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layer model fits the data best: a broad vertical cone near the base of RIS (500 m thick), a thick vertical girdle, orientated

perpendicular to flow, in the middle (1200 m thick) and a tilted cone fabric in the uppermost 400 m. Such a fabric causes

a depth-dependent strength profile of the ice with the middle layer being ˜3.5 times harder to deform along flow than across
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Key Points:

• Split shear waves from basal microseismicity are used to invert for ice
fabric.

• The preferred model has three depth layers of distinct fabric (0-400m
depth: tilted cone, -1600m: thick girdle, -2200m: vertical cone).

• Anisotropic ice flow modelling with this model shows that viscosity varies
with depth, direction and component of deformation.

Abstract

The crystal orientation fabric of glacier ice severely impacts its strength and
flow. Crystal fabric is therefore an important consideration when modelling ice
flow. Here, we show that shear wave splitting (SWS) of glacial microseismic-
ity can be used to invert for seismic anisotropy and ice fabric at Rutford Ice
Stream (RIS). RIS is a fast-flowing Antarctic ice stream, a setting crucial for
informing flow models. We present >2000,000 SWS measurements from glacial
microseismicity, registered at a 38-station seismic network located ~40 km up-
stream the grounding line. A representative subset of this data is inverted for
ice fabric. Due to the character of SWS, which accumulates along the ray path,
our method works best if additional information on the depth structure of the
ice is available, which are radar measurements in our case. We find that the
following three-layer model fits the data best: a broad vertical cone near the
base of RIS (500 m thick), a thick vertical girdle, orientated perpendicular to
flow, in the middle (1200 m thick) and a tilted cone fabric in the uppermost
400 m. Such a fabric causes a depth-dependent strength profile of the ice with
the middle layer being ~3.5 times harder to deform along flow than across flow.
At the same time, the middle layer is a factor ~16 softer to shear than to com-
pression or extension along flow. If such a configuration is representative for
fast-flowing ice streams, it would call for a more complex integration of viscosity
in ice sheet models.
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Plain Language Summary

We introduce a method to derive information on the ice viscosity of a >2 km
thick Antarctic Ice Stream by using glacial microseismicity. When an external
force is applied to ice, the individual ice crystals are rearranged in a specific
configuration. Dependent on this configuration, the bulk ice is then harder
or more easy to deform, dependent on the direction of applied force. This is
behavior can be expressed through the viscosity tensor, which is an important
parameter in ice sheet models.

At the same time, ice is highly anisotropic, meaning that the wave speed of
seismic waves depends on the direction of propagation. We use a seismological
method to measure this anisotropy. As different ice crystal configurations fea-
ture a characteristic anisotropy pattern we can then use these measurements to
invert for the crystal configuration in the ice. Our results show that the crystal
configuration varies with depth, which severely affects the ice stream’s behavior
upon deformation. Such an behavior is so far not included in most ice sheet
models.

1 Introduction

Much of the uncertainty in current scenarios of future sea level rise originate
from different predictions for the contribution of the West Antarctic Ice Sheet
(IPCC, 2007). This contribution is mostly constrained by large-scale ice sheet
models, which are designed to understand the ice sheet behavior in response
to external forces (Graham et al., 2018). An essential part of such models are
flow relations, which relate applied stress to the deformation in the ice. Stress
modifies the internal structure of glacial ice through the alignment of individual
anisotropic ice crystals into preferred crystal orientation fabric (e.g., Faria et al.,
2014b). The internal crystal structure of ice, hereafter referred to as ice fabric,
then influences the mechanical properties, and therefore ultimately the flow pat-
tern of ice streams, as different types of ice fabric deform distinctly under stress
(Alley, 1988). This is because the alignment of ice crystals happens by creeping
along the c-axes of the hexagonal ice crystals (Duval et al., 1983). Depending
on the applied forces, different types of ice fabric can develop. If ice crystals are
subject to uniaxial compression, their c-axes orient into a cone-shaped distribu-
tion around the direction of applied stress, commonly referred to as ‘cone’ or
’cluster fabric’ (Figure 1a). Uniaxial compression results in ’thick girdle fabric’,
where c-axes are oriented perpendicular to the compression axis (Figure 1b).
A ’partial girdle’ fabric may develop under a combination of pure and simple
shear (Figure 1c) (Alley, 1988; Maurel et al., 2015). These different ice fabric
types have a characteristic pattern of anisotropy (the variation of direction of
mechanical properties, including seismic wave speed), which is different from
single-crystal ice, and which varies dependent on the azimuth and on the inci-
dence angle from which the fabric is sampled (Figure 1). Laboratory and field
studies have shown that the anisotropy of ice significantly influences ice defor-
mation and should therefore be incorporated into ice sheet models (Graham et
al. (2018) and references therein). Knowledge of the present-day ice fabric is
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therefore essential for predicting the future behavior of ice streams when using
flow models (Azuma & Goto-Azuma, 1996).

Commonly, anisotropy is implemented in ice sheet models through a tensional
relationship for bulk ice viscosity (Faria et al., 2014b; Gagliardini et al., 2009;
Ma et al., 2010) or as a parameter, determined empirically from the surface
stress filed (Budd et al., 2013; Graham et al., 2018). This is because direct
observations of ice fabric from drilling or coring are mostly located near ice
domes (Faria et al., 2014a, 2014b), where cone fabrics, which are vertically
transverse isotropic, are common. However, recent measurements from Rutford
ice stream (RIS), a fast-flowing West Antarctic ice stream, conducted using non-
invasive geophysical methods, suggest that the mechanical properties of ice vary
significantly laterally and with depth in such settings (E. C. Smith et al., 2017;
T. M. Jordan, 2022). These results call for a more complex consideration of
anisotropy in ice sheet models.

Non-invasive geophysical methods, like active and passive seismic imaging, or
radar sounding (e.g., Picotti et al., 2015; E. C. Smith et al., 2017; T. M. Jordan,
2022), make use of the fact that the different ice fabric types feature different
patterns of anisotropy (the variation of elastic or electromagnetic wave speed
with direction of propagation). Compared to direct observations, such methods
are less time and cost intensive in the field but result in some ambiguity in the
ice fabric inferred. The radar method used by Jordan et al. (2022), for instance,
is only sensitive to crystallographic preferred orientation in the horizontal plane.
Thus, only the difference of the horizontal eigenvalues of the fabric-orientation
tensor can be determined. By contrast, using shear wave splitting (SWS) of
seismic waves, Smith et al. (2017) were able determine two fabric types that
seem to be present in the ice of RIS. However, they could not resolve the spatial
location of these different fabric types as SWS integrates along the entire ray
path of seismic waves (Silver & Savage, 1994), Here, we aim to obtain a more
comprehensive picture of ice fabric at RIS by making use of the advantages of
different geophysical methods. First, we generate SWS measurements similar
to Smith et al. (2017). We then use the seismic waveforms to invert for ice
fabric, implementing a multiple-layer inversion scheme (Wookey, 2012). We
show that the problem of unknown spatial location of different fabric types
can be overcome by using depth-information from radar measurements (T. M.
Jordan, 2022) as prior constraints for the inversion. This approach allows us to
narrow down the depth range of different ice fabric types and to calculate the
full viscosity tensor for these depth domains. Both are essential for the transfer
of geophysical results to the parameter space used in ice sheet modelling.
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Figure 1: Schematic plots of ice fabric properties and expected SWS pattern on
a polar diagram. Fabric figures are adapted from Maurel et al. (2015) and Smith
et al. (2017). In the schematic diagrams, the envelope of c-axes is highlighted
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in blue, while black circles at the base of the plot show the c-axes distribution on
an upper hemispheric plot. Θ describes the opening angle of the envelope, while
�, � and � are the rotation angles around the coordinate axes, which are used in
the inversion (see Section 4). Insets show upper hemisphere polar diagrams of
the percentage of shear wave anisotropy (�VS), expected for the different fabric
types. The associated coordinate system is given in the top right. North refers to
an azimuth of 0°. a) Vertical (� =0°; left) and horizontal (� =90°; right) cluster
fabric with Θ=30°. b) Vertical (� =0°; left) and horizontal (� =90°; right) thick
girdle fabric with Θ=15°. c) Vertical (� =0°; left) and horizontal (� =90°; right)
partial girdle fabric with Θ=15°.

2 Site Description and Dataset

Our study area is in a central section of Rutford Ice Stream (RIS), 40 km up-
stream from the grounding line (Figure 2). RIS flows approximately southward
into the Filchner-Ronne Ice Shelf with a velocity of 375 m/a (Adalgeirsdóttir et
al., 2008). Beneath the 8 x 8 km 38-station seismic array (Figure 2), which was
deployed as part of the BEAMISH project (A. M. Smith et al., 2020), the ice
thickness is approximately 2.2 km (King et al., 2016). Ice flow direction, deter-
mined from the GPS instruments attached to our seismometers, is 148° relative
to north. Due to the movement of the ice over its bed, many microearthquakes
(local magnitude smaller than –0.3) are created in this section of RIS (Kufner
et al., 2021; E. C. Smith et al., 2015). These events are characterized by rel-
atively simple waveforms, featuring an impulsive P onset with 10 to 200 Hz
frequency followed by a shear wave with frequencies between 30 and 100 Hz
(Kufner et al., 2021). In cases where the source polarization is not parallel
to the ice fabric symmetry axes, the shear waves of these events are split into
two orthogonally polarized quasi shear waves (Figure 3), which is known as
shear wave splitting (SWS). The quasi shear waves travel at different speeds,
dependent on the ray path orientation relative to the ice fabric. The delay time
(dt) between the two shear wave components is an indicator of the strength of
seismic anisotropy along the ray path, the polarization direction of the quasi-
shear waves depends on the symmetry of anisotropy along the ray path (e.g.,
Silver & Chan (1991), Savage (1999), Teanby (2004)). Here, we measure dt
and Φ (the polarization direction of the faster of the two quasi-shear waves)
from 69,629 microearthquakes (Figure 2) recorded at 38 seismometers during
approximately three months from November 2018 to February 2019, using the
automated SWS splitting software MFAST (M. K. Savage et al., 2010). Wave-
forms were recorded with a sampling frequency of 1000 Hz by Reftek RT-130
data loggers with 4.5 Hz three-component geophones (see Kufner et al. (2021)
for details). The event-station pairs used in this study have been selected from
the event catalog of Kufner et al. (2021), based on the availability of both P-
and S-picks and a focal mechanism solution. The latter allowed us to compare
the slip vector from focal mechanisms and SWS as an additional quality control.

Previously, Smith et al. (2017) used a 10-station seismic array at a similar
location to detect SWS of 5,951 event-station pairs and to invert the SWS pa-
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rameters for ice fabric. Smith et al. (2017) tested combinations of two different
fabric types (hereafter referred to as ’mixed’ fabric) as potential candidates that
could create the observed SWS pattern. They concluded that the anisotropy ob-
served in their SWS data could be due to a horizontal partial girdle, orientated
with a symmetry axis perpendicular to ice flow, combined with a cluster fabric
with a relatively large opening angle of 73° (see Figure 1 for a schematic sketch
of different ice fabric geometries). However, Smith et al. (2017) noted that
the inversion for mixed fabric is unconstrained, as SWS samples the anisotropy
along the entire ray path. Thus, the two fabric types may be spatially separated
in the ice stream. Their observations indicate a region of mostly extension and
horizontal confinement (expressed through the horizontal partial girdle) in com-
bination with a weakly anisotropic region (expressed through the cone with large
opening angle). The weakly anisotropic region could either be the firn layer, or
a deeper region with thin layering, which would weaken the bulk anisotropy. It
was later noted that a horizontal partial girdle fabric was never observed directly
in boreholes (Lutz et al., 2020). Thus, although this model explains the SWS
data, it remains a topic of discussion if this configuration is a realistic scenario
in a fast-flowing ice stream.

A later radar study by Jordan et al. (2022) delineated the shallow depth struc-
ture of ice fabric at RIS in more detail. At a site, overlapping with the seismic
array used in this study (site A1 in Jordan et al. (2022); see Figure 2), the
azimuthal anisotropy was observed to change spatially in the upper 400 m with
a symmetry axis within ±20° of the current flow direction of RIS. In the upper
~150 m, anisotropy is closely orientated along the surface strain field, whereas
the symmetry axes in a deeper (150-400 m) layer appeared rotated by ~20° in a
clockwise direction relative to shallower ice. Surface strain rate was calculated
by Jordan et al. (2022) from geodetic data. The section of RIS in which our
study region is located, is characterized by small along-flow compression and
small lateral extension relative to flow. By contrast, further upstream, along-
flow extension is more dominant. Thus, Jordan et al. (2022) suggested that
the ice fabric configuration they measure at site A1 might arise as the fabric is
created further upstream and then buried and advected. However, due to the
radar survey method, only the symmetry axes of the vertical anisotropy and
the intensity can be modelled. For instance, a thick girdle or a horizontally
orientated cone fabric would yield the same pattern in the radar data. Deeper
(~400-1600 m depth), the method used by Jordan et al. (2022) did not have
sufficient coherence in the data to detect the axes of anisotropy. Notably, coher-
ence does improve deeper than 1600 m and a region with azimuthally invariant
anisotropy was inferred. This suggests either isotropic ice or a fabric with a
vertical axis of symmetry. Furthermore, the sharp recovery of coherence could
mean that the ice fabric shallower than 1600 is different from that in the deepest
ice.

The combination of results from these two studies suggests that the ice fabric of
RIS is depth-dependent. Potentially three or more layers of distinct ice fabric
might be sharply separated from each other. Intensity and fabric types in these
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layers are narrowed down through the studies of Smith et al. (2017) and Jordan
et al. (2022) but could not be uniquely defined. In this study we extend the
seismic anisotropy study of Smith et al. (2017), making use of the results from
Jordan et al. (2022) to obtain a more comprehensive picture of the variation of
ice fabric with depth, which then allows to calculate the full fabric orientation
tensor and ice viscosity.

Figure 2: Geographic setting of Rutford Ice Stream, location of seismic array and
earthquake locations used for SWS analysis. The yellow triangle shows the radar
survey site of Jordan et al. (2022), which data are used to design input models
for inversion. Stations (squares) are color coded according to the number of good
SWS results registered at this station. Gray circles are all microearthquakes on
which waveforms SWS was performed (167,262 events), black circles are those
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with good SWS results (69,629 events), red circles and light red ray paths highlight
those selected for ice fabric inversion (1090 events). Inset shows the location of
Rutford Ice Stream relative to the Antarctic continent.

3 Shear-wave Splitting

3.1 Method and Data Processing

To calculate SWS parameters from our waveform data, horizontal seismograms
are filtered between 8 and 125 Hz, using a two-pole Butterworth filter, and
downsampled from 1000 to 500 Hz. This further increases the number of high-
quality splitting measurements at larger epicentral distances, while leaving re-
sults at smaller epicentral distances unchanged compared to the unfiltered case.
Downsampling increases processing speed, while preserving the frequencies of
interest. In the following, we refer to this pre-processed data as ‘unfiltered’.

We use the MFAST software (M. K. Savage et al., 2010) for SWS analysis.
MFAST implements a minimum eigenvalue analysis algorithm (Silver & Chan,
1991) to calculate SWS in multiple time windows around a specified S-wave
onset. For each of these measurement windows, inverse splitting parameters
(i.e., a rotation to the fast-slow reference frame, followed by a time-shift) are
applied to the horizontal waveforms. This aims to find the combination of
splitting parameters that minimizes the quotient of the two eigenvalues (�2/
�1)* �2 (referred to as �2’ in the following) of the covariance matrix of the two
horizontal traces. During this calculation, the mean of the two traces is removed,
which stabilizes the solution. In addition to the two splitting parameters (Φ and
dt), a by-product of the minimum eigenvalue method is the initial polarization
direction (which depends on the source moment tensor). As SWS measurements
can depend on the chosen analysis window, a cluster analysis method is then
implemented on the splitting results from a number of differing-length individual
measurement windows to find the most stable set of splitting parameters (see
Teanby et al. (2004) for more details). In MFAST, the start and end point
of the measurement windows are variable, dependent on an event’s dominant
frequency. Constraint is the measured Φ and dt is estimated using an F-test
(Silver & Chan, 1991; Walsh et al., 2013).

Here, we first calculate the signal-to-noise ratio of all candidate events based on
time windows 0.1 s prior to and after the S-onset on the horizontal components
and require a minimum signal-to-noise ratio of two for further analysis. In the
case that half the S-P time is smaller than 0.1 s, we restrict the noise window to
half the S-P time. We search Φ from 0 to 180° and dt from 0 to 0.1 s, based on
trial runs with the largest possible dt. We find our SWS results to be remark-
ably stable across different analysis windows as glacial microseismicity at RIS
features generally simpler waveforms than tectonic earthquakes. We therefore
use only two analysis time windows prior and four after the S-onset. Only when
no stable cluster could be found is the number of measurement windows prior
to the S-onset increased to six. In addition, the same restriction criteria for the
signal-to-noise analysis is implemented, so that P wave energy is never included
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in the analysis. For our final set of SWS results, measurement windows range
from 0.013 to 1.25s prior and 0.050 to 1.01s after the S-onset, while the mean
dominant frequency is 29 Hz. After SWS analysis, we obtain 705,441 sets of
splitting parameters from the initial 989,686 event-station pairs. Depending on
the stability of the cluster and the error range of the final splitting parameters,
MFAST adds a quality grade to the data (see details in Savage et al. (2010)).
Here, we use these grades for reference, but additionally apply data-set spe-
cific quality restrictions to our final splitting measurements. These criteria have
been defined based on visual inspection of a subset of results. We require the
calculated error in Φ to be smaller than 15° and the error in dt to be smaller
than 0.005 s. Furthermore, a quality criterion is defined based on the ampli-
tude ratio on the component, which is normal to the initial source polarization
direction, before and after correcting for splitting (stc/sto) and based on the
cross-correlation coefficient of fast and slow shear wave after correcting for split-
ting (coeff). We set: stc/sto <0.6 and coeff>0.7 or stc/sto <0.5 and coeff>0.6
or stc/sto <0.45 and coeff>0.5.

Figure 3 shows examples of two SWS measurements, one high quality result (Fig-
ure 3a) and a second example (Figure 3b) of lower quality. SWS is successfully
measured and removed in the first case. By contrast, the cross-correlation coef-
ficient between corrected fast and slow component in the second case is smaller
and the maximum in the misfit surface of 1/�2’ is less pronounced. Notably, the
lower quality of the second example is not due to noise but rather due to the
structure of the waveforms themselves.

To test if the SWS results depend on filter frequency, we recalculate splitting
parameters at different frequencies for one day of data (1st of January 2019;
~5,800 station-event pairs). We test the frequency bands 20-40 Hz and 30-90
Hz and find that many results (between 67% and 84%) are similar within the
standard errors of the different measurements. The difference in results between
the filters is mostly in dt due to cycle skipping as the finer-scale structure of the
waveforms is removed in the filtered waveforms (see details in Supplementary
Figures S1 and S2). This highlights the importance of conducting the SWS
measurements with the broadband waveforms, at least for this specific dataset.
Measurements where no cycle skipping occurs do not show a variation of splitting
parameters with filter frequency and a high percentage (93% and 95% for dt in
the 30-90 Hz and 20-40 Hz range, respectively, and 96% and 74% for Φ in the
30-90 Hz and 20-40 Hz range, respectively) are similar within the uncertainty
range of the individual measurements (Supplementary Figures S1 c and d). This
agrees with Smith et al. (2017), who also did not find evidence of frequency
dependence in their results.
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Figure 3: Examples for SWS results. Subfigures i show the horizontal traces
rotated into (p) and perpendicular (p�) to the polarization direction, which is
determined in MFAST together with the splitting parameters. ‘Corrected’ refers
to traces rotated into and perpendicular to the polarization direction after cor-
rection for the optimum anisotropy parameters. Amplitudes of the traces are

10



normed. The splitting window is highlighted in gray, the location of the S-pick
in red. Time is relative to the start of the data trace. For an optimum set
of splitting parameters, the energy on ‘corrected p�’ is minimized. Subfigures ii
show waveforms (top) and particle motion (bottom) of the fast and slow compo-
nents. Original fast and slow waveforms are plotted in the two left panels, while
for anisotropy corrected waveforms are plotted in the two right panels. As in (i),
the red line represents S-pick. Subfigures iii show the misfit surface of �2’. The
95% confidence interval corresponds to the bold “1” contour. Other contours
demarcate multiples of the 95% confidence interval. Contours are only shown
until the tenth multiple. The optimal splitting parameters are highlighted as red
cross. a) Example for high quality results, representative for events with near
vertical incidence angle (event date time: 2019/021/01 01:01:17; magnitude:
-1.15; epicentral distance: 0.14 km; azimuth: 137°; incidence angle: 5°). b)
Example for a result with worse quality. For instance, the final SWS parame-
ter do not completely remove the energy on the ‘corrected p�’ component (event
date time: 2019/01/01 00:18:09; magnitude: -0.79; epicentral distance: 1.72
km; azimuth: 352°; incidence angle: 26°). Such results mostly occur at larger
incidence angles but not for all azimuths.

3.2 Shear-wave Splitting Results

We obtained 202,651 SWS results (average/min./max. 5,333/74/13,677 results
per station; average/min./max. 3/1/16 results per event). The dataset is avail-
able online (Kufner et al., 2022). The distribution of these results in map view
(Figure 2) is representative of the available event and station distribution (i.e.,
more good splitting results in the center of the network, due to more available
rays and microearthquakes). Results are presented in Figures 4 on a polar plot
in upper hemispheric projection albeit many individual SWS overlap in this rep-
resentation. Therefore, we additionally calculated bin-wise averages (Figure 5),
which helps identify trends in the data. Here, and in the following analysis, we
use the percentage of anisotropy (�VS)  – the percentage of shear wave variation
from the average isotropic velocity (1944 m s-1) – instead of dt when visualiz-
ing SWS results. �VS is calculated as 100*(1944 m s-1 *dt)/(ray length). The
advantage of �VS is normalized with respect to ray-path length, compared to
dt.

Our SWS results include rays from all azimuthal directions, 0.01 to 4.9 km
epicentral distance and incidence angles from 1.2 to 42.9° (calculated from a
layered velocity model with a 100 m thick firn layer overlaying glacial ice, as
used by Kufner et al. (2021)). Few of the incidence angles therefore exceed
35°. For larger incidence angles, P-wave conversions might bias the SWS results
(Crampin & Lovell, 1991; Paulssen, 2004). However, as the general trend of
the SWS results is consistent between 30° and 43°, this set of results seems
unaffected by such a bias.

The initial shear wave polarization determined from SWS (average of 154°) and
the slip vectors from focal mechanisms, determined from the fault plane solu-
tions of Kufner et al. (2021) (average of 160°), are comparable (Figure 4c). As
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these two measures are determined independently, their similarity validates the
quality of the SWS parameters. Lastly, Figures 5b and c show the standard
deviation (�) of splitting parameters from the bin-wise averaged values. � is gen-
erally small (average � of �VS: 0.49%; average � of Φ: 15.7°), which suggests a
general consistency in the results throughout the study region.

Average �VS is 2.2% (min/max.: 0.16/6.6%), which is calculated from split
times between 0.0025 and 0.084 s (average: 0.029 s; average error: 0.00038
s). Average Φ is 61° (average error: 3.8°) but SWS parameters strongly vary
with azimuth and with incidence angle (Figures 4 and 5). Φ is dominantly
perpendicular to ice flow direction. The highest �VS values (up to 6.6%) are
measured for incidence angles smaller than ~15° (highlighted as feature f1/f1x
in Figure 5a). At incidence angles between ~15° and ~30°, �VS is smaller and
alternates in magnitude dependent on azimuth. The smallest �VS values (<1%)
are measured in four domains at ~60°, ~150°, ~240° and ~330° (highlighted as
features f2 in Figure 5a). These domains are oriented parallel and perpendicular
to the ice flow direction at the surface. For the other azimuthal orientations,
�VS is larger (between 2 and 4%) but Φ is rotated by approximately 20° relative
to the direction perpendicular to ice flow (highlighted as feature f3/f3x in Figure
4a). For the largest incidence angles (>30°), the variations in intensity of �VS are
less intense, and �VS is larger (between 2 and 4%) for all azimuths (highlighted
as feature f4/f4x in Figure 5a).
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Figure 4: a) Upper hemisphere plot of SWS measurements. Direction of bars
indicates Φ, length and color the percentage of anisotropy (�VS). Azimuth from
event to station (azi) is plotted clockwise from north, incidence angles of the
rays (inc. angles) as shown in the inset plot. Ice flow direction is drawn as gray
arrow. b) Rose diagram of Φ, plotted in 10° bins. Arrow represents the average
value. c) Rose diagram comparing initial S-wave polarization, determined from
SWS (red) and slip vectors (Kufner et al., 2021), determined from the events’
focal mechanisms (blue). Arrows represent average values.

In addition to these large-scale trends, we resolve a modulation of the splitting
results relative to the symmetry axis of ice flow direction: First, the SWS mea-
surements at small incidence angles are not purely perpendicular to flow but
exhibits a small rotation towards this symmetry axis in the south-west (at an
azimuth of ~240°; highlighted as feature f1x in Figure 5a). Next, we observe
a slight asymmetry in the intensity of the f3 domains: larger �VS is observed
in the south-west (at azimuths of ~285 and ~195°; highlighted as feature f3x in
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Figure 5a). Lastly, for the largest incidence angles (>30°), we observe larger
�VS in the south-west (highlighted as feature f4x in Figure 5a) compared to the
north-east. These patterns in the data remain stable, independent of whether
Null measurements (15% of all measurements, for which the difference between
Φ and initial polarization is <20°) are included or excluded from the polar plots
(Figure S4).

Based on the averaged bins (Figure 5), we investigate the dataset for temporal
and spatial changes in splitting parameters (Supplementary Section S1 and Fig-
ure S5). Few bins (<5%; from visual inspections) show a weak variation of �VS
in map view but these variations are not systematic across the different bins (e.g.
one bin exhibits larger �VS to the north-east whereas another bin exhibits larger
�VS to the south-west of the network). Moreover, variations from measurements
uncertainties are larger than these trends. Thus, we conclude that the variation
of splitting parameters in our study region is predominantly dependent on inci-
dence angle and azimuth. This is in accordance with the findings of Smith et al.
(2017) and suggests that potential spatial or temporal changes of ice properties
are within the uncertainty of the SWS method used here.
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Figure 5: a) Upper hemisphere plot of averaged SWS measurements. Averaging
is performed on bins of 3° incident angle. Azimuthal bins are adjusted dependent
on incidence angle, with one bin at an incidence angle of 0° and 48° bins at an
incidence angle of 40°. In each bin, weighted averages are calculated based on
the events’ signal-to-noise ratio (see Figure S3 for the weighting function) and
only splitting results with ACl quality from MFAST are included. Bottom inset
shows number of measurements included in each bin. The color scale is clipped to
highlight bins with few measurements. The maximum number of measurements
per bin is 5513, the mean is 531. Top inset shows labels of the main features
in the data as discussed in Section 3.2. b) and c) Upper hemisphere plot of
standard deviation (std) of �VS and Φ per bin.

4 Inversion for Ice Fabric
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4.1 Inversion Method and Input Data

We use the multiple layer SWS inversion scheme introduced by Wookey (2012)
to determine which ice fabric would yield the seismic anisotropy pattern in Fig-
ures 4 and 5. Within the inversion scheme, the subsurface is separated into
several depth domains, for which a specific ice fabric is defined. For each of
these depth domains, several ice fabric-specific parameters are varied over a
predefined range of values. In each layer, and for all combinations of ice fabric-
specific parameters, splitting parameters (Φ and dt) are then calculated based
on the anisotropic tensors of the fabric and the geometry of different input ray
paths (incidence angle and azimuth). Elastic tensors of ice fabric are defined
according to Maurel et al. (2015). The splitting parameters for each depth do-
main are then applied sequentially to the waveforms in reverse order (starting
from the surface) within the measurement window that had been used for the
SWS measurements. After sequentially applying the splitting parameters of all
depth domains, �2’ is calculated from the resulting waveforms similar to MFAST.
The algorithm then searches for the input set of fabric-specific parameters that
maximizes the inverse of the sum of �2’ of all input waveforms (1/Σ�2’). This
search for the best model is conducted via a nonlinear inversion scheme (Markov
Chain Monte-Carlo using a Metropolis-Hastings algorithm, see Wookey, (2012)
for more details on the method). Here, we use 200,000 test models in the algo-
rithm. Test runs with more models did not yield different results. Modifications
in the inversion scheme applied here, compared to the original version of Wookey
(2012), include removing the mean of the waveforms when calculating the covari-
ance matrix, using �2’ instead of �2, and adapting the inversion scheme for ice
fabric through implementing the elastic tensors. The latter is attributed to the
specific setting of a glacier, the former modification yielded more stable results
in trial inversion runs and was adapted from MFAST.

We determine the final model from the combination of ice fabric-specific values
that maximizes 1/Σ�2’. If several models yield equally high 1/Σ�2’, we used
the mean from all the best models. The uncertainty of each ice fabric-specific
parameter is defined from the range of all models that lie in the upper 20%
of 1/Σ�2’. We chose this value as it yielded comparable uncertainty bounds to
those derived for SWS in MFAST, when running the inversion for one ray only.

The main advantage of this inversion method is that it operates directly on
the waveforms. Therefore, bias that could be introduced by fitting a fabric
model to the final SWS results are prevented. However, as each input wave-
form contributes equally to the final solution, an equal distribution of input
data throughout the entire range of incidence angles and azimuths is important.
Therefore, we use only a representative subset of all waveforms, for which we
had calculated SWS results, as input for inversion. To ensure a representative
distribution of rays throughout the study region, we separate the region into
six lateral spatial domains, with the separation lines arranged parallel and per-
pendicular to ice flow direction. For each of these domains, we choose a subset
of available waveforms based on the averaged SWS results (Figure 5). For each
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spatial domain and for each of the averaged incidence angle-azimuth bins, only
the best station-event pair is chosen. ‘Best’, here refers to the event-station pair
with the largest cross-correlation coefficient of the corrected and rotated wave-
forms and the smallest uncertainty in Φ and �VS. In addition, only events for
which the cross-correlation coefficient is larger than 0.5 and the uncertainty in Φ
and �VS is smaller than 10° and 0.001%, respectively, are included. Lastly, only
events from incidence angle-azimuth bins for which the standard deviations of Φ
and �VS are smaller than 30° and 1.2% are included. These criteria ensure that
the event-station pairs used for inversion are truly representative of the entire
dataset. The final dataset then consists of 1,216 event-station pairs (Figure 2a;
also shown in Figure S6 in more detail).
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Figure 6: a) Comparison of inversion results. The best models feature small Σ�2’
and a small normalized uncertainty of all individual parameters (Σerror) and
are highlighted in purple. Plot colors, symbols and texts specifies the different
models: Green, red and blue shaded symbols refer to models with two fabrics
mixed (a vertical cone and one other fabric type), two-layer and three-layer
models. The two- and three-layer models always feature a vertical cone in the
bottom layer. The intensity of the plotted symbols refers to the fabric on top of
the basal cone while the symbol refers to the orientation of the fabric. For the
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three-layer models, the letters on top of the symbols specify the fabric type of
the third layer (h/v/m p = horizontal/vertical/tilted partial girdle, h/v/m g =
horizontal/vertical/tilted thick girdle, h/v/m c = horizontal/vertical/tilted cone).
b) Schematic plot illustrating model geometries and ice fabric combinations tested
in the inversion. Model geometry is inspired from the radar results of Jordan et
al. (2022). See Section 4.2 for a detailed explanation of the model setup.

4.2 Model Setup

Figure 1 shows SWS parameters expected for different ice fabric types, which
are either observed in ice cores or suggested previously for RIS. Comparing
these patterns to Figures 4 and 5, it is obvious that none of these fabric types
alone can explain the SWS measurements. Depth discrimination of anisotropy
is a challenge, as SWS is accumulated along the entire ray path, and as all
microearthquakes are located at the same depth. We overcome this limitation
by making use of the radar results of Jordan et al. (2022) to predefine the layer
structure for the inversion.

Jordan et al. (2022) resolve horizontally anisotropic fabric in the upper 400 m of
RIS. At greater depth, coherency in their data decreases sharply but recovers at
1600 m depth, where they observe a fabric type which is horizontally isotropic.
Based on these results, we define a three-layer model (Figure 6b): In the upper
two layers (surface to 400 m depth and 400 to 1600 m depth), we test all likely
fabric types (cone, thick girdle, and partial girdle). For each fabric type we run
three different models: during two model runs, the fabric is fixed to be either
vertical (� or �=0°; see Figure 1 for details on fabric geometry) or horizontal (�
or �=90°). In the third run, we invert for � or � as well. Theoretically, this third
model included the case of vertically or horizontally orientated fabric. However,
predefining the fabric orientation reduced the number of free parameters, sta-
bilizing the solution. In all model runs, we additionally invert for the opening
angles of the fabric and �, which is the rotation of the fabric relative to north.
The separation of the upper 1600 m into two layers is based on the assumption
that the sharp drop in coherency of radar results may arise from a change in ice
fabric. We also include the case that the ice fabric remained stable by inverting
for two-layer models in which the upper two layers are combined (Figure 6b).
In the lowermost layer (1600 m depth to glacial bed at approx. 2200 m), we pre-
define a vertical cone fabric of unknown opening angle, as Jordan et al. (2022)
observe a fabric with a vertical symmetry axis at this depth. One extreme case
of this fabric could be an opening angle of 90°, which is equivalent to isotropic
ice.

In addition to these three- and two-layer models, we invert for ’mixed’-fabric
models like Smith et al. (2017). The ’mixed’ fabric models are designed to
compare our inversion approach to Smith et al. (2017) and always include a
vertical cone and either a vertical thick girdle, a horizontal partial girdle or a
vertical partial girdle. We invert for the opening angles of these fabrics, their
mixing percentage and for the rotation of the girdle fabrics relative to north.
’Mixing’ of the two fabrics is calculated through Voigt-Reuss-Hill averaging.
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Lastly, we run sensitivity tests for the models that yielded the best results after
the two-, three-layer and ‘mixed’ model inversions, aiming to investigate how
much the final solutions depends on the predefined input constraints. Specifi-
cally, we vary the depth of the input model layers (from 0.2 km to 0.6 km depth
for the uppermost layer and 1.4 km to 1.6 km depth for the middle layer). This
minimizes any subjectivity in the interpretation of layer depth from radar mea-
surements. In addition, we run further three- and two-layer models, placing the
vertical cone fabric in the middle layer or leaving it out, aiming to determine the
dependence of the solution on the layer sequence and the presence of a vertical
cone fabric.

It should be noted that we refrained from including more than three depth
domains in the inversion. Test runs showed that solutions for four-layer models,
in which the uppermost layer was split into two 200 m thick layers, featured
generally very large errors. This suggests that layers thinner or equal to 200 m
may be too thin to be described adequately by the inversion method used here.

4.3 Inversion Results

To qualitatively compare all models, we plot Σ�2’ versus the summed and normed
uncertainty of all individual parameters (expressed as (Σerror in the following)
used in an inversion (Figure 6). The best models are expected to have small Σ�2’
and small Σerror. The smallest Σ�2’ value obtained from inversion is 2.71, which
corresponds to a reduction of 23% relative to the uncorrected data (Σ�2’=3.53).
It is worth bearing in mind that the results presented in Figures 6 include
models with a different number of inversion parameters. However, comparing
the number of free parameters with Σ�2’ shows no direct correlation (Figure
S7), suggesting that much of the variations illustrated in Figures 6 results from
the characteristics of input models and not from the different number of free
parameters.

Figure 6 illustrates that neither two-layer models nor three-layer models that
feature a cone fabric in the middle layer can explain SWS to a satisfying extent.
The two-layer models allow too little flexibility to capture finer scale trends in
the data. A cone fabric, even when oriented horizontally, cannot account for the
large �VS at small incidence angles. Four models yield comparably good results
(highlighted in Figure 6a, details of these models are given in Figures 7-9 and
Table S1). Interestingly, these models are composed of different fabrics (Figure
7). One of them is a ’mixed’ model (Figure 7a), composed of a vertical cone
and a horizontal partial girdle. The other three are three-layer models consist
of a vertical partial girdle in the center and a horizontal partial girdle in the
top layer (Figure 7b), a horizontal partial girdle in the center and a horizontal
cone in the top layer (Figure 7c), or a vertical thick girdle in the center and a
tilted cone in the top layer (Figure 7d). The uncertainties on the model fabric
parameters vary for the different models (Figure 8; Table S1). Generally, the
azimuthal orientation of the fabric in the middle layer (domain 2 in Figure 7)
is constrained best, while the opening angle of the vertical cone in the bottom
domain (domain 1) has a higher uncertainty.
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The anisotropy pattern and the �2’ distribution that arises from the four best
models is compared to results from SWS in Figure 9. Calculating SWS param-
eters for each event individually, best minimizes �2. E.g. Σ�2’=0.32 in the case
of the input data used in inversion, as a highest quality subset from all SWS
results was chosen. Nevertheless, all models obtained from the fabric inversion
resample the main features described in Section 3.2, which feature a higher per-
centage of anisotropy for small incidence angles and an alternating pattern of
smaller and larger �VS for larger incidence angles (Features f1/1x, f2 and f3/3x
in Figure 4). However, only the fourth model can explain the asymmetry of the
SWS data relative to ice flow direction (features f4/f4x and f1x, f2x in Figure
4). The recovery of these features mainly arises from the tilted cone fabric in
the uppermost domain of the model (domain 3 in Figure 7d).

We apply sensitivity tests for the three three-layer models, aiming to determine
the optimum depth of the domain boundaries and the significance of the vertical
cone fabric (see details in Section 4.2). Results are illustrated in Figure 10. For
all scenarios, the quality of the solution decreases, expressed by larger Σ�2’ and
Σerror values. This suggests that the initially defined domain depths, and a
vertical cone fabric in the lowest domain represent a model configuration closest
to the true situation. Furthermore, these tests show that the order of the depth
layers is not exchangeable. This is expected as the waveforms are sequentially
modulated along the ray path.
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Figure 7: Inversion results for each depth domain and fabric type from the
four best models as upper hemisphere plots. The associated coordinate system
is plotted in Figure 1. Ice flow direction of RIS is highlighted as black arrow.
Note that the incidence angles here refer to those of the rays in ice, which are
less steep than those at the surface. This notation is chosen when visualizing
the inversion results as the largest part of the ray paths is through the ice layer.
Insets show associated c-axes distribution in gray scale. a) Results from ‘mixed’
fabric inversion. The top panel shows the SWS pattern obtained from combining
the two fabrics, using Voigt-Reuss-Hill averaging. b-d) Results from three-layer
inversion. Each polar plot represents results from one depth layer. See Table S1
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and Figure 8 for the uncertainty ranges of the parameters. As argued in Section
5.2, we consider Model D as the most likely.

Figure 8: Uncertainty of model parameters for the four models presented in
Figure 7. All parameters are normed to the range from 0 to 1. See Table S1 for
the values in degrees and Figure 1 for the coordinate system used. a) ‘mixed’
model as presented in Figure 7a. Fabric 1 is a horizontal partial girdle, fabric 2
a cone. b-d) 3-layer models as presented in Figures 7 b-d.
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Figure 9: Inversion results from the four best models, compared to SWS results
from shear wave splitting. Subfigures i show an upper hemisphere plot of SWS
parameters for each ray (azi=0° corresponds to North; ice flow direction at
RIS is highlighted with a black arrow), while subfigures ii show �2’, averaged in
bins, similar to Figure 5. a) SWS parameters and �2’ from SWS of individual
rays (Σ�2’ = 0.32). b-e) SWS parameters and �2’ from inversion for ice fabric.
Details of the inversion results are listed in Table S1 and visualized in Figures 7
and 8. b) Results from the inversion for a combination of a vertical cone and a
horizontal partial girdle (Σ�2’ = 2.72). c) Results from a three-layer inversion
with a vertical cone at the base, a vertical partial girdle in the center and a
horizontal partial girdle in the top layer (Σ�2’ = 2.81). d) Results from a three-
layer inversion with a vertical cone at the base, a horizontal partial girdle in the
center and a horizontal cone in the top layer (Σ�2’ = 2.74). e) Results from a
three-layer inversion with a vertical cone at the base, a vertical thick girdle in
the center and a tilted cone in the top layer (Σ�2’ = 2.80).
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5 Discussion and Interpretation

5.1 Unambiguously constrained fabric components

Although composed of different fabric types, the four models with statistically
comparable fits (Figure 7) share several similarities: First, the vertical cone,
which was predefined in the lowermost model layer, or as one fabric component
of the ‘mixed’ model, has a wide opening angle (>70°) in all four models. Second,
the fabrics in the middle and top layers, or the second fabric component in the
‘mixed’ model, are oriented approximately perpendicular to ice flow direction.
Lastly, the fabric in the middle layer, or the second component in the ‘mixed’
model, features largest �VS in a band perpendicular to ice flow. It is due to the
characteristics of the observed SWS pattern (Figures 4 and 5) and due to the
anisotropy characteristics of the different ice fabrics that multiple combinations
are numerically comparable. Nevertheless, the inversion revealed that a basal
broad cone fabric in combination with a fabric, which features the elements
described above, is essential to explain the SWS pattern below RIS.

In addition, the inversion unambiguously allows us to exclude several scenarios.
First, it is unlikely that a horizontal cone fabric (see Figure 5a) exists in the
central layer. Such a fabric features a too small anisotropy percentage perpen-
dicular to flow and at small incidence angles and is therefore not compatible
with the SWS data. This is an important contribution in addition to results
from radar surveys, as such data cannot discriminate between a horizontal cone
or a vertical thick girdle fabric. The sensitivity analysis showed that placing a
vertical cone fabric in the central layer, or excluding the vertical cone from the
inversion, increased Σ�2’. Thus, also the sensitivity analysis emphasizes that a
vertical cone fabric at the base of RIS is an essential element, independent of
which of the models shown in Figure 7 is chosen. In addition, the sensitivity
analysis (Figure 10) showed that the input geometry initially defined yielded
the best results. This illustrates that using radar results to define the input
model geometry is a valid and important tool when inverting SWS data for ice
fabric.
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Figure 10: Sensitivity analysis, testing further model geometries with the three
best three-layer models presented in Figures 7-9. Color coded symbols are inver-
sion results in the same nomenclature than used in Figure 6. Gray symbols in
the background are model results as presented in Figure 6 for orientation. a) The
depth of the domain boundaries is varied. Values on top of the symbols indicate
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the depths of the two domain boundaries: For instance, 16/02 corresponds to a
boundary of domain 1 at 1600 m depth and a boundary of domain 2 at 200 m
depth. The thin lines connect model with the same fabric. b) The significance of
including a vertical cone fabric is tested. In the ‘central cone’ models, a vertical
cone fabric is predefined in the depth range between 400 and 1600 m depth. In
the ‘no cone’ models, the domain with the vertical cone is removed and the input
models consist of two depth domains (0-400 m depth and 400-2200 m depth)
only.

5.2 Three-layer model with vertical thick girdle fabric in central layer (Model
D) as preferred solution

Despite the fact that there are several different models with statistically compa-
rable fits, we favor the fourth model (Model D; Figure 7d). This model features
three depth layers and a vertical thick girdle fabric in its middle layer: One
of the four best models is a ‘mixed’ fabric (Figure 7a), for which no layering
is assigned, and a uniform ice fabric consisting of two fabric types combined
throughout the entire ice column was assumed. The parameters we derive for
this model are similar to the preferred model of Smith et al. (2017) (Θ cone =
73°; Θ hor. partial girdle = 22°; � = 144°; mixing percentage = 53 % vs here:
Θ cone = 78°; Θ hor. partial girdle = 23°; � = 147°; mixing percentage = 52
%). This consistency validates the inversion approach chosen here. However,
we nevertheless argue that the ‘mixed’ model is unlikely to represent the true
ice fabric of RIS. First, the ‘mixed’ model is hard to explain physically. A dis-
tinct deformation regime results in a specific ice fabric. Therefore, and as also
noted by Smith et al. (2017), the ‘mixed’ model rather suggests that the two
fabric types exist within the ice but with their depth distribution previously
unresolved. Second, radar imaging (T. M. Jordan, 2022) clearly shows that
multiple layers of distinct ice fabric exist at RIS, which is incompatible with a
uniform ice fabric. Lastly, the horizontal partial girdle fabric has not yet been
observed in ice cores, potentially suggesting that it is less prevalent than other
ice fabric types. Combining these arguments, we prefer to rule out the ‘mixed’
model as a likely candidate. The reason this model yields results comparable
to the three-layer model is the specific fabric combination, with the broad cone
modifying the waveforms little.

The two three-layer models, which feature a horizontal or vertical partial girdle
fabric in the central layer (Figures 7b and 7c) also seem problematic. Although
these models are compatible with results from radar, they also feature an ice
fabric type as main contribution that has not been observed elsewhere. In
addition, and possibly more importantly, these models do not reproduce the
distinct asymmetry relative to ice flow, observed from the SWS data (features
f1/f3/f4 versus f1x/f3x/f4x in Figure 4) and also overestimate the flow perpen-
dicular anisotropy at incidence angles greater than 30° degrees (features f4/f4x
in Figure 4).

Only model D (Figure 7d) is comparable with radar results. It is composed of
fabric elements that are commonly observed in ice cores and captures the asym-
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metry in the SWS data relative to ice flow direction. The latter is mostly due to
the tilted cone fabric in the uppermost layer. Potentially, the flow-perpendicular
asymmetry in the SWS dataset could be caused by spatially variable fabric be-
neath our network. However, we consider this scenario as unlikely as we did not
find a clear signal of spatial variable fabric in the SWS data (see Supplemen-
tary Text 1). In addition, the SWS patterns from the different spatial domains,
which we used to generate the input for inversion, reveal the asymmetry as well
(Figure S6). These different elements make us conclude that the fourth model
of Figure 7 likely represents the true situation at RIS best.

As only the fourth model shown in Figure 7 captures the flow-perpendicular
asymmetry in the data, one might argue that Σ�2’ is not the ideal measure to
characterize the quality of the inversion results. We experimented with using �2
instead but found that this destabilized the inversion in a way that it was more
difficult for the algorithm to find a global maximum. We further refrained from
using any weighting function, e.g., weighting input data with smaller split times
differently, as this would introduce a bias in the input data. The input wave-
forms were chosen based on distinct quality criteria and an equal distribution
of the input data with regards to azimuth and incidence angle was guaran-
teed. Thus, this analysis shows that it is due to the specific geometry of the
anisotropy pattern that the results from one ‘mixed’ and from three three-layer
models appear equally good. However, as argued above, we are confident that
the inversion, together with additional information from other studies, allows
us to put forward model D (Figure 7d) as the most likely.

5.3 Impact of preferred Solution (Model D) on Mechanical Properties

To show the impact of our fabric solution in ice flow we estimate the ice viscosity
tensor, which is an important parameter in flow-laws for ice sheet models. We
follow the method of Jordan et al. (2022) where the c-axis orientation distri-
bution is represented with a second-order orientation tensor. The eigenvalues
of this tensor represent the relative c-axis concentration along the principal
coordinates. Unlike with downward-looking radar methods, which are limited
to measuring the orientation of the horizontal eigenvectors and their relative
strength, the results from the SWS inversion allow us to estimate the ampli-
tude and orientation of all three eigenvectors in the principal axes. We then
follow the scheme of Jordan et al. (2022) to derive the viscosity enhancement
due to fabric to understand the effects of the measured fabric on viscosity and
deformation.

Figure 11a presents the eigenvalue representation of the four best fit models
described above. To allow direct comparison with existing downward-looking
radar observations we represent the orientation tensor in natural flow coordi-
nates, where t represents the horizontal direction of ice flow, n is normal to flow
and also in the horizontal and z is the vertical. Under the assumption that the
vertical is a principal vector, the orientation tensor can be represented by the
difference in horizontal eigenvalues (Δa), azimuth of the fabric with respect to
the direction of flow (�) and the vertical component of the orientation tensor
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(az) (Jordan et al, 2022). This representation clearly emphasizes the differences
between the four models albeit the SWS patterns appear similar.

One of the main strengths of SWS when compared with downward-looking radar,
is that it provides information of the fabric in all directions. Jordan et al (2022)
highlights how the lack of information of the vertical component of the fabric
(0<az<1-Δa) translate into a large uncertainty on ice properties for fast-flowing
ice.

Ice viscosity often is divided in an isotropic component, related to the ice flow
law, and an anisotropic component, related to ice fabric (Ma et al., 2010; Martín
et al., 2009). We use GOLF anisotropic flow law (Gillet-Chaulet, 2006) from
the ElmerIce AIFlow solver (Gagliardini et al., 2013) to calculate the latter.
The solver searches viscosity for a given second-order orientation tensor, in a
space that has been tabulated using different viscosity models and crystal-scale
parameters. Following Jordan et al (2022), we assume that � = 0.04, the ratio
of viscosity of the grain for shear parallel to the basal plane to that in the basal
plane; � = 1, the ratio of the viscosity in compression or tension along the c-axis
to that in the basal plane; and the model used for tabulation is a viscoplastic
self-consistent model.

Figure 11b then presents the derived viscosity enhancement factors due to fabric
for the most representative components for our preferred model. Values greater
than one represent stiffening or hardening to strain and values lower than one
softening. In the shallowest layer we see a complex range of softening and
hardening, with the most significant effects on �nznz (hardening to vertical shear
perpendicular to flow), �tntn (hardening to lateral shear), and �tztz (hardening
to vertical shear parallel to flow). However, the bulk of the ice column, in the
middle layer, exhibits hardening to compression or extension along flow with an
enhancement factor of �tttt = 2.16, which equates to a factor of 10 in viscosity
due to the third power if, as commonly assumed, we use 3 for the rheological
index in Glen’s flow law (Ma et al., 2010; Martín et al., 2009). Also, in the
middle layer, ice is 3.5 times softer to compress or extend across flow than along
flow [(�tttt/�nnnn)3=3.5] and 16 times softer to shear than to compress or extend
along flow [(�tttt/�tztz)3=16]. We see little effect in the deepest layer of the ice
column. This shows that the character of ice deformation not only dependents
on the direction of applied force, but also on the depth within the ice column.
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Figure 11: a) Fabric orientation tensor for the four models shown in Figures 7-9.
Tensors are represented as difference between the horizontal eigenvalues (Δa),
the horizontal azimuth with respect to the flow direction (�), and the vertical
eigenvalue (az). Δa and � can be measured from downward-looking radar, whereas
az can not be measured. Model labels as in Figure 7. b) Principal components
of the viscosity enhancement tensor for model D (Fig. 7d), highlighting that
viscosity strongly depends on the component of deformation. As Jordan et al
(2022) we use a natural flow frame of reference: t represents tangential to flow,
n normal to flow and z is the vertical.

5.4 Formation Scenario for preferred Ice Fabric (Model D)

Ice fabric at a specific location is a combination of the strain history and recrys-
tallization processes (Alley, 1988). Ice fabric is not instantaneously developed
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and our results thus point to a complex strain history of RIS. Here, we discuss
potential formation mechanisms for an ice fabric as resolved in Model D (Figure
7d).

In the upper 400 m layer a tilted cone fabric is observed. We suggest that
this measured fabric results from complexity in the shallow ice column that is
‘averaged’ by the SWS method. Radar measurements show a complex finer scale
depth structure near the surface of RIS (T. M. Jordan, 2022) but are insensitive
to azimuthal variations in fabric such as this tilted fabric. SWS is insensitive to
a layering on the order of meters and such features may be reflected in a bulk
anisotropic medium with a tilted symmetry axis.

In the middle layer the measured fabric is dominated by a thick vertical girdle,
oriented perpendicular to flow. This is consistent with the surface strain mea-
sured upstream of our study region which is dominated by along flow extension
at the surface (Jordan et al., 2022), and could result this fabric geometry. It is
therefore likely that the fabric measured here in the middle layer was formed by
extensional flow upstream of the current location, and subsequently buried and
advected to the experiment site.

Our results suggest that a vertical cone fabric dominates the deepest layer.
There are two possible formation mechanisms for this fabric. A vertical cone
can develop where basal shear dominates over basal sliding. In the extreme
scenario, where ice is stagnant, the main component of strain will be vertical
compaction, again resulting in a vertical cone fabric. Alternatively, the fabric
may form by ice recrystallization, erasing an older fabric and making the fabric
less dependent on flow-induced development (Alley, 1992). At RIS, large num-
ber of icequakes are observed at the ice-bed interface (Kufner et al., 2021; E. C.
Smith et al., 2015) indicating that basal sliding dominates over basal shear, and
it is likely that a similar regime existed in the past (Gudmundsson & Jenkins,
2009). Ice recrystallization is therefore the more likely fabric formation process.
The sharp change in ice fabric between the lower and middle layers may reflect a
change in crystal size. Larger grain sizes enhance recrystallization (Alley, 1992),
and this sharp transition potentially reflects a change in the dominant grain size
due to a different climate at the time of formation.

As noted in Section 4.2, our method resolves only large scale characteristics (i.e.,
>200 m thickness) of the ice in the anisotropy-intensity range considered here.
This is mainly due to the uncertainty in the SWS measurements. Therefore, we
cannot rule out a thin layer of ice (e.g., several meters) at the base of RIS with a
fabric different from the vertical cone. Similarly, the uppermost layer discussed
here includes the firn (upper ~100 m), which is likely less anisotropic than the
ice below it (E. C. Smith et al., 2017).

Interestingly, the ice fabric we infer for the bottom part of RIS is very simi-
lar to that observed for the entire ice column below the firn at Whillans Ice
Stream using active seismic imaging (Picotti et al. (2015)). They suggested
that ice fabric formation is dominated by vertical compression rather than in-
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ternal extensional deformation. However, Picotti et al. (2015) note that the ice
fabric further upstream might be a vertical girdle, which is erased at their study
side. In contrast to Whillans Ice Stream, our analysis at RIS shows the basal
cone layer to be overlain by an ice layer with a different fabric that testifies
to dominantly along-flow extension. Potentially, multiple layers of different ice
fabric could evolve at RIS due to its larger ice mass (RIS is much thicker than
Whillans Ice Stream; ~780 m versus ~2200 m at RIS). Alternatively, these ob-
servations might emphasize that the ice fabric along the length of an ice stream
is highly variable due to both, strain history and recrystallization. This would
imply that multiple fabric studies along the length of an ice stream are needed
to understand its current deformation.

6 Summary and Conclusions

We present more than 200,000 shear-wave splitting measurements from Rutford
Ice Stream, a fast flowing (>1 m/day), ~2.2 km thick West Antarctic Ice Stream.
Results indicate seismic anisotropy of up to 6.6% in the glacial ice. Anisotropy
varies, however, depending on azimuth and incidence angle of the seismic rays.
These variations are much stronger than temporal or spatial variations in the
SWS pattern.

We invert the data for depth-dependent ice fabric, making use of the fact that
different types of ice fabric can be discriminated against each other based on
their anisotropic pattern. The layout of the input models for inversion is de-
signed based on prior information derived from radar studies (T. M. Jordan,
2022). The inversion shows that the SWS pattern is equally well explained by
four different models. One of the models is a combination of a vertical cone
fabric and a horizontal partial girdle fabric. The other models feature three
layers of different ice fabric with the deepest layer (500 m thickness) being a
vertical cone fabric with wide (>70°) opening angle. One model then consists
of a horizontal partial girdle in the middle layer (1200 m thickness) and a hori-
zontal cone in the uppermost layer (400 m thickness). The next model features
a vertical partial girdle (middle) and a horizontal girdle (top). The last model
features a vertical girdle (middle) and a tilted cone (top). As only the last model
(Model D in Fig. 7). reproduces a distinct asymmetry of the seismic anisotropy
relative to ice flow, which can be seen in the SWS results, we favor this model
as the most realistic.

Such a fabric could arise from mostly vertical compression due to high basal
shear at the base of the ice stream or due to recrystallization of the ice in
the basal unit. The middle and upper layer could arise from mostly extension
along flow at central depths and a mixture of horizontal shearing across flow
and compression near the surface. We suggest that such a scenario might have
formed from a combination of past and current deformation under different
stress regimes, likely in combination with ice recrystallization.

We calculate the viscosity enhancement factor for the preferred ice fabric model
and find that the middle layer is significantly (3.5 times) harder to deform
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along flow than across flow. By contrast, there is little directional effect in the
lowermost layer. Thus, a single enhancement factor for the entire depth range
of the ice column, as often used in ice sheet models, is unlikely to represent the
results gained here. It remains a topic of future research if SWS splitting at
RIS is representative for fast-flowing ice streams in general or if the observed
pattern is dominantly influenced through local factors.

This study shows that passive seismic imaging can help to constrain ice fabric
at far lower cost than through direct measurements (e.g. boreholes), if prior
knowledge of the depth structure of the ice is available. Furthermore, results
from SWS complement other passive geophysical methods like radar imaging,
as the ice fabric in all three dimensions can be constrained.
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https://www.bas.ac.uk/data/uk-pdc/reviewer-access/

Software: Version 2.2 of MFAST used for shear wave splitting analysis is avail-
able via https://mfast-package.geo.vuw.ac.nz/. The software used for ice fabric
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presented in Figures S3 and S4. Figure S7 shows the variation of inversion results 

dependent on the number of free parameters and Table S1 lists the model parameters for 

the preferred ice fabric model presented in the main text of the article.  
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Text S1. Temporal and spatial evolution of SWS results  

We investigate the SWS results from similar azimuths and incidence angles in more detail, 

aiming to illuminate potential spatial or temporal variations in SWS results. Therefore, we 

utilize binned results, like those plotted in Figure 5. Figure S5 shows SWS measurements 

from four representative bins. In Figures S5 a and b, SWS parameters show some scatter 

(standard deviation of 0.52% and 4.3° for δVS and Φ in a) and 0.72% and 16.5° in b)), but 

the variable results seem randomly distributed in map view. For instance, measurements 

from a similar event location, determined at the same station partly vary. Thus, the 

variation in SWS results likely originates from uncertainties inherited from the splitting 

measurement. Furthermore, some measurements (~10) in Figure S5 b are rotated by ~90°, 

relative to the majority of the results (~1350). This is a clear indicator that waveforms are 

mismatched by half a wavelength. However, this problem occurs for a few measurements 

only and does not severely affect the average results. On the contrary, applying a quality 

criterion to remove such results (e.g., based on the average value in a specific bin) might 

remove valid results, especially if the scatter in Φ is larger. Therefore, we decided to keep 

such results in the final dataset. A distribution like illustrated in Figures S5 a and b) is 

representative for most of the bin-wise SWS results (~95%, determined from visual 

inspection of all bins).  

For some bins, the scatter in splitting parameters, especially of δVS, appears distributed 

systematically in map view. In Figure S5 c), for instance, δVS is smaller in the north-east of 

the network and larger in the south-west. The bin detailed in Figure S5 d), exhibits a spatial 

trend in δVS as well. However, in this case, δVS is larger upstream. Given these different 

spatial trends, it is unlikely that the spatial trend is an artefact from calculating δVS. 

Notably, in both cases, the standard deviations of δVS and Φ are in a similar range as in 

Figures S5 a and b (standard deviation of 0.25% and 4.4° for δVS and Φ in c) and 0.38% 

and 12.5° in b)). Thus, the gentle, potentially systematic, variations of δVS in map view are 

in the same range than the likely unsystematic scatter in the data and much smaller than 

the variations of splitting parameters with azimuth and incidence angle. Therefore, we 

decided to concentrate on the variation of splitting parameters with azimuth and incidence 

angle in this publication. The same applies for the search of potential temporal variations 

of splitting parameters (Subfigures ii and iii of Figure S5). The scatter of the splitting 

parameters at a specific time seems larger than any potential systematic temporal 

variations.  
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Figure S1. Comparison of SWS parameters for waveforms filtered within different 

frequency ranges. Red: bandpass filter between 30 and 90 Hz. Blue: bandpass filter 

between 20 and 40 Hz. The 'difference' refers to the results as presented in the main text 

of the article. a) Histogram of dt difference. Apart from a main peak around 0 (70% and 

67% of all measurements for the 30-90 Hz and the 20-40 Hz band), two subpeaks around 

0.015 s occur. The location of these peaks varies slightly for the two filter frequencies. 

Comparing waveforms from such measurements (example in Figure S2b) shows that 

waveforms are mismatched by roughly a cycle of the dominant frequency, which is a clear 

indicator for cycle skipping. b) Histogram of Φ difference. Compared to a), less spread 

occurs (84% and 74% of all measurements for the 30-90 Hz and the 20-40 Hz band are 

similar within the uncertainty range). Cycle skipping cannot be detected from the Φ 

difference as waveforms are mismatched by a full cycle. c) Variation of dt difference with 

dominant frequency of the unfiltered waveforms, excluding the events for which cycle 
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skipping occurs (measurements for which the dt difference is larger than 0.007 s as 

determined from the histogram plot in sub-figure a). Black bars indicate the uncertainty 

of the filtered results. Green line highlights 0 difference as reference. No clear dependence 

on event frequency is apparent and most (93% and 95% of all measurements for the 30-

90 Hz and the 20-40 Hz band are similar within the uncertainty range) measurements are 

similar within their uncertainty range. d) Variation of Φ difference with dominant frequency 

of the unfiltered waveforms, excluding the events for which cycle skipping occurs. 96% 

and 75% of all measurements for the 30-90 Hz and the 20-40 Hz band are similar within 

the uncertainty range. As for the dt difference, no pronounced frequency dependence of 

the measurements is apparent.     
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Figure S2. See caption below  
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Figure S2. continued  
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Figure S2. SWS results at different frequencies for two example events. Subfigures i show 

the horizontal traces rotated into (p) and perpendicular (p⊥) to the polarization direction, 

which is determined in MFAST together with the splitting parameters. ‘Corrected’ refers to 

traces rotated into and perpendicular to the polarization direction after correction for the 

optimum anisotropy parameters. Amplitudes of the traces is normed. The splitting window 

is highlighted in gray, the location of the S-pick in red. Time is relative to the start of the 

data trace. For an optimum set of splitting parameters, the energy on ‘corrected p⊥’ is 

minimized. Subfigures ii show the misfit surface of 1/λ2’. The 95% confidence interval 

corresponds to the bold “1” contour. Other contours demarcate multiples of the 95% 

confidence interval. Contours are only shown until the tenth multiple. The optimal splitting 

parameters are highlighted as blue cross. a-c) Event with origin date/time 2019-01-

01/05:18:06, local magnitude of –0.85, registered at a station with an epicentral distance 

of 2.65 km. a) shows the unfiltered waveform, b/c) show the same event filtered between 

30-90 Hz and 20-40 Hz, respectively. Despite changing the frequency content, SWS results 

are similar within their uncertainty range. d-f) Event with origin date/time 2019-01-

01/23:13:45, local magnitude of –1.37, registered at a station with an epicentral distance 

of 1.23 km. d) shows the unfiltered waveform, e/f) show the same event filtered between 

30-90 Hz and 20-40 Hz, respectively. As highlighted by red arrows, filtering the data results 

in multiple maxima in the misfit surface of 1/λ2’ as the fine scale structure of the waveforms 

is removed. Instead of the maximum with smallest dt, which would correspond to the result 

from d), the maxima at higher dt are more pronounced and therefore picked by the 

algorithm as final splitting result. Note that the maxima in f) are further apart than those 

in e), due to the different frequency content of the waveforms.   

 

 

 
Figure S3. Weighting function for smoothed SWS results as shown in Figure 5. A weighted 

average of all SWS results that fall, based on similar azimuths and incidence angles, into a 

specific bin is calculated. Weighting is conducted based on the signal-to-noise ratio of a 

specific event.  
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Figure S4. SWS results with Null measurements highlighted. In a) Null measurements are 

shown on the bottom polar plot and highlighted in dark green. All other measurements 

are shown in the upper polar plot. In b) and c), Φ and the initial shear wave polarization 

from SWS are drawn with a dark green outline. All other plotted features are as in Figure 

4. 
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Figure S5. See caption bellow  
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Figure S5. continued  
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Figure S5. Temporal and spatial variation of splitting parameters for four example bins of 

similar azimuths and incidence angles. In (i), the SWS parameters are plotted in map view 

at the mid points between event and station. Colored bars refer to percentage anisotropy, 

the orientation of the bars to Φ. Gray lines are ray paths, circles microseismicity and gray 

squares seismic stations, for which SWS measurements exist. All other stations are plotted 

as black squares for reference. The inset shows the location of the bin on a polar plot in 

the same coordinate system than plotted in Figure 5. In (ii) and (iii), the temporal evolution 

of δVS and Φ is illustrated. ‘rel. time' refers to the time of the first event in the specific bin. 

The green line highlights the average value of the specific bin. a) Bin with azimuthal range 

107-145° and incidence angle range 9-16°, encompassing 3877 rays. b) Bin with azimuthal 

range 269-289° and incidence angle range 19-26°, encompassing 1351 rays. c) Bin with 

azimuthal range 179-199° and incidence angle range 19-26°, encompassing 8873 rays. d) 

Bin with azimuthal range 119-145° and incidence angle range 14-21°, encompassing 5224 

rays.   
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Figure S6. Input station-event pairs used for inversion on polar plots and in map view. To 

ensure an equal distribution of rays throughout the study region, we separate the study 

region into six domains. Input rays of these domains are highlighted in the six subplots. 

The separation between the domains is arranged parallel and perpendicular to the ice flow 

direction (marked by light gray lines). More details on the sampling strategy are given in 

the main text of the manuscript. Polar plots show splitting measurements color coded by 

δVS and are in the same nomenclature and coordinate system as used in Figure 4. The 

maps are in the same projection as Figure 2 and highlight station (gray squares)-event (red 

circles) pairs used in the inversion. The total number of rays (thin gray lines) used from a 

specific domain is given in the top-right of each plot.    
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Figure S7. Comparison of inversion results relative to the number of free parameters used 

in the inversion. The best models described in Figures 7-9 are highlighted in yellow. See 

Figure 6 for an explanation of the nomenclature of the plotted symbols.  
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Table S1. Model parameters and uncertainty of the four models that yield the best 

results. See Figure 1 for a description of the angles.  

 
 


