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Abstract

US natural gas production increased by ˜43% between 2005 and 2015, but there is disagreement in the scientific literature

on whether this growth led to increased methane emissions. In this study, we evaluate the possible contributions of emissions

versus meteorology to an upward trend in US atmospheric methane observations during 2007-2015. We find that interannual

variability (IAV) in meteorology yields an apparent upward trend in atmospheric methane across much of the US. We further

find that IAV in atmospheric methane at several observation sites is correlated with IAV in local wind speed. Overall, our

results show that US trends in atmospheric methane largely reflect variability in meteorology, and are unlikely to be a direct

reflection of trends in emissions. The results of this study therefore lend support for the conclusion that there was little upward

trend in US methane emissions during this time.
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Key Points: 13 
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correlate with atmospheric methane trends at many locations. 17 

• This work supports for the conclusion that there was little or no trend in US methane 18 

emissions during this time.   19 
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Abstract  20 

US natural gas production increased by ~43% between 2005 and 2015, but there is disagreement 21 

in the scientific literature on whether this growth led to increased methane emissions. In this 22 

study, we evaluate the possible contributions of emissions versus meteorology to an upward 23 

trend in US atmospheric methane observations during 2007-2015. We find that interannual 24 

variability (IAV) in meteorology yields an apparent upward trend in atmospheric methane across 25 

much of the US. We further find that IAV in atmospheric methane at several observation sites is 26 

correlated with IAV in local wind speed. Overall, our results show that US trends in atmospheric 27 

methane largely reflect variability in meteorology, and are unlikely to be a direct reflection of 28 

trends in emissions. The results of this study therefore lend support for the conclusion that there 29 

was little upward trend in US methane emissions during this time. 30 

Plain Language Summary  31 

US natural gas production increased from 18 to 27.1 trillion cubic feet per year between 2005 32 

and 2015 as a result of the shale gas boom and the associated technological breakthrough of 33 

combining horizontal drilling and hydraulic fracturing. This increase in natural gas activity has 34 

caused concern about methane emissions, since methane is the primary constituent of natural gas 35 

and an important greenhouse gas. However, estimates of trends in US methane emissions have 36 

been ambiguous and controversial, and existing studies have reached conflicting conclusions. 37 

Furthermore, atmospheric methane levels at many US observation locations have increased faster 38 

than the global mean, raising questions about whether increasing US natural gas production has 39 

led to increased emissions. In this study, we explore the roles of changing emissions versus 40 

changing meteorology in explaining recent increases in atmospheric methane levels across the 41 

US. And we find that changing meteorology can explain this recent atmospheric methane 42 

increase. The results of this study elucidate the complex relationships between emissions and 43 

atmospheric observations and shed light on recent changes in US methane emissions. 44 

1 Introduction  45 

The US is one of the largest anthropogenic emitters of methane, behind only China and 46 

India (Saunois et al. 2020). Numerous recent studies indicate that US methane emissions are 47 

48% - 76% higher than estimated by the EPA Inventory of US Greenhouse Gas Emissions and 48 

Sinks (GHGI) (Alvarez et al. 2018; Barkley et al. 2019, 2021; Caulton et al. 2019; Robertson et 49 

al. 2020; Zavala-Araiza et al. 2015). One reason for this discrepancy is that methane emissions 50 

are challenging to quantify. For example, recent studies indicate that 5% of oil and gas facilities 51 

account for over 50% of emissions (Brandt et al. 2016; see also Omara et al. 2018; Rella et al. 52 

2015; Zavala-Araiza et al. 2015, 2017). These facilities can be difficult to find, effectively 53 

monitor, and subsequently account for in an emissions inventory that is based upon a limited 54 

number of emissions factors. 55 

In addition, a marked increase in natural gas activity over the past 15 years has caused 56 

concern over possible increases in US methane emissions. US natural gas production increased 57 

by 43% between years 2005 and 2015, and this increase is coincident with the deployment of 58 

hydraulic fracturing and horizontal drilling technologies (US EIA, 2016). Several studies argue 59 

that increased natural gas production activity likely means increased fugitive methane emissions 60 

(Howarth et al. 2019). By contrast, EPA’s GHGI indicates that total US anthropogenic methane 61 

emissions decreased by 5.0% between years 2005 - 2015 and that emissions from the natural gas 62 
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sector decreased by 8.8% (US EPA, 2021). EPA attributes most of this change in natural gas 63 

emissions to decreasing exploration and distribution emissions and reports decreasing emissions 64 

factors across many areas of the natural gas sector (US EPA, 2021). These decreasing emissions 65 

factors explain why the trend in EPA’s emissions inventory is opposite the trend in natural gas 66 

production. 67 

In addition to the EPA inventory, a handful of studies based on atmospheric observations 68 

estimate trends in US methane emissions. However, these studies do not agree on whether US 69 

methane emissions increased. Turner et al. (2016) examine trends in atmospheric observations 70 

from a site in Oklahoma and from the Greenhouse Gases Observing Satellite (GOSAT). They 71 

estimate that US emissions increased by 2.5 - 4.7% per annum between years 2010 and 2014, 72 

depending on the observations analyzed. Sheng et al. (2018), also using GOSAT, report a similar 73 

upward emissions trend of 2.5±1.4% per annum between years 2010-2016. By contrast, a 74 

handful of additional studies find a much smaller increase or no increase at all. For example, Lan 75 

et al. (2019) report a trend in US emissions of 0.7±0.3% per annum (2006-2015) using in situ 76 

observation sites, Maasakkers et al. (2021) estimate a trend of 0.4% per annum (2010-2015) 77 

using observations from GOSAT, and Lu et al. (2021) estimate a trend of 0.1±0.2% per annum 78 

(2010-2017) using both GOSAT and in situ observation sites. 79 

The purpose of this work is to help reconcile the disparate trends reported by recent 80 

studies that use atmospheric methane observations. Specifically, we hypothesize that 81 

meteorology produced an upward trend in atmospheric methane across the United States between 82 

years 2007-2015, and that this upward trend in meteorology can help explain the disagreement 83 

among existing atmospheric estimates of methane emissions trends. To answer this hypothesis, 84 

we develop meteorology and emissions trend scenarios to evaluate the plausible impacts of 85 

meteorology versus emissions on trends in atmospheric methane levels. In subsequent analyses, 86 

we further examine the correlations between inter-annual variability (IAV) in our modeled 87 

methane scenarios and IAV in specific meteorological parameters. This analysis sheds light on 88 

the specific meteorological processes that correlate with atmospheric methane trends. 89 

2 Data and methods 90 

2.1 Atmospheric modeling 91 

We model atmospheric methane mixing ratios (MMR) between years 2007 and 2015 at 8 92 

tower measurement sites in the continental US that are part of the National Oceanic and 93 

Atmospheric (NOAA) Global Monitoring Laboratory (GML) Cooperative Air Sampling 94 

Network (Andrews et al, 2014). Tall tower observations in the US greatly expanded in 2007, and 95 

the 8 tower sites included in this study have observations available during all years of the study 96 

period. We further model MMR at 80,914 GOSAT sounding locations across the continental US 97 

(CONUS) between years 2009 and 2015. GOSAT sounding locations are specifically taken from 98 

the UoL Proxy XCH4 Retrieval Version 9 (Parker et al. 2020). This data product provides total 99 

column averaged atmospheric methane mixing ratios at GOSAT sounding locations and is used 100 

in several recent studies of methane emissions (Maasakkers et al. 2021; Sheng et al. 2018).   101 

We model atmospheric MMR at these locations using simulations from the Stochastic 102 

Time-Inverted Lagrangian Transport model (STILT) (e.g., Lin et al. 2003). The simulations used 103 

here were generated as part of the NOAA CarbonTracker-Lagrange project (e.g., Hu et al. 2019). 104 
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STILT is a particle trajectory model; it tracks a large set of tracer particles (500 in this study), 105 

and the dispersion of those particles in the atmosphere is used to generate an influence footprint 106 

(in the units of atmospheric mixing ratio per unit of emissions). As a result of this setup, we 107 

model methane at each location and time by multiplying an individual footprint by a methane 108 

emission estimate (described below). Note that the STILT particles are driven by meteorology 109 

from the Weather Research and Forecast (WRF) model (Skamarock et al. 2008). To date, WRF-110 

STILT has been used for atmospheric transport in numerous existing regional methane and 111 

greenhouse gas modeling studies (Hu et al. 2019; Miller et al. 2013, 2014, 2015; Nehrkorn et al. 112 

2010). The WRF simulations have a nested spatial resolution of 10 km over CONUS and 40 km 113 

over remaining regions of North America. The STILT footprints are run for a total of 10 days 114 

back in time, with a spatial resolution of 1° latitude by 1° longitude.  115 

We further use several methane flux estimates to account for multiple different methane 116 

source types in the atmospheric modeling simulations. Specifically, we use the US EPA gridded 117 

methane emissions inventory across CONUS (Maasakkers et al. 2016) and the Emission 118 

Database for Global Atmospheric Research (EDGAR) gridded methane emissions version 5 119 

(Crippa et al. 2019) for anthropogenic fluxes outside CONUS. Maasakkers et al. (2021) argue 120 

that the EPA inventory underestimates oil and gas emissions but that emissions from other 121 

anthropogenic sectors in the US are roughly consistent with atmospheric observations. Hence, 122 

we scale US oil production emissions by a factor of 1.59 and gas production emissions by 1.33 to 123 

match the inverse modeling estimate of Maasakkers et al. (2021). We additionally use wetland 124 

methane fluxes calculated using the model in Pickett-Heaps et al. (2011) (and as used in Miller et 125 

al. 2014, 2016). Several atmospheric modeling studies have argued that the wetland flux model 126 

from Pickett-Heaps et al. (2011) has a magnitude and spatiotemporal distribution that is 127 

generally consistent with in-situ atmospheric methane observations across Canada and the 128 

northern US (Miller et al. 2014, 2016; Pickett-Heaps et al. 2011). We further use biomass 129 

burning methane fluxes from the Quick Fire Emissions Dataset (QFED v2.4, Darmenov & da 130 

Silva, 2013). Maasakkers et al. (2021) find that the overall magnitude of QFED emissions is 131 

generally consistent with GOSAT observations. Each of these fluxes are regridded to a 1° 132 

latitude by 1° longitude spatial resolution for the atmospheric modeling simulations, though the 133 

native spatial resolution of these flux products is higher. Furthermore, anthropogenic and 134 

wetland fluxes have a monthly time resolution while QFED has a daily time resolution. 135 

2.2 Modeling scenarios and trend fitting 136 

We create two emissions scenarios (one with an emissions trend and one without an 137 

emissions trend) and two meteorology scenarios (one with IAV in meteorology and one without). 138 

In total, we analyze four modeling scenarios: with trends in emissions and IAV in meteorology 139 

(scenario 1), with trends in emissions and without IAV in meteorology (scenario 2), no trends in 140 

emissions and with IAV in meteorology (scenario 3), and no trends in emissions and without 141 

IAV in meteorology (scenario 4).  142 

The emissions scenarios are generated based on the methane flux estimates described in 143 

Sect. 2.1. For the scenario with no emissions trend, we use the monthly US EPA inventory 144 

estimate for year 2012 in all years of the WRF-STILT model simulations. Similarly, we use 145 

monthly wetland fluxes and daily QFED fluxes also for year 2012. For the scenario with an 146 

emissions trend, we scale oil and gas emissions in each state relative to monthly U.S. dry natural 147 
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gas production data (US EIA, 2018) from years 2007 to 2015. At the time of writing, emissions 148 

from the US EPA gridded inventory are only available for year 2012, and we scale oil and gas 149 

emissions up or down relative to 2012 inventory numbers. For the simulations here, we do not 150 

add a trend to other methane source types because we are primarily interested in how a plausible 151 

trend in oil and gas emissions would manifest at the atmospheric observation sites, all else being 152 

constant. Some recent studies argue that US methane emissions trends are likely being driven by 153 

the oil and gas sectors (e.g., Sheng et al. 2018, Turner et al. 2016), and we therefore create a 154 

hypothetical emissions scenario that focuses on that sector. 155 

We further generate meteorology scenarios that include IAV in meteorology and 156 

scenarios that do not include IAV in meteorology. For the former scenarios, we run WRF-STILT 157 

using standard protocols as described in Sect. 2.1. For the latter scenarios, we average footprints 158 

from different years to remove IAV in meteorology. Specifically, at each in-situ monitoring site, 159 

we average the footprints from each month of the year across all years of modeling simulations. 160 

In other words, we average the WRF-STILT footprints from all Januarys (across 2007-2015), 161 

across all Februarys, etc. This approach preserves seasonal variability in the footprints but 162 

removes IAV. For the GOSAT observations, we group the observations into 4° latitude by 4° 163 

longitude grid boxes across the United States. Within each box, we average the footprints from 164 

each month as described above. 165 

We subsequently fit trend lines to the model outputs for each scenario. We can then 166 

compare and contrast the impact of meteorology versus emissions on apparent trends in MMR. 167 

We specifically fit trend lines using the procedures outlined in Lan et al. (2019) for in situ 168 

observations and Sheng et al. (2018) for GOSAT observations. We use line-fitting procedures 169 

from these studies to ensure that the results presented here are directly comparable to existing 170 

research and to ensure that any differences from these existing studies are not due to differences 171 

in the trend-fitting procedure. Technical details of trend line fitting can be found in the SI Sect. 172 

S1.  173 

3 Results and discussion 174 

3.1 Meteorology yields an upward trend in atmospheric methane across the United States 175 

We find that meteorology has a large impact on inter-annual variability (IAV) in modeled 176 

methane mixing ratios. For example, we calculate the maximum and minimum values in 177 

annually-averaged MMR at each observation site in the NOAA Global Monitoring Laboratory 178 

tall tower network. For these calculations, we use anthropogenic emissions that do not contain 179 

any trend (e.g., scenario 3 described above), such that IAV in MMR does not reflect variability 180 

in emissions. In these simulations, we find, on average, that IAV in MMR at the observation sites 181 

is equal to 40% of the total average atmospheric methane signal from North America (Fig. S1 – 182 

S8). At some sites, particularly sites that are close to large agricultural or oil and gas emissions 183 

sources, this IAV is as high as 59% of the average MMR (e.g., at Eerie, Colorado, site BAO). By 184 

contrast, at sites that are distant from large methane emissions, this IAV can be as small as 20% 185 

of the average MMR (e.g., at Argyle, Maine, site AMT). 186 

In fact, IAV in meteorology also yields an apparent upward trend in MMR at all of the 187 

tall tower observation sites. Figure 1 displays the results of the four modeling scenarios at these 188 
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sites. The individual bars in the plot display the trend (i.e., percent annum change) in MMR at 189 

each observation site estimated using a linear regression (Sect. 2). Specifically, the yellow bars 190 

display the results for scenarios that include a plausible upward trend in emissions while the blue 191 

bars display the results for scenarios that do not include a trend in emissions. Furthermore, dark-192 

shaded bars display results for scenarios that include IAV in meteorology while light-shaded bars 193 

show scenarios where IAV in meteorology has been removed (Sect. 2). Note that we estimate 194 

negative trends at a few sites in a few scenarios. In most cases, the standard error bars encompass 195 

zero. In two other instances (S2 at STR and WGC), the negative trend estimate occurs at sites 196 

that have a very large seasonal cycle in MMR and have sustained data gaps; the combination 197 

makes trend estimation at these sites prone to error (discussed in Sect. S2). 198 

 199 

Figure 1. Estimated trends with uncertainty in MMR at different in-situ observation sites (years 200 

2007-2015) and for different modeling scenarios. Sites include Argyle, Maine (AMT); Erie, 201 

Colorado (BAO); Park Falls, Wisconsin (LEF); Billings, Oklahoma (SGP); Sutro Tower, San 202 

Francisco, California (STR); West Branch, Iowa (WBI), Walnut Grove, California (WGC), and 203 

Moody, Texas (WKT) (Andrews et al. 2014). We find that IAV in meteorology has a much 204 

larger impact on estimated trends than does variability in emissions. Note that Figs. S1-S8 205 

display the trends in observed MMR at these sites for reference.    206 

We find an upward trend in MMR at all sites, irrespective of whether we include a trend 207 

in emissions (e.g., scenarios S1 and S3). By contrast, when we remove IAV in meteorology, the 208 

upward trend in MMR largely disappears (e.g., scenarios S2 and S4). We therefore conclude that 209 

meteorology is likely driving the trend in model outputs. Furthermore, even when we do not 210 

include a trend in emissions, the trend in the model outputs is often between 2-4% per annum 211 

and ranges from 0.2% per annum (at Argyle) to 5.5% per annum (at Erie) (scenario 3). These 212 

numbers are comparable in magnitude to the US methane emissions trend estimated by several 213 

recent atmospheric studies (e.g., Sheng et al. 2018, Turner et al. 2016). These studies attribute 214 
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trends in observed atmospheric mixing ratios to emissions, while our results suggest that IAV in 215 

meteorology can yield comparable trends. 216 

 217 

Figure 2. Estimated trends in MMR at GOSAT observation sites (years 2009-2015). Panel (a) 218 

displays the result of modeling scenario 3 (IAV in meteorology and no trend in emissions), while 219 

panel (b) displays the estimated trend in GOSAT observations. The modeled trend (a) has a 220 

similar overall magnitude to the observed trend (b), even though the former does not contain an 221 

emissions trend. Note that Fig. S18 – S21 display modeled trends for the three remaining 222 

scenarios not shown here.       223 

By contrast, we find that plausible trends in emissions have a smaller impact on estimated 224 

trends in MMR relative to meteorology. For example, scenarios 1 and 3 in Fig. 1 display the 225 

results when we do and do not, respectively, include a plausible trend in anthropogenic 226 

emissions. The differences in estimated trends between these two scenarios is generally small; 227 

the difference is between 0.5 - 1.1% per annum, except at Argyle, a remote site in northern 228 
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Maine far from large emissions sources. In other words, the impact of an emissions trend is small 229 

relative to the overall trend in MMR.  230 

Note that we conduct two sensitivity tests for observation sites in oil and gas producing 231 

regions (SGP and WKT) – one test that explores the impact of the meteorological product used 232 

in STILT and one that explores the impact of observation sampling time and frequency (Figs. 233 

S35-36). In simulations using both meteorology products, the impact of a trend in emissions is 234 

small relative to IAV due to meteorology, though the models do not always agree on the exact 235 

magnitude of MMR in specific months. In the second test, we find that variations in sampling 236 

time have little impact on MMR at one site (WKT) but do impact the results at another site 237 

(SGP); hence, we cannot rule out the role of observation sampling frequency and time on 238 

estimates of atmospheric methane trends. 239 

We find similar results for simulated GOSAT methane observations. Figure 2 displays 240 

the estimated trend in MMR from scenario 3 (panel a) and from the GOSAT observations (panel 241 

b) (Fig. S18, S19, and S21 displays scenarios 1, 2, and 4.). The figure shows the trend (% per 242 

annum) for model outputs and observations aggregated into 4° by 4° latitude-longitude grid 243 

boxes (Sect. 2). The model simulations shown here do not include a trend in emissions, yet the 244 

overall trend in MMR is roughly comparable in magnitude to the overall trend in the GOSAT 245 

observations. Thus, it is plausible that variability in meteorology is driving much of the observed 246 

trend in GOSAT observations. Note that a small number of grid boxes yield unrealistic trend 247 

estimates (e.g., coastal northern California and northern Vermont). These grid boxes contain a 248 

limited number of observations that are not evenly distributed across seasons and years during 249 

the study period, making trend estimation challenging. Also note that Figs. S22-S28 display 250 

detailed modeled and observation time series at several prototypical locations across the United 251 

States. 252 

We note that the results described above could differ if analyzed across a longer time 253 

horizon (e.g., across multiple decades). If there were sustained emissions trends across multiple 254 

decades, it might be easier to identify directly from atmospheric observations, even given large 255 

IAV in meteorology. With that said, existing studies of methane trends have examined similar 256 

time periods to this study (e.g., Lan et al. 2019, Maasakkers et al. 2020, Sheng et al. 2018, 257 

Turner et al. 2016). Furthermore, observations that span multiple decades are rarely available, 258 

except at a handful of global monitoring sites (at the time of writing), and shorter time periods, 259 

like those evaluated in this study, are also helpful for evaluating the impacts of emissions 260 

policies in a timely manner (e.g., Miller et al. 2019). 261 

3.2 Local meteorological processes correlate with atmospheric methane trends 262 

In Sect. 3.1, we argue that meteorology yields large IAV in MMR, and a natural follow-263 

up question is to evaluate what specific aspects of meteorology correlate with this IAV. We find 264 

that IAV in local meteorological processes show a strong correlation with IAV in MMR. To 265 

evaluate this question, we examine the correlation between annually-averaged MMR and the 266 

“local” STILT footprint. The STILT footprint estimates the impact of emissions in a given 267 

location on the observation site (in units of ppb per unit emission). Here, we define the local 268 

footprint as the 1° latitude/longitude grid box where the observation is located, and we then 269 

average this footprint across each year. We compare these local footprints against annually-270 
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averaged MMR. Figure 3 displays the results of this analysis for model outputs at GOSAT 271 

observation locations (panel a) and in situ observation locations (panel b). We find that the 272 

correlation (r) between MMR and the local footprint is strong -- greater than 0.8 in many 273 

locations for the GOSAT simulations and greater than 0.5 at most locations. The correlation is 274 

similarly strong for the simulations at in situ observation sites -- between 0.8 and 1.0.  275 

 276 

Figure 3. The correlation (r) between annually-averaged MMR and the local footprint (Sect. 277 

3.2), both at GOSAT and in-situ observation locations. We find a close correlation at most 278 

locations, suggesting that local meteorological processes play a key role in IAV of MMR.       279 

We further explore the relationships between IAV in MMR and IAV in several specific, 280 

local meteorological processes -- including planetary boundary layer (PBL) height, vertical wind 281 

speed (Ω), and total wind speed at the observation location and modeling height (i.e., the 282 

Euclidean sum of u and v wind speed). In this specific study, we use estimates for these 283 

parameters from North American Regional Reanalysis (NARR, NCEP, 2005). At the in situ 284 

observation sites, we often find the strongest anti-correlations between IAV in MMR and IAV in 285 

annually-averaged local wind speed, particularly at sites near large sources (e.g., WGC and 286 

WKT). When local winds are stagnant, methane (presumably from local sources) accumulates 287 

around the observation site. By contrast, faster winds likely promote greater ventilation and 288 

thereby decrease methane at the observation sites. Urban sites (e.g., STR, BAO), however, 289 

exhibit a stronger anti-correlation with PBL height. At these sites, larger PBL heights are 290 

associated with dilution of the urban pollution dome. Curiously, MMR at two sites (LEF, AMT) 291 
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is positively correlated with PBL height. At these remote sites, higher PBL heights could be 292 

associated with greater transport of methane from distant source regions. 293 

 294 

Figure 4. The correlation (r) between annually-averaged MMR and various meteorological 295 

factors at the in-situ observation sites. We find that MMR is often anti-correlated with local wind 296 

speed, though the strength of that relationship varies by site. By contrast, at urban sites (STR and 297 

BAO), we find the strongest anti-correlation with PBL height.   298 

Note that we are not able to identify meaningful correlations between IAV in MMR and 299 

specific meteorological parameters for the GOSAT simulations. GOSAT observes methane 300 

mixing ratios across an entire vertical atmospheric column. As a result, IAV in MMR is likely 301 

influenced by a complex mixture of meteorological parameters across different altitudes. 302 

Our findings on methane trends are in parallel with several other studies that report on the 303 

role of atmospheric transport in air pollutant and GHG variability (e.g., Keppel-Aleks et al. 2011, 304 

Kerr et al. 2020, 2021, Samaddar et al. 2021, Torres et al. 2019). These studies generally find 305 

that transport plays a dominant role in explaining meso- and synoptic-scale variability in trace 306 

gas mixing ratios. For example, Keppel-Aleks et al. (2011) report that variations in total column 307 

CO2 mixing ratios are forced both by local CO2 fluxes and advection on diurnal scales, and on 308 

synoptic scales, CO2 variations arise due to large-scale eddy-driven disturbances of the 309 

meridional gradient. Torres et al. (2019) report similar findings using CO2 observations from the 310 

Orbiting Carbon Observatory 2 (OCO-2). Kerr et al. (2020, 2021) further argue that daily, 311 

continental-scale variations of O3 are largely meteorology driven and are influenced by the 312 

meridional flow related to the jet stream. In the present study, we also find that transport plays a 313 



manuscript submitted to Geophysical Research Letters 

 

dominant role in trace gas (i.e., CH4) mixing ratios, albeit at annual instead of the daily/synoptic 314 

scales examined in the aforementioned studies.   315 

4 Conclusions 316 

Natural gas production activities in the US increased during the shale gas boom, leading 317 

to concerns about increasing methane emissions. In fact, several studies report increasing MMR 318 

across the US relative to the global mean. However, we find that meteorology, not emissions, 319 

can explain this upward trend MMR between 2007 and 2015. We then explore which 320 

meteorological factors correlate with this upward trend. Using a footprint analysis, we argue that 321 

IAV in MMR is likely correlated with local meteorological processes. At in situ monitoring sites, 322 

we also find higher correlations between MMR and IAV in local wind speed than with 323 

meteorological parameters related to vertical mixing.     324 

 Overall, our results show that IAV in MMR reflect variability in meteorology as much or 325 

more than variability in emissions. This finding poses an inherent challenge for detecting trends 326 

in emissions because, at least in the case of methane, the atmospheric signal of that emissions 327 

trend is comparatively small. This result is especially applicable given the limited time span of 328 

many existing in situ and satellite observation records. This study further cautions against 329 

interpreting trends in atmospheric greenhouse gas mixing ratios as a direct proxy for trends in 330 

emissions. 331 

 This work also lends support for existing studies that show little or no trend in US 332 

methane emissions. Specifically, existing studies fall into two categories: studies that directly 333 

interpret trends in atmospheric observations (e.g., Lan et al. 2019, Sheng et al. 2018,Turner et al. 334 

2016) and studies that estimate emissions using inverse modeling, which accounts for 335 

meteorology using a modeled and/or reanalysis product (e.g., Benmergui et al. 2015, Lu et al. 336 

2021, Maasakers et al. 2020). Studies that directly interpret trends from atmospheric 337 

observations find an upward emissions trend during a similar time period as the present study 338 

(2.5 - 4.7% per annum). By contrast, studies that account for atmospheric transport through the 339 

use of inverse modeling find little upward trend in methane emissions (e.g., 0.1 - 0.7% per 340 

annum). Inverse modeling studies account for trends in MMR due to meteorology instead of 341 

aliasing the trends on emissions, and the present studies therefore helps explain these seemingly 342 

irreconcilable results. 343 
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S1 Additional details on trend line fitting for in-situ observations and GOSAT 

This section of the supplement provides detailed steps of trend line fitting for in-

situ and GOSAT observations using modeled MMR. Specifically, we fit trend lines at each 

in-situ observation site for each scenario. As in Lan et al. (2019), we fit a linear trend line 

using ordinary least squares (OLS) to monthly model estimates that have been 

deseasonalized using a 2nd-order polynomial fit and band pass filter. The data are 

further log10 transformed before line fitting (If the model output were to increase by a 

constant percentage per annum, the resulting output would have a non-linear slope, and 

the log10 transformation would make that slope linear.). For GOSAT, we first average the 

model output into 4° by 4° latitude-longitude grid boxes across CONUS and estimate a 

trend for each grid box, the same procedure as Sheng et al. (2018). GOSAT sounding 

locations are sparsely distributed and vary from month-to-month, and this averaging 

procedure yields a more consistent MMR estimate for each grid box. We deseasonalize 

the model outputs using seasonal-trend-loess (STL) decomposition method (Cleveland 

et al. 1990), and fit a trend-line to annually-averaged model outputs using OLS.      

S2 Additional details on the analysis for in-situ monitoring sites 

This section of the supplement provides additional analysis of the model outputs at 

in situ atmospheric monitoring sites: detailed model time series at each site, comparisons 

against trends in observed atmospheric mixing ratios, and additional comparisons 

against individual meteorological variables.  

Figures S1 - S8 display time series of MMR at each in situ observation site and for 

each modeling scenario (i.e., scenarios 1-4). Each figure displays monthly-averaged 

model outputs that have been deseasonalized, as described in Sect. 2.2. In addition, the 

figures show the trend line fitted to the modeled time series for each scenario. The time 

series show a clear upward trend in MMR at most observation sites (at least for several 

model scenarios), providing a visual confirmation of the trend lines reported in Fig. 1 

The figures further show observed methane enhancements (deseasonalized and 

interpolated for gap-filling, shown in black) and a trend line fitted to these observed 

enhancements. The model outputs often do a good job of reproducing monthly 

variability in the observations, even if the model outputs do not always match the 

magnitude of the observations. Note that the purpose of this study is not to determine 

which of the modeled scenarios is the best match against observations. Rather, the four 

scenarios developed here are used as test cases to explore the plausible impacts of 

meteorology and emissions. By contrast, trends in observed atmospheric methane are 

likely due to a combination of both meteorological factors and complex, unknown trends 

in surface emissions. We feel that the latter are best estimated using Bayesian inverse 

modeling, which is beyond the scope of this manuscript. 
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Note that in Figs. S1-S8, the fitted trend lines for observed methane enhancements 

(shown in black) for a few sites exhibits a slight downward trend (i.e., site BAO, WBI, and 

WGC). We find that such downward trends are likely due to a reduction in observation 

frequency. Figs. S9-S11 display the timeseries with fitted trend lines of observed, 

monthly-averaged methane enhancements (shown in black), deseasonalized observed 

methane enhancements (shown in blue), and monthly observation frequency (grey bars 

in the background). All three sites (BAO, WBI, and WGC) show a downward shift in the 

timeseries associated with a change in observation frequency: these timeseries show an 

upward trend before 2011 and after 2011 but exhibit a downward shift in 2011. Such 

reduction in observations can cause observation sites to capture less variability in 

atmospheric methane within a given month, especially sporadic methane spikes from 

nearby cities or other sources, and can result in fitting unrealistic downward trends.  

Also note that the observed methane enhancements displayed in Figs. S1-S8 show 

mixing ratios after subtracting a modeled methane background or boundary condition. 

The methane boundary condition used here approximates methane mixing ratios in air 

over the Pacific and Atlantic Oceans before these air masses enter the United States. The 

purpose of this study is to explore methane trends across the US, not global trends, and 

subtracting the methane boundary condition removes the influence of global methane 

trends from the analysis. By contrast, we do not need to subtract a boundary condition 

from the model simulations; the STILT simulations here are regional in scope and only 

model atmospheric methane enhancements due to fluxes in North America. 

We use the methane boundary condition generated for NOAA’s CarbonTracker-

Lagrange project for all simulations in this study. This approach is identical to that used 

in multiple existing methane and GHG modeling studies based on the STILT model (e.g., 

Hu et al. 2019; Miller et al. 2013, 2014, 2016; Shiga et al. 2018a, 2018b). Specifically, we 

first interpolate in situ methane observations zonally and in time to create an 

interpolated “curtain” of estimated methane values across the Pacific and Atlantic oceans 

(e.g., as in Jeong et al. 2013 and Miller et al. 2013). We then sample this curtain at the 

ending locations and times of the particles in each STILT simulation. For each STILT 

simulation, we then average the sampled curtain values across all 500 particles in the 

simulation, and this average value becomes the estimated background for a specific 

methane observation.  

Further note that we do not include methane oxidation in either the methane 

boundary condition calculations or in the calculation of STILT footprints. This approach is 

similar to other studies of regional methane emissions that use a particle trajectory 

model like STILT (e.g., Cui et al. 2015, 2017; Huang et al. 2019; Miller et al. 2013, 2014, 

2016a, 2016b; Ren et al. 2018; Sargent et al. 2021). The atmospheric lifetime of methane 

is 12 years, while the particles in each STILT simulation are allowed to travel backward in 

time for 10 days (though many trajectories terminate at the edge of the North American 

model domain in less time). Over 10 days, up to 0.2 – 0.3% of modeled methane could 

decay, and we therefore do not include this chemistry in model simulations due to its 

small impact. Furthermore, even large inter-annual variability in hydroxyl radical (OH) 

levels would likely have minimal impact on the model simulations here given their 

regional scope. 
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Figures S12 – S14 provide additional detail on the comparisons between annual-

averaged, modeled MMR and various meteorological parameters (i.e., planetary 

boundary layer (PBL) height, vertical wind speed (Ω), and total wind speed at the 

observation location). These figures display each comparison as a scatterplot, whereas 

Fig. 4 in the main article lists the estimated correlation coefficient for each comparison. 

These figures provides visual confirmation that the comparison between MMR and local 

wind speed is often stronger than the comparisons between MMR and other 

meteorological parameters. 

Figures S15 – S17 further compare observed methane enhancements against the 

meteorological parameters described above. Fig. 4 in the main article displays this 

comparison for modeled methane outputs while the figure here shows the same 

comparison for observed methane enhancements. Similar to the model analysis in Fig. 4, 

we also find that the relationships between observed methane enhancements and 

meteorology are often strongest for local wind speed. This result provides further 

confirmation of the analysis in Fig. 4. 

 

 
Figure S1.  Time series of MMR at site AMT for all 4 modeling scenarios and observed 

trends  
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Figure S2.  Time series of MMR at site BAO for all 4 modeling scenarios and observed 

trends  
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Figure S3.  Time series of MMR at site LEF for all 4 modeling scenarios and observed 

trends  

 

Figure S4.  Time series of MMR at site SGP for all 4 modeling scenarios and observed 

trends  
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Figure S5.  Time series of MMR at site STR for all 4 modeling scenarios and observed 

trends  
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Figure S6.  Time series of MMR at site WBI for all 4 modeling scenarios and observed 

trends  

 

Figure S7.  Time series of MMR at site WGC and for all 4 modeling scenarios and 

observed trends  
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Figure S8.  Time series of MMR at site WKT for all 4 modeling scenarios and observed 

trends 

 

Figure S9.  Observed methane enhancement at site BAO with observation frequency  
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Figure S10.  Observed methane enhancement at site WBI with observation frequency  

 

Figure S11.  Observed methane enhancement at site WGC with observation frequency  



 

 

11 

 

 

 

Figure S12.  Correlation coefficient between modeled MMR and PBL height parameters 

for all in-situ monitoring sites. 
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Figure S13. Correlation coefficient between modeled MMR and vertical wind speed for 

all in-situ monitoring sites. 
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Figure S14. Correlation coefficient between modeled MMR and horizontal windspeed 

for all in-situ monitoring sites. 
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Figure S15. Correlation coefficient between observed MMR and PBL height for all in-situ 

monitoring sites. 
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Figure S16. Correlation coefficient between observed MMR and vertical windspeed for 

all in-situ monitoring sites. 
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Figure S17. Correlation coefficient between observed MMR and horizontal windspeed 

for all in-situ monitoring sites. 

S3 Additional details on the analysis for GOSAT observations 

This section includes supplementary figures describing analysis of the GOSAT 

observations and the associated model simulations. Figures S18-S21 display the trends in 

modeled MMR at GOSAT observation locations, averaged into 4° by 4° latitude-

longitude grid boxes. These figures display the results for all four of the modeling 

scenarios, in contrast to Fig. 2 in the main article, which only displays the results for 

scenario three (no trend in emissions, IAV in meteorology). Figures S18-S21 show that 

the simulated trend in emissions yields a relatively small change in the model outputs; 

the trends in MMR for scenario one (trend in emissions, IAV in meteorology) are similar 

to the trends in MMR estimated for scenario three (no trend in emissions, IAV in 
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meteorology). Similarly, the estimated trends in scenario two (trend in emissions, no IAV 

in meteorology) are similar to the estimated trends in scenario four (no trend in 

emissions, no IAV in meteorology). By contrast, the largest difference among simulations 

(i.e., the largest difference in the estimated trends) is between scenarios that do and do 

not include IAV in meteorology. Specifically, scenarios one and three, which include IAV 

in meteorology, are most different from scenarios two and four, which do not include 

IAV in meteorology. This analysis using GOSAT observations parallels the conclusions of 

the analysis for the in-situ observation sites; trends in emissions have a modest impact 

on trends in MMR while IAV in meteorology has a much larger impact. 

 Figures S22 - S28 further display modeled MMR time series at several 

prototypical locations (i.e., for several 4° by 4° latitude-longitude grid boxes). These 

figures provide visualization of the model and observational outputs that are used in 

trend fitting. Each figure displays annually-averaged MMR for each modeling scenario, 

and trend lines fitted to each of these model time series. These figures further reinforce 

the large differences between model simulations that do and do not include IAV in 

meteorology (e.g., scenarios one and three versus two and four). 

 Note that we also subtract a methane background or boundary condition from 

the GOSAT observations before plotting the time series in Figures S22 - S28 and before 

fitting a trendline, as in Fig. 2. By subtracting a background or boundary condition, we 

remove global methane trends from the analysis and focus only on trends over North 

America. We construct this methane background using the same approach as in Sheng 

et al. (2018). Specifically, within each year and each 4° by 4° grid box, we identify the 

GOSAT observations with the lowest observed mixing ratios (the lowest 5th percentile). 

We then average those observations in the lowest 5th percentile and use this average as 

the methane background for that year in that grid box. Sheng et al. (2018) used this 

approach to calculating the background because multiple existing studies have used 

similar percentile approaches for estimating regional backgrounds (e.g., Goldstein et al. 

1995). 

 The approach used to estimate the background for GOSAT observations is not 

the same as the approach used for in situ observations in this study (Sect. S1). We do so 

for multiple reasons. First, we want to directly compare against existing studies of 

methane emissions from North America and have therefore used the same approach for 

GOSAT and in situ observations, respectively, as in existing studies (e.g., Jeong et al. 

2013, Miller et al. 2013, and Sheng et al. 2018). Second, there is always a possibility that 

GOSAT observations may exhibit biases relative to in situ observations. We therefore use 

GOSAT observations to build the background for the GOSAT analysis and in situ 

observations to build the background for the in-situ analysis. This approach ensures that 

any discrepancies between in situ and satellite observations do not contaminate the 

estimated background. 

The final set of figures associated with this section of the supplement provides more 

in-depth visualization of the relationship between MMR and the magnitude of the local 

footprint (Fig. S29-S35). In the main article, we argue that local meteorological processes 

are likely driving IAV in MMR at the GOSAT observation sites. We argue this point in the 

main article by exploring correlations between MMR and the annually-averaged 
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magnitude of the local footprint (Fig. 3). Note that we define the local footprint as a 4° 

latitude/longitude radius area around the observation location. Figures S29-S35 show 

scatter plots comparing MMR and the magnitude of the local footprint for several 

prototypical locations. In Fig. 3, we find that MMR and the magnitude of the local 

footprint are closely correlated at most locations. The scatterplots shown here further 

confirm that point. 

 

 

Figure S18. Modeled MMR trends using GOSAT observations for scenario 1 

 

6.79

5.18

−2.5

−91.19

4.81

−2.78

−5.63

−2.83

6.94

−0.54

16.69

1.43

0.42

14

1.57

2.39

0.25

−2.36

0.98

−1.34

6.42

6.52

4.46

2.84

−7.37

−2.4

7.08

−0.45

1.61

1.01

−1.47

3.44

10.1

8.47

4.72

4.08

−2.47

−3.12

7.3

2.79

4.96

5.8

4.81

0.02

−2.42

1.23

3.25

4.37

3.88

4.1

1.65

−2.56

−6.15

10.15

9.27

3.49

4.3

−2.21

1.19

2.69

1.14

3.48

7.01

4.56

1.43

7.48

−0.76

1.17

14.94

0.5

−19.36

27.45

15.96

2.84

30

40

50

−120 −100 −80

Longitude

L
a
t
i
t
u
d
e

% a 1

4 15

3 4

2 3

1 2

0.01 1

0.01 0.01

1 0.01

2 1

3 2

4 3

15 4

−2.14

−4.9

−2.5

−0.31

−1.73

−10.76

−5.82

−10.99

1.23

−0.95

2.92

−2.32

−11.25

−1.62

−5.33

2.08

−6.44

−5.12

−4.9

2.98

−5.54

−2.56

−6.18

−12.98

−12.37

−2.46

−0.73

−2.76

−4.87

−1.4

−4.14

−1.48

−6.92

−4.17

−5.61

−4.84

−2.05

−0.84

2.37

5.69

0.54

5.5

−2.16

−0.47

−2.55

−2.15

−6.25

0.14

0.15

0.95

−4.69

−12.74

−5.09

−0.16

−1.6

−5.81

3.68

−8.77

−3.76

−3.58

−4.29

4.91

−1.44

−0.18

2.5

2.57

−6.26

4.13

2.16

−2.43

14.86

8.69

−0.39

−10.9

30

40

50

−120 −100 −80

Longitude

L
a
t
i
t
u
d
e

% a 1

4 15

3 4

2 3

1 2

0.01 1

0.01 0.01

1 0.01

2 1

3 2

4 3

15 4



 

 

19 

 

Figure S19. Modeled MMR trends using GOSAT observations for scenario 2 

 

Figure S20. Modeled MMR trends using GOSAT observations for scenario 3  

 

Figure S21. Modeled MMR trends using GOSAT observations for scenario 4 
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Figure S22. Time series of MMR for GOSAT prototypical location 1 (West Washington 

State) 

 

Figure S23. Time series of MMR for GOSAT prototypical location 2 (West Kansas) 
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Figure S24. Time series of MMR for GOSAT prototypical location 3 (East Kansas) 
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Figure S25. Time series of MMR for GOSAT prototypical location 4 (Chicago area) 

 

Figure S26. Time series of MMR for GOSAT prototypical location 5 (West New York - 

West Pennsylvania) 
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Figure S27. Time series of MMR for GOSAT prototypical location 6 (West Virginia - 

Southwest Virginia) 

 

Figure S28. Time series of MMR for GOSAT prototypical location 7 (East New York - East 

Pennsylvania) 
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Figure S29. Scatter plot of total modeled enhancement vs. local footprints for GOSAT 

prototypical location 1 (West Washington State) 
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Figure S30. Scatter plot of total modeled enhancement vs. local footprints for GOSAT 

prototypical location 2 (West Kansas) 

 

 

Figure S31. Scatter plot of total modeled enhancement vs. local footprints for GOSAT 

prototypical location 3 (East Kansas) 
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Figure S32. Scatter plot of total modeled enhancement vs. local footprints for GOSAT 

prototypical location 4 (Chicago area) 
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Figure S33. Scatter plot of total modeled enhancement vs. local footprints for GOSAT 

prototypical location 5 (West New York - West Pennsylvania) 

 

Figure S34. Scatter plot of total modeled enhancement vs. local footprints for GOSAT 

prototypical location 6 (West Virginia - Southwest Virginia) 
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Figure S35. Scatter plot of total modeled enhancement vs. local footprints for GOSAT 

prototypical location 7 (East New York - East Pennsylvania) 

 

S4 Sensitivity simulations 

We conduct two sensitivity tests at sites in oil and gas producing regions (SGP and 

WKT) to (1) evaluate the sensitivity of the STILT model outputs to the meteorological 

product used, and (2) investigate possible effects of gaps or irregularities in atmospheric 

sampling. 

For the first sensitivity study, we generate a second set of STILT simulations using 

meteorology from North American Mesoscale Forecast System 12 km (NAM-12) (NCEP, 

2015). We use NAM-12 as an alternative meteorology product in the sensitivity 

simulation because this product has been used in several existing regional GHG 

modeling studies (Huang et al. 2019; Ren et al. 2018; Sargent et al. 2021). This product 

also has a relatively fine spatial resolution (12 km) relative to some other meteorological 

products, making it a good choice for regional-scale GHG modeling. Figures S32a and 

S33a show the model simulations using NAM-12. Both figures show the monthly-

average MMR (i.e., no methane background or boundary condition added; not de-

seasonalized). This setup for Figs. S32-33 allows for a direct visual comparison among 

the different sets of model outputs. 

In both the NAM-12 STILT (Fig. S35a and S36a) and WRF-STILT (Fig. S35c and S36c) 

simulations, a trend in emissions has a small impact on the overall modeled timeseries. 

For example, the differences between S1 and S3 are small relative to overall variability in 
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MMR across both sets of model results. By contrast, we do find that the two models 

sometimes yield different MMR estimates for individual months. For example, NAM-12 

tends to estimate higher peak MMR values relative to WRF simulations. Despite these 

differences between models, the overall impact of a trend in emissions is similar relative 

to the overall variability in each timeseries.  

We further conduct a sensitivity test to evaluate the possible impacts of irregular 

sampling on the modeled timeseries. In general, flask samples are collected in the 

afternoons at each tower site, but there is some variability and gaps in sampling 

frequency. For example, there are typically 30-40 flasks available per month at WKT in 

years 2008-2010, but sampling frequency drops to ~10 observations per month in years 

2012-2015. There are also individual months with relatively few samples, including 

September, 2008, which had about a quarter as many observations at WKT compared to 

surrounding months. In contrast to WKT, SGP consistently has been 4-5 observations per 

month during the study period.  

In this sensitivity test, we compute NAM-12 STILT footprints for 1pm local time each 

day and construct modeled timeseries based on this output (Figs. S35b and S36b). The 

timeseries at WKT look nearly identical to one another; the model simulations with a 

fixed, daily sampling time look very similar to the modeled timeseries using the actual 

observed sampling times (Figs. S36a-b). By contrast, the simulations at SGP show 

noticeable differences compared to the timeseries using observed sampling times (Figs. 

S35a-b). We suspect that the low sampling frequency at SGP yields a monthly-averaged 

timeseries with high variability; the small number of samples collected each month 

means that the monthly average can vary greatly from one month to another. By 

contrast, the timeseries in the fixed experiments displays much less month-to-month 

variability, likely because there are more model points in each month to average over. 

Overall, we conclude that sampling frequency and regularity can have an impact on 

MMR, particularly when those timeseries are averaged to aggregate timescales (e.g., 

monthly). With that said, the impact of a trend in emissions is small in all cases relative to 

overall monthly variability in MMR (e.g., S1 versus S3 in Figs. S35-36). 
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Figure S36. Comparison between monthly averaged MMR timeseries at site SGP for 

all 4 modeling scenarios using NAM12, NAM12 with fixed sampling time, and WRF 

meteorology products 
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Figure S37. Comparison between monthly averaged MMR timeseries at site WKT for all 

4 modeling scenarios using NAM12, NAM12 with fixed sampling time, and WRF 

meteorology products 
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