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Abstract

Distorted crystals carry useful information on processes involved in their formation, deformation and growth. The distortions are

accommodated by geometrically necessary dislocations, and therefore characterising those dislocations is an informative task,

to assist in, for example, deducing the slip systems that produced the dislocations. Electron Backscatter Diffraction (EBSD)

allows detailed quantification of distorted crystal orientations and we summarise here a method for extracting information on

dislocations from such data. The Weighted Burgers Vector (WBV) method calculates a vector at each point on an EBSD map,

or an average over a region. The vector is a weighted average of the Burgers vectors of dislocation lines intersecting the map

surface. It is weighted towards dislocation lines at a high angle to the map but that can be accounted for in interpretation.

The method is fast and does not involve specific assumptions about dislocation types. It can be used, with care, to analyse

subgrain walls (sharp orientation changes) as well as gradational orientation changes within individual grains. We describe new

and published examples of the use of the technique to illustrate its potential; case studies to date mainly use the WBV direction

not the magnitude. EBSD orientation data have angular errors, and so does the WBV. We present an analysis of these angular

errors, showing there is a trade-off between directional accuracy and area sampled. In summary the technique is fast, free from

assumptions, and errors can be taken into account to allow testing of hypotheses about dislocation types.
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Abstract 
Distorted crystals carry useful information on processes involved in their formation, 

deformation and growth. The distortions are accommodated by geometrically necessary 

dislocations, and therefore characterising those dislocations is an informative task, to assist 

in, for example, deducing the slip systems that produced the dislocations. Electron 

Backscatter Diffraction (EBSD) allows detailed quantification of distorted crystal 

orientations and we summarise here a method for extracting information on dislocations from 

such data. The Weighted Burgers Vector (WBV) method calculates a vector at each point on 

an EBSD map, or an average over a region. The vector is a weighted average of the Burgers 

vectors of dislocation lines intersecting the map surface. It is weighted towards dislocation 

lines at a high angle to the map but that can be accounted for in interpretation. The method is 

fast and does not involve specific assumptions about dislocation types. It can be used, with 

care, to analyse subgrain walls (sharp orientation changes) as well as gradational orientation 

changes within individual grains. We describe new and published examples of the use of the 

technique to illustrate its potential; case studies to date mainly use the WBV direction not the 

magnitude.  EBSD orientation data have angular errors, and so does the WBV. We present an 

analysis of these angular errors, showing there is a trade-off between directional accuracy and 

area sampled. In summary the technique is fast, free from assumptions, and errors can be 

taken into account to allow testing of hypotheses about dislocation types. 

Plain Language Summary 
Rocks, and also metals and ceramics, are made of interlocking crystals. Crystals are defined 

as having regular atomic structures, but growth problems or deformation can give rise to 

linear imperfections in the regular arrangements. These lines (dislocations) carry valuable 

information about deformation or growth but are difficult to see. However, when there are 

huge numbers distributed through the crystal, it may be visibly distorted: the atomic sheets, 

ideally planar, are curved. An electron microscopy technique enables us to measure the 

orientations of atomic sheets. In this contribution we describe a mathematical method which 

calculates the “offsets” in atomic structure, related to dislocations, from orientation 

measurements. These “Burgers vectors” carry key information about how atoms have slipped 

past each other during deformation, a process which operates on the scale of the whole Earth. 

The calculation method gives us information on these vectors quickly and without having to 

make prior assumptions about what vectors to expect. Because orientation measurements 
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have errors, the calculated vectors have errors, and we show how to estimate these. We give 

examples showing how useful such calculations are, particularly in understanding how 

crystals – and hence the Earth - deform. 

Key points 
This method allows calculation of information about Burgers vectors, without prior 

assumptions, from crystal orientation measurements 

Errors in the calculated vectors due to orientation measurement errors are quantified 

1. Introduction 
Microstructures are crucial indicators of processes which have affected rocks. Dislocations 

provide evidence for how and under what conditions individual grains have deformed, or may 

be growth defects indicating growth conditions. If dislocations are due to deformation their 

Burgers vectors may help constrain the style or conditions of deformation. Individual 

dislocations give a lattice extra energy, so the density of dislocations is needed to estimate 

this on a volumetric basis. This plastic strain energy provides a driving force for 

recrystallization in deformed rocks (Drury and Urai, 1990). TEM is the standard method to 

image individual dislocations, a procedure which can be laborious and will characterise just a 

tiny fraction of the microstructure, leaving doubts as to how representative it is. In contrast 

intracrystalline distortions may be optically visible and can be quickly characterised by 

EBSD mapping over large regions. Such distortions, regardless of cause, must be 

accommodated by geometrically necessary dislocations (GNDs) (Ashby, 1970) and hence 

give indirect information on dislocation content. In principle it would be useful to constrain 

directional (lines, Burgers vectors) and magnitude (dislocation density) information from 

EBSD data: examples of approaches follow.  

If distortion is due to deformation by dislocation motion it can in principle be used to 

constrain active slip systems (hence deformation conditions) using directional information. 

Such studies have often focussed on subgrain walls (in essence, localised sharp distortions). 

For example Lloyd (2002) argues that subgrain walls traces and misorientation axes in quartz 

can be used to deduce slip systems, though assumptions about “pure” tilt or twist nature of 

boundaries are needed. Wieser et al. (2020) applied a modified approach to olivine, 

incorporating subgrain wall traces with information from the method of Wheeler et al. 

(2009). The latter, the Weighted Burgers Vector (WBV) method, is what we discuss in this 

contribution. Distortion in olivine can be used to deduce slip systems, with calculations 

assuming that the net dislocation energy is minimised with respect to all possible 

combinations of dislocation lines and Burgers vectors (Lopez-Sanchez et al., 2021; Wallis et 

al., 2016; Wallis et al., 2019b). Distortion magnitude information can be quantified using for 

example “local misorientation” though the link to actual dislocation densities is not 

straightforward to make. For example Timms et al. (2012) use local misorientation maps to 

give an overview of the heterogeneous distortion in shocked zircon crystals. 

If distortion is due to growth, or is postulated to be, then purely geometric analyses can be 

applied as they would be to deformed crystals but any extra assumptions must be evaluated 

with care. Spruzeniece et al. (2017) quantified crystal distortions in KBr-KCl solid solution 

grown in a stress-free environment: these are due to growth not deformation. Gardner et al. 
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(2021) examined natural distorted albite and showed that some subgrain walls contain 

dislocations with Burgers vectors with <010> components. There are no known slip systems 

with such Burgers vectors, so the subgrain walls were diagnosed as growth defects.  

The methods in these and many other papers using EBSD to analyse distortions include 

various assumptions, both in manual processes (e.g. selecting straight segments of boundary 

traces) and in automatic calculations (e.g. assumptions about allowed slip systems and 

dislocation energy minimisation). It is generally not clear how errors in EBSD orientation 

measurements affect deductions, and some methods are slow if they are manual or compute 

intensive. Methods using boundary trace analysis cannot be applied to smooth, distributed 

distortions because there are no discrete boundaries. Overall, the methods have diverse 

strengths and weaknesses. 

In this contribution we summarise a method for extracting information on GNDs from EBSD 

data which is fast and is based on just a few simple assumptions. It has been used in several 

studies (Table 1) since it was devised (Wheeler et al., 2009), and we show how it is used in 

practice. We explain the method using model distorted crystals, with mathematical details in 

Supplementary Information. We discuss how the method applies to smoothly curved lattices 

and to subgrain walls (where GNDs are collected into surfaces of negligible width). We 

present a new analysis of the errors inherent in the calculation, so that hypotheses about 

microstructural evolution can be tested robustly. We present new examples of the method in 

use on olivine and plagioclase and discuss previous studies in the light of our error analysis. 

Finally, we discuss this method in relation to others used to analyse intracrystalline distortion 

and suggest future developments. We note that the methods discussed here are applicable to 

any crystalline material including metals, ceramics and ice. 

2. The WBV technique 
The technique gives information on combinations of GND Burgers vectors and GND 

densities, so we now discuss these two concepts.  The Burgers vector of a dislocation can be 

thought of as the unit cell mismatch we find if we walk round a dislocation and come back to 

our start point (Fig. 1a), b)). It can be described in crystal coordinates (hence dimensionless, 

for example [100]) or in sample coordinates (dimensions of length; direction depends on 

sample orientation). Dislocation density is a phrase which is used in different ways. It may 

refer to the total line length of Statistically Stored Dislocations in a unit volume. Not all of 

these give rise to lattice curvature so here we consider the total line length of GNDs per unit 

volume. We illustrate the basic ideas using a 2D model first. 

2.1. Concepts in 2D 
GND density relates to lattice curvature and a 2D description illustrates this most simply. We 

show here how curvature relates to single then multiple dislocation populations. Figure 1c)-f) 

shows lattice orientations in a 2D model which can, at each point, be described by a single 

number (angle  of a particular lattice direction anticlockwise from a reference direction). In 

2D all dislocations have edge character and in the figure the Burgers vectors are defined as 

one atomic spacing so b = [10]. The four frames show increasing dislocation density , 

defined in 2D as the number of dislocations per unit area, and the corresponding increase in 

lattice curvature. The irregular spacing of dislocations means this model is an approximate 

illustration but provides a basis for understanding. 
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a) Sample coordinates b) Crystal coordinates c) 0 dislocations

c) 4 dislocations e) 6 dislocations f) 12 dislocations

 
Figure 1. Visualization of the link between GND density (here they are chosen all of the 

same sign) and lattice curvature. a) A closed loop around a dislocation in sample space. b) 

The same path traced out in crystal coordinates, showing a gap which is the definition of 

the Burgers vector (red) of the dislocation within the loop. c)-f) A model square array of 

atoms with a side length of 20 atomic spacings. Increasing GND content causes increasing 

lattice curvature. 

EBSD measurements do not pick out individual atoms but provide orientation  as a defined 

function of position (in 2D, (x, y)); that is what we must work with. Lattice curvature is 

defined by variations in  in the x and/or y directions. The lattice curvature is then a vector  

𝜿 = - (
𝜕𝜃

𝜕𝑥
,

𝜕𝜃

𝜕𝑦
)         (1) 

(see Appendix 2.1 for details) and relates to a single population of GNDs by 

𝜿 = 𝜌𝒃  

which incorporates the fact that in sample coordinates, b may vary even if it is a single 

crystallographic direction. Considering just the magnitudes, we can write this as 

(curvature) = (dislocation density) × (Burgers vector length) 

which is a starting point for understanding the link between curvature and dislocation density. 

If there is more than one type of dislocation (each with different Burgers vectors and 

densities) 

𝜿 =  ∑ 𝜌(𝑁)𝒃
(𝑁)

𝑁          (2) 
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where  and b are the density and Burgers vectors for each type (superscript N) of 

dislocation. If there were just 2 types of dislocation, this equation would yield their densities 

uniquely. If more than 2 types are present then the densities are non-unique, but the equation 

still provides constraints. Such issues are relevant for 3D which we now discuss. 

2.2. Concepts in 3D 
In 3D we require three numbers to define a lattice orientation (e.g. conventionally three Euler 

angles, although other representations are available), and we have three directions in which to 

evaluate gradients, there are 9 gradients to consider. Nye (1953) showed how curvature is 

then a second rank tensor, but a more direct link to dislocation density (line length per unit 

volume in 3D) is established via a tensor  (which now carries his name), also a function of 

orientation gradients. This links to dislocation density as follows. 

𝛼𝑖𝛾 =  ∑ 𝜌(𝑁)𝑏𝑖
(𝑁)

𝑙𝛾
(𝑁)

𝑁         (3) 

where , b and l are the density, Burgers vector and unit line vector for each type (labelled N) 

of dislocation. Note the close resemblance to eqn 2, but with the extension to include 

dislocation line vectors. When there are many types of dislocation, there may be multiple 

combinations giving a particular Nye tensor. Note the following. 

• This has to be written in terms of vectors and tensors, since the situation is 3D. 

• Such equations are best written using index notation which makes explicit whether 

vectors are expressed in crystal coordinates (Latin subscript for bi) or sample coordinates 

(Greek subscript for l).  

•  is sometimes called “dislocation density” but must be distinguished from other uses of 

the same phrase. 

Determining the full Nye tensor requires orientation gradients in all three directions. 

Although there are GND studies using 3D EBSD from serial FIB milling e.g. (Kalácska et al., 

2020; Konijnenberg et al., 2015) these are challenging and generally EBSD is conducted on 

2D sections. Wheeler et al. (2009) showed that relevant (though incomplete) information 

could still be extracted from a 2D map. Specifically, of the 9 components of the Nye tensor, a 

3-component vector can be calculated. The vector is a sum of Burgers vectors of GNDs, 

weighted by the actual dislocation density of each type of GND and by the angle between the 

dislocation lines and the map. Lines at a high angle to the map are favoured and so the phrase 

“Weighted Burgers Vector” (WBV) was used, to make clear that this vector is a weighted 

“sample” of the Nye tensor. 

𝑊𝑖 =  𝛼𝑖3 =  ∑ 𝜌(𝑁)𝑏𝑖
(𝑁)

𝑙3
(𝑁)

𝑁 = ∑ [𝜌(𝑁)𝑙3
(𝑁)

]𝑏𝑖
(𝑁)

𝑁     (4) 

where W is the WBV, and the subscript “3” refers to the z direction, perpendicular to the 

map, so l3 is the component of a dislocation line vector perpendicular to the map: it varies 

from 0 (lines parallel to map) to 1 (lines perpendicular to map). The terms in square brackets 

are scalars, so note that the WBV is a linear combination of Burgers vectors – this is one 

reasons why it is a useful quantity. The WBV has units of (length)-1 and it is convenient to 

use units of (m)-1. We denote its magnitude as W. It can be expressed in crystal coordinates 

as in eqn (4), or in sample coordinates by calculating hW where h is the orientation tensor (a 
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function of Euler angles).  It might appear that this will give a non-unique answer for the 

vector in sample coordinates, since W has symmetric variants in crystal coordinates, but 

Appendix 1 shows this is not the case – there is a unique WBV in sample coordinates.  

There are two approaches to calculating W, differential and integral. The differential method 

involves evaluating local gradients in h around the point at which W is required. Since that 

point has a specific orientation, W can be expressed in crystal or sample coordinates. The 

integral method involves integrating round a closed loop on the map to obtain the net or 

average Burgers vector content of the GND lines intersecting the map inside the loop, 

expressed in crystal coordinates.  The mathematics in essence defines the loop in sample 

coordinates (c.f. Fig. 1a) black arrows), transforms each loop segment (black arrow) into 

crystal coordinates (c.f. Fig. 1b) black arrows), and sums up the segments in crystal 

coordinates to give the net Burgers vector (red arrow). Unlike the differential method, there is 

no strict way to express the vector in sample coordinates because orientation varies around 

and within the loop and the result of the integral method is not linked to any particular point 

within the loop. However, as we discuss below, for the calculation to be meaningful there 

should be no large orientation variations around the loop. In that case the orientation at, for 

example, the loop centroid could be used to convert from crystal to sample coordinates. 

If the orientation h is a defined mathematical function of position, then the methods are 

identical (they are related by Stokes’ theorem). In practice h is defined at discrete 

measurement points, e.g. on a square grid. The differential method then involves numerical 

estimation of orientation gradients, with some flexibility in terms of the number of points 

used. The integral method involves numerical integration around the closed loop. As we will 

show later, the methods have different advantages in practice.  

2.2.1. WBV, lattice vectors and Burgers vectors 

In this section we discuss the links between WBV and Burgers vectors and show how there 

may be unique or non-unique relationships. In the approach we describe here, the 

“differential” values of WBV are usually expressed in units of (m)-1. In crystal coordinates 

W can be decomposed into lattice basis vectors L if needed  

𝑾 = 𝐾1𝑳1 + 𝐾2𝑳2  + 𝐾𝟑𝑳3        (5) 

where the coefficients K are in units of (length)-2. These coefficients resemble dislocation 

densities but are in general different. This decomposition relates to the GND types and 

densities and is unique but further assumptions are needed to express it in terms of the 

Burgers vectors of actual slip systems. For example, in olivine, if we find that W is parallel to 

[203] and we know the distortion is due to crystal plasticity then we can deduce that it shows 

a combination of slip systems with [100] and [001] Burgers vectors. The magnitude of W 

parallel to [100] would then, in accord with eqn (4), be a weighted sum of the dislocation 

densities of all types of dislocation with [100] Burgers vectors. In anhydrite, also 

orthorhombic, slip systems can involve [001], [1-1-2] and [11-2] Burgers vectors (Hildyard et 

al., 2009). There is a unique way to express the three components of W in terms of those 

three vectors, if those vectors are linearly independent: in this example [203] = 7[001] + [1-1-

2] + [11-2]. However, many crystals have more than three Burgers vectors for possible slip 

systems, especially in more symmetric crystals counting all symmetric variants. For example, 

in a trigonal phase such as calcite, there will be at least 3 Burgers vectors in the basal plane. 
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Any two of these can be combined to give the basal plane component of W, so the 

decomposition is non-unique. W still carries valuable information on the relative 

contributions of dislocations with basal and non-basal Burgers vectors (Chauve et al., 2017). 

Our philosophy here is that the methods give the value of W, and if further assumptions are 

required (in terms of expected slip systems, relative energies etc.) these should be made on a 

case-by-case basis. The K coefficients can be related to GND densities using further 

information such as the specific Burgers vectors of GNDs. 

It is crucial to note that the WBV cannot generate “phantom” directions: it must be the 

weighted average of Burgers vectors that are actually present in the microstructure. For 

example, whether the mineral is olivine or anhydrite or some other phase, if W is [203] then 

at least one of the GND types involved must have Burgers vector with an [001] component, 

though not necessarily parallel to [001]. 

We next illustrate how to visualise and interpret the WBV, using models for a smoothly tilted 

lattice, a smoothly twisted lattice (for illustration, distortions are much larger than those 

found in real crystals) and a tilt subgrain wall. The models have no variation of orientation in 

the z direction and the Nye tensors can be calculated fully (Appendix 2). 
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Figure 2. Basic WBV concepts illustrated with model tilted and twisted crystals. a), b) 3D 

views of model tilted and twisted crystals, Planes are colour coded in accord with IPF 

colour for plane normal (key is inset in (g)). Pale yellow of semi-transparent rectangles 
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indicates the map plane. c), d) Misorientation relative to top-left corner for tilt and twist 

models. In c) misorientation is around the [001] axis which points out of the page. In d) 

misorientation is around the [010] axis, running left-right, with linearly increasing gradient 

of twist angle to right. e), f) WBV magnitude (in m-1) colour coded for each model. In e) 

actual vector directions shown as white arrows; in f) WBV directions point directly into 

page so are not shown. The boxes are example integration loops with the net WBV 

indicated as K coefficients in (m)-2. g), h) WBV direction colour coded for each model. 

Inset shows IPF key. i) 3D view of semi-transparent WBV magnitude map for tilt model 

(as in (e)), with edge dislocations lines shown schematically: parallel to [010] and colour 

coded in accord with their [100] Burgers vectors. j) 3D views of semi-transparent WBV 

direction map for twist model (as in (h)), with two sets of screw dislocations lines shown 

schematically: blue parallel to [100], red parallel to [001]. For visual clarity the 

dislocations are shown as if in walls, but the distortion gradient is actually smooth. Note 

how the “weighting” towards dislocation lines perpendicular to the map causes variation in 

WBV direction (as in f) although the relative density of the two types of dislocation is 

actually uniform in 3D.                       

 

2.2.2. Model of smoothly tilted crystal  

This model is similar to Fig 1, with a 3D view shown in Fig. 2a). The lattice is misoriented 

relative to the y-axis by an angle  (zero along the y-axis and < 0 to the right), Fig. 2c). The 

misorientation axis is [001] which points out of the page. The centre of curvature is beyond 

the bottom left of the map (Fig. 2c)). If r is the distance to this centre, it is the radius of 

curvature of the lattice and in sample coordinates  

𝑾 =
1

𝑟
(cos 𝜃 , sin 𝜃 , 0)  

and in crystal coordinates,  

𝑾 =
1

𝑟
(1, 0,0)          (6) 

The magnitude of W is shown in Fig. 2e), increasing towards the centre of curvature in 

accord with eqn. (6). The WBV is a vector which can be represented in sample or crystal 

space: these require different methods for visualising direction. In sample space WBVs can 

be displayed as arrows on a map as in Fig. 2e). The direction in crystal coordinates is colour 

coded (as in any other sort of IPF map) in Fig. 2g), with the IPF colour scheme inset. Since 

W is everywhere parallel to [100] we see a single colour. The rectangle is an integral loop 

labelled with its net Burgers vector content in units of (m)-2; note only the first [100] 

component is non-zero. 

Multiple decompositions of W are possible, but the simplest is a single population of edge 

dislocations with lines parallel to [001], Burgers vectors parallel to [100] and density  

1

𝑎𝑟
 

where a is the length of [100]. Fig. 2i) shows a 3D view of that model. If this were not a 

model, all the map and WBV data could be in accord with other interpretations, for example 

dislocation lines not parallel to z. However, any interpretation must involve dislocations with 
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Burgers vectors with a [100] component: the WBV calculation cannot generate “phantom” 

components (see above). 

2.2.3. Model of smoothly twisted crystal 

This model illustrates the importance of understanding the “weighting” or stereological bias 

in the WBV calculation. In Fig. 2b) the twist is defined by misorientation by angle  around 

the [010] axis, with 
𝑑𝜃

𝑑𝑥
 increasing to the right. Fig. 2d) shows the misorientation relative to 

the top-left corner; because this is olivine, symmetry dictates that the misorientation reaches a 

maximum at 90 degrees then decreases rightwards even though the lattice is more twisted to 

the right and the angle  used for calculations increases monotonically. In sample coordinates 

(appendix 2.2) we have 

 

𝑾 =
𝑑𝜃

𝑑𝑥
(0, 0, −1)  

In crystal coordinates  

𝑾 =
𝑑𝜃

𝑑𝑥
(sin 𝜃 , 0, − cos 𝜃) .        (7) 

The magnitude of W is simply 
𝑑𝜃

𝑑𝑥
 and increases linearly to the right because  is quadratic in 

x (Fig. 2f)). WBV arrows in sample coordinates are not shown for the twist example because 

they all point vertically out of the map. In crystal coordinates the direction of W varies 

sinusoidally with  (Fig. 2h)). The rectangle is an integral loop labelled with its net Burgers 

vector content in units of (m)-2; note both [100] and [001] components are non-zero, in 

agreement with the presence of blues and purples within the loop. The variation in WBV 

direction across the map could be interpreted to mean that different types of dislocation 

predominate in different parts of the model. This is not the case: it is a stereological effect 

and needs careful explanation now because such effects must be borne in mind in any study.  

Multiple decompositions of W are possible, but the simplest is as a sum of contributions from 

screw dislocations parallel to [100] with a density of   
1

𝑎

𝑑𝜃

𝑑𝑥
 

and screw dislocations parallel to [001] with a density of   
1

𝑐

𝑑𝜃

𝑑𝑥
.  

This decomposition is show in Fig. 2j). The dislocation lines are coloured using the IPF 

colour scheme for line direction (as in Fig. 2g)) but since these are screw dislocations the 

colours also indicate Burgers vector directions. Consider the model near the left hand end 

where  is small. Blue [100] dislocations are almost parallel to the map. This means the 

WBV calculation does not “sample” them and the IPF colour (Fig. 2h)) is dominated by red 

[001]. As the lattice is more twisted passing to the right, [100] lines are at higher and higher 

angles to the map. Hence the WBV IPF map is more dominated by blue. At a position near 

the right hand side of the map, [001] lines are parallel to the maps so are not sampled at all; 

the IPF map is blue. As  increases beyond 90 degrees we see an influence of [001] reappear. 

This is an example of the “weighting” towards dislocation lines at a high angle to the map. 
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The twist structure illuminates some fundamental aspects of WBV. The displays are entirely 

in accord with eqn. (7) and the WBV provides a weighted “subset” of the full dislocation 

population. If we were to examine another map at right angles to the one considered (but still 

containing the twist rotation axis) this second map would show a preponderance of [100] 

vectors at the left end, with more [001] passing to the right – it would look quite different.  

2.2.4. Model of subgrain tilt wall 

Many microstructures contain subgrain walls which, although populated by GNDs, have in 

essence zero width and hence zero volume. This means that dislocation density, defined as 

line length per unit volume, is infinite. Similarly, a sharp change in orientation means the 

lattice curvature is infinite. So, although eqn. (4) still applies, it is not particularly helpful. In 

contrast the integral method still yields finite values when the loop crosses a subgrain wall. 

Now, though, the quantities obtained are highly dependent on the size of the loop chosen for 

integration: the area does not affect the net Burgers vector content B, only the length of 

subgrain wall intersected by the loop. The software we have developed delivers a vector B/A 

with units of (length)-1 to characterise the GND content of a loop. Fig. 3 (lower part) shows 

three loops, each intersecting the same length of subgrain wall and having the same value of 

B. However, the areas differ and so the values of B/A differ. 
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Figure 3. Numerical aspects in of subgrain wall analysis - a sharp orientation boundary 

indicated by green line. The bottom 3 white boxes are used as loops to indicate the average 

dislocation density using the integral method: they have relative lengths 1, 2 and 3. The top 

3 grey boxes show regions in which W has been calculated using stencils of size 9, 13 and 

21. 

 

The numbers from WBV calculations are meaningful where the areas being analysed have 

orientation variations due to GNDs. High angle boundaries must therefore be excluded from 

consideration since they do not have a dislocation substructure. There is no single “cutoff” 

angle applicable to all phases; in the algorithms we have created, the user chooses the angle 

and then high angle boundaries are excluded from calculations, as we describe below. 
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To this point no discussion has been required about the finite number of measurement points 

that comprise an EBSD map, and the consequences for gradient calculation. Our models are 

based on algebraic descriptions of distorted lattices (see Appendix 2). Now we need to 

discuss the consequences of two numerical aspects of EBSD measurements: that they are 

made at discrete points, and that they have errors in orientation. 

2.3. Numerical aspects of analysing spaced EBSD measurement points 
Orientation data to be analysed are not mathematical functions of position but discrete 

measurements at scattered measurement points (hereafter, simply “points” for brevity). The 

calculation methods therefore involve numerical approximations to the gradients and 

integrals of the underlying theory, and the differential and integral methods have different 

advantages in practice. The points in the studies we describe are on square grids, but there is 

no reason why the method should not be extended to hexagonal or other grids. 

2.3.1. Differential method 

The differential method uses gradients in orientation in x and y to calculate the WBV. A 

numerical estimation of gradients uses 2 or more orientation measurements and the distances 

between the points. We call the cluster of points used a “stencil” (Fig. 4a)). For flexibility our 

software allows for different stencil sizes; the differential method calculates a “best fit” 

lattice curvature using the orientations at each point in the stencil. Using larger stencils 

reduces errors in calculation (discussed later), but at the same time “smears out” 

microstructural details on the scale of the stencil. In published works the P = 9 stencil has 

usually been used; we discuss the effects of stencil size in the section on accuracy below.  
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Figure 4. Stencils and errors in WBV. a) “Stencils” are arrangements of nearby points used 

for numerical calculation of orientation gradients at particular point (coloured). Shown are 

example stencils of area 3, 5, 9 and 21. b) Simple illustration of effects of orientation 

errors. Blue graph shows a low but uniform orientation gradient (in 1D) with errors 

imposed. Red lines show the large effects of errors on estimating gradients over a short 

segment (analogous to using a small stencil). Note the estimate may even have the wrong 

sign. Green line shows the improved precision using a longer segment (analogous to using 

a larger stencil as in a)). Inset illustrates consequent angular error in WBV direction (in 

2D). The actual WBV is shown as blue arrow but with error  (related to the gradient error) 

so WBV values might fall in orange circle. Green arrows illustrate the range of directions 

and hence the angular error  that would arise due to these errors. c) As in b), with the 

same errors imposed, but for a larger orientation gradient. The errors in slope are the same 

as in b) but are proportionately less. The error  in WBV is the same as in b) and the size 

of the error circle is the same for both. However, the angular error  is smaller in c) 

because the WBV is longer. 
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In a previous section we pointed out that if a subgrain wall is considered as having zero 

width, it will have infinite dislocation density. Because of this numerical differentiation 

creates numerical artefacts as it uses spaced measurement points. The algorithm cannot 

distinguish a sharp orientation change between two points from a smooth orientation gradient 

between those points. A consequence is that if a subgrain wall is present, the apparent WBV 

magnitude will be finite and depend on step size, so should be interpreted with care. In 

practice we find that narrow “swathes” of high W are common on calculated W maps and are 

likely to be subgrain walls. In this case the magnitude W must be interpreted with care but the 

WBV direction still contains information on the Burgers vectors of the GNDs in the subgrain 

wall. The top 3 boxes in Fig. 3 indicate the calculated W values for a sharp orientation 

boundary, using the differential method with stencils with areas 9, 13 and 21. Note how the 

dislocation density is smeared out more for larger stencils, and has apparently lower values. 

2.3.2. Integral method 

The integral method involves integrating the orientation tensor around a closed loop in the 

map plane, directly giving the net Burgers vector sum for all the dislocation lines threading 

through that loop. To undertake this numerically, our studies to date have restricted loop 

shapes to rectangles, though there is no fundamental difficulty in implementing other shapes. 

The result of integration is a vector B with dimensions of length. We divide this by the loop 

area A to get a vector in (length)-1 which is more easily compared to results of the differential 

method. Algebraically, the vector B/A must equal the average W value in the loop (eqn. (6)). 

Numerically, the “best fit” algorithm used in the differential method means the methods may 

give slightly different results.  

The integral method was first developed as an exploratory tool in which the user drew 

rectangular loops and the WBV was reported as a lattice vector (e.g. Fig 2e), f)). We have 

recently developed a method of systematically “tiling” the map with square loops, and 

applying the integral method to each loop as in Fig. 8c of Timms et al. (2019). In all 

circumstances, if the loop crosses a high angle boundary then a WBV can in principle be 

calculated but, as discussed above, has no meaning - so instead the algorithms we use do not 

return a result. The tiles can be displayed colour coded by standard IPF colour schemes using 

a W threshold, in the same way as for calculations made with stencils (examples are given 

later). The tiles can be thought of as large pixels, though not all properties are precisely 

analogous to those of individual measurement points. 

2.4. Numerical aspects of dealing with orientation measurement errors 
Orientation measurements used may be in error as a result of errors in the Hough transform, 

up to a degree at most (Prior et al., 2009); for one study on an Si single crystal, was 0.2° 

(Ram et al., 2015). Improved “real time” approaches to indexing Kikuchi patterns reduce the 

angular error in orientations to <0.05° (Nicolay et al., 2019). For higher angular resolution 

methods, e.g. correlating Kikuchi patterns, errors may be as low as ~0.0003 radians (Wallis et 

al., 2019a). The differential method uses gradients in crystal orientation to calculate WBV. 

On the grid of measurement points, a gradient is calculated from the misorientations between 

adjacent measurements. The misorientation angles are likely to be small and so the errors in 

misorientation axes will be large (Prior, 1999) and these errors will propagate into the WBV 

calculation. An algebraic analysis would involve error propagation through operations on 

various orientation tensors and is beyond the scope of this contribution; instead, we use 

simple arguments followed by some numerical experiments.  
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2.4.1. General nature of error effects 

We argue in this section that angular errors in WBV are smaller for long WBVs. Longer 

WBVs are linked to higher lattice curvatures. Higher lattice curvatures mean the 

misorientation angles between adjacent pixels are larger, and the misorientation axes will 

have smaller errors, and the WBV direction will have smaller errors. We illustrate this 

assuming a typical orientation error of 0.01 radians. 

Benchmark curvature (above which calculation will be less error prone) ~ 0.01/(step size) 

and in terms of magnitude 

|WBV| ~ curvature 

which means we should consider a benchmark below which WBV is error-prone as 

|WBV| ~ 0.01/(step size) = Wt 

This approach is similar to the derivation of eqn. 13 of Wilkinson and Randman (2010) and 

eqn 2 of Jiang et al. (2013), where a lower limit on detectable dislocation density is given in 

terms of step size: 

(Minimum detectable GND density) ~  

(Angular resolution) /((step size) * (Burgers vector length) )  

For example  0.01 /( (1 micron) * (5 angstrom) ) = 2 x 1013 m-2 

The approach described below is related because in order of magnitude, W = b. Hence our 

Wt/b equates to the minimum detectable GND density discussed in other work. That work, 

and others (by the group) focusses on accuracy in determining dislocation density; here we 

also analyse WBV direction since it plays a key role in several studies (Table 1). In Wheeler 

et al. (2009) we argued that longer WBVs would be more accurate in terms of direction. For 

example, the map of Mg used in Fig. 2 and 3 of Wheeler et al. (2009), modified in Fig. 5, has 

a step size of 4 m so Wt = 0.0025 m-1. Fig. 5 shows considerable scatter for W > 0.002 m-

1 and much less for W > 0.004 m-1, in accordance with the argument that Wt offers a guide 

to judging precision. Guided by this, our approach to displaying WBV data involves selecting 

data based on ranges of W. The minimum value Wmin in the range will be associated with the 

maximum angular error. Setting it high will reduce error. The maximum value Wmax is less 

important but is useful for dividing up datasets. 

40 pts

0.004 m
-1

125 pts

0.002 m
-1

165 pts

0.0 m
-1

 
Figure 5. IPFs of Mg WBV displayed using three different thresholds: threshold lengths 

and numbers of points as indicated, modified from Fig. 3 of Wheeler et al. (2009). 
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Figure 4b) and c) are non-rigorous illustrations of error effects. The graphs illustrate that 

larger stencils will give better precision. Errors  in gradients are independent of the gradients 

themselves but for larger orientation gradients (as in Fig. 4c)), longer WBVs) the errors are 

proportionately less important. The insets in b) and c) illustrate the consequent effects on 

angular errors. The errors in WBV are now drawn as circles around the actual values since 

errors may be in any direction. The error circles are the same size in b) and c). The green 

arrows mark the vectors with maximum angular error , showing that longer WBVs in c) will 

have smaller angular errors. In the next section we analyse error effects using numerical 

models. 

2.4.2. Specific analyses of error effects 

It is useful to quantify error estimates for WBV, incorporating the effects of WBV length and 

other parameters. We define an angle 95 so that there is a 95% chance that the true WBV 

direction is that angle or less from the calculated direction, an approach used in analysing 

palaeomagnetic data for example Butler (1992). In essence 95 defines a cone of directions 

within which the true direction is likely to be. This is analogous to the +2 standard deviation 

range within which 95% of the data lie when dealing with a one-dimensional normal 

distribution. Our approach gives the angular error for the WBV in sample coordinates: it is in 

principal the same for crystal coordinates except crystal symmetry may modify the 

interpretation, as addressed in Appendix 3.1. 

EBSD orientation errors will depend on mineralogy, acquisition conditions and indexing 

methods and will propagate in the WBV calculations. For illustration we create model 

orientation maps with angular errors in orientation up to 0.57° (0.01 rad) – so our angular 

error estimates for WBVs are likely to be pessimistic. We used theoretical models shown in 

Fig. 2 with added orientation noise, and calculated W for the noisy datasets. Larger stencils 

and tiles take into account more orientation measurements and, in common with other 

averaging techniques, we hypothesised in Wheeler et al. (2009) that this would give higher 

precision. We examine this idea in Appendix 3. First, we calculate the error on WBV, by 

comparing actual W and theoretical Wc values. We find that the error in WBV magnitudes E 

= W – Wc are not strongly dependent on length W, or on whether the model is tilt or twist, 

but they do depend on stencil size. To quantify the errors, we calculate a standard deviation  

for the vector E as described in Appendix 3. Larger stencils and tiles give smaller errors (Fig. 

6). So, if one uses stencils (i.e the differential method), there is an approximate relationship 

between W precision and the area S of a stencil (number of points, hence dimensionless) 

𝜎𝑆 = 0.0247𝑆−1/𝑢         (7) 

where u is step size.  

If one uses tiles (i.e. the integral method) and defines the dimensionless area T of a tile the 

standard deviation 𝜎𝑇 of vector E is: 

𝜎𝑇 = 0.0081𝑇−3/4/𝑢 .         (8) 
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Figure 6. a) Standard deviation  of nondimensionalised WBV magnitude plotted against 

calculation region size for tilt and twist models, showing errors are independent of the 

detailed nature of distortion. The three left-hand points are for stencils, the others are for 

tiles. b) Same, plotted against areas of stencils and tiles for both tilt and twist models. c) 

Same as b) but plotted as log-log graphs to show linear relationships. 

 

In Wheeler et al. (2009) we suggested that the integral method would have higher precision 

than the differential method because numerical integration is less sensitive to errors than 

numerical differentiation. Our assertion was correct because we were using small stencils (P 

= 9) and large integral loops. Fig. 6 b) and c) show that in fact the precision depends mainly 

on the area of the tile or stencil used. The integral method remains our favoured method for 

initial exploration since the calculation is much faster than for a stencil of comparable size. 

The second stage of error analysis involves the angular errors. These do depend on the length 

W as described above and in Fig. 6. The inset in Fig 4c) suggests that  ≈ /W when errors 
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are small. This is in accord with Fig. S1. One might then expect some proportionality 

between measures of vector error  and angular error 95 in a more rigorous approach, and 

this is confirmed in Appendix 3. For small errors we have  

𝛼95 ≅  1.413
𝜎

𝑊
 

For example, in Table 1, for the second Mg example we have a step size of 4 m and 

calculated the WBV using a stencil area 9 so s = 0.000686 m-1. For a WBV length 0.004 

m-1 we have  

𝛼95 ≅  1.413
0.000686

0.004
= 0.24 𝑟𝑎𝑑 = 13.8° 

(the table calculation is more precise). If we compare the calculated 𝛼95  with Fig. 5c), it is 

plausible that the dislocations are all basal and we see a scatter up to 14° away from the basal 

plane, broadly in accord with the calculation. The above assessment of precision should be 

used with caution, since it assumes a particular range of orientation errors in the measured 

data, and those errors are dependent on acquisition conditions and the mineral being 

measured. A larger stencil or tile will give a more precise measure of WBV magnitude and 

direction, but larger regions are also more likely to contain more than one type of dislocation. 

There is a trade-off between finding a relatively precise WBV direction in a large region that 

may contain more than one type of GND, versus finding a less precise direction in a smaller 

region which may relate to a single type of GND.  

Our error analysis is numerical rather than algebraic but simple calculations give confidence 

that, if other parameters are maintained, the WBV angular error will scale linearly with 

orientation angular error. Thus, if angular errors are distributed uniformly between 0 and 

0.001 rad, we expect angular errors in WBV to be 10 times less than those we present here. 

Such low indexing errors are now routinely possible, albeit with a trade-off on indexing 

speed (Nicolay et al., 2019). Improved indexing would allow for use of a smaller stencil or 

tile ensure a particular level of WBV precision. We note that algorithms that assign 

interpolated orientations to misindexed or non-indexed pixels may have adverse effects on 

subsequent WBV calculations. For example, if the orientation value of an adjacent pixel is 

used, this guarantees that there is a zero orientation gradient between those two pixels, which 

may have a big (and spurious) influence on the WBV calculation. Ideally, analysis is done 

only on confidently indexed points. We also urge caution using dictionary indexed EBSD 

maps (De Graef, 2020) for WBV calculations, because the orientations stored in the 

dictionary of Kikuchi patterns are discrete and orientation gradients therefore will be stepped. 

This may give a spurious influence on WBV calculations. 

3. WBV applications in the Earth Sciences: examples 
 

The published works in Table 1 show a variety of approaches for interpreting WBV. The 

basic algorithms we use do not decompose the WBV down into individual Burgers vectors 

because to do this requires additional assumptions, dependent on the particular mineral and 

its microstructural evolution. For example, a WBV parallel to [100] may result from a single 

population of GNDs with Burgers vectors parallel to [100], or a mix of dislocations with 

[110] and [1-10]. In some phases, prior knowledge of likely Burgers vectors will mean there 
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is only one choice for decomposition – e.g. if such a WBV is found in olivine. In the 

following, we present first two new examples of WBV usage and then comment on published 

examples. 

h) Differential WBV direction
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Figure 7. Example of WBV applied to olivine. a) IPF map of Y direction of deformed 

single crystal of olivine. Scale bar is 1000 m. b) IPF key. c) IPF coloured as in a), 

showing a few degrees of distortion within a single initially undeformed crystal. d) WBV 

magnitude map calculated on 10 x 10 tiles. e) IPF map of WBV direction (calculated as in 

(d)) superimposed on a band contrast greyscale map; minimum length 0.001 m-1. f) IPF of 

WBV as in (e). g) WBV magnitude map calculated on 3 x 3 stencils in part of overview 

map shown s white box in (d). Scale bar is 1000 m. h) IPF map of WBV direction 

(calculated as in (g)) superimposed on a band contrast greyscale map; minimum length 

0.00005 m-1, showing subgrain walls with [100] Burgers vectors running NE and those 

with [001] running NW. White squares indicate results of the integral method, with 
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numbers in m-2 expressed as coefficients of crystal basis vectors (K values). i) IPF of 

WBV as in (h). 

 

3.1. Olivine subgrain walls: analysis free from trace, or tilt or twist assumptions 
Fig. 7 shows an experimentally deformed single crystal of olivine (PI-1766) as in Fig. 8 of 

Tielke et al. (2017). The experiment was set up so that the Y (shortening) direction was 

initially parallel to [101], with an expectation that slip systems with [100] and [001] Burgers 

vectors. The orientation map (a) shows the crystal direction which is parallel to the Y sample 

direction, in accord with the IPF key (b). We refer to such maps as “IPF Y maps” below. The 

colour variations reveal rather straight subgrain walls running in two directions. Orientations 

vary over a few degrees (c). Fig 7(d) shows 10 x 10 tiles colour coded by WBV magnitude 

and (e) by direction, superimposed on the band contrast greyscale map. The size of the tiles 

reduces 95 but the threshold length for display is set low, at 0.00005/m, so 95 is 26.With 

this in mind, the IPF Fig 7f) is, within error, in accord with a mix of dislocations with [100] 

and [001] Burgers vectors, and the dominant blue colour on the map indicates mainly [100]. 

Figs (g) and (h) show a subarea with WBV now calculated using a 3 × 3 stencil, giving less 

precision but more spatial resolution and revealing individual subgrain walls. Blue subgrain 

walls running NE are consistent with being [100] tilt boundaries and red subgrain walls 

running SE are consistent with being [001] tilt boundaries. A higher threshold length for 

display (0.001/m) means 95 is 14 and the IPF in Fig. (i) is in accord with that, insofar as 

most points are within 14 of the plane containing [100] and [001]. There are still mixtures of 

[100] and [001]. Some will result from where the stencil overlapped subgrain wall junctions, 

but as Fig. (h) shows, these mixtures also appear along irregular segments of the NW-SE 

subgrain walls and are likely to represent two types of GND in an individual wall. The three 

square “loops” show results of the integral method and provide additional illustration of how 

the WBV is averaged over the sample area. Each triplet of numbers is a list of K values, i.e. 

the coefficients defining the WBV when it is expressed in crystal basis vectors (eqn (5)). The 

numbers have the dimensions of dislocation density but must be interpreted with care, as 

discussed above and shown in Fig. 3, since the dislocations are in discrete walls.  

In this example the directional information is more useful than the density information: 

integral and differential methods both give information about where GNDs with [100] and 

[001] occur. Note that examining the subgrain wall traces together with misorientation axes 

deduced from the distortion (Fig. 7c) could yield similar results. However, that approach 

would involve manual and subjective selection of boundary segments and of subregions from 

which to use misorientation data; it would be based on assumptions about pure tilt or twist 

boundary character and errors would be difficult to assess. Use of WBV does not preclude 

further analysis (e.g. Wieser et al. (2020)) but provides a firm foundation. 

3.2. Plagioclase distributed deformation: analysis free from slip system assumptions 
Fig. 8 shows plagioclase from a deformed gabbro from close to the slow spreading mid ocean 

ridge in the SW Indian Ocean (sample ODP 176-735B-95R-2 from approx. 546 m below the 

ocean floor). The plagioclase is highly strained, with two prominent ribbons bent around an 

augite porphyroclast (grey scale on right). Trails of smaller grains are interpreted as new 

grains due to recrystallization. Hornblende marginal to pyroxene suggests deformation is 

amphibolite facies, as recorded deeper in the leg (Gardner et al., 2020), but it may have been 
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higher temperature. Our aim here is to not to offer a full interpretation of how the 

microstructure evolved, but to show how the WBV tools assist in that task. 
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Figure 8. Example of WBV applied to plagioclase. Figure layout is similar to Fig. 7 but 

contouring is used to reveal dominant directions. a) IPF map of plagioclase Y direction of a 

deformed gabbro. The right-hand porphyroclast is augite rimmed by hornblende. b) Key 

for IPF map colour scheme. c) IPF map of plagioclase as in a), contoured with intervals at 

0.1 x uniform. d) Magnitude of WBV calculated on 20 x 20 tiles in area a) superimposed 

on a band contrast greyscale map. e) IPF map of WBV calculated as in d) colour coded by 

WBV direction using b), minimum length 0.0005 m-1. f) IPF of WBV as in d) and e), 

contoured in multiples of uniform. g) Magnitude of WBV calculated on 3 × 3 stencils in 

white box subarea of map d) superimposed on a band contrast greyscale map. h) IPF map 

of WBV calculated as in g) colour coded by WBV direction as in b), minimum length 0.01 

m-1. i) IPF of WBV as in g) and h). 

 

The IPF Y map (Fig. 8a), colour coded as in 8b)) indicates rather smooth variations in 

orientation for the large grain, in contrast to the olivine example Fig. 7a). Large tiles used in 

Fig 8d) confirm this, showing a rather uniform level of distortion on the scale of the tiles 

through the two ribbons. The WBV IPF map (Fig. 8e)) shows <100> dominates at the top of 

the left hand ribbon, whilst <001> dominates at the bottom, and the IPF (Fig. 8f)) combines 

these. In and around new grains no data is displayed (fig. 8d and e) because the 20 × 20 pixel 
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tiles are large enough to cover several small grains and include high (> 5°) angle boundaries. 

Thus, in these areas WBV analysis is not appropriate. It is worth considering whether the 

apparent variation in WBV direction is a stereological effect, like that shown in Fig. 2h), j). 

Could the ribbon have a relatively uniform population of GNDs, but with a stereological bias 

governed by varying orientation? The misorientation from bottom to top of (for example) the 

left-hand ribbon is about 35 in contrast to Fig. 2h), j) which involved 90° of twist. We 

conclude it is likely that there are real variations in the GND population in this grain, which is 

not surprising given the stretch and non-uniform bending it has enjoyed. Fig 8g)-i) shows 

WBV calculated using the differential method on a subarea marked with a white box in Figs. 

8d  and e. In Fig 8g), boundaries above 5 are shown in black and the highest distortions i.e. 

WBV magnitude are shown not in the large ribbons but in small grains interpreted as 

products of dynamic recrystallization. Fig. 8h) and i) show WBV direction, with a 

pronounced maximum close to <001> as illustrated by the preponderance of red colours in 

new grains in (h) and a contoured maximum near <001> in (i). The relict ribbon in centre 

right of Fig. 8h) shows two left-right tapered zones coloured green, indicating WBV rather 

close to <-100> and in accord with the tiling in Fig. 8e). 

In summary this example shows how the integral (here, tiling) and differential methods may 

be used to interrogate different parts of the microstructure. The interiors of the plagioclase 

ribbons have relatively low dislocation densities, with GNDs with Burgers vectors combining 

<100> and <001>, likely in different proportions in different parts. Here, the integral method 

is a very effective tool. For the small grains, interpreted as recrystallized, the differential 

method is helpful; they have higher dislocation densities and various Burgers vectors but with 

an emphasis on <001>. In tectonites small grains are often interpreted as new, forming by 

static or dynamic recrystallisation from strongly plastically deformed large old grains, and are 

relatively strain free. Intriguingly, here the small grains are more distorted than the old 

ribbons though normally one would expect them to be relatively strain free. Further WBV 

investigation will assist in understanding the evolution of that microstructure. Methods 

including the traces of subgrain walls could not be used here, since distortion is distributed; 

methods assuming slip systems and dislocation line energies could be applied but the 

required inputs may be difficult to constrain in a mineral like plagioclase. As in the olivine 

example, we suggest the WBV approach provides a firm foundation on which other analyses 

can be built if required. 
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3.3. Ice: investigation of non-basal slip 
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Figure 9. Example of WBV applied to a subgrain in ice, modified from Fig. 2 of Chauve et 

al. (2017). WBV is colour coded not by the full IPF but just by the sin of the angle of the 

WBV from the basal plane, i.e. (component of W parallel to c)/W. This runs between 0 and 

1 as shown by the colour scale. Red arrows show the WBV projected onto the map plane, 

using its actual length not just its direction. Black line is a subgrain wall of 5° or more 

misorientation.  

 

There is ongoing research into the role of non-basal slip in ice, since if that is active it will 

alter the rheology of ice sheets (Chauve et al., 2017; Piazolo et al., 2015; Weikusat et al., 

2011). Chauve et al. (2017) undertook deformation experiments on ice and Fig. 9a), modified 

from Fig. 2 of that paper, shows a subgrain from an experiment run at -7 C and 0.5 MPa 

stress. The WBV is colour coded not by the full IPF but just by the sin of the angle of the 

WBV from the basal plane, i.e. (component of W parallel to c)/W. For this dataset we 

estimate 95 as 32° (Table 1). The yellow vertical subgrain wall indicates angles near 90° 

from the basal plane so, even though the errors are large, there is negligible probability that 

these WBVs lie in the basal plane. Moreover, the colours along this wall are quite consistent, 

adding credence to the diagnosis that the WBV is subparallel to c. It does not immediately 

imply that individual Burgers vectors are parallel to c: for example, there could be a mixed 

population of c + a and c - a, bearing in mind the WBV is a vector average. Further data 

and/or assumptions are required to determine this. However, as noted above the WBV cannot 

contain “phantom” directions: it must be the weighted average of Burgers vectors that are 

actually present in the microstructure, and here must include non-basal vectors of some sort. 

The figure also provides an example of WBVs drawn in red as vectors in sample coordinates. 
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As discussed above and derived in Appendix 1, there is only one such choice at each point, 

regardless of crystal symmetry. Despite 95 being predicted as 32°, the WBV directions along 

each wall segment are quite consistent, suggesting the angular errors are in fact lower, though 

further work is required to confirm this. 

3.4. Titanite: discovery of new slip system 
Fig. 10 shows the use of tiling in a study of deformed titanite, modified from Timms et al. 

(2019). The titanite grain is from a shocked granitoid from the Chicxulub impact structure, 

Mexico, and the study searched for slip systems activated under extreme stresses, which 

would not necessarily correspond to slip systems documented from other settings. The study 

included a boundary trace/misorientation approach, but that assumed pure tilt boundaries, so 

the WBV method was used for independent verification. The differential method gave a wide 

scatter of WBV directions so to reduce errors 20 × 20 pixel tiles were used. The tiles are 

colour coded in terms of IPF direction; missing colours indicate either that the tile includes a 

high angle boundary, or the WBV magnitude is below the threshold for display (Table 1). 

There are many shock-induced twins, and the abundance of those high angle boundaries 

mean that tile coverage is sparse. However, the WBV directions show a strong maximum 

near <341>. This is a Burgers vector not previously described in titanite but likely indicating 

a dislocation slip system operating concurrently with twinning under shock. 
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Figure 10. Example of WBV applied to titanite.  The greyscale map is of band contrast in 

a shocked titanite grain and its surroundings, redrawn from Fig. 8 of Timms et al. (2019). 

Tiling was used to analyse the microstructure – tiles are coloured for WBV direction in 
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accordance with the IPF key on bottom left. The WBV IPF (top right) shows distinct 

preferred directions. Calculation and display parameters are given in Table 1. 

 

3.5. WBV precision in specific studies 

In Table 1 we compile the parameters required for estimating 95 from previous studies 

making a big assumption, that the orientation measurement errors in those studies are all 

distributed uniformly between 0 and 0.01 radians. Despite this, the error estimates are in 

general agreement with the appearance of the relevant IPFs. For example, for Mg metal Fig. 5 

shows IPFs with 95 of 28° and 14°, and those angles are in accord with the scatters of points 

if all WBVs are in fact in the basal plane. One large 95 = 110° is for quartz and relates to 

Fig. 15 of Wheeler et al. (2009), but the left hand IPF there was drawn to specifically 

illustrate the effect of choosing a threshold W that is too low. The cone of error would cover 

the entire IPF and that is in accord with the random scatter of points seen. In contrast, another 

study is predicted to have a large 95 of 110° yet the IPFs show strong maxima. Fig. 4 of 

Kendrick et al. (2017) shows IPFs of WBV for deformed plagioclase microlites in an andesite 

with strong maxima around [001], particularly in the experimentally deformed sample. We 

suggest this is because there is a single family of GNDs with a single [001] Burgers vector. 

Then, even though individual WBVs have large errors, the maximum is strong because the 

errors cancel out to some extent. This is analogous to a standard result in statistics of a single 

variable: the standard variation of the mean is equal to the standard deviation of an individual 

measurement divided by the square root of the sample size. A similar idea might be 

developed for directional statistics in future work.  

4. Comparison of WBV with other methods used for analysing GND 

directional data  
High resolution electron backscatter diffraction (HREBSD) is a technique which, in common 

with ours, aims at extracting useful information on GND densities and types from distorted 

crystals. To enable comparison, we provide here a simplified explanation of the method: for 

details see Wilkinson and Randman (2010), Wallis et al. (2016) and Wallis et al. (2019a). 

The name encompasses only part of the technique, which is based on two consecutive stages.  

Stage 1. This stage involves a method aimed to determine very precise misorientations for 

small orientation differences. It is different to commercial EBSD analysis which is based on 

comparing orientation tensors derived from Hough transforms of Kikuchi patterns. In 

contrast, here the method of misorientation determination is based on direct comparison of 

Kikuchi patterns of adjacent analysis points. This gives very precise values for gradients in h 

in the x and y directions (this is the High [Angular] Resolution part of the method).  This is 

clearly beneficial for any calculation involving orientation gradients, but it comes at the cost 

of storing and transporting huge datasets, and of calculations which take days rather than 

minutes. 

Stage 2. In the HREBSD method all 6 gradients are used to provide 6 constraints on the Nye 

curvature tensor. The method then uses a set of assumptions about dislocation types so as to 

solve a version of eqn (3) uniquely for dislocation densities e.g. Wilkinson and Randman 

(2010), Wallis et al. (2016). If there are 6 types of dislocation, then eqn (3) has a unique 

solution for 6 densities, given the 6 constraints on the Nye tensor. In many materials, 
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particularly cubic phases, symmetry indicates there are more than 6 types of slip system and 

there is no unique solution for eqn (3). So, an additional assumption is made: that the total 

line energy of all the dislocations involved is the minimum out of all the possible solutions.  

The second stage calculations are based on three assumptions which we recommend deserve 

appraisal on a mineral-by-mineral basis.  

i) We do not have a complete knowledge of all slip systems in all minerals, so making 

assumptions about them might be misleading. 

ii) We need further information about the line energies of each type of dislocation to 

enable overall energy minimisation if there are more than 6 slip systems.  

iii) Both methods analyse distortions, but these might be due to growth rather than 

deformation. In that case the concept of slip systems is not relevant: there might be 

alternative lists of allowable GND types, but again in minerals such information is scanty. 

 

In contrast WBV calculation makes no assumptions about GND types at any stage of the 

calculations. Instead, individual studies tailor the interpretation, possibly involving further 

calculation, based on the problems being addressed. This is well illustrated in the published 

ice non-basal slip example outlined above. Here, the hypothesis to be tested was to identify if 

non-basal dislocations are present in ice. Hence, the user chose to calculate and display the 

angle of the WBV to the basal plane (Chauve et al., 2017). The calculation is free from 

detailed assumptions about dislocation types and energies, which are not well known. A 

further example is provided in Wieser et al. (2020) who used the trace of subgrain walls 

together with WBV analysis to provide additional constraints on potential activated slip 

systems. In this case, additional assumptions were introduced, e.g. that all subgrain walls 

were either pure tilt or pure twist. Those assumptions are not intrinsic to the WBV 

calculation. In essence the WBV provides a platform for further in depth analysis which may 

use additional assumptions.  

Having defined the two stages in this discussion, note that in principle WBV could be used 

on Stage 1 HREBSD data, as in Wallis et al. (2016). Equally, best fit/energy minimisation 

can be used on Hough based orientation data as in Pantleon (2008). In the latter case, even 

though there must be significant orientation errors that propagate through the calculations, 

results can be informative if acquisition conditions are optimised for angular precision (Faul, 

2021). An approach like that used here could provide information how errors propagate. In 

summary HREBSD, WBV and other methods for analysing dislocation density are all 

advantageous in different ways.  

5. Summary and discussion 
We have described the theoretical basis for the WBV method and shown examples where it 

has assisted in deducing Burgers vectors for slip systems in various minerals. Since the 

method is purely geometric it can also be used to analyse distortions due to growth as in 

Gardner et al. (2021). Key aspects of the WBV method are as follows. 

• It makes no assumptions about the dislocation populations being investigated. 

• It uses just the three numbers defining orientation at each measurement point, so is fast. 

• It assumes there are no significant grain scale elastic strains. 
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The software we use in this contribution (“Crystalscape”) involves user-defined parameters 

for calculation as follows; these need to be recorded to allow calculations to be reproduced.  

• The cutoff angle above which boundaries no longer have dislocation substructure, so 

should not be characterised using this method 

• The size of the stencil or tile used for systematic calculations 

WBV results can be displayed in several ways and the key user-defined parameters for 

display are the minimum and maximum WBV lengths. The minimum length can then, 

together with the other parameters, be used to estimate the angular accuracy 95 (the shortest 

vectors being the least accurate in terms of direction). That estimation contains several 

simplifications and, in any case, depends on an assumed angular error in the EBSD data; but 

it serves as an indication of accuracy which proves useful. 

For interpretation, the following properties must be borne in mind. 

• The WBV does not measure the complete GND population or density. It is a sample of 

that population, weighted towards dislocation lines that intersect the EBSD map at high 

angles. Maps cut in different planes will show different but related WBV information. 

• The WBV is a weighted sum of Burgers vectors of GNDs. In general, there are multiple 

ways of decomposing the WBV, but it still provides a platform for testing hypotheses. It 

will never generate “phantom” components. For example, if a trigonal or hexagonal 

mineral shows WBVs with significant c axis components, there must be GNDs with 

Burgers vectors involving c (though not necessarily parallel to c). 

• Errors in WBV are smaller when larger stencils or tiles are used. Angular errors are 

smaller for longer WBVs. 

• Larger stencils or tiles tend to “smear out” the WBV pattern. Increased angular precision 

is thus linked to reduced spatial resolution. 

Future directions using this method could include further development of ways to 

characterise non-basal slip in hexagonal and trigonal materials e.g. Chauve et al. (2017). The 

combination of WBV analysis with subgrain boundary trace analysis (Wieser et al., 2020) has 

potential to be developed for olivine and other minerals. More advanced statistical tests 

related to directional data could be developed. We have not discussed 3D orientation data 

here but in principle this allows calculation of orientation gradients in all three dimensions 

and hence the complete Nye tensor which would be valuable for constraining GNDs. 

However, even the 9 components of the Nye tensor are not sufficient to constrain all GND 

types in very symmetric minerals. Statistical tests could be developed for 3D analysis as we 

have done in 2D. Hybrid approaches using two or more maps at right angles also deserve 

investigation. 

We note that the methods discussed here are applicable to any crystalline material including 

metals, ceramics and ice.  

Acknowledgements 
We thank all the user of the WBV method who have contributed through discussion to 

developing the technique. 



P a g e  | 28 

 

Data Availability Statement 
In 2021 Oxford Instruments Nanoanalysis adapted a version of the WBV technique for use in 

Aztec Crystal, their EBSD analysis suite. This is described here:  

https://www.ebsd.com/ois-ebsd-system/dislocation-density-analysis and in a webinar here 

https://register.gotowebinar.com/register/5472775566652982031. In view of the commercial 

aspects, a Matlab version of the software used here (“Crystalscape”) is available from the 

lead author, for academic use only.  

  

https://www.ebsd.com/ois-ebsd-system/dislocation-density-analysis
https://register.gotowebinar.com/register/5472775566652982031
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Table 1. Details of published WBV studies, and the new studies here  
Table 1. Published papers using WBV on minerals, with precision estimates added in this 

contribution. We include one example of use on Mg metal as it helps illustrate the basic 

ideas. In the right hand columns we have compiled information from the published works so 

as to estimate 95. 
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Crystal 

system 

Laue 

group 

Phase Weighted Burgers Vector study motivation Reference Figure in 

referenced 

paper 

Integral 

method 

used? 

Stencil 

or tile 

Sampled 

area 

(pixels) 

Step 

size 

(m) 

W 

minimum 

length 

((m)-1) 

95 

(deg) 

Cubic 

holosymmetric 

m3m Periclase example (Wheeler et al., 2009) Fig 11   s 9 10 0.0015 14.9 

Cubic m3   no studies yet published on minerals -             - 

Hexagonal 
holosymmetric 

6/mmm Mg example (Wheeler et al., 2009) Fig 3, 5   s 9 4 0.002 28.1 

    Mg example (Wheeler et al., 2009)     s 9 4 0.004 13.9 

    Ti magnitude display from TKD data (Trimby et al., 2014) Fig 5       0.01   n/a 

    Ice search for non-basal dislocations (Piazolo et al., 2015)     s 9 15 0.0004 37.7 

    Ice search for non-basal dislocations (Chauve et al., 2017) Fig. 2   s 9 5 0.0014 32.2 

Hexagonal 6/m   no studies yet published on minerals -             - 

Trigonal 

holosymmetric 

-3m Quartz example (Wheeler et al., 2009) Fig 15   s 9 2 0.001 110.0 

    Quartz example (Wheeler et al., 2009) Fig 15   s 9 2 0.003 37.7 

    Quartz compare GND density with density from etch pits (Billia et al., 2013) n/a y         n/a 

    Calcite deduce slip systems hence deformation T  (Mcnamara et al., 2020) Fig 4, 5             

Trigonal -3   no studies yet published on minerals -               

Tetragonal 

holosymmetric 

4/mmm Zircon Link magnitude to Pb loss  (MacDonald et al., 2013) Fig. 9 y     1, 2, 

0.8 

  n/a 

    Zircon Planar deformation bands (Kovaleva et al., 2015) Fig. 6 y         n/a 

    Zircon help to characterise slip systems (Kovaleva et al., 2018) Fig. 6 y         n/a 

Tetragonal 4/m   no studies yet published on minerals -             - 

Orthorhombic mmm Olivine confirm slip systems dominated by [100]  (Tielke et al., 2019) Fig. 5 b y s 9 3 0.005 14.9 

    Olivine determine slip systems (Wieser et al., 2020) Fig. 4, 7             

    Olivine tiling example this contribution Fig. 7 y t 100 16 0.00005 26.2 

    Olivine stencil example this contribution Fig. 7   s 9 16 0.001 13.9 

Monoclinic 2/m Titanite Diagnose slip systems: map showing WBV direction 

(6 m tiles) 

(Timms et al., 2019) Fig. 8c   t 400 0.3 0.001 24.6 

    Titanite Contoured IPF showing WBV direction (2.4 m 

tiles) 

(Timms et al., 2019) Fig. 8e   t 64 0.3 0.003 32.6 

Triclinic -1 Plagioclase Diagnose slip system in naturally and experimentally 

deformed microlites; latter show [001] clearly; both 
show it in loops 

(Kendrick et al., 2017) Fig. 4    s 9 0.2 0.01 110.0 

    Plagioclase Understand plagioclase replacement by albite (Gardner et al., 2021) Fig. 6   s         

    Plagioclase tiling example this contribution Fig. 8 y t 400 1 0.0005 14.7 

    Plagioclase stencil example this contribution Fig. 8   s 21 1 0.01 9.5 
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Appendix 1: WBV, numerical aspects and symmetry 
We briefly reiterate and extend here the maths in Wheeler et al. (2009); for notation see 

Table S1. We write some equations using vector notation for brevity though we find that 

index notation (including Einstein summation convention) is most generally useful. We use 

Greek and Latin indices for sample and crystal coordinate systems respectively otherwise 

confusion can easily result. For second rank and higher tensors, either can be used, or a 

“mixed” space. A fundamental concept is the orientation tensor h which relates a vector C in 

Cartesian crystal coordinates to its equivalent V in sample coordinates 

𝑉𝛾 = ℎ𝛼𝑖𝐶𝑖  

In what follows we assume that there are no elastic strains on the grain scale. 

1.1. Differential method 

Considering h is a mathematical function of position the Nye tensor is defined by  

𝛼𝑖𝛾 = 𝑒𝛼𝛽𝛾ℎ𝛼𝑖,𝛽 =  ∑ 𝜌(𝑁)𝑏𝑖
(𝑁)

𝑙𝛾
(𝑁)

𝑁         (A1.1) 

where e is the permutation tensor. If we know only the x and y gradients of h, we can still 

determine 3 out of the 9 components of the Nye tensor 

𝑊𝑖 =  𝛼𝑖3 =  𝑒𝛼𝛽3ℎ𝛼𝑖,𝛽 =  ℎ1𝑖,2  − ℎ2𝑖,1 =  ∑ 𝜌(𝑁)𝑏𝑖
(𝑁)

𝑙3
(𝑁)

𝑁 = ∑ [𝜌(𝑁)𝑙3
(𝑁)

]𝑏𝑖
(𝑁)

𝑁  (A1.2) 

The vector W encapsulates some but not all of the GND content: the term in square brackets 

indicates it is weighted towards dislocations lines at a high angle to the map. 

EBSD measurements and hence h values are determined at a finite number of spaced points. 

Thus, we must differentiate h numerically. For example, to evaluate  

ℎ2𝑖,1 =  𝜕ℎ2𝑖/𝜕𝑥 

we could choose 

(ℎ2𝑖(𝑥 + 𝑢, 𝑦) −  ℎ2𝑖(𝑥, 𝑦))/𝑢  

where s is step size, or, more symmetrically, 

(ℎ2𝑖(𝑥 + 𝑢, 𝑦) −  ℎ2𝑖(𝑥 − 𝑢, 𝑦))/(2𝑢)  

Because we are differentiating, we call this “differential” method. 

The algorithm requires a minimum of 3 points to get gradients in both x and y (e.g. Fig. 4a)). 

However, this asymmetric pattern may give biased results, so Fig. 4b)-d) show some more 

symmetric patterns of nearby points which can be involved in the calculation. Such patterns, 

used for numerical differentiation in other contexts, are called “stencils”. In detail our 

differential method calculates a “best fit” lattice curvature to the misorientations at each point 

in the stencil. When high angle boundaries pass through the stencil, the points beyond the 

boundary are excluded from the fitting. This means that only a subset of the points in the 

stencil are used. Our “edge preserving” method differs somewhat from that of Humphreys et 

al. (2001).  
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Crystal symmetry must be accounted for in the calculation. When Kikuchi patterns are 

indexed, the procedure will give one orientation tensor h from each pattern. Because of 

crystal symmetry there is a choice of h values, related by symmetry, all equally valid. 

Adjacent points which are actually close in orientation may be indexed with different 

symmetry choices, giving very different numerical h components and Euler angles. 

Numerical differentiation would then give huge and artificial orientation gradients so, rather 

than calculate gradients directly, the misorientations between points are calculated. The 

misorientation angle (strictly, “disorientation”) is defined as the minimum angle needed to 

rotate one orientation into another (Wheeler et al., 2001), and the misorientation tensors 

generated are then used to calculate orientation gradients.  

1.2. Integral method 

Again considering h is a mathematical function of position, evaluate the integral of h around 

a closed loop on the map, followed anticlockwise. This gives the net WBV of GNDs whose 

lines cross through that loop, in units of length.  

𝐵𝑖 =  − ∮ ℎ𝛼𝑖 𝑑𝑥𝛼      
𝑎𝑛𝑡𝑖𝑐𝑙

            

We generally report the calculation after dividing the net WBV by loop area A, hence 

delivering a vector B/A with units of (length)-1. Mathematically the differential and integral 

methods are precisely equivalent (they are related by a tensor version of Stokes’ theorem).   

𝐵𝑖 = ∫ 𝑊𝑖𝑑𝐴           

So B/A is just the average value of W inside the loop. 

The numerical version of the integration is written as follows. For a square grid of points, we 

assume that a particular orientation measurement ℎ𝛼𝑖 
(𝑝)

 applies to a square region around the 

point p at which it was taken. In numerical integration, then, the “dx” term becomes a vector 

𝑥𝛼
(𝑝)

 spanning this square region, horizontally, vertically, or diagonally (at corners). Then: 

𝐵𝑖 =  − ∑ ℎ𝛼𝑖 
(𝑝)

𝑥𝛼
(𝑝)𝐿

𝑝=1       

where L is the number of points included in the loop.  

1.3. Symmetry 

When a crystal has symmetry, there is more than one choice for the orientation tensor h. If h 

is a valid description, then so is hS where S is any symmetry operator expressed in crystal 

coordinates. Because h is non-unique, so is 𝛼𝑖𝛾 and so is the WBV in crystal coordinates: 

hence it is plotted on the usual IPF segment. However, we now show that if the first index is 

transformed to sample coordinates, the tensor is unique. In sample coordinates  

𝛼′𝛿𝛾 = ℎ𝛿𝑖𝑒𝛼𝛽𝛾ℎ𝛼𝑖,𝛽           

Let us replace h by the symmetric equivalent hS, so then ’ becomes 

𝛼′
𝛿𝛾 = ℎ𝛿𝑝𝑆𝑝𝑖𝑒𝛼𝛽𝛾(ℎ𝛼𝑞𝑆𝑞𝑖),𝛽

= 𝑆𝑝𝑖𝑆𝑞𝑖ℎ𝛿𝑝𝑒𝛼𝛽𝛾ℎ𝛼𝑞,𝛽 = ℎ𝛿𝑖𝑒𝛼𝛽𝛾ℎ𝛼𝑖,𝛽  (A1.3) 
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because S is a rotation tensor and so 𝑆𝑝𝑖𝑆𝑞𝑖 is the identity tensor. So ’ has a unique value 

when both coefficients are in sample coordinates, and so does the WBV. 

Appendix 2: Derivations of model Nye tensors 
Since we have chosen olivine as our example mineral, we have designed models so that 

distortion can be expressed by GNDs with [100] and [001] vectors. The distortions are 

gradational but we use the same nomenclature as that for subgrain walls. 

2.1. Tilt 

Our tilt model is in essence 2D - there are no distortions in the 3rd dimension – so we begin 

with a completely general 2D model n which lattice orientation is defined by a single angle 

as a function of position (x, y), with anticlockwise rotation positive. Then the orientation 

tensor is 

ℎ𝛼𝑖 = (
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
) 

So 

ℎ𝛼𝑖,𝛽 = 𝑞𝛼𝑖𝜃′𝛽 

where 

𝑞𝛼𝑖 = (
− sin 𝜃 − cos 𝜃 0
cos 𝜃 − sin 𝜃 0

0 0 0
) 

From eqn (A1.1) we obtain, considering the zero values in e and q 

𝛼𝑖𝛾 = 𝑒𝛼1𝛾𝑞𝛼𝑖 + 𝑒𝛼2𝛾𝑞𝛼𝑖𝜃′2 =  𝑒21𝛾𝑞2𝑖𝜃′1 + 𝑒12𝛾𝑞1𝑖𝜃′2  

So setting  = 3 the WBV is, in crystal coordinates 

𝑾 = (− cos 𝜃 𝜃′1  − sin 𝜃 𝜃,2 , sin 𝜃 𝜃′1  − cos 𝜃 𝜃,2 , 0)  

and in sample coordinates 

𝑾 = −(𝜃′1 𝜃,2 , 0)  

This simple result tells us that orientation variations in the x direction relate to Burgers 

vectors with an x component (in sample coordinates) and similarly for y: a rigorous version 

of what we discussed in the introduction. 

Now we design a specific 2D model: a tilted crystal so that rotations are around [001], 

perpendicular to the map, and [010] is parallel to rays from the centre of curvature. Then, let 

x and y in map view be measured relative to the centre of curvature, r be the distance from 

the centre so the misorientation of [100] relative to the x axis is: 

𝜃 = −atan (
𝑥

𝑦
) 

so the gradient vector is 
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𝜃′𝛽 =
1

𝑟
(−cos 𝜃 , −sin 𝜃 , 0)  

so in sample coordinates  

𝑾 =
1

𝑟
(cos 𝜃 , sin 𝜃 , 0)         (A2.1) 

And in crystal coordinates  

𝑾 =
1

𝑟
(1, 0,0)  

2.2. Twist 

Misorientation is around the [010] axis, running parallel to x. Let the misorientation relative 

to the y axis be an arbitrary function of x. This allows us to deal with a linear function 

(constant distortion) or a quadratic function (increasing distortion) 

𝜃 = 𝜃(𝑥) 

and 

ℎ𝛼𝑖 = (
0 −1 0

cos 𝜃 0 sin 𝜃
− sin 𝜃 0 cos 𝜃

) 

So 

ℎ𝛼𝑖,𝛽 = 𝑞𝛼𝑖𝜃′𝛽 

where 

𝑞𝛼𝑖 = (
0 0 0

− sin 𝜃 0 cos 𝜃
− cos 𝜃 0 − sin 𝜃

) 

And the gradient vector  

𝜃′𝛽 = (
𝑑𝜃

𝑑𝑥
, 0,0)  

From eqn (A1.1) we obtain  

𝛼𝑖𝛾 = 𝑒𝛼1𝛾𝑞𝛼𝑖𝜃′1 =  𝑒21𝛾𝑞2𝑖𝜃′1 +  𝑒31𝛾𝑞3𝑖𝜃′1  

=
𝑑𝜃

𝑑𝑥
(

0 − cos 𝜃 sin 𝜃
0 0 0
0 − sin 𝜃 − cos 𝜃

) 

and in crystal coordinates (setting  = 3) 

𝑾 =
𝑑𝜃

𝑑𝑥
(sin 𝜃 , 0, − cos 𝜃)         (A2.2) 

To transform W sample coordinates, calculate hW to find 

𝑾 =
𝑑𝜃

𝑑𝑥
(0, 0, −1) .    

So in sample coordinates the WBV (= 3) is a vector parallel to z. 
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Appendix 3: Error analysis 

3.1. Standard deviation of WBV 

We undertook numerical modelling to assess how errors in orientation measurements 

propagate. To generate figures S1 and S2, we took the two models of Fig. 2 and added 

orientation errors by imposing small additional rotations. Each additional rotation matrix was 

generated using a unit vector rotation axis selected at random, and a rotation angle selected at 

random from the range 0 to 0.01 rad. We then calculated the WBV using various methods. 

The calculations are undertaken in sample coordinates, meaning the theoretical and calculated 

WBVs have unique values as shown in eqn. (A1.3). and implying that crystal symmetry does 

not enter into the calculations. For that reason, although the models are for olivine, we assert 

that the results will apply in any crystal system, because we are applying equations which do 

not involve symmetry operations. For display we find IPFs are easier to understand even 

though calculations are undertaken in sample coordinates.   

First row. Fig. S1 a)-c) show IPFs for three different stencil sizes, and d)-f) for three different 

tile sizes. The noise has led to larger scatter in WBV direction for small stencils and tiles.  

Second row. To understand this in more detail, we compare the theoretical WBV of eqn 

(A2.1), denoted here as Wc, with the calculated WBV, defining an error vector E as the 

difference between the two. Fig. S1 g)-i) show the magnitudes of the error vectors (blue 

cloud) for three stencil sizes. Errors do not seem to be correlated with WBV size and to 

quantify this, we must use the statistics of vectors. Any error vector E has a covariance 

matrix given by  

𝐶𝑖𝑗 =  𝑚𝑒𝑎𝑛(𝐸𝑖𝐸𝑗) 

We find that the covariance, a second rank tensor, is somewhat anisotropic in our models but 

rather than consider that detailed complexity, we assume isotropy 

C = 
1

3
2I , 

where I is the identity tensor, and then 

  𝜎2 = 𝑡𝑟𝑎𝑐𝑒(𝑪) =  𝑚𝑒𝑎𝑛(𝐸1
2 + 𝐸2

2+𝐸3
2) 

Here  can be thought of as a standard deviation for the vector E. We calculated it for the 

entire W range, and also for binned intervals of W to discover whether W had a strong effect 

on . For each particular model, e.g. Fig S1g), the cyan line shows the average values of  in 

bins of width 0.002. We do not see a strong correlation with W (bearing in mind the vagaries 

of such numerical experiments) so we propose that  should be considered independent of W. 

In contrast,  clearly decreases from g) to i) so the idea that larger stencils will reduce 

directional errors is confirmed. Although directional errors are reduced, the larger stencil size 

means that a larger region of microstructure is contributing to the calculation, so it is less 

obvious where the contributing GNDs are. In Fig. S1j)-l) we repeat this analysis for tiles of 

different sizes.  

Third row. In Fig. S1m)-r) we display the angular errors. The magenta lines indicate the 

points below which 95% of the data lie (for binned ranges of W). The red lines are discussed 

below. 
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In Fig. S2 we show the same error analysis for a smooth twist structure as in Fig. 2, using the 

theoretical WBV given by eqn. (A2.2). The same patterns in error are shown: again, the 

magnitude of the error vector is not dependent on W, so the angular error is less for larger W; 

again, larger stencil sizes give smaller errors.  

These graphs are not intended as a universal guide as to how orientation measurement errors 

will affect WBV directional errors, because many different types of 3D orientation gradients 

may exist, but they serve as a preliminary indication. We quantify the link between standard 

deviation of W with dimensionless stencil size S or tile size T. For each of the 12 models (6 

tilt, 6 twist) we calculate the value of  across the entire range of W (in essence averaging the 

values shown by the blue lines). We then did a best fit of log  versus log S or log T, finding 

an exponent of -0.99 for stencils and -0.718 for tiles. An outline algebraic analysis under 

development for tiles suggests the exponent is -3/4; for stencils we rounded it to -1. A best fit 

using these exponents then gives: 

𝜎𝑆 = 0.0247𝑆−1/𝑢         (A3.1) 

where u is step size, and with the dimensionless area T of a tile: 

𝜎𝑇 = 0.0081𝑇−3/4/𝑢 .         (A3.2) 

3.2. Angular errors from standard deviations 

To link these standard deviations to directional statistics we assume a Fisher distribution in 

which the directions are distributed in accordance with a probability density function F 

𝐹 =
κ

4π sinh 𝜅
exp (𝜅 cos 𝜓) 

where  is the angle from the mean direction, and  is known as a “concentration” parameter 

(Watson, 1982). When  is large the distribution is very focussed around the mean direction 

and that would be expected to relate to small values of standard deviation  of W. To 

quantify that, we refer to section 2 of (Watson, 1982) and note that the definition of  there is 

equal to our definition divided by 3. Watson defines a parameter m = W3/ (in our 

notation) and then shows how it relates to  via his eqn. (30). Having  we calculate the 95% 

confidence angle by integrating F to obtain the proportion of the distribution within an angle 

, and then rearranging to find the angle within which 95% of the distribution lies: 

𝛼95 = acos ( 1 +
1

𝜅
ln(1 − 0.95(1 − exp(−2𝜅)))      

To help to understand the errors, this equation can be related back to the inset cartoons in Fig. 

4. When  is large and errors are small 

𝛼95 ≅ acos ( 1 +   
1

𝜅
ln(0.05)) ≅  acos ( 1 +   

1

𝑚2
ln(0.05)) ≅   

1

𝑚
√2 ln(20) 

=  
𝜎

𝑊
√2 ln(20)/3 = 1.413

𝜎

𝑊
   

where we have used the Watson eqn. 30 for large  and the power series expansion of cos. 

Although there is now a constant of proportionality, the basic link between vector and 

directional errors in Fig. 4 is confirmed. For binned ranges of W, we plot the calculated 
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values of 95 as red lines in the bottom rows of Figs. S1 and S2. These are comparable to the 

magenta lines which are calculated directly from the model data (particularly for the twist 

models), suggesting that our statistical analysis is adequate. We note our models are based on 

“noise” up to 0.01 radian. We expect that eqns (A3.1) and (A3.2) will scale with the level of 

noise but assessing angular noise levels is not a straightforward procedure and is a topic for 

future research. 

3.3. Angular errors and crystal symmetry 

Our calculation of 95 does not consider crystal symmetry. The error cone should be the same 

in crystal coordinates but there are some subtleties to consider. If 95 was for example 3° then 

this could help specify a narrow cone of directions, displayed as a small circle, within which 

the true direction lay on a PF or an IPF. However, if 95 was 40° in, for example, the cubic 

crystal system, then the error cone would overlap several symmetric equivalents and be 

difficult to interpret; it might cover most of the IPF. In general, the error cone would be sliced 

up by symmetry operations and would be represented by several small circle arcs on an IPF; 

it is beyond the scope of this contribution to consider this in detail. Nevertheless, we find our 

estimates of 95 are always informative. 

3.4 Summary 

In summary, and adding practical detail, errors are evaluated as follows. In bold are the 

quantities which enter into the calculation. 

1. Assume a particular range of orientation measurement errors in the EBSD measurements 

(we give an example where we assume errors go up to 0.01 rad). 

2. We use a particular stencil or tile area for WBV calculation and calculate the standard 

deviation in W from eqn (A3.1) and (A3.2) which also requires the step size. 

3. To get an overview of errors in WBV PFs and IPFs when looking at a range of WBVs, we 

want the maximum relevant 95 so we select a minimum WBV length which then allows 

calculation of m, then , then 95. 
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Supplementary Table S1. Notation. 
 

Symbol Meaning Units, if 

dimensional 

A Area of integration loop on map (length)2 

B Net Burgers vector sum for dislocations threading a particular 

loop 

length 

e Permutation tensor (3rd rank) - 

h Orientation tensor (2nd rank) - 

Ki ith coefficient for writing W in terms of lattice basis vectors (length)-2 

Li ith lattice basis vector length 

S Area of stencil in pixels - 

T Area of tile in pixels - 

W Weighted Burgers Vector (length)-1 

W Magnitude of W (length)-1 

Wt Characteristic W used in precision analysis (length)-1 

Wc Theoretical value of W in noise-free model (length)-1 

E Error vector in value of W in noisy model = W – Wc (length)-1 

𝜌(𝑁) Density of Nth type of dislocation (length)-2 

𝒃
(𝑁)

 Burgers vector of Nth type of dislocation length 

𝒍
(𝑁)

 Unit line vector of Nth type of dislocation - 

u Step size length 

X, y, z Cartesian coordinate system  length 

95 Angle related to precision of a direction. 95% chance that the 

true direction of a vector is that angle or less from the 

calculated direction 

- 

 Nye Curvature tensor (2nd rank) (length)-1 

 Curvature tensor (2nd rank)  (length)-1 

 “concentration” parameter in spherical statistics (Appendix 3)  - 

𝜎  “Standard deviation” of a vector, assuming isotropic covariance 

(Appendix 2) 

Same as 

vector 

𝜎𝑆 Standard deviation of W when calculated using stencils (length)-1 

𝜎𝑇 Standard deviation of W when calculated using tiles (length)-1 
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Captions for supplementary figures 
Figure S1. Analysis of errors in the noisy tilt model. 

a)-f) For the noisy model, IPF plots for WBV calculated for three stencil sizes (left) and three 

tile sizes (right) with a W threshold of 0.001 (m)-1. 

g)-l) Errors (magnitude of We) versus W for the various stencils and tiles in a). In each graph, 

individual values are plotted as a blue cloud and the cyan line indicates the average value of 

error for binned ranges of W. 

 

m)-r) Directional errors (angle between W and Wc) versus W for the various stencils and tiles 

as in upper rows. In each graph, individual values are plotted as a blue cloud and the magenta 

line indicates the points below which 95% of the data lie (for binned ranges of W). The red 

line indicates predicted 95. The W minimum thresholds used in displays in a) are shown by 

stars. 

 

Figure S2. Analysis of errors in the noisy twist model, organised as in Fig. S1. 
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