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Abstract

As a result of uneven density of data collection, level-2 satellite gravimetry data suffer from global north-south striping. By

applying various filtering methods, several studies have addressed the mitigation of the data. However, the studies mainly

addressed the issue on a global scale, and the local effects were not considered. On the other hand, water research, especially

inland hydrology, usually deals with small-scale fitures such as lakes and watersheds. Therefore, the local data de-striping

methods need special attention. This research presents a new analytical method to de-stripe gravimetry data based on the spatial

contrast of signals. The approach strikes a balance between de-striping and signal preservation. Using a-priori information

obtained from the gravimetry data, the de-striping method first estimates the spatial gradient of the signal and optimizes a

Poisson filter based on this information to de-stripe the data. Unlike the other approaches, the optimized filter is dynamic and

accounts for temporal variations in the signal contrast, such as seasonality. The proposed approach is applied to ten globally

distributed study areas to derive a general scheme. Detailed processes and evaluations are applied to two study areas: the

Caspian Sea and the Congo River Basin. Results are visually assessed for spatial fit and for temporal consistency by comparison

with results from other filters. The use of a dynamic filter set specified for each region and time point allows us to preserve

local hydrologic signals that are susceptible to globally optimized filters. It also allows filter-related errors to be effectively

constrained.
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Key Points:

• An analytical destriping method is developed to optimize a Poisson filter
based on spatial contrast of the signal.

• Using this method a set of space-time variable dynamic filter can be de-
signed which allow to enhance local signals, leading to reduce total errors.

• The optimal Poisson filters length for the Caspian Sea and Congo River
Basin are 400km and 550km respectively.

Abstract

In the result of uneven density of data acquisition, satellite gravimetry level-
2 data suffer from global north-south stripping. By applying various filtering
methods, several studies have been involved in data destriping. However, the
studies mainly deliberated the question in the global scale, and local impacts
are not considered. In other hand, water studies, in particular inland hydrology,
mostly deal with small scale figures such as lakes and watersheds. Therefore, the
local data destriping methods need special attentions. This research presents a
new analytical method to de-stripe gravimetry data based on spatial contrast
of signals. The approach makes a balance between destriping and signal preser-
vation. Utilizing a priori information extracted from the gravimetry data itself,
the destriping method first estimates the spatial gradient of signal, and based
on that, it optimizes a Poisson filter to de-stripe the data. Unlike the other
approaches, the optimized filter is dynamic taking into account time variations
of signal contrast such as seasonality. The proposed approach is applied on
ten globally distributed study areas in order to derivate general regulation. De-
tailed process and the evaluations are applied on two of the study areas: the
Caspian Sea and the Congo River Basin. The results are visually evaluated
for spatial fitting, and evaluated for temporal consistency by comparing to out-
comes of other filters. Use of a dynamic filter set specified for any region and
time, allows to highly preserve local hydrological signals which are vulnerable
to globally optimized filters. It also allows to effectively constrain filter-induced
errors.

1 Introduction

The main text should Accurate estimation of the continental water storage
changes is important in many domains. Spatial observation and monitoring of
the Earth’s hydrosphere by remote sensing came back to the 1970s. However,
with the emergence of Gravity Recovery and Climate Experiment (GRACE)
mission in 2002, this domain experienced an unprecedented progress. Satellite
gravimetry serves various domains including: sea level studies (Willis et al.,
2008; Schrama & Wouters, 2011; Jacob et al., 2012; Feng et al., 2012; Peng et

1

mailto:ayoubmoradi@gmail.com)


al., 2013; Joen et al., 2018), hydrological processes (Zhong et al., 2009; Feng
et al., 2013; Guo et al., 2016), ground water storage variations, draught (Chen
et al., 2009), oceanography (Johnson & Chambers, 2013; Piecuch et al., 2013),
and, glaciers (Chen et al., 2007; Luthcke, 2008; Luthcke et al., 2008; Velicogna,
2009; Jacob et al., 2012; Sasgen et al., 2012; Barletta et al., 2013; Gardner
et al., 2013; Velicogna et al., 2014; Sorensen et al., 2017). Satellite gravimetry
presents the geoid topography data with respect to a reference date. The gravity
time variations are mainly caused by Earth’s mass redistribution (Swenson and
Wahr, 2002), load induced surface deformations, postglacial isostasy rebound,
and oceanic and atmospheric tides. The solutions are corrected for tides prior
to gravity field estimation (Tapley, 2004; Bettadpour, 2007). The time variable
part of the geoid changes is usually considered to be associated with the change
in vertically integrated water content. The Equivalent Water Height (EWH)
may be retrieved with an accuracy of less than 1 cm over a large area. However,
the accuracy decreases for small scale studies depending on processing and the
applied filter.

The gravimetry derived signal is reliable particularly where either a big signal
to noise ratio exists, either the study area is large enough to sustain resolution.
The signal is thus sensitive to spatio-temporal smoothing when dealing with
small study areas. GRACE estimates are normally erroneous due to measure-
ment noise and the aliasing induced by high-frequency mass variations (Swenson
and Wahr, 2002; Wahr et al., 1998; Swenson and Wahr, 2006). The most known
errors in satellite gravimetry data, is the globally dominant stripe-like correla-
tion error, known also as commission error (Gunter et al., 2006). The stripe-like
error, is a consequent of aliasing and limitation in data acquisition. Due to the
polar orbiting platform, stripe error shows a north-south pattern on the Earth
(Tapley et al., 2004). It originates from, but not limited to, the imperfections
in the reference gravity field model used in the estimation process. Cerrorela-
tion error is unevenly distributed across SH components, increasing rapidly with
Spherical Harmonic Truncation (SHT) degrees.

Different methods for signal decorrelating are developed. The methods are con-
sidered in different point of view in literature; and they are thus differently
classified. Based on similarities, we summarized the methods in two general
categories. Category one: empirical or statistical filters which deal with the
error as a systematic and deterministic contribution (e.g.: in Wahr et al., 1998;
Swenson and Wahr, 2006; Wouters and Schrama, 2007). These filters need the
assumption that the noise contribution in total signal is already known by the
user. The empirical filters relay on distinguishing between spatially correlated
error and variant signal. They briefly functions as follow: the correlation error
is approximated through an optimal polynomial fitting within a moving window
over SH coefficients of each order but same parity (i.e.: even or odd degrees sep-
arately). Estimated correlation error is finally subtracted from the total signal,
remaining decorrelated signal. The empirical filter is more effective in middle
to higher latitudes; whereas, it is inefficient in equatorial regions. The empirical
filter may differ based on the approach used for the polynomial approximation:
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the same polynomial fitting may be applied to the entire SH series (such as in
Chambers, 2006; Ferreira et al., 2012). Otherwise, local polynomial approxima-
tion may be employed on interested subsets. In the other hand, the window
length can vary in spectral domain: the same window length for all coefficients.
Either, an order-dependent window length (e.g.: in Swenson & Wahr, 2006) may
be applied.

The category one has been widely used due to its simplicity and low inputs.
The Gaussian filter is most common and frequently used filter of category one.
Gaussian smoothing has been the standard method in the early exploitation
of GRACE products, due to its ease in implementation and intuitive interpre-
tation (Wahr et al., 1998). The isotropic Gaussian filter was first formulated
by Jekeli (1981) in physical geodesy. This filter attenuates the power of high-
frequencies which are represented as high degree and order spherical harmonic
coefficients in the gravity field. Swenson and Wahr (2006) proposed a low order
polynomial fitting on a moving window. Piretzidis and Sideris (2018) designed
an integrated software to apply empirical decorrelation on GRACE SH, named
SHADE (Spherical HArmonic coefficient empirical DE-correlation). The down-
side of this approach is that it does not accounts for the variable data density
that increases towards the poles. As the correlation noise varies with both de-
gree and order, anisotropic Gaussian filter demonstrated better efficiencies Han
et al. (2005).

Category two: data driven, analytical filters which account for the error as com-
bination of systematic and stochastic components (e.g. in: Kusche, 2007; Klees
et al., 2008; Kusche, 2009; Horvath et al., 2018). The fundamental difference
with the category one, is the necessity to employ additional knowledge about
the signal, known as a priori information, instead of the assumption which is
principal in the filters of category one. Although, few studies (e.g.: Klees et al.,
2007) developed a regional hydrological model to exploit as a priori information
about mass variations; however, most of the studies (e.g: Sasgen et al., 2006;
Kusche, 2007; Kusche et al., 2009) utilized the characteristics of the GRACE
spherical harmonic coefficients for this purpose. Use of, e.g.:, the characteristics
of the GRACE spherical harmonic coefficients (e.g: Sasgen et al., 2006a; Sasgen
et al., 2006b), these filters employ the covariances of signal and noise to opti-
mize the signal. Kusche (2007) exploited the estimation of GRACE tracking
as a priori information. Kusche (2007) provided a priori information by the
estimation of GRACE tracking using a Bayesian regularization over spherical
harmonic coefficients (Koch and Kusche, 2002; Kusche, 2007). As anisotropic
method, which is more efficient than conventional Gaussian isotropic filters,
Kusche et al. (2009) introduced so-called DDK filter. This filter is simplified
version of the Kusche-2007 filter. The GRACE error covariance matrix used in
the construction of the decorrelating kernel in Kusche method, is created syn-
thetically, using one month of GRACE twin-spacecraft orbits and a simplified
method for mapping the K-band inter-satellite ranging observations into the
spherical harmonics. The primary (Kusche, 2007) method employed a full fil-
ter matrix as large as SH coefficients. However, the simplified version (Kusche,
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2009) is generalized to the order-only convolution (comparable to the approach
in Swenson and Wahr (2006)), facilitated its usage by a wider community of
users of GRACE products. Kusche et al. (2009) applied DDK filter on GRACE
RL04 monthly gravity from GFZ solutions, resulting good agreement with mass
anomalies derived from a global hydrological model. Lorenz (2009) presented
a regularization method for applying on the signal and error covariance. This
approach latterly further developed by Devaraju et al. (2016), and Devaraju
and Sneeuw (2017). By using an energy integral method, Seoane et al. (2013)
developed a regional GRACE solutions from 2003 to 2011over Australia. This
approach uses the dynamical orbit analysis of GRACE Level 1 measurements,
and especially accurate along-track K-band range rate (KBRR). It reduction of
GRACE Aliasing errors.

DDK series are the most known filters of category two. Their efficiency is (e.g.)
demonstrated on the globally gridded monthly terrestrial water storage varia-
tions are provided by ICGEM GFZ (Zhang et al., 2016; Dahle et al., 2012). In
this series, the signal variance and error covariance matrices are derived from
geophysical models and the GRACE orbit data respectively. However, GRACE
orbit data of August 2003 are used as static for the entire time series. It thus,
does not account for time dependent variations in geophysical signal contents.
More recent studies (e.g.: Horvath et al., 2018) attempted to overcome this
shortage of DDK series by introducing time variable data driven approaches
named VADER filter. Unlike DDK filter, VADER exploits GRACE level2 error
covariance information by the total time series. Consequently, this filter ac-
counts for seasonality in geophysical signal content. The VADER filter achieved
an improvement of 15% in reduction of cumulative geoid height errors. It also
obtains better destriping and delivers smaller formal errors comparing to static
filters like the DDK filter (Horvath et al., 2018).

In general, spatial smoothing decreases the stripe-like noises (Wahr et al., 2006;
Swenson and Wahr, 2006), however, reducing the signal, it introduces itself a
distortion (Wahr et al., 1998a, b; Landerer and Swenson, 2012). This distortion
is called as either leakage, or bias in literature (e.g. Wahr et al., 1998; Swenson
and Wahr, 2002; Swenson et al., 2003; Klees et al., 2007; Tang et al., 2012; Zou
and Jin 2014; Zhang et al., 2015; Jin and Zou 2015; Joen et al., 2018). Large
study areas, taking as a total, suffer from small distortion effects; however, the
signal would fade in small study areas. The destripping has been the subject
of many studies attempting to minimize the total global error. However, it is
still a challenging process in gravimetry society; in particular, the efficiency of
destriping methods are not assessed for small-scale signal retrieving. In the
case of satellite gravimetry, a prior information are not easily available. In this
study, we investigate the filtering effects from the first category, focusing on
the isotropic Poisson filter. The primary goal of this study is investigating the
optimal Poisson filter to preserve local signals.

2 Materials

The current study is based on the middle latitudes; however, few cases in lower
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and higher latitudes are also investigated. We chose ten study units (Figure 1),
seven of which are located between 35 N and 53 N. Five units are over the lands,
and two units over the oceans. Out of the middle latitudes, two study units are
selected in Canada. This region is known for large mass variations, as well as,
for large land-ocean leakage effects. Located around the Equator, the last study
unit is the Congo River basin. The study units from east to west are entitled as:
Atlantic (Atl), Wyoming (WY), Kansas (KS), North-Western Passages (NWP),
Baffin Bay (BfB), Pacific (Pac), Congo River basin (Cg), Caspian Sea (CS),
Bukhara in Uzbakistan (Uz) and Xinjiang in China (Xin).

Figure 1. Situation of the study areas.

In this study two categories of data are utilized: 1) gravimetry data for esti-
mation of optimized filter bandwidth, and for evaluation of the filter function;
and 2) non-gravimetry data for analysis of seasonal contrast. We used the
GRACE level-2 SH normalized solutions from JPL (Jet Propulsion Laboratory)
over 2004-2014 to estimate mean annual signal contrast. In order to evaluate
the filer efficiency, we exploit gravimetry solutions from AIUB (Astronomical
Institute University Bern) applying DDK series filters; as well as, gravimetry
solutions from CNES/GRGS which are already stabilized and corrected for high
frequency mass variations (Thompson et al., 2004, and Lemoine et al., 2013).
GRGS and AIUB Analysis Centers are selected based on its long-term experi-
ences on providing stabilized GRACE data and associated products. The GRGS
solutions include the second (G02) and third (G03) releases truncating respec-
tively at SH degree maximal of 50 and 80, are used. The monthly G03 data
benefits from improved spatial resolution, however, the G02 solutions are based
on the 10-days maximum value, giving denser time sampling. Among the study
areas CS and Cg include considerable seasonality in water mass fluctuations.
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Space borne altimetry provides direct measurements of the Caspian Sea water
level. We benefit from satellite altimeter passes over the Caspian Sea as in-
dependent measurements to evaluate the CS seasonal fluctuation derived from
gravimetry data. In the sea level studies, the measurements are ideal to reach
an accuracy of 3.4 cm or better (J-2 Handbook). We employed a set of satellite
altimetry data with accuracy rates within the specified optimal accuracy. The
accuracy of Jason-1 altimeter (by NASA/ CNES) is estimated to be 3.3 cm by
JPL, and 2.5 cm by CNES (Gourine, 2013). The Jason-2 altimeter accuracy is
estimated to be about 2.5 cm in Jason-2 documentation (by JPL), and 2 cm by
CNES (Gourine, 2013). The seasonal contrast of water mass in the Congo River
Basin are analyzed by long-term river discharge data provided from The Cen-
ter for Sustainability and the Global Environment, SEGA (Wisconsin, 2011).
Specification of data are summarized in Table 1.

Table 1. Description of data used

Source Data Data span Resolution Filtering
From To spatial* Temporal spatial temporal

GRACE JPL RL06 2004 2014 SHT: 60 Monthly
GRGS RL02 2004 2014 SHT: 50 10 days
GRGS RL03 2004 2014 SHT: 80 Monthly
AIUB-DDK1 2004 2014 SHT: 96 Monthly
AIUB-DDK4 2004 2014 SHT: 96 Monthly
AIUB-DDK7 2004 2014 SHT: 96 Monthly

Jason 1 SSALTO 2001 2013 176 cycles 10 days
Jason 2 SSALTO 2008 2017 573 cycles 10 days
river disch. FGGE 2000 2015 2 stations Monthly

*Spatial resolution is defined by the Spherical Harmonic Truncation (SHT)

3 Filter optimization

In gravimetry derived time series of EWH, the effect of stripes is revealed as
large RMS on high resolved inversions (i.e. in high SHT), and small RMS on
low resolved inversions (i.e.: in low SHT). Independent of study area, spatial
filtering follows a general pattern: in small filter lengths the estimations are very
different, with high RMSs, giving large estimations for large SHTs and small esti-
mations for small SHTs. With increase in filter length, both the amplitudes and
RMSs of estimations proportionally decreases (i.e.: larger SHTs decrease more),
leading to all the estimations be approaching. Beyond a specific filter length,
the amplitude decreasing effect of the filter dominates the RMS decreasing effect
(Figure 2). This limit corresponds to the optimum filter length for the signal
of interest. Filtering by a filter length smaller than the optimum limit leads
to remaining the stripes; and over-filtering makes the estimations smoothed,
fading spatial variability. Therefore, the filter efficiency is determined by the
minimizing rate of the RMS of difference for selected SHTs (SHTs >40 in our
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case), and the preserving rate of the mean amplitude of estimation, as Equation
1. Filter efficiency for different filter lengths are shown in the Figure 2:

Minimize the RMS of difference

Filter efficiency = 1/ RMS * Amp. (1)

Preserve the amplitude of estimations

Figure 2. Estimated signal after different truncations and different filtering
(for the CS).

The estimations derived from filter length and SHT of regular intervals (50km
and 3degree respectively) illustrates obviously the optimum filter length. In the
case of Caspian Sea (Figure 3), the normalized integral signal reaches zero at the
filter length of 400 km. Note that, the small SHTs (smaller than 20 in this case)
are not highly affected by stripes; that is the reason that the signal integration
does not change with filter length increase.

7



Figure 3. Filter-SHT Matrix of signal for truncations by 1:3:90, and filtering
by 200:50:1000 km.

Considering that the decreasing downward RMS leads to minimize the integra-
tion of estimations, and according to the Filter-SHT matrix, the optimum filter
can be expressed as follow:

Filt.Opt = min (∑SHTb
SHTa Es.) (2)

which Es is the estimation of signal for truncations from ‘a’ to ‘b’.

The Equation 2 corresponds to the sum of columns in the Filter-SHT Matrix.
The Filt.Opt depends on SHT, decreasing in a cotangent-like form; however,
it is independent of signal amplitude, because the signal amplitude does not
change the signal scattering pattern (see Appendix A). Therefore, the Filt.Opt
is independent of signal velocity in time; it depends however on signal gradient
in space. Supposing that, an -imaginary- displacement in the X axis of the
Filter-SHT Matrix would cause a change in Filt.Opt, any change in spatial
dimensions of the signal also makes a change in the Filt.Opt. In the other word,
for specifying the Filt.Opt, it is not important how much the signal amplitude is
large, instead, it is important how much the signal is spatially sloped. A steep
signal is better distinguished from adjacent signals, allow it to be enhanced
with a weak filter, and inversely, a plain or low-sloped signal needs stronger
filters to recover. The roof value for expanding the Filt.Opt is limited by the
GRACE(FO) spatial resolution: meaning that, the maximum Filt.Opt for a low
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sloped signal (e.g.: over the Oceans) is limited by the GRACE(FO) resolution,
which depends on the latitudes. Because, any homogenous signal within a scale
of 2X2 imaginary pixel is ensured to be captured as, at least, by one imaginary
pixel of the GRACE(FO). The gradient (or slope) is considered from the center
of study unit outwards; by (Equation 3). Specified Filt.Opt based on the signal
spatial gradients, for all study units are shown in Figure 4. And, the relationship
of the Filt.Opt and the signal gradients are shown in Figure 5.

Slope= tan (dSig(mm)
dx(km) ) (3)

Figure 4. First row: the signal; second row: buffering; third row: spatial
gradient; fourth row: Filter-SHT Matrices with the column of minimum marked
by dashed white lines.
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Figure 5. Relationship between Filt.Opt and signal spatial gradient

The relationship between gradient slope and Filt.Opt of the study areas indi-
cates on a strong correlation for the units located in the same latitude. However,
NWP and BfB show smaller Filt.Opt, and Cg, shows larger Filt.Opt than the
linear regression estimated for mid-latitudes. These biases are associated to
the background stripping density, which increases toward the Equator and de-
creases toward the poles. The optimal filter length is thus, defined by the spatial
gradient of signal plus a background factor which varies latitudinally (Equation
4). The latitudinal effect has a tangent-like pattern; i.e.: it decreases about
20% from Equator to ±70 degrees, and rapidly decreases beyond ±70 degrees
(Equations5). This is why comparing to Cg study area, the Filt.Opt of NWP
and BFB are more different to the predictions for mid-latitude, while they are
latitudinally closer. Equation 6 is developed to project the tangent-like (0-to-∞)
pattern in 0-to-1.

Filt.Opt ⇒ 𝑓(𝑠𝑖𝑔𝑛𝑎𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑡𝑟𝑖𝑝𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) (4)

Filt.Opt= [-1* (slope) + L]*10, (5)

L= -125*((tan (Lat)/ tan (89)) ^0.5*-1+1) (6)

Depending on the stripe intensity variations, L may also vary partially in time.
The variations are random, however small enough allowing, for example, to ex-
ploit a static one-month orbital information as a priori to minimize stripes over
long periods (e.g.: in DDK filters). For the period of study, the monthly mean-
removed stripes include a Standard Deviation of 6.4% relative to the mean.
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3.1 Seasonal variations in optimal filter

Although the Filt.Opt is independent on time in terms of signal amplitude, it
may depend on time for spatial gradient. Altimetry driven water level variations
in CS and long-term water balance of the Cg show the most difference between
spring/winter and summer/autumn in the CS, and the most difference between
autumn/winter and spring /summer in the Cg (Figure 6). Examination with
seasonal combinations of GRACE data also confirm the seasonality in CS and
Cg (Figure 7). The seasonal differences in spatial slope cause a difference in
Filt.Opt in the order of 10 meters.

Figure 6. Water balance pattern of the CS in 2020 (left), and long-term mean
of the Cg (right).
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Figure 7. Seasonal variations in signal spatial gradient in the CS (upper row)
and the Cg (lower row). Differences are ten times magnified for better illustra-
tions.

3.2 Analysis of sensitivity to filter length

In order to investigate the sensitivity to filter length, and thus, the importance
of filter optimization, the signal variances over a 1000km-range filter length
is analyzed for a sample date (March 2014). The signal variances resulted
from 19 filters (100:50:1000 km) is composed using the Principle Component
Analysis (PCA) method. This method concentrates the variances in con-
structed figures ranked from 1st to nth. There is a high correlation coefficient
(0.796) between the original signal amplitude and the filter-induced variance
derived from the first component of PCA (Figure 8). It mean that where
the signal is large and spatially sloped (regardless to the sign), it is more
sensitive to filter length. Note to not confuse the dependency of signal ampli-
tude and sensitivity to filter, with the independency of signal amplitude and
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Filt.Opt.

Figure 8. Left: map of the original signal; Middle: PCA #1 of the filter set
(100:50:1000); and, Right: correlation between the two maps.

4 Evaluation of the optimized filter

In this section, the results are evaluated temporally and spatially. As well as,
the seasonal efficiency of filters are evaluated. For the spatial evaluation, the
EWH maps derived with different filter length applied, are visually checked.
The example maps are shown for CS and Cg study areas in Figure 9. The
maps indicate on the best fits on 400km and 550km filter lengths for CS and
Cg respectively, particularly in high SHTs.

Figure 9. Visual comparison of filter length effects over the CS (2 upper rows)
and Cg (2 lower rows).

For the temporal evaluation of the results, EWH are estimated from the solu-
tions applying different filters, and all series are corrected for leakage effects in
the same approach. The estimations are compared in Figure 10. The solutions
processed by AIUB with applying a DDK series are based on data constrain-
ing via a priori information derived from one month orbit data (August, 2003).
However, as it is already mentioned, the GRGS solutions are already stabilized
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by the distributer and thus does not need filtering. As shown in Fig. 10, the
Poisson 400km filtering is highly consistent to the GRGS Releases and to the
DDK-7. Three mentioned time series include lower corrections with strong DDK
filters, especially with DDK-1.

Figure 10. Comparison the time series filtered by the Poisson 400km, DDK
series and GRGS filtering methods.

In order to evaluate the efficiency of seasonally different filter lengths, the re-
sults of different filter combinations are analyzed. Corresponding to the signal
gradient, a set of 10km-interval filters is applied on the CS and Cg study ar-
eas. Altogether, 21 and 10 filter combinations are examined on CS and Cg
respectively. The best RMS improvements are obtained from the applying of
a 370-400 km and a 530-560 km filter lengths for the CS and Cg respectively
(Figure 11). In examinations the smaller filter is applied on the season of higher
gradient and the larger filter is applied on the season of lower gradient. Maps of
the best filter combinations are shown in Figure 12. The spatial evaluation of
filter efficiency is based on the signal homogeneity and amplitude preservation
(see Equation 2).
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Figure 11) RMS improvement resulted from different combination of filter
lengths applied based on seasonality for CS (upper plot) and Cg (lower plot).
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Figure 12. Seasonal filtering for CS (left) and Cg (right); the four inner cadres
are filtered maps, and marginal cadres show the difference of tow aligned maps
(i.e.: the closer map minus the farer one). RMS value of the difference maps are
listed on the top of the cadres.

5 Discussion and Conclusions

Postprocessing of the gravimetry level-2 data usually consists on spatial filtering.
Investigations on gravimetry filtering are concentrated on filter effects in the
global scale, attempting to minimize the total global error. This is while, a
specific filtering strategy which achieves good results on the global scale, might
weakly perform in a local scale. Depending on the signal amplitude, globally
optimized filters may obtain different results. For example, for high signal-to-
noise ratio, such as interannual and smoothed signals, a strong DDK filter (e.g.:
DDK4) perform well. However, for recovering low signal-to-noise ratios, strong
DDK filters (DDK2 or DDK1) are needed.

The filtering process makes an improvement by removing correlated stripe-like
errors in the data; however in the same time, a negative impact of filtering is
that, it may also smooth the signal of interest. The smoothing rate depends on
the filter strength. A filter that is weaker than the optimal filter necessary for
a given study unit, lead to remaining the stripes; but a filter stronger than the
optimal one, inversely, causes an uncompensable smoothing on interested sig-
nal. Therefore, it is essential to deliberate an optimum filter to make a balance
between stripe removing and signal preserving. The most common confusion
in the literature of the data postprocessing is that the filter induced error is
mistakenly claimed to be compensated through scaling factors produced from
auxiliary data, such as dominantly used hydrological models. This is while, any
auxiliary data including hydrological models, are not capable to recover the dis-
tortions caused by spatial filtering. The claimed compensation in the literature,
indeed, addresses only the SHT, and the geometry (i.e.: shape and area) effects,
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rather than the filtering effect. Because, the smoothing process mixes spatially
adjacent signals which are supposed to be unknown. Therefore, any negative
side-effect of filtering will remain in the data as random errors, decreasing the
final accuracy. The mean amplitude of these random errors increases with in-
crease in the difference between the strengths of applied filter and the optimal
one. For the purpose of filter effect recovering, hydrological models can be help-
ful provided that: 1- time series of scaling factors are produced rather than
a single one; and more important, 2- the applied models are highly consistent
with gravimetry data in terms of temporal and spatial resolutions; The second
condition is definitely not met. Therefore, in terms of filter effect recovering,
hydrological based scaling is not correct in single factor procedure, and not re-
liable in time dependent procedure. Furthermore, the fundamental assumption
is that the satellite gravimetry data are more precise than common hydrological
models in spatial and temporal dimensions (for the same parameters). Thus, re-
lying on the hydrological models lead to inconsistency in the gravimetry derived
results. Consequently, this is a wrong assumption in the literature, that the fil-
tering side-effects would be recovered or decreased lately through data scaling.
Conversely, the most focus should be applied on the filtering process itself in
order to limit the filter negative effects. How much the filter is optimized, the
filter induced errors would be limited.

The decorrelation methods can be classified on two categories: the first category
approximates correlation error through a polynomial fitting, and then, subtracts
it from the total signal. The second category reconstruct the data based on a
priori information. The first category applies a realistic approach whereas they
exploit statistics of data to spatially rectify the same data. However, they do not
use the potential of any spatio-temporal patterns in the data. The second cat-
egory, however, benefits from temporal patterns, although limited to a specific
period (such as the month of August-2003 in DDK series). Several studies ob-
tained a priori information from hydrological models; which may lead to result
inconsistency as previously discussed. Those methods which use GRACE data
to extract a priori information, such as DDK series, suffer from being static.
They do not account for trends in satellite orbital information, neither for more
possible, seasonal variations. The second category is, indeed, more than the
common meaning for filters in image processing. This category exploits extra
information over the signal to be filtered; they are thus, further than typical
filters. By this definition, they function similar as ‘correcting’ or ‘refining’ tools,
rather than ‘filtering’ tools.

In the present research, we benefit from the strength of the two filtering cate-
gories. We extract a priori information about the mass variations inside and
outside the target area, from the GRACE data itself, in order to identify signal
spatial gradient, which is employed to optimize a Poisson filter length. There
is an inverse relationship between the slope of signal gradient and the optimal
filter length. The benefit of this approach is the spatio-temporal dependency
of optimal filter. Depending on signal spatial gradient, the optimal filter varies
from one site to another. The spatial gradient may also vary in time, resulting
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in change of the optimal filter length. For example, the long term change of
signal gradient in the Greenland, where rate of Glacier melting has increased in
last decades, has made it necessary to update the applied filter length. Dynamic
filtering procedure is effective in minimizing filter induced error, in particular,
for studying secular signals which is vulnerable to additive errors. The signal
spatial gradient and thus respective optimal filter length may include seasonal
cycle, e.g.: in the Caspian Sea and Congo River Basin.

The approach presented in this study adjust the balance between spatial destrip-
ping and signal smoothing. As only the isotropic Poisson filtering is investigated
in this work, it worth to study anisotropic version of filters. The combination
of characteristics of an anisotropic filter, and the time dependency specification
presented in the current study, would result in a filtering strategy variable in
time and space, which may develop the filter optimality, decreasing the filter-
induced distortions.

  Appendix A: Gravity signal propagation

Gravitation is a three-dimensional force that follows the Laplacain Equation
to obtain total three-dimensional equilibrium. Gravity anomalies are repre-
sented by periodic functions. A combination of Fourier series (for longitudi-
nal anomalies) and Associated Legendre Functions (for latitudinal anomalies)
gives a Spherical Harmonic expansion. For any gravity change on the sphere,
the lateral forces propagate radially with a pattern independent of anomaly’s
amplitude; depending on anomaly’s SHT, XY position, and planar shape and
geometry (Figure 13, left). Lord Rayleigh (1878) demonstrated that Bessel
Functions are particular cases of Laplace Functions. On the base of the mono-
miality principle, it is possible to adapt Bessel Functions for Legendre polyno-
mials (Abramowitz and Stegun, 1964; Cesarano and Ricci, 2016). Using the
Legendre-Bessel connection, the radial signal propagations may be presented in
the form of Bessel Functions of the Second Kind (Weber functions). It allows
Legendre polynomials to be highly approximated in term of Bessel functions
(Abramowitz and Stegun, 1964; Dattoli et al., 2003). Bessel’s equation is de-
fined by a differential equation (Equation 7),

𝑥2 𝑑2𝑦
dx2 + 𝑥 dy

dx + (𝑥2 − 𝑣2) y = 0 (7)

As a linear differential equation of second order has two solutions. The general
solution is the Bessel functions, often presented in the form of integer order
(Equation 8).

𝑦 = 𝐴 𝐽𝜈(𝑥) + 𝐵 𝑌 𝜈(𝑥) (8)

where, 𝐽𝜈(𝑥) and 𝑌 𝜈(𝑥) are the Bessel function of the first and the second kinds
respectively. The general form of Bessel’s modified equation with n constant (�),
and its solution can be written as Equation 9 and Equation 10 respectively.

𝑥2 𝑑2𝑦
dx2 + 𝑥 dy

dx − (𝛽2𝑥2 − 𝑣2) y = 0 (9)

𝑦 = 𝐶 𝐿𝜈(𝛽𝑥) + 𝐷 𝐾𝜈(𝛽𝑥) (10a)
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Supposing 𝛽2 = 𝑖 , where i =√−1

𝑌 𝜈(𝑥) 𝐽𝜈(𝑥)∗𝑐𝑜𝑠(v�)− 𝐽–𝜈(𝑥)
sin(v�) (10b)

where J�(z) and J–�(z) are a set of solutions of Bessel’s equation.

𝐽𝜈(𝑧) = 𝑍
2

𝑣 ∑∞
𝑘=0

( −𝑍2
4 )

𝑘

𝑘!Γ(𝑣+𝑘+1) (10c)

and Γ(a) is the gamma function.

Bessel function of the second kind and order zero consist on infinite sinusoidal
waves of fixed phase and decreasing amplitude. In gravity wave propagation the
optimized Bessel-like function includes an additional term of a linear decrease
in order to preserve orthogonality. The Bessel-like signal propagation are illus-
trated for SHT1 to SHT 100 in Figure 13 (right). The waves fluctuate in a
decreasing manner, and the frequency increases with increase in SHT.

Figure 13. Spatial propagation of signal after expanding in different SHT, at
Cg (upper right), and at CS (lower right); And the shapes of signal propagation
based on the Bessel function for SHT 10 to 100 (left).
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