations of 5 µg/m3

(Figure 2). Following on previous work focused on regional impacts (Shindell et
al., 2022; Shindell et al., 2021), we examine global premature mortality associ-
ated with ambient PM2.5 exposure (Section 2.4). Although air pollution and its
impacts are not limited to ambient PM2.5, the mortality burden associated with
ambient PM2.5 tends to be much larger than mortality associated with ozone
and other air pollution species (Romanello et al., 2021), so here we focus on am-
bient PM2.5 exposure and its impacts. Specifically, we use observation-based
PM2.5 data, CMIP6 PM2.5 data, the GEMMmodel, and recent population (2015
GPWv4 population data) to estimate recent mortality associated with PM2.5 ex-
posure and the impacts of emissions reductions on global mortality under the
assumption of no future changes in population.

Using observation-based PM2.5 data, we estimate that air pollution over the
2015-2019 time period was associated with average annual premature deaths
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of about 7.37 million/year (range: 6.54 - 8.27 million/year across observation
datasets; Figure 3a). When we estimate global, annual premature deaths us-
ing adjusted CMIP6 PM2.5 data from the same time period, we find that the
CMIP6-based estimates fall within the range of observation-based estimates,
with a mean annual premature mortality of 8.2 million/year (range: 6.8 - 9.1
million/year) in SSP3-7.0 and 7.8 million/year (range: 6.4 - 8.7 million/year) in
SSP1-2.6 (Figure 3).

Figure
3. Global all-cause mortality associated with annual mean, ambient surface
PM2.5 exposure. (A) Global all-cause mortality associated with surface
PM2.5 exposure in Coupled Model Intercomparison Project, Phase 6 (CMIP6)
simulations (colored lines and shading) and in observation-based estimates
(black symbols). (B) Avoided mortality associated with avoided PM2.5 expo-
sure in CMIP6 high (SSP3-7.0) vs low (SSP1-2.6) emissions scenario (right).
Population is fixed at 2015 levels for all calculations to highlight differences
in the impacts of PM2.5 exposure in the two emissions scenarios and among
observation-based datasets.

If global emissions reductions are rapidly implemented, the difference between
these simulations indicates millions of lives could be saved annually. Specifically,
if emissions are reduced from those in SSP3-7.0 to those in SSP1-2.6, 1.1 million
(range: 0.9 - 1.3 million) premature deaths/year could be avoided within 5-10
years of the start of emissions reductions (Figure 3). Within 10-20 years, 2.6 mil-
lion (range: 2.3 - 2.9 million) deaths/year could be avoided, and by 2060, 3.9 mil-
lion (range: 3.5 - 4.4 million) deaths/year could be avoided (Figure 3). Notably,
the CMIP6 multi-model spread in projected avoided deaths/year (range: 0.3
to 1.0 million/year) associated with emissions reductions remains substantially
smaller than the spread in observation-based estimates (~1.75 million/year) or
CMIP6-based estimates (~2.3 million/year) of recent annual mortality.

Cumulatively over the 2015-2099 time period, 275 million (range: 243-301 mil-
lion) premature deaths could be avoided if global emissions follow a lower emis-
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sions pathway (SSP1-2.6) as compared to a higher emissions pathway (SSP3-7.0).
Spatially, these cumulative avoided premature deaths under the lower emissions
pathway (SSP1-2.6) are concentrated in eastern Europe, southern Asia, and east-
ern Asia (Figure 4; grid-point level results for each CMIP6 model are shown in
Figure S3). Eleven countries show at least 40,000 cumulative avoided deaths per
million people by the end of the century, and over 100 countries show at least
10,000 cumulative deaths per million people (Table S3). Specifically, China,
South Korea, North Korea, and India experience the largest benefits from re-
duced emissions and associated air pollution exposure, with cumulative avoided
losses (2015-2099) of over 73,000 per million in China, 63,000 per million in both
North and South Korea, and 49,000 per million in India.
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Figure 4. Avoided premature mortality and avoided PM2.5 exposure under
a low emissions pathway. (A) Country-level cumulative avoided premature
mortality associated with surface PM2.5 exposure and (B) avoided population-
weighted surface PM2.5 exposure in Coupled Model Intercomparison Project,
Phase 6 (CMIP6) simulations. Avoided premature mortality (A) is calculated
from the difference in cumulative (2015-2099) deaths per million people in
CMIP6 low (SSP1-2.6) and high (SSP3-7.0) emissions scenarios. Avoided sur-
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face PM2.5 exposure (B) is calculated from the difference in mean surface PM2.5
exposure 2050-2054 in CMIP6 low (SSP1-2.6) and high (SSP3-7.0) emissions sce-
narios. Population is fixed at 2015 levels for all calculations.

4 Discussion and Conclusions

Here we have shown that estimates of global exposure to air pollution can vary
substantially based on observation-based PM2.5 dataset. Specifically, estimates
of global-mean, population-weighted PM2.5 in recent years can range from 27.8
to 53 µg/m3, and estimates of the fraction of the global population exposed
to the updated 2021 WHO AQG of 5 µg/m3 can range from 91-99% of the
population. Similarly, there is a large spread in observation-based estimates
of global premature mortality associated with annual PM2.5 exposure; using
the same gridded population data and exposure response function (GEMM;
(Burnett et al., 2018)), observation-based premature mortality ranges from 6.54
to 8.27 million/year.

As Figure 1 shows, the spread in observation-based PM2.5 exposure estimates
is comparable to the spread in PM2.5 global exposure simulated by adjusted
CMIP6 models over a similar time period (SSP1-2.6 range: 30.5 - 57.5 µg/m3;
SSP3-7.0 range: 34 - 64 µg/m3). Despite the large spread in current global
exposure estimates, we show that CMIP6 models agree that emissions reductions
(under the SSP3-7.0 vs SSP1-2.6 pathways) show rapid, widespread benefits
for global air quality, and that these benefits grow through the middle of the
century (Figure 2). These results are qualitatively similar to those of (Rao et
al., 2017), who examined regional air quality changes under various SSPs using
a simplified global air quality model. Rao et al. (2017) found that by mid-
century, in weaker pollution control scenarios (SSP3, SSP4), a higher fraction
of the population will be exposed to high concentrations of air pollution than
is currently exposed. These authors found that air quality is the worst in Asia,
with China and India driving most of the high population exposure to poor air
quality and receiving most of the benefits of emissions reductions. Additionally,
in arid regions such as the Middle East and northern Africa, mineral dust is
responsible for a large portion of the higher concentrations of air pollution, so
Rao et al. (2017) suggested that pollution controls will show weaker benefits
in these areas. However, our analysis of adjusted CMIP6 PM2.5 data indicates
that emissions reductions (in SSP1-2.6 vs SSP3-7.0) will also lead to large air
quality improvements in countries including, but not limited to, Nigeria, Egypt,
Uganda, Pakistan, Bangladesh, and South Korea, so that major benefits of
emissions reductions for air quality are not limited to India and China (Figure
4).

Reduced global air pollution exposure under low as compared to high emissions
scenarios would also have rapid, large-scale impacts on PM2.5 -associated pre-
mature mortality. Specifically, 1.1 million (range: 0.9 - 1.3 million) premature
deaths/year could be avoided within 5-10 years of the start of emissions reduc-
tions, and 3.9 million (range: 3.5 - 4.4 million) premature deaths/year could be
avoided by the middle of the century. Throughout the century, the uncertainty
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in benefits of emissions reductions remain substantially smaller than the uncer-
tainty in estimates of recent (2015-2019) annual premature mortality (Figure
3).

We have presented uncertainties in recent and projected PM2.5 exposure and
associated mortality, but we have not shown epidemiological uncertainties re-
lated to health outcomes associated with air pollution exposure. The GEMM
uncertainty, which is approximately ±16% (Burnett et al., 2018), is system-
atic across mortality estimates from CMIP6 models and observations, so we do
not show it in our analysis. We used the GEMM because this model includes
studies covering a wide range of PM2.5 exposure across multiple countries, in-
cluding high (>35 µg/m3) concentrations (Burnett et al., 2018). However, the
Integrated Exposure-Response (IER) model (Burnett et al., 2014), which was
employed in recent WHO, Global Burden of Disease (GBD), and Lancet studies
(Bourne & Collaborators, 2016; Cohen et al., 2017; Fuller et al., 2022; Ro-
manello et al., 2021), yields global estimates of ~4.14 (range: 3.45 - 4.8) million
annual deaths. By contrast, Burnett et al. (2018), using the GEMM, report
~8.9 (range: 7.5 - 10.3) million deaths in 2015. The GEMM-IER difference
is partly because the GEMM includes “all-cause” mortality, whereas previous
models included a more limited range of health outcomes. However, even if
the GEMM is restricted to a more limited range of outcomes, it still produces
larger global mortality estimates than the IER (Burnett et al., 2018). Fur-
thermore, Vohra et al. (2021), using a response function from Vodonos et al.
(2018), report an even larger estimate of global PM2.5-related deaths (~10.2 mil-
lion/year, although with a substantially larger uncertainty range). Therefore,
the uncertainty associated with choice of response model (range: ~4 - 6 mil-
lion deaths/year among response models) is significantly larger than the 95%
confidence interval range of from either GEMM or IER (95% range: ~1.35 -
1.95 million deaths/year, depending on model), the uncertainty from the choice
of observation-based PM2.5 dataset (range: ~1.75 million deaths/year across
observation-based PM2.5 datasets), and the uncertainty associated with CMIP6
model physics (range: ~2.3 million deaths/year for 2015-2019 across CMIP6
models in one SSP).

In addition to uncertainties related to epidemiological and physical models, sev-
eral assumptions and potential limitations of this study should be mentioned.
First, here we have assumed no changes in future population or vulnerability in
our calculations of future air pollution exposure and associated premature mor-
tality. Although there will be future population and other demographic changes
(United, 2019), this analytical choice has allowed us to focus on the impacts of
emissions and associated air pollution exposure without complicating these pro-
jected values by overlaying varying population projections from SSP1 and SSP3.
Second, here we have compared a low emissions scenario (SSP1-2.6) with the
SSP3-7.0 pathway. However, although historical emissions closely track higher
emissions pathways (Pedersen et al., 2020), recent United Nations (UN) emis-
sions reports indicate that global emissions are projected to fall below those
used in the SSP3-7.0 pathway (UNEP, 2020).
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Despite the aforementioned uncertainties in the analysis, these results have im-
portant implications. First, estimates of global mortality associated with air
pollution exposure are highly sensitive to choice of exposure response model,
suggesting a need for more studies relating health outcomes to air pollution ex-
posure (Schraufnagel et al., 2019) in locations with a range of pollution levels.
Second, the large range in estimated observation-based current air pollution
exposure and associated mortality highlight the need for more high-quality on-
the-ground air quality monitoring stations to better constrain satellite-derived
observations, particularly in locations with relatively few stations with poor air
quality (Alvarado et al., 2019). Third, our results show that even though there
is a large spread in observation and climate model-based estimates of current
mortality, emissions reductions to slow global warming will lead to significant,
widespread improvements in air quality. These air pollution reductions will be
particularly impactful in many low- and middle-income countries with poor air
quality. Specifically, many countries in eastern Europe, Africa, southern Asia,
and eastern Asia see large benefits from reduced emissions and associated air
pollution exposure, with over 100 countries showing at least 10,000 cumulative
avoided deaths per million people by the end of the century (Figure 4; Figure
S4; Table S3). Many of these countries are currently facing a decision point:
continued use and investment in fossil fuel-intensive infrastructure, or a lower
emissions pathway. Our work builds on previous research (Rao et al., 2017;
Saari et al., 2019; Sampedro et al., 2020; Shindell et al., 2022; West et al.,
2013) that has highlighted the relatively rapid, large-scale air quality benefits
of low-emissions infrastructure investment and development.
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Figure S1. Average near-surface PM2.5 in the four observation-based datasets used in the 
main text (top), CMIP6 multi-model median SSP1-2.6 (center), and CMIP6 multi-model 
median SSP3-7.0 (bottom) in the 2015-2019 time period. 
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Figure S2. CMIP6 multi-model median SSP1-2.6 difference from observation-based 
mean near-surface PM2.5 (top), and CMIP6 multi-model median SSP3-7.0 difference 
from observation-based mean near-surface PM2.5 (bottom) in the 2015-2019 time period. 
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Figure S3. Cumulative avoided premature mortality associated with ambient PM2.5 
exposure in Coupled Model Intercomparison Project, Phase 6 (CMIP6) simulations. 
Avoided premature deaths are calculated from the difference in cumulative (2015-2099) 
premature deaths in CMIP6 low (SSP1-2.6) vs high (SSP3-7.0) emissions scenarios. 
Population is fixed at 2015 levels for all calculations. 
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Figure S4. Country-level avoided population-weighted PM2.5 exposure in Coupled Model 
Intercomparison Project, Phase 6 (CMIP6) simulations 2050-2054. Avoided population-
weighted PM2.5 exposure is calculated from the difference in country-level, population-
weighted PM2.5 in CMIP6 low (SSP1-2.6) vs high (SSP3-7.0) emissions scenarios. 
Population is fixed at 2015 levels for all calculations. 
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Table S1. CMIP6 models with data available to calculate near-surface, annual mean 
ambient PM2.5 in the SSP1-2.6 and SSP3-7.0 experiments. 
  
CMIP6 Model Ensemble Member 

GFDL-ESM4 r1i1p1f1 

GISS-E2-1-G r1i1p3f1 

MIROC-ES2L r1i1p1f2 

MRI-ESM2-0 r1i1p1f1 

NorESM2-LM r1i1p1f1 

UKESM1-0-LL r1i1p1f2 
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Table S2. Global fraction of population exposed to PM2.5 concentration thresholds in the 
four observation datasets used in the main text after observations were interpolated to 
spatial resolutions of ~5km (~0.05° x ~0.05°), ~30km (~0.3° x ~0.3°), and ~55km (~0.5° 
x ~0.5°). Top section shows results for data interpolated to a ~5km spatial resolution, 
center section shows results for ~30km spatial resolution, and bottom shows results for 
~55km spatial resolution. 
 

 Observation Dataset ~5km GPWV4 gridded data 
  5µg m-3 10µg m-3 35µg m-3 
MERRA-2 0.991 0.835 0.314 
Shaddick 0.911 0.866 0.546 
GBD2019 0.976 0.897 0.492 
Van Donkelaar 0.960 0.884 0.414 
        
  ~30km GPWV4 gridded data 
  5µg m-3 10µg m-3 35µg m-3 
MERRA-2 0.991 0.836 0.320 
Shaddick 0.910 0.864 0.548 
GBD2019 0.961 0.883 0.490 
Van Donkelaar 0.948 0.874 0.413 
        
  ~55km GPWV4 gridded data 
  5µg m-3 10µg m-3 35µg m-3 
MERRA-2 0.991 0.835 0.315 
Shaddick 0.880 0.832 0.529 
GBD2019 0.928 0.848 0.478 
Van Donkelaar 0.910 0.835 0.394 
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Table S3. Country-level, cumulative (2015-2099) avoided premature deaths per million 
people associated with annual mean ambient PM2.5 exposure in the SSP1.26 vs SSP3-7.0 
scenarios. Individual CMIP6 model results shown in center columns, and CMIP6 multi-
model median avoided cumulative premature deaths shown in the right column. Values 
of zero indicate no information for that country. 
 
Country GFDL-

ESM4 
GISS-E2-1-
G 

MIROC-
ES2L 

MRI-ESM2-
0 

NorESM2-
LM 

UKESM1-0-
LL 

CMIP6 
Median 

Afghanistan 10221.9 6306.0 8343.3 11975.6 13940.4 12791.9 10596.736 

Albania 14652.8 10849.2 16165.2 16097.3 13974.2 17291.6 15096.975 

Algeria 7662.0 4931.5 8201.9 6613.9 5777.7 10802.4 6823.053 

Andorra 11022.9 9713.3 1244.4 12488.9 10467.5 12286.6 10745.215 

Angola 983.5 307.2 353.4 -360.0 -432.4 -2250.0 -27.235 

Antigua+Barbuda 1615.7 228.1 60.8 1960.8 1252.0 200.8 740.063 

Argentina 14720.1 18990.1 19804.6 17751.9 19288.6 22165.3 18895.532 

Armenia 26869.6 17431.5 31003.3 24467.1 26573.4 28173.2 26370.711 

Australia 8542.4 7812.4 1783.2 9748.6 8753.6 10753.4 8357.102 

Austria 33170.0 27065.8 25108.9 28902.7 23430.2 31791.0 28040.22 

Azerbaijan 18522.8 13791.0 17800.9 22605.8 17119.1 18147.3 17624.759 

Bahamas 3196.7 1519.7 3504.7 4881.5 1218.9 2603.0 2880.432 

Bahrain 7539.4 4592.8 6592.6 5537.2 8670.6 8394.8 7066.029 

Bangladesh 35628.8 29770.2 30013.0 39359.1 34278.6 34273.6 34273.198 

Barbados 2320.8 86.9 -821.1 3106.2 1591.7 722.0 1156.818 

Belarus 37779.9 30690.6 29706.3 38080.3 28449.8 32222.1 32462.117 

Belgium 40186.3 30602.6 26925.0 35358.2 29241.9 36342.2 32681.47 

Belize 1996.1 1621.6 4338.2 4558.2 1988.2 3688.7 2396.127 

Benin 15437.4 6481.2 16178.9 11002.5 12528.7 7974.5 11938.669 

Bhutan 31461.7 22598.5 24974.9 35882.3 30334.3 27056.0 29667.083 

Bolivia 8185.1 10213.6 12068.0 9273.1 9799.1 9899.9 9883.369 

Bosnia+Herzegovina 40371.3 26952.7 28534.3 36528.3 29588.1 39715.0 34626.286 

Botswana 2734.4 6174.3 5834.8 4073.5 7284.4 2678.6 4682.412 

Brazil 23343.2 18882.7 18610.6 23841.3 16256.4 23343.0 20452.454 

Brunei Darussalam 17600.6 14166.0 9982.0 16337.2 12965.9 14945.4 14458.04 

Bulgaria 43799.4 33715.3 55156.3 43667.3 34799.0 41671.8 41845.48 

Burkina Faso 4809.4 5152.3 7689.3 6461.0 6816.4 4775.7 6067.697 

Burundi 43821.2 41884.5 32931.3 40771.1 39863.8 48883.1 41369.68 

Cambodia 23469.3 20701.6 20132.8 27320.7 21459.5 18790.7 22028.414 

Cameroon 8667.5 10647.2 10566.3 8143.7 6390.4 5996.8 8580.125 

Canada 16550.6 19203.2 16695.8 19169.5 16706.5 24171.6 18879.973 

Cape Verde 1082.2 152.2 -604.8 1330.6 1409.2 -781.2 553.926 

Central African Rep. 4695.7 5033.6 8527.8 5131.2 3869.7 -2402.7 4771.93 
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Chad 1108.9 4484.6 4017.9 4543.5 5209.7 -3524.6 3835.501 

Chile 21081.6 18211.1 22527.3 23617.7 19838.2 32875.2 21877.722 

China 83535.7 69242.5 77840.9 70526.7 60665.7 75328.8 73273.917 

Colombia 5860.2 5409.2 8091.6 7180.1 6048.9 7343.6 6558.21 

Comoros 1610.9 1195.5 0.0 2247.7 1830.2 1420.5 1529.892 

Congo 7865.2 6439.9 6495.1 6101.6 4396.5 7226.4 6375.93 

Cook Islands 2199.4 220.9 0.0 0.0 2492.2 1081.4 651.189 

Costa Rica 5898.5 2236.5 7174.8 5838.2 4728.2 4023.4 5211.644 

Croatia 37729.9 26625.4 25908.0 35179.2 29494.7 33831.9 32060.134 

Cuba 7653.1 3766.2 9535.0 12100.7 5035.1 6756.7 7114.69 

Cyprus 8043.6 10355.0 20516.9 12994.8 13105.3 11492.2 11932.121 

Czech Republic 43289.9 32452.0 31659.6 35268.7 28322.6 39970.1 34578.959 

Cote dIvoire 10682.1 7504.9 10429.0 9526.3 7754.1 3644.0 8390.643 

Dem.Peo.Rep.of Korea 67865.4 58482.6 73250.0 69690.5 49780.1 55031.2 63591.673 

Dem.Rep.of the Congo 15167.3 14186.1 13451.4 13242.5 13322.3 16993.5 14032.985 

Denmark 16982.0 11207.3 3840.1 10207.5 12700.0 12897.2 11883.033 

Djibouti 5189.8 5011.6 6152.8 6041.8 9855.3 7140.0 6308.546 

Dominica 2152.3 652.9 453.5 2507.1 1614.4 934.3 1274.344 

Dominican Republic 7852.9 7460.8 5054.2 8254.7 5749.6 7569.6 7197.597 

Ecuador 16121.6 10481.8 14968.0 15897.7 17704.7 17465.1 15303.519 

Egypt 38179.2 44628.1 52168.4 34773.3 42729.9 39011.0 41097.978 

El Salvador 9336.1 8895.2 15498.9 18922.1 11040.6 12533.8 12746.542 

Equatorial Guinea 1636.9 -300.4 2057.2 -1159.4 -2985.2 -1405.5 -697.78 

Eritrea 7051.0 4836.9 5653.0 6091.5 9347.4 9357.3 6992.1 

Estonia 16576.6 25628.0 8530.9 19963.4 23509.3 24512.7 21304.282 

Ethiopia 18190.0 16967.9 19903.0 14636.6 18161.8 26604.7 18208.049 

Fiji 4266.0 528.3 0.0 -257.7 1447.6 388.8 397.589 

Finland 7301.2 16192.7 2366.5 9130.9 9656.8 10555.0 9056.046 

France 22691.4 15794.6 5837.6 19194.6 16653.1 20453.3 17937.93 

Gabon 3131.3 1607.9 1238.0 607.5 -1739.7 968.9 1039.769 

Gambia 2543.3 6240.4 4539.3 6953.1 6760.8 5578.0 6001.64 

Georgia 38199.5 23051.4 46302.9 37726.5 34588.1 26469.4 35262.605 

Germany 39750.5 31458.8 24804.8 34315.8 28288.2 35347.5 32710.092 

Ghana 8519.6 5081.1 7558.3 8445.0 7037.7 -201.3 6870.001 

Greece 17834.7 13391.6 22529.2 20144.1 16382.9 18616.1 18031.802 

Grenada 2212.0 335.1 77.7 2656.8 1233.3 794.8 1014.049 

Guatemala 19538.1 18898.7 15911.2 16880.9 11369.6 23739.8 17877.911 

Guinea 4885.9 4843.6 5482.6 6266.3 4643.0 1102.3 5011.597 

Guinea-Bissau -2017.2 4679.2 4688.7 5514.2 6736.3 3549.1 4814.311 

Guyana 4769.0 3150.4 1500.2 4495.4 3873.0 1397.7 3409.981 
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Haiti 13066.4 9575.2 16287.1 11237.5 7553.0 14510.0 11170.479 

Honduras 4778.8 5511.5 7911.4 5753.8 3334.1 6032.8 5673.499 

Hungary 44432.1 32591.4 39672.7 38640.0 29956.9 40525.2 37482.848 

Iceland 1078.8 -175.8 0.1 1.8 384.1 656.1 147.325 

India 54676.2 39870.8 49057.8 53365.1 48310.9 44919.1 49325.25 

Indonesia 45507.4 36954.1 40290.8 40276.1 36057.8 48922.5 40792.057 

Isl.Rep.of Iran 9130.9 6532.9 7461.0 8511.4 9475.5 10810.3 8606.128 

Iraq 6908.3 5035.0 6090.4 6064.7 5283.4 7604.4 6027.987 

Ireland 9879.0 1222.0 0.0 231.9 3642.2 4023.3 2307.073 

Israel 22654.5 21029.3 29144.7 25020.6 25548.9 25042.9 24569.657 

Italy 25624.1 21369.7 12401.0 26320.8 22125.7 25846.4 23378.868 

Jamaica 7378.3 5160.8 12504.6 9830.8 6481.2 7450.8 7432.208 

Japan 45049.5 35535.5 45930.8 48204.7 37841.3 38132.9 41272.424 

Jordan 9874.8 7630.3 11430.9 9790.6 10317.2 11393.8 10186.676 

Kazakhstan 14445.3 12132.7 15239.8 21167.2 14337.5 14392.6 15069.132 

Kenya 14318.9 14755.7 13052.0 12709.9 11195.2 20973.0 13495.819 

Kiribati 4232.3 166.4 0.0 75.3 8174.8 524.2 400.744 

Kuwait 6684.2 4241.3 5045.0 4452.9 6038.0 7646.8 5655.905 

Kyrgyzstan 10745.9 8638.0 15038.3 12451.1 16344.1 18541.7 13088.251 

Lao Peo.Dem.Rep. 22111.9 18977.3 20012.7 27716.5 19973.2 15278.5 19999.254 

Latvia 20390.3 30424.1 9372.3 24586.6 29670.6 25595.5 25050.816 

Lebanon 21493.2 19826.1 24429.2 25832.7 22126.2 20941.7 21868.873 

Lesotho 18943.1 18236.7 23009.3 16839.8 18278.9 21442.8 18920.26 

Liberia 4347.0 2529.3 4800.6 3277.0 -185.0 -431.2 2934.708 

Libyan Arab 
Jamahiriya 

6207.8 4215.9 6062.0 2515.8 4424.4 4305.0 4341.229 

Lithuania 27193.3 30419.5 14252.4 27813.8 29050.0 29726.3 28124.384 

Luxembourg 30183.5 23540.9 8814.9 23053.2 20505.8 26814.9 23247.035 

Madagascar 16104.0 13163.9 12239.1 14049.8 12183.5 16501.5 14121.321 

Malawi 20037.0 18473.3 19471.2 18600.0 18267.5 28542.2 19288.171 

Malaysia 28251.0 23180.1 26072.4 27727.1 20289.1 28659.5 25382.137 

Maldives 5437.2 4087.1 5686.0 7535.6 5157.6 5441.5 5401.312 

Mali 2272.3 2852.3 4353.6 3656.8 4036.3 3046.2 3349.198 

Malta 8074.1 6217.7 13352.2 9321.6 5965.2 7415.9 7719.872 

Marshall Islands 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mauritania -457.0 1128.6 1888.2 1612.6 4737.5 404.9 1337.102 

Mauritius 2321.1 239.7 0.7 1387.7 1620.7 119.4 835.304 

Mexico 19557.2 17076.5 16527.7 21298.2 11221.8 19396.8 17939.452 

Fed.Sts.of Micronesia 1293.0 2047.8 0.0 -68.2 800.4 1121.6 903.365 

Monaco 18315.5 14244.9 2469.4 19564.5 14533.6 17465.9 15999.752 

Mongolia 20250.6 17232.1 23021.4 19554.0 22462.5 27551.4 21061.035 
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Morocco+W.Sahara 15917.4 12239.5 16449.5 16046.9 14254.6 24175.1 15320.898 

Mozambique 5137.6 6447.4 6728.0 5205.0 4325.0 3500.5 5007.93 

Myanmar 24071.1 24269.3 25059.9 32795.4 26186.3 21678.2 24972.208 

Namibia -113.3 331.1 914.8 -189.0 3013.6 -921.8 193.396 

Nauru 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nepal 18306.1 10293.1 23088.0 24439.4 20095.5 22155.6 19244.301 

Netherlands 28690.8 21406.0 19004.1 23668.9 21643.8 23224.6 22675.233 

New Zealand 2679.0 661.9 0.0 2.4 3098.6 756.1 595.911 

Nicaragua 5156.4 4586.7 6313.2 5471.2 4993.8 5522.7 5271.126 

Niger 4190.1 4779.9 10279.3 4990.1 4685.8 696.1 4720.566 

Nigeria 21561.7 21441.9 25269.8 21016.6 21079.3 19690.1 21537.083 

Niue 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Norway 683.2 5398.5 2.1 519.9 1515.9 5499.9 1141.048 

Oman 5663.6 3614.5 4895.5 2008.1 7021.7 6181.8 5275.765 

Pakistan 39206.3 26329.3 31480.8 42934.7 41981.4 40417.2 37519.458 

Palau 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Panama 6343.6 3115.6 6375.4 8298.2 4549.9 5750.3 5800.406 

Papua New Guinea 9249.1 9415.3 4743.4 8729.7 14172.8 12495.9 9957.713 

Paraguay 13608.3 15305.8 13349.8 12553.2 13292.6 12872.0 13459.062 

Peru 8195.2 8110.7 8367.0 14097.8 9373.4 12658.8 9647.155 

Philippines 15404.5 12674.3 14642.3 17212.3 11302.1 17620.8 15081.512 

Poland 38451.1 29452.9 28311.2 31983.3 26424.8 32532.9 31499.182 

Portugal 17632.0 12057.8 7248.8 20567.6 17268.6 27414.0 17059.837 

Qatar 4679.8 2748.7 3891.6 3567.7 4210.4 6617.2 4053.028 

Rep.of Korea 73378.5 58192.9 69090.6 65014.1 51994.2 67047.6 65383.005 

Rep.of Moldova 33190.5 23142.5 36130.7 31419.2 24184.0 24120.3 28574.588 

Romania 43724.2 33286.3 45913.6 41193.1 32898.8 39815.6 39978.735 

Russian Fed. 37530.4 28988.4 34485.1 38924.8 28246.9 26655.7 32033.711 

Rwanda 39705.7 34489.1 32455.6 33054.0 32074.4 40826.9 34218.604 

St.Kitts+Nevis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

St.Lucia 1837.3 359.0 119.2 2234.0 1203.1 789.9 996.494 

St.Vincent+Grenadines 2315.8 507.9 220.9 2753.4 1454.4 966.1 1210.244 

Samoa 1877.7 261.5 0.0 -870.8 -105.0 590.8 130.74 

San Marino 25973.2 20352.9 8669.4 25015.8 20680.1 24995.6 22999.005 

Sao Tome+Principe 2314.1 915.3 574.1 974.4 -2323.1 -41.7 722.196 

Saudi Arabia 6913.8 3645.3 4718.4 4826.3 9562.8 7458.2 5991.237 

Senegal -337.9 1742.1 1753.3 2690.0 3886.6 797.2 1800.057 

Serbia+Montenegro 50518.7 37700.6 52754.1 48237.8 39980.5 56231.3 47576.797 

Seychelles 4612.8 1849.6 0.0 7021.5 4326.4 4354.3 4340.363 

Sierra Leone 4652.7 3912.0 4035.4 5142.1 2830.3 1994.0 3979.313 



 
 

12 
 

Singapore 49957.7 37859.0 42937.6 53805.7 45426.9 44626.7 45078.0 

Slovakia 38093.6 28041.6 30131.0 31924.0 24445.4 34163.9 30851.731 

Slovenia 30494.2 23338.7 17097.4 28178.2 24547.9 27581.0 26052.409 

Solomon Islands 2006.6 1952.8 16.1 49.7 2712.5 626.9 1200.381 

Somalia 804.3 3192.1 4295.7 6589.3 5816.6 3947.9 4356.157 

South Africa 16277.0 14099.6 16599.3 15384.7 14860.1 19796.3 15983.802 

Spain 13666.4 10370.0 8236.1 15587.0 12679.1 14877.8 13029.75 

Sri Lanka 29155.5 21171.2 28387.8 34014.4 25655.2 27497.3 27114.586 

Sudan 5628.6 5331.4 6056.4 5052.4 5228.1 3564.5 5494.723 

Suriname 4070.9 4577.5 3744.1 4751.6 7946.5 2069.9 4255.258 

Swaziland 8103.3 10002.8 11012.5 6790.5 4131.9 7894.5 7851.19 

Sweden 6374.7 12758.6 668.2 5634.3 8656.4 7451.6 6421.007 

Switzerland 29474.6 23712.7 21697.8 23849.5 21283.0 27593.2 24222.003 

Syrian Arab Rep. 13975.8 12202.7 16011.6 15062.6 15040.6 17749.8 14835.967 

Tajikistan 11796.5 9967.3 11954.0 15905.9 16521.4 18974.4 13800.367 

Thailand 35581.0 29353.5 29964.1 40164.9 27252.4 30915.5 31327.726 

Fmr.Yugoslav Rep.of 
Macedonia 

27157.1 18119.2 30559.5 27263.4 21349.0 31944.0 27086.81 

Timor-Leste 3251.6 2902.3 586.9 4427.5 3446.5 4398.0 3379.25 

Togo 10390.9 5373.5 14941.1 10234.6 11733.8 268.1 10044.925 

Tonga 1857.7 22.9 0.0 121.8 -250.6 28.2 15.036 

Trinidad+Tobago 3268.0 1730.2 400.1 4804.9 2765.0 2130.4 2452.306 

Tunisia 11273.1 8705.0 16213.5 10526.7 9762.3 14089.4 10920.117 

Turkey 17325.5 14127.0 22693.6 17628.1 15784.3 20100.1 17562.79 

Turkmenistan 3375.2 5122.2 -989.7 9210.1 5309.4 2627.8 4529.725 

Tuvalu 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Uganda 25474.7 24484.6 26371.0 22064.7 22106.3 26657.8 24578.614 

Ukraine 41116.0 26606.3 39063.2 41667.3 28000.4 27815.8 33040.202 

United Arab Emirates 8218.1 4938.4 5647.5 2944.6 8707.2 11040.2 7006.002 

United Kingdom 18630.1 9329.9 609.6 10187.2 12552.0 14544.3 11656.945 

United Rep.of Tanzania 14084.2 14677.9 13618.7 12651.2 11329.9 15742.4 13343.065 

United Sts.of America 19706.2 18935.6 19711.3 20027.6 12561.8 16665.8 18770.775 

Uruguay 19331.3 18859.6 9624.1 20128.8 20660.8 24198.1 19609.758 

Uzbekistan 15518.3 14145.2 14800.2 20361.3 21431.9 24055.8 17762.082 

Vanuatu 2149.5 361.6 0.0 -164.8 640.1 -324.2 182.812 

Boliv.Rep.of Venezuela 6748.7 4500.9 11259.9 8233.9 6061.8 7478.1 7175.511 

Viet Nam 39654.8 32047.1 34054.8 41543.0 28342.1 38932.9 35329.777 

Yemen 6984.8 4155.7 5285.1 6894.1 10055.6 9502.8 7102.974 

Zambia 5991.2 7300.8 7289.6 5715.2 11313.5 7462.4 6877.574 

Zimbabwe 14938.3 18803.3 18684.8 14833.1 17185.1 19255.8 16610.161 

 


