
P
os
te
d
on

26
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
20
72
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

An Automatic Differentiation Method for Surface Carbon Flux

Inversion

Yichen Yao1, Guodong Chen1, Zhibin Wang1, and Hao Li1

1Alibaba Group

November 26, 2022

Abstract

We attempt, for the first time, to estimate the surface carbon flux by the method of automatic differentiation. The atmospheric

transport model is developed using a deep learning framework and is validated against standard approaches. Depends on

the built-in automatic differentiation feature of the deep learning framework, the system derivatives/gradients are readily

available without any extra effort. We then formulate the surface carbon flux estimation as an inverse problem using the

variational approach, driven by back-propagated objective gradients. The feasibility of the automatic differentiation method

is demonstrated in identical-twin observing system simulation experiments (OSSEs). The proposed framework shows favorable

accuracy and great efficiency in both fully and partially observable scenarios. The present study establishes a link between

machine learning frameworks and general data assimilation or inverse modeling problems, and the promising results encourage

more investigations in incorporating machine learning techniques in inverse carbon modeling.
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Key Points:5

• A fully-differentiable atmosphere transport model is developed, which encoded the6

PDE into a deep learning computational graph.7

• Using the framework’s automatic differentiation capabilities, the carbon inversion8

problem can be solved.9

• The proposed framework has been tested in identical-twin OSSEs and has achieved10

favorable performance.11
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Abstract12

We attempt, for the first time, to estimate the surface CO2 flux by the method of auto-13

matic differentiation. The atmospheric transport model is developed using a deep learning14

framework and is validated against standard approaches. Depends on the built-in automatic15

differentiation feature of the deep learning framework, the system derivatives/gradients are16

readily available without any extra effort. We then formulate the surface carbon flux es-17

timation as an inverse problem using the variational approach, driven by back-propagated18

objective gradients. The feasibility of the automatic differentiation method is demonstrated19

in identical-twin observing system simulation experiments (OSSEs). The proposed frame-20

work shows favorable accuracy and great efficiency in both fully and partially observable21

scenarios. The present study establishes a link between machine learning frameworks and22

general data assimilation or inverse modeling problems, and the promising results encourage23

more investigations in incorporating machine learning techniques in inverse carbon model-24

ing.25

Plain Language Summary26

In this paper, we use the deep learning framework for the first time to solve the carbon27

inversion problem in atmospheric transport, and verify the feasibility of the framework on28

the inversion problem. In the scheme, The atmospheric transport model pyATM is imple-29

mented using a deep learning framework, and the performance of the model is quantitatively30

compared with the classical transport model GEOS-Chem. Relying on the built-in auto-31

matic differentiation function of the deep learning framework, the gradient of the error to32

the input variable can be calculated, that is, in the inversion problem, the gradient of the33

observed error to the surface carbon flux is observed, and the carbon flux value is updated.34

The proposed framework is demonstrated in an identical twin-observing system simulation35

experiment (OSSE), showing good accuracy and high efficiency in both fully and partially36

observable situations.37

1 Introduction38

Carbon dioxide (CO2) is the most important long-lived greenhouse gas, which has39

caused climate issues such as global warming and ocean acidification (Solomon et al., 2009;40

Collins et al., 2013). Since the beginning of the Industrial Revolution (1750s), the at-41

mospheric CO2 concentration has increased dramatically due to anthropogenic emissions,42

mainly from fossil fuel burning. Approximately half of the emitted CO2 was absorbed by43

the ocean and land through the natural carbon cycle, while the rest remains in the at-44

mosphere and keeps pushing the atmospheric CO2 level to new highs (Quéré et al., 2009;45

Friedlingstein et al., 2019; Blunden & Arndt, 2020). Moreover, the absorbing capacity of46

the oceanic and terrestrial ecosystems is not guaranteed to follow the fast growth of anthro-47

pogenic emissions or even remain at its present level as global warming tends to slow down48

the carbon uptake of the land and ocean (Fung et al., 2005; Quéré et al., 2007). On the49

other hand, the effectiveness of the measures that have been taken to reduce CO2 emissions50

is hard to evaluate without a good understanding of the variations of the natural carbon51

sources/sinks. For more accurate projections of future CO2 levels and the associated climate52

impacts, it is therefore essential to accurately quantify the temporal and spatial pattern of53

surface CO2 fluxes and to better understand the natural carbon cycle. (Baker et al., 2006,54

2010)55

The surface carbon fluxes are often estimated by either the bottom-up or the top-56

down approach. The former uses a combination of human activity data and inventory-57

specific emission factors, process-based models, or remote-sensing approaches to estimate58

the fluxes (Poulter et al., 2022). The latter formulates it as an inverse problem, in which59

statistical methods or optimization approaches are used to invert the CO2 transport process60

to find the optimal surface fluxes that best match the observed atmospheric CO2 concentra-61
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tion (Thompson et al., 2022). The link between carbon dioxide concentration and surface62

carbon fluxes is established through atmospheric transport models (Community, 2021; Grell63

et al., 2005; Emmons et al., 2010).64

The current study focuses on top-down techniques, with ensemble Kalman filters (EnKFs) (Peters65

et al., 2005, 2007; Feng et al., 2009; Kang et al., 2011) and variational methods (Baker et66

al., 2006, 2010; Chevallier, Engelen, et al., 2009; Chevallier, Maksyutov, et al., 2009) being67

the most common ones. Ensemble Kalman filters use a Bayesian framework to estimate the68

statistically optimal state given the prior or background predictions and the observations.69

EnKFs only rely on the model outputs and the observations, and thus are more flexible70

and developer-friendly. However, a reasonable ensemble size is typically required to cap-71

ture accurate statistics, which requires considerable computational resources. On the other72

hand, the 4-dimensional variational (4D-Var) approach minimizes the differences between73

the model forecast trajectory and observations distributed over a period of time. These two74

approaches can be made in an equivalent Bayesian form if the background errors and the75

observational errors are both Gaussian, though the 4D-Var tends to give better results if76

the assimilation time is short while the EnKF needs some spinup time. However, an adjoint77

model of the forward transport process is required in 4D-Var to back-propagate the gradi-78

ents, which is often a considerable development endeavor (Henze et al., 2007). This paper79

aims to reduce the development effort by developing the atmospheric transport model within80

deep learning frameworks, in which the adjoint model can be easily obtained by automatic81

differentiation.82

In terms of observations, both in situ observations and satellite retrieved data have been83

used to study the carbon cycle and estimate the surface carbon fluxes. The in situ data such84

as Total Column Carbon Observing Network (TCCON) (Toon et al., 2009) and Observation85

Package (ObsPack) (Masarie et al., 2014) often provide pretty accurate observations and are86

more sensitive to surface emissions. However, these observations are extremely sparse spa-87

tially, which poses difficulties to the global flux estimates. On the other hand, satellite-based88

measurements, such as those of Greenhouse Gases Observing Satellite (GOSAT) (Yokota89

et al., 2009a) and the Orbiting Carbon Observatory-2 (OCO-2) (Crisp et al., 2004b), often90

have better spatial coverage over the globe, while they are less accurate and are sparse in91

both space and time. In the present study, we focus on algorithmic development and evalu-92

ating the new methodology. Therefore, we use the identical twin OSSEs, in which we know93

the “truth”, to test the proposed framework, eliminating possible uncertainties associated94

with the model errors and the observational errors. However, we do mimic the temporal95

and spatial pattern of the satellite data to ensure its applicability in real-world systems.96

Despite its extraordinary success achieved in computer vision and natural language pro-97

cessing, deep learning has not received much attention in computational physical modeling98

until recently (Zhu & Zabaras, 2018; Ravuri et al., 2021; Espeholt et al., 2021; Karniadakis99

et al., 2021; Chen & Fidkowski, 2021; Hu et al., 2022; Pathak et al., 2022). A few attempts100

have been devoted to data assimilation or inverse modeling. Laloyaux et al. (2022) intro-101

duced a neural network model into the 4d-Var to correct for the bias that accumulates along102

the model trajectory. Frerix et al. (2021) learned an inverse observation operator to map103

the observational data to physical states and then reformulated the objective function in the104

better-behaved physics space instead of the observation space. Fablet et al. (2021) adopted105

an end-to-end learning approach, which embedded the joint training of the forward dynam-106

ical process and the inverse assimilation in a physics-informed approach. Encoder-decoder107

type architectures have also been used in data assimilation to reduce the problem dimen-108

sion and computational cost (Mack et al., 2020; Peyron et al., 2021; Amendola et al., 2021).109

Nevertheless, these studies treat the machine learning models mostly as black boxes and110

the generalization is largely limited. In this paper, we directly embedded the atmospheric111

transport model within a deep learning framework, i.e., the physics is numerically “exact”112

instead of data-driven, which generalizes well to different initial and boundary conditions.113

The main contribution of this work can be summarized as follows:114
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• We developed a fully-differentiable atmosphere transport model called pyATM, which115

encoded the partial differential equations (PDEs) solver into a computational graph116

based on a deep learning framework.117

• Using the framework’s automatic differentiation capabilities, the derivatives of the loss118

function with respect to the learnable parameters are obtained. When the learnable119

parameter is the carbon flux and the loss the function is the observation error, the120

carbon flux can be corrected by observations.121

• The proposed framework has been tested in identical-twin OSSEs and has achieved122

favorable performance in both fully-observed and partially-observed systems with123

simulated satellite observations.124

The remainder of this paper proceeds as follows. We describe in Section 2 the de-125

tailed implementations of the proposed flux inversion framework, including the forward126

atmospheric transport model and its backward mode, as well as the variational inversion127

approach. Section 3 presents the observing system simulation experiment (OSSE) and pro-128

vides a comprehensive summary of the problem setup. The primary results are shown in129

Section 4, and Section 5 concludes the present work and discusses potential future work.130

2 Method131

Deep learning has made extraordinary achievements in the field of artificial intelligence.132

However, its application in numerical computation has not been studied until recently. Here,133

we use the deep learning framework to encode the numerical solving process of partial differ-134

ential equations as computational graphs. First, we use the generalized hyperbolic parabolic135

differential equations to formulate the inverse problem, including the forward dynamic mod-136

eling and the corresponding derivative calculations. Then, the pyATM atmospheric trans-137

port model built with this framework is introduced, followed by its structural design and138

the adopted inversion algorithms.139

2.1 Implementation of PDE140

Consider a PDE on [0, T ]×D with the following form:

∂tu = µ(u, ∂1u, · · ·, ∂du) + f, (1)

u(0, x) = u0(x), (2)

where t ∈ [0, T ], x ∈ D ⊂ Rd. u(x, t) is the state variable of the PDE, µ(u, ∂1u, · · ·, ∂du)141

denotes the state-dependent spatial derivative term, f is the external forcing term, and142

u0 represents the initial condition. The external force term f can be independent of state143

variables. For this set of equations, we can obtain the transition relation of the corresponding144

state variables between two adjacent moments ti and ti+1 by the integration in time,145

ui+1 = ui +

∫ tt+1

ti

[µ(ui, ∂1ui, · · ·, ∂dui) + fi]dt. (3)

The dynamical process of the partial differential equation is implemented using a deep146

learning framework within a computational graph. The proposed architecture consists of147

three parts: the spatial derivative calculations, the construction of the right-hand side148

(RHS), and the time integration. All orders of partial derivatives are calculated first, which149

are then added up with the source term f to complete the RHS. In time integration, the150

RHS is integrated forward in time to update the system state.151
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The spatial discretization of partial differential equations adopts the finite difference152

method, mainly due to its simple matrix operation form that can be favorably implemented153

by tensor operations in the deep learning framework. In the present study, we adopted154

second-order differencing for the transport problem, in which either upwind schemes or155

central schemes with filtering are used to stabilize the system. The spatial derivative de-156

generates to first-order forms at the boundaries corresponding to the north and south poles.157

With regards to time integration, explicit Runge-Kuta schemes are used.158

2.2 Inverse Calculation159

In traditional numerical computing, the forward PDE model is usually programmed by160

languages such as Fortran or C for speed and efficiency. However, the reverse adjoint model161

often requires dedicated development efforts. On the other hand, if the forward PDE is en-162

coded within a deep learning framework such as torch(Paszke et al., 2019), tensorflow(Paszke163

et al., 2019), and JAX(Bradbury et al., 2018), it automatically stores operational dependen-164

cies and intermediate results, which then enables flexible and convenient gradient compu-165

tation between variables. Moreover, those deep learning frameworks provide user-friendly166

interfaces for interpreted languages while they rely on backends that are written in com-167

piled languages for intensive computations to compensate for efficiency loss. Therefore, deep168

learning frameworks have great potential in physical modeling and are especially suitable169

for inverse problems.170

For inverse problems, the loss function, as shown in Eqn. 4, is usually defined as the171

difference between the projected state variables in the observation space H(ui) and observa-172

tion values oi. Therefore, the solution process of the inverse problem is to iteratively update173

the learnable variables such that the loss function decreases along the gradient descending174

direction. If the learnable variable is the external force term f in Eqn. 1, then the update of175

f depends on the gradients of the loss with respect to the external force terms as in Eqn. 5.176

In the expression, the external force fi applied at time i will have an impact on the states177

of all subsequent moments. As a result, the gradient calculation also includes the gradient178

of all the subsequent times.179

L =

T∑
i=1

∥H(ui)− oi∥ (4)

∂L
∂fi

=

T∑
j=i+1

∂Lj

∂fi
=

T∑
j=i+1

∂∥H(uj)− oj∥
∂fi

(5)

In the forward time integration, the state change at a certain moment will affect all180

the states along the entire time trajectory. The perturbation of the state at each moment181

will gradually expand its influence range as time progresses. Conversely, the error function182

at some future moment will contribute to the state derivatives at all previous moments.183

According to the chain rule, the derivative of the error (loss) function at moment j with184

respect to the flux at moment i can be written as:185

∂Lj

∂fi
=

∂∥H(uj)− oj∥
∂fi

=
∂∥H(uj)− oj∥

∂uj

∂uj

∂uj−1
· · · ∂ui+2

∂ui+1

∂ui+1

∂fi
(6)

The above chain expression contains the product of several terms, including the deriva-
tive of the loss function with respect to the last state ∂∥H(uj)− oj∥/∂uj , a series of deriva-
tives of the next state with respect to the previous state (∂uj/∂uj−1) · · · (∂ui+2/∂ui+1),
and finally the derivative of the state with respect to the flux ∂ui+1/∂fi. The derivative
of the state variable at the next moment with respect to the state variable at the previous
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moment ∂ui+1/∂ui, can be obtained from Eqn. 3 by taking the derivatives on both sides,

∂ui+1

∂ui
= 1 +

∂

∂ui

∫ tt+1

ti

µ(u)dt. (7)

Similarly, the derivative of the current states with respect to the external force term at the
previous moment can also be derived from Eqn. 3,

∂ui+1

∂fi
=

∫ ti+1

ti

1dt = ti+1 − ti. (8)

Eqn. 7 and Eqn. 8 assume that the external force term is independent of the state variables,186

which is true for the carbon flux inversion problems that are of particular interest in this187

paper.188

The gradient of the loss function in Eqn. 5 can be easily computed through automatic189

differentiation in our proposed method. By using a deep learning framework, chain rules190

can be automatically applied by backpropagation of the computation graph, without the191

need to explicitly compute all derivatives individually.192

2.3 Flux Inversion Framework193

2.3.1 Atmosphere Transport Model194

The atmospheric transport model used in the inversion problem takes a special form of
the hyperbolic parabolic differential equation in Eqn. 1, where only the first order derivatives
(transport) are present in the system,

∂ρc

∂t
= −∇(ρc · V ) + s. (9)

The equation mainly describes the evolution of the carbon concentration field c under the195

transport effect of meteorological velocity field V , and the source/sink effects of the surface196

flux s. ρ is the density of the air which is constant by the incompressible flow assumption.197

In this problem, the meteorological velocity field V is considered a known quantity, which198

can be obtained through historical reanalysis data. In Eqn. 9, we do not consider the199

atmospheric chemistry-related terms. This set of transport equations applies to relatively200

long-lived gases in the atmospheric circulation such as CO2, since their chemical changes201

are small and thus negligible relative to transport effects.202

Here, we use the pytorch framework to implement the atmospheric transport model,203

denoted as pyATM. The numerical implementation of pyATM mainly refers to GEOS-204

Chem (Community, 2021), which is a numerical model commonly adopted by researchers205

in a wide range of atmospheric chemistry problems. In our ATM implementation, the206

influence of the atmospheric boundary layer is taken into account. In the atmospheric207

boundary layer, the gas concentration field is usually mixed in a relatively short period208

of time. The TURBDAY mixing scheme is the default atmospheric boundary layer(ABL)209

mixing scheme in GEOS-Chem. In the TURBDAY scheme, it assumes instantaneous vertical210

mixing from the surface through the mixing depth (Bey et al., 2001). In our pyATM, the211

same implementation is also adopted, which assumes that the gas concentrations within212

the boundary layer are instantaneously mixed. The boundary layer thickness data are213

obtained from meteorological reanalysis data. We also adopt some numerical tricks employed214

in GEOS-Chem to help stabilize the system within the polar regions. Specifically, the215

concentration fields are regionally averaged in the two layers that are closest to the polar216

boundaries.217

Using the atmospheric transport model implemented within pyATM, the computational218

graph has the following two characteristics. First, the depth of the computational graph219

is proportional to the length of the time integral. The whole process consists of many220
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Figure 1. Schematic diagram of solving the carbon inversion problem using the automatic gra-
dient inversion framework pyATM.

computational blocks, with each block representing the numerical evolution within a specific221

time step. Second, the structure of the computation graph is exactly the same among all222

blocks, only the inputs are different. In each computation block, the meteorological data223

and flux data corresponding to the time step is fed into the graph, while the former is fixed224

and the latter is learnable.225

2.3.2 Flux Inversion226

The atmospheric transport equation can be denoted as: cp = M(c0, fp), where the227

model M represents the full dynamics of the concentration evolution. Conditioned on the228

initial concentration field c0, as well as the surface flux fp emitted within these periods,229

the predicted concentration vector cp can then be obtained. The concentration in the state230

space can be mapped to the observation space by the observation operator H(cp). In the231

flux inversion problem, the decision variables are the gas emissions fp specified to the model.232

Estimation of the surface flux can be obtained by minimizing the following object function233

L(fp) with respect to fp:234

L(fp) = E[H(cp)− co)
TR−1(H(cp)− co)] + E[(fp − fb)

TB−1(fp − fb)] (10)

The error function contains two parts. The first part is the observation error term, and235

the second part is the background error term. The observation error term describes the236

error between the observation co and the simulated concentration values in the observation237

space H(cp), weighted by the measurement uncertainty matrix R. The second part is called238

the background error, which describes the difference between the predicted flux fp and239

background flux fb, weighted by the background error covariance matrix B.240

Based on the above description of the atmospheric transport model pyATM, the deriva-241

tive calculation for the flux update, and the definition of the error function, we summarize242

the inversion process in the pyATM framework. Figure 1 depicts the schematic diagram of243

solving the carbon inversion problem using automatic gradient in the pyATM framework.244

At each time step, the state variable and flux input are fed into the single-step ATM block,245

and the state at the next moment can be obtained. These time steps are concatenated to246
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complete the entire numerical simulation. The states obtained by pyATM are then mapped247

to the observation space in which the errors compared to the actual observations are com-248

puted. Finally, all errors are aggregated and contribute to the derivative of the total error249

with respect to fluxes at each time step. After a complete forward state prediction and back-250

ward gradient propagation, the fluxes are updated by gradient descent methods to minimize251

the loss function. The problem of particular interest in this study is carbon flux inversion,252

while the proposed framework is formulated without loss of generality such that it is also253

applicable to general PDE systems.254

The proposed framework has several advantages compared to other inversion methods.255

Using the automatic gradient scheme, the flux updating is similar to the variational method.256

Both methods update the flux driven by the derivative of the error with respect to the flux257

input. However, compared with traditional variational methods that rely on the adjoint258

model, the proposed framework avoids complicated adjoint development, which is often a259

dedicated endeavor. Moreover, the flexibility of the variational method is usually limited.260

Once the code implementation of the forward atmospheric transport has changed, the cor-261

responding adjoint model also needs to be updated accordingly. On the other hand, deep262

learning frameworks provide automatic differentiation of all tensor operations. Once the263

forward computational graph is built, it can automatically obtain the gradient relationship264

between any two connected tensors, and the dependencies get automatically updated if the265

forward computational graph changes. Using automatic differentiation, the computational266

cost of the inversion algorithm is independent of the input parameter dimensions, making267

it efficient in high-dimensional inversion problems.268

3 Experimental Setup269

In the experimental part, this paper mainly discusses two aspects: one is to verify270

the effectiveness of the pyATM atmospheric transport model, and the other is to demon-271

strate the automatic differentiation method for solving the inversion problem through twin272

experiments.273

3.1 Numerical Setting274

The implementation of the pyATM forward process mainly refers to the numerical275

schemes in GEOS-Chem, such that numerical settings and the input meteorological condi-276

tions are the same as those in GEOS-Chem. The atmospheric transport models operate on277

a global scale, which is discretized evenly in both the longitude and latitude directions with278

rectangular meshes. The spatial resolution is 5◦ (longitude) ×4◦ (latitude), corresponding279

to a horizontal mesh grid of 72×46 cells. In the vertical direction, 47 pressure layers are used280

as those in GEOS-Chem. The time step ∆t for the numerical simulation is 30 minutes. The281

MERRA2(ref) reanalysis data are used for the meteorological fields, providing the velocity282

vector data as well as the boundary layer thickness information.283

3.2 Identical-twin Observing System Simulation Experiments284

In the experiments, we adopt the identical-twin observing system simulation exper-285

iments to examine the effectiveness of the inversion algorithm. The concept of twin ex-286

periments is very useful for testing the effectiveness of inversion algorithms as the “true"287

solution is known. The schematic diagram of the identical-twin inversion problem using288

pyATM is shown in Figure 2. In the identical-twin experimental setup, "true" observa-289

tions are obtained by running a forward numerical process with known initial conditions290

and "true" fluxes. In the inversion stage, the initial concentration field is fixed, and only291

the surface flux parameters are zero initialized and then iteratively updated. Through such292

an experiment, the influence of other interference factors can be excluded, and the back-293

ward relationship from the observation error to the flux can be reflected more clearly. The294
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Figure 2. Schematic diagram of the identical-twin observing system simulation experiments using
pyATM. In the twin experimental setup, CO2 observations are obtained by running a forward
numerical procedure with known initial conditions and "true" fluxes.

identical-twin problem has a "true" flux that can provide a quantitative evaluation of the295

correctness and accuracy of the inversion algorithm. At the same time, the identical-twin296

experiment makes it more convenient to perform some operations on the observation data,297

such as adding perturbations, using sparse sampling observations, etc.298

The observable variable is XCO2 , the column-weighted average CO2 concentration,299

which is typically available in the satellite retrieved data. Two sets of validation under300

different observation coverage are used, namely the full observation inversion and the partial301

observation one. With regards to the partial observation case, the time stamps and spatial302

coordinates of the observation points are generated based on the sampling pattern of carbon303

satellites. In the partial observation scenarios, the inversion problem is usually ill-posed due304

to the sparsity of valid observations, as well as the dissipative nature of the atmospheric305

transport. The problem of inversion underdetermination caused by sparse observations can306

be alleviated by making more observations or by reducing the degrees of freedom of the flux307

parameters.308

To verify the validity of the proposed inversion framework, we do not consider the309

background flux error term that is commonly adopted, and thus only the first term on the310

right-hand side of Eqn. 10 is included in the loss function. By ignoring the prior information311

of the background flux, the inverse problem is made more challenging as less information is312

used. However, excluding prior information also helps to examine more clearly the carbon313

flux updates that directly correspond to observational errors, while eliminating interferences314

from background terms. Therefore, carbon fluxes are updated from zero initialization, and315

no background term is added to the loss function. Here we assume that all observations are316

uncorrelated since all sensors observe independently. In such a case, a unit diagonal matrix317

is used as the error covariance matrix R. During the iterative process, we use the Adam318

optimizer with a learning rate of 1e-5. The inversion process is stopped after 300 iterative319

steps.320

4 Results321

4.1 ATM validation322

The atmospheric transport equation encoded in pyATM is implemented with reference323

to GEOS-Chem. To verify its effectiveness, we quantitatively verify the pyATM results324

against the GEOS-Chem simulations. In the experiment, the time spans over 7 days, from325

July 1st 2019 T 00:00 UTC to July 8st 2019 T 00:00 UTC. We use the same initial concen-326
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Table 1. MAE error under different pyATM numerical schemes, compared with the corresponding
GEOS-Chem numerical simulation in the range of 7 days.

version Spatial
scheme

Vertical
Transport

PBL
Mixiing

XCO2
MAE(ppm)

bottom CO2
MAE(ppm)

V01 central off off 0.304 1.044
V02 upwind off off 0.229 0.949
V03 upwind on off 0.181 0.949
V04 upwind on on 0.111 0.192

Figure 3. MAE error under different pyATM numerical schemes, compared with the correspond-
ing GEOS-Chem numerical simulation in the range of 7 days. (a) bottom CO2 MAE(ppm ). (b)
XCO2 MAE(ppm).

tration field and meteorological data to quantitatively compare the results of the forward327

integrations between pyATM and GEOS-Chem. In order to examine the implementation of328

the atmospheric transport model, the carbon flux is not included in the simulation process.329

To obtain numerical results that are closer to GEOS-Chem, we conducted a series of explo-330

rations of numerical schemes. On the spatial discretization, we tried both the second-order331

central scheme and the upwind scheme. The effect of adding vertical convection, as well as332

the effect of boundary layer mixing, are also within the scope of the numerical investigation.333

Table 1 lists different versions of the pyATM and the corresponding mean absolute error334

(MAE) within a 7-day numerical simulation. The V01 version adopts the central difference335

scheme with filtering while ignoring both vertical convection and boundary layer mixing.336

The V02 version uses the second-order upwind scheme to increase the numerical stability.337

Based on version V02, V03 adds the convection effect in the vertical direction. Furthermore,338

version V04 adds the implementation of boundary layer mixing compared with version V03.339

The daily error curves for the four versions within the 7-day range are illustrated in Fig-340

ure 3. In the quantitative results, we present the bottom CO2 and XCO2 errors, which341

are most relevant to the actual observations. For observation stations located close to the342

ground, only CO2 concentration at the bottom of the atmosphere can be obtained. On the343

other hand, only the column weighted concentration XCO2 can be retrieved from satellite344

observations.345

Considering the spatial discretization scheme, the upwind scheme outperforms the cen-346

tral one, reducing the XCO2 error from 0.304 parts per million (ppm) to 0.229 ppm. The347

upwind scheme achieves better numerical stability compared to the central one since it re-348

spects the convective nature of the system. The V03 version takes into account convection349

effects in the vertical direction, making the momentum transfer three-dimensional. Since350

the bottom layer is not affected by the 3D effect, the error of the bottom layer CO2 will351

not change. However, for a full vertical level, the error of XCO2 is significantly reduced to352
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0.181 ppm. If the influence of the boundary layer mixing is further considered, the error is353

greatly reduced as shown in Table 1 for the version V04. After considering the boundary354

layer mixing, the bottom CO2 error can be reduced to 0.192 ppm, and the error of XCO2355

is further reduced to 0.111 ppm, achieving similar results compared to GEOS-Chem.356

The errors during the 7-day range are plotted in Figure 3 for different numerical settings.357

V01, V02, and V03 versions all have a monotonic increasing trend, in which the error grows358

fast at the beginning and then gradually flattens. Among them, the V01 version exhibits359

the highest XCO2 error around 0.4 ppm after 7 days while the V03 achieves the lowest error360

level around 0.2 ppm. For the V04 version, the error peaks after about 3 days, and finally361

tends to decrease slowly. The error of the predicted XCO2 after 7 days is about 0.12 ppm.362

According to the carbon satellite observations, the overall XCO2 retrieval error is about363

0.3ppm. Therefore, the model error of pyATM (assumes the GEOS-Chem as the “true"364

model) can be made much smaller than the observation error, indicating its capability of365

serving as a forward model in carbon flux inversion. For the error curves of the bottom366

CO2 concentration, it can be seen that error of V04 flattens right after the CO2 has been367

well mixed in the boundary layer while the error accumulates but gradually flattens in the368

other schemes.369

Figure 4 presents the predicted results of the pyATM model on days 1, 4, and 7,370

compared with the results from GEOS-Chem. The XCO2 distribution is smoothed out371

under the atmospheric transport and boundary layer mixing, in which both the maximum372

and minimum values are attenuated. In terms of spatial distribution, the characteristics373

of high concentration in the northern hemisphere and low concentration in the southern374

hemisphere are retained. Visually, the results of pyATM are very close to those of GEOS-375

Chem, indicating a reliable capability of pyATM to simulate carbon atmospheric transport.376

4.2 Inversion Result377

For the inversion tests, we designed experiments for both the full observation and378

partial observation scenarios respectively, to examine the influence of observation sparsity379

on the inversion results. Full observation means that the concentration information on any380

latitude and longitude coordinates can be obtained at any time. However, in the vertical381

direction, only the column weighted concentration can be obtained (XCO2 ). The generation382

of sparse observation data mainly refers to the samples from satellite observation data.383

This verifies the effectiveness of solving the inversion problem at the practical spatial and384

temporal sampling frequency of on-orbit satellites. Here, we use the combined dataset of385

the two most commonly used carbon satellites, the Japanese Greenhouse gases Observing386

Satellite (GOSAT) (Yokota et al., 2009b) and the NASA Orbiting Carbon Observatory387

(OCO-2)(Crisp et al., 2004a). Figure 6 shows the spatial sampling points for the first two388

days of July 2019. The sampling trajectory of the satellite is different every day, and only389

a small area can be scanned in a short period of time, and the overall sampling frequency390

is about 1%. In addition, these two satellites cannot achieve full coverage over the globe.391

For the month of July, we are concerned about the lack of observation data coverage in the392

high-latitude areas in the southern hemisphere, which will be further discussed later.393

We mainly investigate the long-period inversion capability of the proposed framework.394

Therefore, a temporally fixed while spatially varied carbon flux field is adopted at all times-395

tamps as the time-averaged flux field. Utilizing the automatic differentiation capability of396

deep learning frameworks to compute the derivatives, the update of carbon fluxes is then397

performed iteratively. Figure 5 shows the statistics during the iterative process, in which (a)398

is the MAE at observation points, and (b) presents the MAE of the inversed flux field. For399

the MAE error of the concentration at the observation points, it decreases rapidly with the400

progress of the iterative step, and it presents a log-linear law in the later stage. For the full401

observation case, the XCO2 error decreases to around 1.6× 10−3 ppm after 300 iterations.402

As for the partial observation one, the observation error is slightly higher, which is about403
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Figure 4. Simulation results of XCO2 for GEOS-Chem and pyATM at days 1, 4, and 7 respec-
tively.
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2.2×10−3 ppm after 300 iterations. For the inversed flux error as shown in Figure 5 (b), the404

error decreases gradually as the iteration proceeds for both the full and the partial observa-405

tion cases. However, the error is significantly smaller under the full observations, indicating406

high sensitivities of the XCO2 with respect to the fluxes. After 300 iterations, the flux errors407

of the full observation and the partial observation cases are around 2.59×10−8mol ·m−2s−1
408

and 6.10 × 10−8mol · m−2s−1, respectively. In the case of sparse observations, due to the409

data sparseness in both space and time, only the flux within a small influence range of the410

observation point can be effectively updated. As discussed earlier, the observation in the411

high-latitude areas of the southern hemisphere is obviously insufficient, so the nearby flux412

cannot be effectively updated.413

The update history of the inversed flux during the optimization is shown in Figure 7414

and Figure 8. These can further help to investigate the capability as well as the effect of the415

inversion algorithm. Figure 7 shows the inversed fluxes after 1, 5, 25, 100, and 300 iterations,416

along with the ground truth under the full observation scenario. After one iteration step,417

the flux source and sink patterns can be seen. In the northern part of Eurasia and North418

America, the flux sinks due to vegetation absorption are manifested. While in East Asia,419

South Asia, Central America, North America, and South America, there exhibit carbon420

sources. In the fifth iteration step, the intensities of carbon sources and sinks are further421

enhanced, showing a large carbon sink in Siberia, as well carbon sources corresponding to422

several urban areas in South Asia. After 25 iteration steps, the overall flux distribution423

is well captured, and all major carbon sources and sinks in the ground truth are reflected424

in the inversion results, although small-scale differences still exist. Iterating from the 25th425

to the 100th iteration, the major carbon sources and sinks are further refined. The peak426

flux sources corresponding to East and South Asian urban regions are more clearly and427

accurately depicted. From the 100th iteration to the 300th iteration, the update slowly428

saturates, and the flux field at the 300th iteration is very close to the ground truth.429

For partially observed scenarios, the flux update is consistent with the full observation430

scenario, the flux gradually converges as the optimization proceeds. However, the flux431

convergence in the partial observation scenario is less effective compared to that of the432

full observation one. After 300 iterations, there are still noticeable discrepancies between433

the inversed flux and the ground truth, which is particularly prominent in the southern434

hemisphere with little observation coverage. The inversion results failed to recover oceanic435

carbon sinks in the southern hemisphere. Meanwhile, the inversed flux shows abnormal436

sources in the Antarctic region. These deficiencies are sort of expected due to inadequate437

observations in the high-latitude areas of the southern hemisphere. As for the northern438

hemisphere, the overall flux distribution is well captured, although the carbon sources in439

East and South Asia are underestimated. Moreover, more spikes in the flux distributions440

can also be observed due to sparse observations.441

In summary, the spatial-temporal distribution pattern and the magnitudes are better442

retrieved in fully-observed scenarios. However, considering the difficulties of practical data443

acquisition, the system is only partially observable most of the time. Despite some flaws444

in data-poor regions, the inversion results employing the synthesized satellite data show445

good agreement with the ground truth, indicating the applicability of the proposed pyATM446

framework in real-world applications. Furthermore, we anticipate that prior knowledge of447

the flux distributions can also help regularize the flux inversion in practice.448

5 Conclusions449

In this paper, we developed a fully-differentiable atmospheric transport model called450

pyATM, which encodes the PDE solver into computational graphs based on a deep learning451

framework. Using the framework’s automatic differentiation capabilities, the derivatives of452

the loss function with respect to the learnable parameters are obtained. When the learnable453

parameter is the carbon flux and the loss function is the observation error, the flux can be454
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Figure 5. Error convergence history in the inversion tests. (a) XCO2 MAE in the observation
points. (b) Inversed flux MAE.

Figure 6. Satellite observation sampling points of 2 typical days. (a) July 1st 2019 (b) July 2nd

2019.

corrected by observation. The proposed framework has been demonstrated in identical-twin455

OSSEs and has achieved favorable performance in both fully-observed and partially-observed456

systems.457

Based on the proposed framework, the connection between the machine learning frame-458

work and inverse problem solving is established. Since the PDE solver is embedded in the459

machine learning framework, popular machine learning models can be easily added to the460

PDE solving procedure, making it possible to seamlessly integrate machine learning models461

within PDE-constrained inverse problems in future research. Furthermore, the application462

of automatic differentiation is not limited to carbon flux inversion problems but also ap-463

plies to inverse/optimization problems constrained on more general PDEs, such as data464

assimilation in numerical weather predictions and shape optimization in engineering design.465
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Figure 7. The flux update history in the full observation case. The 6 images present the inversed
flux fields at the 1st, 5th, 25th, 100th, 300th iteration steps, and the ground truth.

–15–



manuscript submitted to JGR: Atmospheres

Figure 8. The flux update history in the partial observation case. The 6 images present the
inversed flux fields at the 1st, 5th, 25th, 100th, 300th iteration steps, and the ground truth.

–16–



manuscript submitted to JGR: Atmospheres

References469

Amendola, M., Arcucci, R., Mottet, L., Casas, C. Q., Fan, S., Pain, C., . . . Guo, Y.-470

K. (2021). Data assimilation in the latent space of a convolutional autoencoder. In471

Computational science – ICCS 2021 (pp. 373–386). Springer International Publishing.472

Retrieved from https://doi.org/10.1007/978-3-030-77977-1_30 doi: 10.1007/473

978-3-030-77977-1_30474

Baker, D. F., Bösch, H., Doney, S. C., O'Brien, D., & Schimel, D. S. (2010, May).475

Carbon source/sink information provided by column CO2 measurements from the476

orbiting carbon observatory. Atmospheric Chemistry and Physics, 10 (9), 4145–477

4165. Retrieved from https://doi.org/10.5194/acp-10-4145-2010 doi: 10.5194/478

acp-10-4145-2010479

Baker, D. F., Doney, S. C., & Schimel, D. S. (2006, January). Variational data assimilation480

for atmospheric CO2. Tellus B: Chemical and Physical Meteorology , 58 (5), 359–481

365. Retrieved from https://doi.org/10.1111/j.1600-0889.2006.00218.x doi:482

10.1111/j.1600-0889.2006.00218.x483

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., . . . Schultz,484

M. G. (2001). Global modeling of tropospheric chemistry with assimilated meteo-485

rology: Model description and evaluation. Journal of Geophysical Research: Atmo-486

spheres, 106 (D19), 23073–23095.487

Blunden, J., & Arndt, D. S. (Eds.). (2020, August). State of the climate in 2019.488

Bulletin of the American Meteorological Society , 101 (8), S1–S429. Retrieved489

from https://doi.org/10.1175/2020bamsstateoftheclimate.1 doi: 10.1175/490

2020bamsstateoftheclimate.1491

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., . . . Zhang,492

Q. (2018). JAX: composable transformations of Python+NumPy programs. Retrieved493

from http://github.com/google/jax494

Chen, G., & Fidkowski, K. J. (2021, June). Output-based adaptive aerodynamic simula-495

tions using convolutional neural networks. Computers & Fluids, 223 , 104947. Re-496

trieved from https://doi.org/10.1016/j.compfluid.2021.104947 doi: 10.1016/497

j.compfluid.2021.104947498

Chevallier, F., Engelen, R. J., Carouge, C., Conway, T. J., Peylin, P., Pickett-Heaps, C.,499

. . . Xueref-Remy, I. (2009, October). AIRS-based versus flask-based estimation of500

carbon surface fluxes. Journal of Geophysical Research, 114 (D20). Retrieved from501

https://doi.org/10.1029/2009jd012311 doi: 10.1029/2009jd012311502

Chevallier, F., Maksyutov, S., Bousquet, P., Bréon, F.-M., Saito, R., Yoshida, Y., & Yokota,503

T. (2009, October). On the accuracy of the CO2 surface fluxes to be estimated504

from the GOSAT observations. Geophysical Research Letters, 36 (19). Retrieved from505

https://doi.org/10.1029/2009gl040108 doi: 10.1029/2009gl040108506

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., . . .507

others (2013). Long-term climate change: projections, commitments and irreversibil-508

ity. In Climate change 2013-the physical science basis: Contribution of working group509

i to the fifth assessment report of the intergovernmental panel on climate change (pp.510

1029–1136). Cambridge University Press.511

Community, T. I. G.-C. U. (2021). geoschem/gcclassic: Geos-chem 13.3.3. Zenodo.512

Retrieved from https://zenodo.org/record/5748260 doi: 10.5281/ZENODO513

.5748260514

Crisp, D., Atlas, R., Breon, F.-M., Brown, L., Burrows, J., Ciais, P., . . . others (2004a).515

The orbiting carbon observatory (oco) mission. Advances in Space Research, 34 (4),516

700–709.517

Crisp, D., Atlas, R., Breon, F.-M., Brown, L., Burrows, J., Ciais, P., . . . Schroll, S. (2004b,518

January). The orbiting carbon observatory (OCO) mission. Advances in Space Re-519

search, 34 (4), 700–709. Retrieved from https://doi.org/10.1016/j.asr.2003.08520

.062 doi: 10.1016/j.asr.2003.08.062521

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., . . .522

Kloster, S. (2010, January). Description and evaluation of the model for ozone and523

–17–

https://doi.org/10.1007/978-3-030-77977-1_30
https://doi.org/10.5194/acp-10-4145-2010
https://doi.org/10.1111/j.1600-0889.2006.00218.x
https://doi.org/10.1175/2020bamsstateoftheclimate.1
http://github.com/google/jax
https://doi.org/10.1016/j.compfluid.2021.104947
https://doi.org/10.1029/2009jd012311
https://doi.org/10.1029/2009gl040108
https://zenodo.org/record/5748260
https://doi.org/10.1016/j.asr.2003.08.062
https://doi.org/10.1016/j.asr.2003.08.062
https://doi.org/10.1016/j.asr.2003.08.062


manuscript submitted to JGR: Atmospheres

related chemical tracers, version 4 (MOZART-4). Geoscientific Model Development ,524

3 (1), 43–67. Retrieved from https://doi.org/10.5194/gmd-3-43-2010 doi: 10525

.5194/gmd-3-43-2010526

Espeholt, L., Agrawal, S., Sønderby, C., Kumar, M., Heek, J., Bromberg, C., . . . Kalchbren-527

ner, N. (2021). Skillful twelve hour precipitation forecasts using large context neural528

networks.529

Fablet, R., Chapron, B., Drumetz, L., Mémin, E., Pannekoucke, O., & Rousseau, F. (2021,530

October). Learning variational data assimilation models and solvers. Journal of531

Advances in Modeling Earth Systems, 13 (10). Retrieved from https://doi.org/532

10.1029/2021ms002572 doi: 10.1029/2021ms002572533

Feng, L., Palmer, P. I., Bösch, H., & Dance, S. (2009, April). Estimating surface CO2534

fluxes from space-borne CO2 dry air mole fraction observations using an ensemble535

kalman filter. Atmospheric Chemistry and Physics, 9 (8), 2619–2633. Retrieved from536

https://doi.org/10.5194/acp-9-2619-2009 doi: 10.5194/acp-9-2619-2009537

Frerix, T., Kochkov, D., Smith, J. A., Cremers, D., Brenner, M. P., & Hoyer, S. (2021).538

Variational data assimilation with a learned inverse observation operator.539

Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., . . .540

Zaehle, S. (2019, December). Global carbon budget 2019. Earth System Science Data,541

11 (4), 1783–1838. Retrieved from https://doi.org/10.5194/essd-11-1783-2019542

doi: 10.5194/essd-11-1783-2019543

Fung, I. Y., Doney, S. C., Lindsay, K., & John, J. (2005, August). Evolution of carbon sinks544

in a changing climate. Proceedings of the National Academy of Sciences, 102 (32),545

11201–11206. Retrieved from https://doi.org/10.1073/pnas.0504949102 doi:546

10.1073/pnas.0504949102547

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., &548

Eder, B. (2005, December). Fully coupled “online” chemistry within the WRF model.549

Atmospheric Environment , 39 (37), 6957–6975. Retrieved from https://doi.org/550

10.1016/j.atmosenv.2005.04.027 doi: 10.1016/j.atmosenv.2005.04.027551

Henze, D. K., Hakami, A., & Seinfeld, J. H. (2007, May). Development of the adjoint of552

GEOS-chem. Atmospheric Chemistry and Physics, 7 (9), 2413–2433. Retrieved from553

https://doi.org/10.5194/acp-7-2413-2007 doi: 10.5194/acp-7-2413-2007554

Hu, Y., Chen, L., Wang, Z., & Li, H. (2022). Swinvrnn: A data-driven ensemble forecasting555

model via learned distribution perturbation.556

Kang, J.-S., Kalnay, E., Liu, J., Fung, I., Miyoshi, T., & Ide, K. (2011, May). “variable557

localization” in an ensemble kalman filter: Application to the carbon cycle data assimi-558

lation. Journal of Geophysical Research, 116 (D9). Retrieved from https://doi.org/559

10.1029/2010jd014673 doi: 10.1029/2010jd014673560

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L.561

(2021, May). Physics-informed machine learning. Nature Reviews Physics, 3 (6),562

422–440. Retrieved from https://doi.org/10.1038/s42254-021-00314-5 doi:563

10.1038/s42254-021-00314-5564

Laloyaux, P., Kurth, T., Dueben, P. D., & Hall, D. (2022, May). Deep learning to estimate565

model biases in an operational NWP assimilation system. Journal of Advances in566

Modeling Earth Systems. Retrieved from https://doi.org/10.1029/2022ms003016567

doi: 10.1029/2022ms003016568

Mack, J., Arcucci, R., Molina-Solana, M., & Guo, Y.-K. (2020, December). Attention-based569

convolutional autoencoders for 3d-variational data assimilation. Computer Methods in570

Applied Mechanics and Engineering , 372 , 113291. Retrieved from https://doi.org/571

10.1016/j.cma.2020.113291 doi: 10.1016/j.cma.2020.113291572

Masarie, K. A., Peters, W., Jacobson, A. R., & Tans, P. P. (2014, December). ObsPack: a573

framework for the preparation, delivery, and attribution of atmospheric greenhouse gas574

measurements. Earth System Science Data, 6 (2), 375–384. Retrieved from https://575

doi.org/10.5194/essd-6-375-2014 doi: 10.5194/essd-6-375-2014576

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . Chintala, S.577

(2019). Pytorch: An imperative style, high-performance deep learning library. In578

–18–

https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.1029/2021ms002572
https://doi.org/10.1029/2021ms002572
https://doi.org/10.1029/2021ms002572
https://doi.org/10.5194/acp-9-2619-2009
https://doi.org/10.5194/essd-11-1783-2019
https://doi.org/10.1073/pnas.0504949102
https://doi.org/10.1016/j.atmosenv.2005.04.027
https://doi.org/10.1016/j.atmosenv.2005.04.027
https://doi.org/10.1016/j.atmosenv.2005.04.027
https://doi.org/10.5194/acp-7-2413-2007
https://doi.org/10.1029/2010jd014673
https://doi.org/10.1029/2010jd014673
https://doi.org/10.1029/2010jd014673
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1029/2022ms003016
https://doi.org/10.1016/j.cma.2020.113291
https://doi.org/10.1016/j.cma.2020.113291
https://doi.org/10.1016/j.cma.2020.113291
https://doi.org/10.5194/essd-6-375-2014
https://doi.org/10.5194/essd-6-375-2014
https://doi.org/10.5194/essd-6-375-2014


manuscript submitted to JGR: Atmospheres

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett579

(Eds.), Advances in neural information processing systems 32 (pp. 8024–8035). Curran580

Associates, Inc. Retrieved from http://papers.neurips.cc/paper/9015-pytorch581

-an-imperative-style-high-performance-deep-learning-library.pdf582

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., . . .583

Anandkumar, A. (2022). Fourcastnet: A global data-driven high-resolution weather584

model using adaptive fourier neural operators.585

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., . . .586

Tans, P. P. (2007, November). An atmospheric perspective on north american carbon587

dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences,588

104 (48), 18925–18930. Retrieved from https://doi.org/10.1073/pnas.0708986104589

doi: 10.1073/pnas.0708986104590

Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol, M. C., . . . Tans,591

P. P. (2005). An ensemble data assimilation system to estimate CO2 surface fluxes from592

atmospheric trace gas observations. Journal of Geophysical Research, 110 (D24). Re-593

trieved from https://doi.org/10.1029/2005jd006157 doi: 10.1029/2005jd006157594

Peyron, M., Fillion, A., Gürol, S., Marchais, V., Gratton, S., Boudier, P., & Goret, G.595

(2021, September). Latent space data assimilation by using deep learning. Quarterly596

Journal of the Royal Meteorological Society , 147 (740), 3759–3777. Retrieved from597

https://doi.org/10.1002/qj.4153 doi: 10.1002/qj.4153598

Poulter, B., Bastos, A., Canadell, J. G., Ciais, P., Huntzinger, D., Houghton, R. A., . . .599

Luyssaert, S. (2022). Bottom-up approaches for estimating terrestrial GHG budgets:600

Bookkeeping, process-based modeling, and data-driven methods. In Balancing green-601

house gas budgets (pp. 59–85). Elsevier. Retrieved from https://doi.org/10.1016/602

b978-0-12-814952-2.00010-1 doi: 10.1016/b978-0-12-814952-2.00010-1603

Quéré, C. L., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., . . . Wood-604

ward, F. I. (2009, November). Trends in the sources and sinks of carbon dioxide. Na-605

ture Geoscience, 2 (12), 831–836. Retrieved from https://doi.org/10.1038/ngeo689606

doi: 10.1038/ngeo689607

Quéré, C. L., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A.,608

. . . Heimann, M. (2007, June). Saturation of the southern ocean sink due to recent609

climate change. Science, 316 (5832), 1735–1738. Retrieved from https://doi.org/610

10.1126/science.1136188 doi: 10.1126/science.1136188611

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., . . . Mohamed, S.612

(2021, September). Skilful precipitation nowcasting using deep generative models613

of radar. Nature, 597 (7878), 672–677. Retrieved from https://doi.org/10.1038/614

s41586-021-03854-z doi: 10.1038/s41586-021-03854-z615

Solomon, S., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2009, February). Irreversible616

climate change due to carbon dioxide emissions. Proceedings of the National Academy617

of Sciences, 106 (6), 1704–1709. Retrieved from https://doi.org/10.1073/pnas618

.0812721106 doi: 10.1073/pnas.0812721106619

Thompson, R. L., Chevallier, F., Maksyutov, S., Patra, P. K., & Bowman, K. (2022).620

Top-down approaches. In Balancing greenhouse gas budgets (pp. 87–155). Elsevier.621

Retrieved from https://doi.org/10.1016/b978-0-12-814952-2.00008-3 doi: 10622

.1016/b978-0-12-814952-2.00008-3623

Toon, G., Blavier, J.-F., Washenfelder, R., Wunch, D., Keppel-Aleks, G., Wennberg, P., . . .624

Notholt, J. (2009). Total column carbon observing network (TCCON). In Advances625

in imaging. OSA. Retrieved from https://doi.org/10.1364/fts.2009.jma3 doi:626

10.1364/fts.2009.jma3627

Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., & Maksyutov,628

S. (2009a). Global concentrations of CO2 and CH4 retrieved from GOSAT: First629

preliminary results. SOLA, 5 , 160–163. Retrieved from https://doi.org/10.2151/630

sola.2009-041 doi: 10.2151/sola.2009-041631

Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., & Maksyutov, S.632

(2009b). Global concentrations of co2 and ch4 retrieved from gosat: First preliminary633

–19–

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1073/pnas.0708986104
https://doi.org/10.1029/2005jd006157
https://doi.org/10.1002/qj.4153
https://doi.org/10.1016/b978-0-12-814952-2.00010-1
https://doi.org/10.1016/b978-0-12-814952-2.00010-1
https://doi.org/10.1016/b978-0-12-814952-2.00010-1
https://doi.org/10.1038/ngeo689
https://doi.org/10.1126/science.1136188
https://doi.org/10.1126/science.1136188
https://doi.org/10.1126/science.1136188
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.1073/pnas.0812721106
https://doi.org/10.1073/pnas.0812721106
https://doi.org/10.1073/pnas.0812721106
https://doi.org/10.1016/b978-0-12-814952-2.00008-3
https://doi.org/10.1364/fts.2009.jma3
https://doi.org/10.2151/sola.2009-041
https://doi.org/10.2151/sola.2009-041
https://doi.org/10.2151/sola.2009-041


manuscript submitted to JGR: Atmospheres

results. Sola, 5 , 160–163.634

Zhu, Y., & Zabaras, N. (2018, August). Bayesian deep convolutional encoder–decoder635

networks for surrogate modeling and uncertainty quantification. Journal of Compu-636

tational Physics, 366 , 415–447. Retrieved from https://doi.org/10.1016/j.jcp637

.2018.04.018 doi: 10.1016/j.jcp.2018.04.018638

–20–

https://doi.org/10.1016/j.jcp.2018.04.018
https://doi.org/10.1016/j.jcp.2018.04.018
https://doi.org/10.1016/j.jcp.2018.04.018

